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Abstract. Let R be a Noetherian ring. We prove that R has global dimension at most two if, and
only if, every prime ideal of R is of linear type. Similarly, we show that R has global dimension
at most three if, and only if, every prime ideal of R is syzygetic. As a consequence, we derive a
characterization of these rings using the André-Quillen homology.

Let R be a commutative ring. An ideal I of R is said to be of linear type if the graded surjective
morphism α : S(I) → R(I), from the symmetric algebra of I onto the Rees algebra of I, is an
isomorphism; I is said to be syzygetic if the second component α2 : S2(I)→ I2 is an isomorphism.
It is known that R has weak dimension at most one if, and only if, every ideal of R is of linear
type, and equivalently if, and only if, every ideal of R is syzygetic. This leads to a characterization
of rings of weak dimension at most one in terms of the André-Quillen homology (see [12]).

Recall that the weak dimension of a ring R, denoted by w.dim (R), is the supremum of the flat
dimensions of all R-modules; likewise, the global dimension of R, denoted by gl dim (R), is the
supremum of the projective dimensions of all R-modules. Clearly w.dim (R) ≤ gl dim (R), and
when R is Noetherian, they agree (see, e.g., [8, Chapter 5]). Since gl dim (R) = sup{gl dim (Rm) |
m ∈ Max(R)}, then for a Noetherian ring R, gl dim (R) ≤ N is equivalent to Rm being regular local
with Krull dim (Rm) ≤ N , for every maximal ideal m of R (see, e.g., [8, Theorems 5.92, 5.84]).

The purpose of this note is to extend these characterizations of rings of w.dim (R) ≤ 1 to rings
of global dimension at most two and three, but now in the Noetherian context. This is done in
quite similar terms. Concretely, we prove the result below. Item (A), shown in general in [12], is
included here for the sake of completeness. Unless stated otherwise, R will always be a Noetherian
ring.

Theorem. Let R be a Noetherian ring.

(A): gl dim (R) ≤ 1⇔ every ideal of R is of linear type ⇔ every ideal of R is syzygetic.
(B): gl dim (R) ≤ 2⇔ every prime ideal of R is of linear type.
(C): gl dim (R) ≤ 3⇔ every prime ideal of R is syzygetic.

Since the linear type and syzygetic conditions are clearly local, to prove this statement one
can suppose that (R,m, k) is a Noetherian local ring with maximal ideal m and residue field k.
Moreover, one can substitute the condition gl dim (R) ≤ N by the condition “R is regular local of
Krull dim (R) ≤ N”. Suppose first that R is regular local. If Krull dim (R) ≤ 1, then every nonzero
proper ideal of R is generated by a nonzero divisor, hence of linear type and syzygetic (see, e.g.,
[6, Corollary 3.7]). If Krull dim (R) ≤ 2 or 3, since R is regular local, then m is generated by an
R-regular sequence, so m is of linear type (see, e.g., [6, Corollary 3.8]); moreover R is a UFD, thus
every height one prime ideal is principal (generated by a nonzero divisor), and so again of linear
type; furthermore, every prime ideal in a regular local ring is generically a complete intersection; it
is also perfect when it is of height two, and hence syzygetic (see, e.g., [6, Remark page 91]). This
shows the “only if” implications in Theorem (A), (B) and (C).

Date: July 13, 2020.
2010 Mathematics Subject Classification. 13A30,13D05,13D03,13H05,13H15.
Key words and phrases. Global dimension, Noetherian regular rings, ideal of linear type, syzygetic ideal.

This work is partially supported by the Catalan grant 2014 SGR-634.

1



2 FRANCESC PLANAS-VILANOVA

Observe that the proof of [6, Corollary 3.8] shows that a Noetherian local ring with syzygetic
maximal ideal is regular. Therefore, in order to prove the “if” implication in Theorem (A), it is
enough to display, in a two dimensional regular local ring R, a non syzygetic ideal. For, if R were
a regular local ring with all its ideals being syzygetic and its Krull dimension were at least two,
then, localizing at a height two prime ideal of R, one would get a two dimensional regular local
ring with all its ideals being syzygetic, a contradiction. Similarly, to prove the “if” implication in
Theorem (B), it suffices to exhibit, in a three dimensional regular local ring, a height two prime
ideal which is not of linear type. Finally, to prove the “if” implication in Theorem (C), we exhibit,
in a four dimensional regular local ring, a height three prime ideal which is not syzygetic.

