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A B S T R A C T

We use ordinal analysis and spatial permutation entropy to distinguish between eyes-open and eyes-closed
resting brain states. To do so, we analyze EEG data recorded with 64 electrodes from 109 healthy subjects,
under two one-minute baseline runs: One with eyes open, and one with eyes closed. We use spatial ordinal
analysis to distinguish between these states, where the permutation entropy is evaluated considering the spatial
distribution of electrodes for each time instant. We analyze both raw and post-processed data considering only
the alpha-band frequency (8–12 Hz) which is known to be important for resting states in the brain. We conclude
that spatial ordinal analysis captures information about correlations between time series in different electrodes.
This allows the discrimination of eyes closed and eyes open resting states in both raw and filtered data. Filtering
the data only amplifies the distinction between states. Importantly, our approach does not require EEG signal
pre-processing, which is an advantage for real-time applications, such as brain-computer interfaces.
1. Introduction

Ordinal analysis, proposed by Bandt and Pompe [1], has been used
for over 20 years to extract useful information about the underlying
system from data [2,3]. In particular, the so-called permutation entropy
encodes the information about the probability distributions of ordinal
patterns of a given time series. Ordinal patterns are used to describe
the intricate dynamical patterns of a system and can be used in several
ways: as a complexity measure [4,5], to identify characteristic time
scales [6–8], to distinguish between stochastic and deterministic sys-
tems [4,9–11], to detect synchronization at different time scales [12],
etc. Ordinal analysis has found applications in a diversity of scien-
tific fields including biomedicine [13–16], economy [17], optics [18],
climatology [19–21], and neuroscience [22–25] among many others.

Here we use the ordinal method to analyze electroencephalography
(EEG) brain signals. EEG is routinely used in clinical studies to detect
and investigate abnormal brain activity and its noninvasive nature is
a key advantage for brain-computer interface (BCI) technologies [26].
EEG is typically described in terms of rhythmic activity in frequency
bands: 𝛿-band ∈ (0, 4) Hz, 𝜃-band ∈ [4, 8) Hz, 𝛼-band ∈ [8, 12) Hz,
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𝛽-band ∈ [12, 30) Hz, 𝛾-band ∈ [30, ∞) Hz. These bands are as-
sociated with a dominant frequency regime of significant biological
importance [27,28]. In particular, the 𝛼-band observed in EEG over
the human posterior cortex is prominent in normal individuals during
eyes-closed (EC) resting and attenuates during eyes-open (EO) rest-
ing [29,30]. Several methods have been proposed to detect EC to EO
states, e.g. the Fourier transform to estimate the difference between
the mean 𝛼-band components [30,31]; second-order difference plot
and signal processing techniques to investigate differences in the EEG
time series [32]; statistical feature analysis in association with artificial
intelligence classifiers [33–36].

The EC–EO transition has also been studied using ordinal analysis.
Quintero-Queiros et al. [22] have analyzed the permutation entropy,
the transition entropy, and the asymmetry coefficient of two EEG
datasets with different spatial and temporal resolutions examining both
raw data and post-processed data. They found that, on average, the eyes
open state is characterized by higher entropy values, although, due to
the large variability of the standard deviation, the permutation entropy
does not allow full discrimination between the two states.
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Fig. 1. Spatial arrangement of the 64 electrodes. Here we show a schematic
representation of the electrodes during the recording of the data [43].

Recently, several studies in neuroscience have shown the impor-
tance of analyzing the spatial and temporal behavior of a given system.
By considering the spatial aspect of the neural system, complex patterns
can be observed in different scales [37,38]. These patterns are thought
to play important roles in brain functioning [38,39]. In this paper,
we discriminate between EO and EC states using ordinal analysis
and spatial permutation entropy [40–42]. Assuming that correlations
between signals recorded in different electrodes encode valuable spatial
information, we evaluate the spatial permutation entropy (spatial PE).
We show that the spatial PE allows full discrimination between states
and, as expected, the discrimination is more pronounced in the filtered
data. To show that the spatial information is relevant to the results,
the information from electrodes is shuffled so that the spatial relation
in the data is annihilated, our approach no longer allows the distinction
between states. Finally, we successfully apply our method to short time
series of EEG data, which indicates that our method may be extended
for ‘‘online’’ analyses.

This paper is organized as follows: Section 2 presents the dataset
and details of the methodology used in this work, Section 3 presents
the results, and Section 4 presents the discussion and our conclusions.

2. Data and methods

2.1. Dataset

We use a freely available dataset [43–45] composed of EEG data
from 109 healthy subjects. Each subject performed two one-minute
baseline runs with an eyes-closed state (EC) and eyes-opened state (EO).
The EEG was recorded from 64 electrodes that are spatially arranged as
shown in Fig. 1. Table 1 presents the description of the dataset. More
information about the experimental setup and subjects can be found in
Ref. [43]. We have discarded subjects #97 and #109 due to several null
alues at the end of the time series.

In this work, we study both the raw time series and the filtered
ime series in which only the components of the 𝛼-band are selected.
o filter the data, we have used a bandpass Butterworth filter using the
cipy open library [46] applied to the whole time-series. Fig. 2 depicts
2

typical EEG signal from subject #1 during the EC state (upper panels)
Table 1
Description of the dataset.
Sampling rate 160 Hz
Time per task 60 s
Total points per task 9600
Number of electrodes 64
Number of subjects 109

and EO state (bottom panels). Panel (a) depicts the raw signal of the
EC state and panel (b) is the filtered signal. Panel (d) shows the raw
signal of the EO state and panel (e) is the filtered signal. By comparing
the upper and bottom rows, we notice that it is hard to distinguish the
EC and EO states with the naked eye (either in the raw data or filtered
data). Panels (c) and (f) present the magnification of the gray area of
the filtered data (from 1 to 4 s). These panels illustrate that differences
can be spotted in EEG time series when these are displayed in a short
time scale.

2.2. Ordinal analysis and permutation entropy

Ordinal analysis and permutation entropy allow the identification
of nonlinear patterns and relations in complex time series [1]. In a
time series of 𝜏 points, each sequence of 𝐷 points can be associated
with an ordinal pattern, where the 𝐷 values are replaced by their
relative amplitudes, ordered from 0 to 𝐷 − 1. Therefore, 𝐷! is the
number of possible patterns, which for 𝐷 = 3, illustrated in Fig. 3, is
6. For example, the sequence of three data points 𝑥 = {1.1, 1.2, 3.8}
ecomes pattern 𝑠(𝑥) = {0, 1, 2}, while 𝑥 = {32, −0.52, 4.7} becomes
(𝑥) = {2, 0, 1}.

For a time series of 𝜏 points, we have 𝜏 − (𝐷 − 1) sequences of 𝐷
oints to be analyzed. For each pattern 𝑖, its ordinal probability 𝑃 (𝑖)
s then computed as its frequency of occurrence with ∑𝐷!

𝑖=1 𝑃 (𝑖) = 1,
here 𝑖 represents each pattern. Then, the permutation entropy [1] is
valuated as:

= −
𝐷!
∑

𝑖=1
𝑃 (𝑖) log𝑃 (𝑖). (1)

he permutation entropy varies from 𝑆 = 0 if the 𝑗th state 𝑃 (𝑗) = 1
hile 𝑃 (𝑖) = 0 ∀ 𝑖 ≠ 𝑗 to 𝑆 = log𝐷! if 𝑃 (𝑖) = 1∕𝐷! ∀ 𝑖. The normalized
ermutation entropy is given by:

=
𝑆(𝐷)
log𝐷!

. (2)

As explained in the introduction, we assume that relations between
signals recorded in different electrodes, positioned in different locations
on the scalp, encode valuable spatial information. Therefore, we eval-
uate the spatial permutation entropy (spatial PE) using the approach
illustrated in Fig. 4. Particularly, we evaluate the permutation entropy
of the electrodes for each time instant for each subject, considering
exactly the disposition of the data in the form in which they were
published [43]. Being 𝐻 𝑡

𝑖 the spatial PE of the 𝑖th subject at time 𝑡th,
this results in 𝜏 = 9600 values of spatial PE per subject that are used
to characterize the EC and EO states. The average over all subjects at
time 𝑡 is

�̄� 𝑡 = 1
𝑁

𝑁
∑

𝑖=1
𝐻 𝑡

𝑖 , (3)

nd the mean entropy ⟨�̄�⟩ is the average over time

�̄�⟩ = 1
𝜏

𝜏
∑

𝑡=1
�̄� 𝑡. (4)

⟨�̄�⟩ and the standard deviation

𝜎 =

√

∑𝜏
𝑡=1(�̄� 𝑡 − ⟨�̄�⟩)2

, (5)

𝜏 − 1



Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 171 (2023) 113453B.R.R. Boaretto et al.
Fig. 2. Examples of EEG signals analyzed in this work. Representation of the first 16 electrodes of subject #1 during EC state (upper) and EO state (bottom): (a), and (d) raw
data; (b) and (e) filtered data. Panels (c) and (f) depict the magnification of the gray rectangles [1 − 4] s of the filtered data.
Fig. 3. Representation of the ordinal patterns. Schematic illustration of the 6 ordinal
patterns that can be defined from 𝐷 = 3 consecutive data values in a given time series.