In this direction, we show the next result, a kind of rephrasing of [12, Lemma 3], but under
the regular local hypothesis, and hence easier to prove it. We give an alternative proof using [13,
Corollary 4.11].

Lemma 1. Let (R,m, k) be a Noetherian regular local ring of Krull dimension 2. Then m2 is not
a syzygetic ideal.

Proof. Let x, y be a regular system of parameters. Let I = m2 = (x2, xy, y2) and J = (x2, y2).
Using that x, y is an R-regular sequence, it is easy to check that xy 6∈ J (see, e.g., [3, Theorem 9.2.2],
to relate it to the simplest case of the Monomial Conjecture). Since (xy)2 ∈ JI, then J : xy ( JI :
(xy)2. By [13, Corollary 4.11], we conclude that I is not syzygetic. �

Next lemma displays, in a three dimensional regular local ring, a height two prime ideal which
is not of linear type, thus generalizing [5, Corollary 2.7]. There, in the context of the Shimoda
Conjecture, one exhibits, in a three dimensional regular local ring, a non-complete intersection
height two prime ideal. (Recall that complete intersection implies linear type.)

Lemma 2. Let (R,m, k) be a Noetherian regular local ring of Krull dimension 3. Let x, y, z be a
regular system of parameters. Let I be the ideal of R generated by

f1 = y3 − x4 , f2 = xyz − z3 + x4 − xy3,
f3 = x2y + y2z − xz2 − x3y and f4 = xy2 − yz2 − x2y2 + x3z.

Then I is a height two prime ideal minimally generated by four elements. In particular, I is not of
linear type.

Finally, the third lemma exhibits a non syzygetic height three prime ideal in a four dimensional
regular local ring.

Lemma 3. Let (R,m, k) be a Noetherian regular local ring of dimension 4. Let x, y, z, t be a regular
system of parameters. Let I be the ideal of R generated by

f1 = yz − xt , f2 = z3 − x5 , f3 = z2t− x4y ,

f4 = zt2 − x3y2 , f5 = t3 − x2y3 , f6 = y4 − x5 ,

f7 = y3t− x4z , f8 = y2t2 − x3z2.
Then I is a height three prime ideal which is not a syzygetic ideal.

The general skeleton of the proofs of Lemmas 2 and 3 are similar to that of the proof of [5,
Proposition 2.6]. Namely, once the candidate I is chosen, we show that I is perfect with the
desired height, in particular, height unmixed. Then we pick an associated prime p to I, which will
be of the same height, and, by means of multiplicity theory, we show that xR+ I and xR+ p have
the same colength, concluding, by Nakayama’s Lemma, that I and p are equal.

The ideal I displayed in Lemma 2 is a small variation of [7, Example 3.7]. Concretely, Huneke
considers the height two prime ideal defined by the kernel of the homomorphism from the power
series ring C[[X,Y, Z]] to C[[t]], sending X,Y, Z to t6, t7 + t10, t8, respectively. He shows that this
ideal is generated by the 3 × 3 minors of a specified 4 × 3 matrix L, whose entries are either 0,
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or else one among the monomials X,Y, Z,X2, XY with a ±1,±2 integer coefficient. Our example
consists in taking these 3× 3 minors, but substituting in the matrix L the variables X,Y, Z for the
regular parameters x, y, z, and replacing ±2 by ±1, in order to avoid characteristic two problems
(surprisingly enough, it works).

As for the ideal I considered in Lemma 3, we recover a particular case of a family of prime
ideals with unbounded number of generators provided by Bresinsky in [2]. Concretely, we consider
the kernel of the homomorphism from K[X,Y, Z, T ], K any field, to K[t], sending X,Y, Z, T to
t12, t15, t20, t23 and then, as before, just substitute the variables for the regular parameters.

Before proceeding to prove Lemmas 2 and 3, we highlight the good behaviour of the syzygetic
and linear type conditions through faifhfully flat morphisms of rings. Indeed, this follows from [11,
Corollaire 2.3] (see also [13, Theorem 2.4 and Example 2.3]), where one shows that these conditions
are characterized in terms of the exactness of a complex of R-modules and noting that, if R → S
is a (faithfully) flat morphism of rings, then I ⊗R S ∼= IS.

Proof of Lemma 2. Since (R,m) is a three dimensional regular local ring with maximal ideal m

generated by x, y, z, then its completion (R̂, m̂) is a three dimensional regular local ring with

maximal ideal m̂ = mR̂ = (x, y, z)R̂ generated by the regular system of paremeters x, y, z. Let

I = (f1, f2, f3, f4) and Î = IR̂ = (f1, f2, f3, f4)R̂ ∼= I ⊗R R̂. If we prove that Î is prime and not of

linear type, then I = IR̂ ∩R is prime and not of linear type, because the completion morphism is
faithfully flat (see, e.g., [10, § 8]). Therefore we can suppose that R is complete.

First observe that f1, f2, f3, f4 are, up to a change of sign, the 3× 3 minors of the matrix

ϕ2 =


x xy z
x y 0
−z −x2 −y
−y −z x

 .

In other words, I = I3(ϕ2). Since (f1, f2, x) = (x, y3, z3), then grade(f1, f2, x) = 3. By [3,
Corollary 1.6.19], f1, f2 is an R-regular sequence in I3(ϕ2) and so grade(I3(ϕ2)) ≥ 2. Let ϕ1 be the
1× 4 matrix defined as (f1, f2, f3, f4). By the Hilbert-Burch Theorem (e.g., [3, Theorem 1.4.16]),

0→ F2 = R3 ϕ2−→ F1 = R4 ϕ1−→ F0 = R→ R/I → 0

is a free resolution of R/I. (It is minimal since ϕ2(R
3) ⊂ mR4 and ϕ1(R

4) = I ⊂ m.) Therefore

2 ≤ grade(I) = min{i ≥ 0 | ExtiR(R/I,R) 6= 0} ≤ proj dimR(R/I) ≤ 2,

and I is a perfect ideal of grade 2 (see, e.g., [3, Theorem 1.2.5 and page 25]). In particular, I is
grade (and height) unmixed (see, e.g., [3, Proposition 1.4.15]) and so m is not an associated prime
to I.

Let p be any associated prime to I and set D = R/p. Thus D is a one dimensional complete
Noetherian local domain (see, e.g., [10, page 63]). Let V be the integral closure of D in its quotient
fieldK. Then V is a finitely generatedD-module and a one dimensional integrally closed Noetherian
local domain, hence a discrete valuation ring, DVR for short (see, e.g., [15, Theorem 4.3.4]).

Let ν be the valuation on K corresponding to V . Let x, y, z denote also the images of the regular
system of parameters of R in V . Set νx = ν(x), νy = ν(y) and νz = ν(z). In V , f1 = 0. Applying
ν to the equality x4 − y3 = 0, one gets 4νx = 3νy. Thus νx = 3q, for some integer q ≥ 1. In fact,
q > 1. Indeed, suppose that q = 1, νx = 3 and νy = 4. Since f2 = 0 in V , then z3 = x(yz+x3−y3).
Applying ν to this equality, 3νz ≥ min(12, 7 + νz), which implies νz ≥ 4. Since f3 = 0 in V , then
x2y = −y2z+xz2 +x3y. Applying ν to this equality, one gets 10 ≥ min(12, 11, 13), a contradiction.
Therefore νx ≥ 6.