are used to distinguish EC and EO states.
The dataset is composed of 64 electrodes, which limits the size of

the ordinal pattern, 𝐷, that we can use. If 𝐷 is too large, we do not have
enough patterns to accurately estimate ordinal probabilities, while if 𝐷
is too small, we do not capture spatial relationships. As a compromise,
we selected 𝐷 = 3, which allows us to obtain, for each subject at a
given time 𝑡, 62 ordinal patterns. We use them to estimate, at time 𝑡,
the probabilities of the 6 ordinal patterns of length 𝐷 = 3 (illustrated
in Fig. 3). A robust estimation of the probabilities requires that the
number of available patterns is at least 10 times the number of possible
patterns, and we show here that a good distinction of the EC and EO
states can be obtained with 62 𝐷 = 3 ordinal patterns.

3. Results

Fig. 5(a) shows the average of the spatial permutation entropy �̄� 𝑡

over all subjects for each time instant. Panel (b) depicts the mean values
over all time instants for each state ⟨�̄�⟩, the error bars represent one
standard deviation from the mean value (Eq. (5)). We observe that the
EO state has a higher mean value than the EC state, which is consistent
with the results shown in Ref. [22]; however, in our results, there is no
overlap between the error bars. Therefore by using the methodology
presented in our work, the two states can be distinguished at least over
one standard deviation. Figs. 5 (c) and (d) depict the same analysis
for the filtered data, where we can notice, as expected, that distinction
between the states is more pronounced.
3

Fig. 4. Spatial ordinal analysis. The ordinal patterns are extracted from data at each
time instant according to the spatial distribution of the electrodes (Fig. 1). At each time
step 𝑡 the first pattern 𝑠1 is computed from electrodes {1, 2, 3}, the second 𝑠2, from
{2, 3, 4}, the third 𝑠3, from {3, 4, 5}, and so on until the last pattern 𝑠62 is computed
from electrodes {62, 63, 64}. With these patterns (𝑠1 … 𝑠64) the ordinal probabilities, 𝑃𝑖
with 𝑖 = 1…6, are calculated, and then the value of the spatial permutation entropy
at time 𝑡 is calculated using Eq. (2).
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Fig. 5. Spatial ordinal analysis distinguishes EC and EO states. ((a), (c)) Average
over subjects of each state �̄� 𝑡 for each time instant (Eq. (3)); ((b), (d)) Mean values
over all time instants ⟨�̄�⟩ (Eq. (4)). The error bars display one standard deviation over
the mean value (Eq. (5)) of each state. The upper panels present the results of the raw
data and the bottom panels the filtered data.

All the spatial ordinal analysis is done by assuming that the elec-
trodes encode spatial information, and the ordinal patterns are ex-
tracted following exactly the arrangement available in the dataset that
coincides with the indices of the electrodes (Fig. 1). Fig. 6 presents
the same spatial analysis of Fig. 5 but we made a preliminary explo-
ration of a different spatial configuration of the electrodes (panel (a)).
Figs. 6 (b–e) present the spatial PE ⟨�̄�⟩ of each state, illustrating that
another spatial arrangement of the electrodes slightly enhances the
separation between states, i.e., improving the performance of spatial
ordinal analysis in distinguishing between the EC and EO states.

The spatial information encoded in the electrodes can be destroyed
if we shuffled the electrodes, i.e., randomly permute the electrode in
space. This procedure is analogous to that performed in temporal or-
dinal analysis, where any short and long-distance temporal correlation
information is lost when a time series is shuffled. The results obtained
from the shuffled electrodes are depicted in Fig. 7 following the same
methodology of Fig. 5. We observe an increase in mean entropy ⟨�̄�⟩ of
the states for both raw and filtered data, which is expected due to the
loss of the spatial correlation. Figs. 7(b,d) show that when the spatial
information is washed out by the shuffling, the distinction between EO
and EC states is not possible. The positions of the electrodes are shuffled
in the same way for all the subjects.

In ordinal analysis, the probabilities of the ordinal patterns may
carry valuable information [2]. As we have shown, the spatial permu-
tation entropy is able to distinguish between the resting brain states.
With this in mind, we can take a step back and analyze how the ordinal
probabilities differ in states EC and EO. As explained before, at each
time, 62 patterns of length 3 are obtained (from the values in the
64 electrodes at that time) and the 6 probabilities are computed. By
averaging over time, we obtain, for each probability, a mean value
and a standard deviation, which are shown in Fig. 8. Here, circles
represent the EC state, squares the EO state, and bars represent the
standard deviation. The 6 rows show the 6 ordinal probabilities and
the left (right) column presents the results of the raw (filtered) data.
In this figure, we observe that some patterns are more informative
for distinguishing the EO and EC states. Specifically, in the raw data,
pattern {0, 2, 1} allows a good but incomplete distinction between EC
and EO, and in the filtered data, the same pattern, as well as pattern
{2, 0, 1} allows a complete distinction between the states.