Observe that xR+I = (x, y3, y2z, yz2, z3). Set S = R/xR and consider (by abuse of notation) y, z
a regular system of parameters of the regular local ring (S, n), where n = (y, z). Then R/(xR+I) ∼=
S/n3. Since xR = AnnR(S), then lengthR(R/(xR + I)) = lengthS(S/n3). Since y, z is a S-regular
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sequence, there exists a graded isomorphism k[Y,Z] ∼= G(n) of k-algebras, between the polynomial
ring in two variables Y,Z over the field k = S/n and the associated graded ring of the ideal n.
Using the two exact sequences 0 → ni/ni+1 → S/ni+1 → S/ni → 0, for i = 1, 2, one deduces that
lengthS(S/n3) = 6. Therefore lengthR(R/(xR+ I)) = 6.

On the other hand, since xR+ I ⊆ xR+ p and R/(xR+ p) ∼= (R/p)/(x ·R/p) = D/xD, then

6 = lengthR(R/(xR+ I)) ≥ lengthR(R/(xR+ p)) = lengthD(D/xD).

Since f1 = 0 and f2 = 0 in D, then y3, z3 ∈ xD, and so xD is an ideal generated by a system of
parameters of the one dimensional Cohen-Macaulay local domain (D,m/p, k). Since V is a finitely
generated Cohen-Macaulay D-module of rankD(V ) = 1, then lengthD(D/xD) = lengthD(V/xV )
(see [3, Corollary 4.6.11, (c)]). Note that lengthD(V/xV ) = [kV : k] · lengthV (V/xV ), where [kV : k]
is the degree of the extension of the residue fields of V and of D and, since V is a DVR, then
lengthV (V/xV ) = ν(x) = νx. Therefore, lengthD(D/xD) = [kV : k] · νx. Summing up all together,

6 = lengthR(R/(xR+ I)) ≥ lengthR(R/(xR+ p)) = [kV : k] · νx ≥ 6.

Hence lengthR(R/(xR+I)) = lengthR(R/(xR+p)) and, by the additivity of the length with respect
to short exact sequences, xR+ I = xR+ p.

Note that x 6∈ p, otherwise p ⊃ xR+I ⊃ (x, y3, z3) and p = m, a contradiction. Then p∩xR = xp.
In particular, on tensoring 0→ p/I → R/I → R/p→ 0 by R/xR, one obtains the exact sequence
0 → L/xL → R/(xR + I) → R/(xR + p) → 0, where L = p/I. Since xR + I = xR + p, then
L = xL. By Nakayama’s Lemma, L = 0 and I = p.

We conclude that I is a prime ideal of R. Since the aforementioned resolution of R/I is minimal,
I is minimally generated by 4 elements, which in particular implies that I is not of linear type,
because the minimal number of generators of an ideal of linear type is bounded above by the
dimension of the ring (see [6, Proposition 2.4]). �

Proof of Lemma 3. Since the proof of the present result is quite analogous to that of Lemma 2, we
skip some details and direct the reader to there. For instance, as before, we can suppose that R is
complete. Let ϕ1 be the 1×8 matrix defined as (f1, . . . , f8). Let ϕ2 and ϕ3 be the matrices defined
as:

ϕ2 =



y2t y3 t2 zt z2 x3z x4 −yt2 x2y2 x3y x4 0
0 0 0 0 −y 0 0 x3 0 0 −t 0
0 0 0 −y x 0 0 0 0 −t z x3

0 0 −y x 0 0 0 0 −t z 0 0
0 0 x 0 0 0 0 −xy z 0 0 −y2
0 −z 0 0 0 0 −t −x3 0 0 0 −x2y
−z x 0 0 0 −t y 0 0 0 0 0
x 0 0 0 0 y 0 z 0 0 0 t


and

ϕ3 =



−t 0 0 −y 0
0 0 0 t −x2y
0 0 −z 0 −yt
0 −z t 0 0
−x3 t 0 0 0
z 0 0 x 0
0 0 0 −z x3

−y 0 0 0 −t
0 0 x 0 y2

0 x −y 0 0
0 −y 0 0 −x3
x 0 0 0 z



.
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Since ϕ3 · ϕ2 = 0 and ϕ2 · ϕ1 = 0, then

0→ F3 = R5 ϕ3−→ F2 = R12 ϕ2−→ F1 = R8 ϕ1−→ F0 = R→ R/I → 0

is a complex of R-modules. To prove its exactness we will use the acyclicity criterion of Buchsbaum
and Eisenbud (see, e.g., [3, Theorem 1.4.12]). Set ri =

∑3
j=i(−1)j−irankFj , so that r1 = 1, r2 = 7

and r3 = 5.
Note that, since (f2, f5, f6, x) = (x, y4, z3, t3), then grade(f2, f5, f6, x) = 4. By [3, Corol-

lary 1.6.19], f2, f5, f6 is an R-regular sequence in I = I1(ϕ1). In particular, grade(I) ≥ 3 (and
grade(I1(ϕ1)) ≥ r1 = 1).

In order to prove grade(I7(ϕ2)) ≥ 2, we look for minors of ϕ2 with pure terms in one of the
parameters. For instance, up to sign, the minor g1 := y10 − 2x5y6 + x10y2 ∈ I7(ϕ2), with pure
term in y, is obtained from the 7× 7 submatrix given by the rows 1, 2, 3, 4, 5, 7, 8 and the columns
2, 3, 4, 5, 6, 7, 12. Similarly, we get g2 := z8−2x5z5 +x10z2 ∈ I7(ϕ2) from the 7×7 submatrix given
by the rows 1, 3, 4, 5, 6, 7, 8 and the columns 1, 2, 5, 8, 9, 10, 11. Since (g1, g2, x) = (x, y10, z8), then
grade(g1, g2, x) = 3 and g1, g2 is an R-regular sequence in I7(ϕ2) and grade(I7(ϕ2)) ≥ 2.

As before, let us seek for minors of ϕ3 with pure terms in one of the parameters. Thus h1 =
y6 − x5y2 ∈ I5(ϕ3) is obtained from the 5 × 5 submatrix given by the rows 1, 8, 9, 10, 11; h2 =
z5 − x5z2 ∈ I5(ϕ3) is obtained from the rows 3, 4, 6, 7, 12 and, finally, h3 = t5 − x2y3t2 ∈ I5(ϕ3)
is obtained from the rows 1, 2, 4, 5, 8. Since (h1, h2, h3, x) = (x, y6, z5, t5), then h1, h2, h3 is an
R-regular sequence in I5(ϕ3) and grade(I5(ϕ3)) ≥ 3.

We conclude that the complex above is a minimal free resolution of R/I. Therefore I is a perfect
ideal of grade 3. In particular, I is height unmixed and so m is not an associated prime to I.

Let p be any associated prime to I and set D = R/p. Thus D is a one dimensional complete
Noetherian local domain. As before, let V be the integral closure of D in its quotient field K. Then
V is a finitely generated D-module and a DVR (see [15, Theorem 4.3.4]). Let ν be the valuation on
K corresponding to V . Set νx = ν(x), νy = ν(y), νz = ν(z) and ν(t) = νt. In V , f2 = z3 − x5 = 0,
f5 = t3 − x2y3 = 0 and f6 = y4 − x5 = 0. Applying ν to these equalities, one gets 3νz = 5νx,
3νt = 2νx + 3νy and 4νy = 5νx. The positive vector (νx, νy, νz, νt) ∈ Z4, with smallest νx ≥ 1,
satistying these three conditions is (12, 15, 29, 23). (Clealy, this vector also satisfies all the other
conditions arising from fi = 0.) In particular, νx ≥ 12.