An important advantage that our approach offers is the possibility
of obtaining a good differentiation from the analysis of short time
4

series. Distinguishing brain states from the analysis of EEG signals is an
Fig. 6. New spatial arrangement. (a) A different spatial arrangement of the elec-
trodes. The permutation entropy is calculated as in Fig. 5, but the electrodes are ordered
in an alternative arrangement before calculating the ordinal patterns. ((b), (d)) Average
over subjects of each state �̄� 𝑡 for each time instant (Eq. (3)); ((c), (e)) Mean values
over all time instants ⟨�̄�⟩ (Eq. (4)). This analysis shows a different arrangement that
slightly improves the separation between states.

important open problem in neuroscience [31,34–36] that is particularly
challenging when the analysis is performed real-time, i.e., while the
data is being collected.

To show how our approach can be used in this situation, we analyze
the EEG data considering time intervals whose duration is varied from
1 s to 60 s (whole data). Fig. 9 shows the temporal average of the spatial
permutation entropy as a function of the duration of the time interval
analyzed. Here, following the same approach as before, we analyze
the EEG time series in a raw format (a) and also when an alpha filter
is applied (b). The filtering is applied to the entire time series 60 s
before the use of ordinal analysis. We observe that, in the raw data, our
approach allows us to perfectly differentiate the two states by analyzing
very short time intervals (20 s), and this time interval can be smaller in
filtered data (3 s). We notice that in panel (a) the distinction between
states is maximized in the first seconds. This can mistakenly lead us
to think that the raw data analysis with small time intervals is more
efficient for the distinction. We would like to emphasize that this is
just a coincidence for that specific window of analysis. If we perform
the same analysis of this figure but now not considering the first 10 s
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Fig. 7. Analysis of shuffled electrodes. The permutation entropy is calculated as in
Fig. 5, but the electrodes are randomly shuffled before calculating the ordinal patterns.
Shuffling the electrodes removes the spatial correlations and makes the two states
indistinguishable.

Fig. 8. Analysis of the ordinal probabilities. The 6 panels display the values of the
6 probabilities, averaged over time, and the bars display one standard deviation. Left
panels present the results of the raw data and the right panels the filtered data. Here,
we observe that some patterns give the opportunity to distinguish the resting brain
states, just by calculating the pattern’s probability.
5

Fig. 9. Analysis of short time series. We calculate the averages over time intervals
whose duration varies from 1 s to 60 s (whole time series), for the raw data (a), and
for the filtered data (b). We see that in the raw data we can distinguish between the
two resting states even when the time interval analyzed is very short.

of data, the difference between the two states is not maximum. We can
conclude that with fewer data we do not necessarily have better results.

4. Conclusion

We have analyzed EEG data of healthy subjects that were asked to
keep their eyes closed for one minute and then open their eyes. We have
shown that the spatial permutation entropy, computed from spatial
ordinal patterns (calculated at each time considering the spatial order
of the data values in the electrodes), distinguishes the two brain states,
a distinction that was not obtained when ‘‘temporal’’ ordinal analysis
was used [22] (i.e., when the patterns were calculated by considering
the temporal ordering of the data values). Our results, therefore, show
that the spatial locations of the electrodes carries usable information.
This was confirmed by shuffling the electrodes, which washed out
spatial correlations and made the distinction impossible (Fig. 7).

The results obtained here improve the previous analysis [22] be-
cause here there is no overlap between bars, i.e. the two groups (EC
and EO) can be separated, a fact that is even more pronounced in the
filtered data (Fig. 5). The study of different configurations to find the
optimal spatial arrangement is important for future research, as it could
lead to a significant increase in the separation between the two states.
Moreover, our results were obtained by analyzing the probabilities of
patterns of length 𝐷 = 3, while in [22], ordinal patterns of length
𝐷 = 4 were used, which provides an additional advantage in terms of
computational time (because only 6 probabilities, instead of 24, need
to be calculated).

Importantly, we have shown that, in the raw data, the analysis of
just a few seconds is sufficient to distinguish the brain states (Fig. 9),
which opens the opportunity to use this methodology in ‘‘real-time’’
applications, such as brain-computer interface applications.

The differences detected are insufficient to distinguish the states at
the individual-subject level. Future work will be devoted to combining
temporal and spatial ordinal analysis with different embedding delays
or spatial electrode arrangements to try to distinguish the states of
individual subjects. In addition, the methodology used here can be
useful to track more challenging problems, such as the classification
of sleep/consciousness stages, the identification of intention of motion,
etc.
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Data availability

Data is freely available in physionet.
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