Let (S, n, k) be the regular local ring with S = R/xR and n = m/xR = (y, z, t), by abuse of
notation. One has xR + I = (x, yz, z3, z2t, zt2, t3, y4, y3t, y2t2) and R/(xR + I) ∼= S/J , where
J is the ideal of S defined as J = (yz, z3, z2t, zt2, t3, y4, y3t, y2t2). Since xR = AnnR(S), then
lengthR(R/(xR + I)) = lengthS(S/J). Since y, z, t is a S-regular sequence, there exists a graded
isomorphism k[Y,Z, T ] ∼= G(n) of k-algebras, where G = G(n) stands for the associated graded
ring of n. Let J∗ denote the homogeneous ideal of G generated by all the initial forms of elements
of J . Proceeding as in the proof of [5, Lemma 2.9], one sees that lengthS(S/J) = lengthS(G/J∗).
Let L be the ideal of G generated by the initial forms of yz, z3, z2t, zt2, t3, y4, y3t, y2t2 in G. By
[5, Theorem 2.11] (see also [5, Remark 2.10]), L = J∗. Hence, lengthS(G/J∗) = lengthS(G/L).
Through the isomorsphim k[Y,Z, T ] ∼= G, one deduces that G/L is isomorphic to the k-vector
space spanned by 1, Y, Y T, Y T 2, Y 2, Y 2T, Y 3, Z, ZT, Z2, T, T 2. Therefore lengthR(R/(xR + I)) =
lengthS(S/J) = lengthS(G/J∗) = lengthS(G/L) = 12.

As in Lemma 2, since xR+ I ⊆ xR+ p and R/(xR+ p) ∼= (R/p)/(x ·R/p) = D/xD, then

12 = lengthR(R/(xR+ I)) ≥ lengthR(R/(xR+ p)) = lengthD(D/xD).

Since f6 = 0, f2 = 0 and f5 = 0 in D, then y4, z3, t3 ∈ xD, and so xD is parameter ideal of
the one dimensional Cohen-Macaulay local domain (D,m/p, k). Since V is a finitely generated
Cohen-Macaulay D-module of rankD(V ) = 1, then lengthD(D/xD) = lengthD(V/xV ) (see [3,
Corollary 4.6.11, (c)]). Moreover lengthD(V/xV ) = [kV : k] · lengthV (V/xV ) = [kV : k] · ν(x)
Therefore, lengthD(D/xD) = [kV : k] · νx. Recapitulating,

12 = lengthR(R/(xR+ I)) ≥ lengthR(R/(xR+ p)) = [kV : k] · νx ≥ 12.
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Hence lengthR(R/(xR+ I)) = lengthR(R/(xR+ p)) and xR+ I = xR+ p.
Again, note that x 6∈ p, otherwise p ⊃ xR + I ⊃ (x, y4, z3, t3) and p = m, a contradiction. So

p∩xR = xp. Proceeding as in the end of proof of Lemma 2, we conclude that I = p is a prime ideal
of R. Set H := (f1, . . . , f7) ⊂ I. Since the aforementioned resolution of R/I is minimal, f8 6∈ H
and H : f8 ( R. However, one can check that f28 = x2yztf21 − x4f1f5 − x2f2f7 + tf5f6 + x2f6f7.
Thus f28 ∈ HI and HI : f28 = R. Therefore, H : f8 ( HI : f28 and I is not syzygetic (see [13,
Lemma 4.2]). �

In terms of the André-Quillen homology (see [1] and [14]; see also [9], for a new and recent
treatment), and as a corollary of the Theorem, we state the following characterization of Noetherian
rings of low global dimension. Again, just for the sake of completeness, we include item (A), shown
in general in [12].

Corollary. Let R be a Noetherian ring.

(A): gl dim (R) ≤ 1⇔ H2(R,S, ·) = 0, or H2(R,S, S) = 0, for every quotient ring S = R/I.
(B): gl dim (R) ≤ 2⇔ H2(R,S, ·) = 0 for every quotient domain S = R/I.
(C): gl dim (R) ≤ 3⇔ H2(R,S, S) = 0 for every quotient domain S = R/I.

Note that, unlike Theorem (B), Corollary (B) could be deduced directly from [5, Corollary 2.7],
since the vanishing of the second André-Quillen homology H2(R,R/I, ·), in the Noetherian local
case, is equivalent to I being generated by an R-regular sequence. We give here a slightly different
approach.

Proof of the Corollary. The equivalence between the leftmost and rightmost conditions in Corol-
lary (A), follows immediately from the isomorphism H2(R,R/I,R/I) ∼= ker(α2) and the corre-
sponding equivalence between the leftmost and rightmost conditions in Theorem (A) (see, e.g., [11,
Corollaire 3.2]). Similary, Corollary (C) follows immediately from Theorem (C).

It remains to prove the first equivalence of Corollary (A) and the equivalence of Corollary (B).
To this end, recall that the vanishing of H2(R,R/I, ·) is also equivalent to I being of linear type and
I/I2 being a flat R/I-module (see [11, Théorème 4.2]). Clearly, this characterization together the
corresponding “if” implications in Theorem (A) and (B), show the “if” implications of Corollary (A)
and (B), respectively. Finally, as said before, if gl dim (R) ≤ 1, then every nonzero ideal I of R
is locally principal, hence its conormal module I/I2 is R/I-flat. Similarly, if gl dim (R) ≤ 2, any
nonzero prime ideal I of R is either locally principal, or else maximal, hence in either case, its
conormal module I/I2 is again R/I-flat. �

Closing Remark. If we omit the Noetherian assumption on the ring R, we know that the state-
ment of Theorem (A) is true once we substitute gl dim (R) for w.dim (R) (cf. [12]). Note that
w.dim (R) can be strictly smaller than gl dim (R), for instance, if R is the ring of all algebraic
integers (see, e.g., [16, 1.3 Examples]). Therefore the “if” implication of Theorem (A), without
the Noetherian hypothesis, is false. This suggests that one should also replace gl dim (R) with
w.dim (R) in the “if” implications of Theorem (B) and (C).

Just to have a flavour of the ins and outs of the non Noetherian setting, and to start with, we
show the following simpler statement. Let R be non-necessarily Noetherian.

(1) If gl dim (R) ≤ 2, then every prime ideal of R is of linear type.

Indeed, since the linear type condition is local, we can suppose again that (R,m) is local. Then R
is either a Noetherian regular local ring (of Krull dim (R) ≤ 2), a valuation domain, or a so-called
umbrella ring (see [16, 2.2 Theorem], for the definitions and a proof). Note that the first case is
precisely solved with the “only if” implication of Theorem (B). If R is a valuation domain, then R is
a Bézout domain, hence Prüfer and w.dim (R) ≤ 1, so every ideal of R is flat and of linear type (see,
e.g., [11, Remarque 2.6]). Whenever m is principal or non finitely generated, it is shown that R is a
valuation domain. If m is finitely generated, but not principal, then m is generated by two elements,
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a, b, say. In such a case, R is a GCD domain with every prime ideal different from m being flat, hence

of linear type. As for the maximal ideal, there exists an exact sequence 0 → R
ϕ−→ R2 ψ−→ m → 0,

with ϕ(1) = (α, β), say, α, β ∈ R, with gcd(α, β) = 1, and ψ(u, v) = ua+vb. Since (b,−a) ∈ ker(ψ),
then there exists δ ∈ R, such that a = −δβ and b = δα. Note that α, β ∈ m, otherwise, if for
instance α is invertible, then δ = α−1b and a = −δβ = (−α−1β)b and m would be principal. Hence
m = (a, b)R = δ(α, β)R ⊆ (α, β)R ⊆ m, and m = (α, β) is generated by the R-regular sequence
α, β, in particular, m is of linear type.

Note that the argument above proves that the conormal module I/I2 of every prime ideal I is a
flat R/I-module. Hence the following statement is also true. Let R be non-necessarily Noetherian.

(2) If gl dim (R) ≤ 2, then H2(R,S, ·) = 0, for every quotient domain S = R/I.

We do not know whether one can substitute gl dim (R) ≤ 2 by w.dim (R) ≤ 2 in (1) or (2); neither
we know if the converse of (1) or (2) are true, even if we replace gl dim (R) ≤ 2 by w.dim (R) ≤ 2.
This could be a line of enquiry in future work.
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