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Abstract

This brief report investigates different quality parameters to assess the reliability in Wireless Internet Service Providers,
WISPs. In our analysis we use a Markov chain approach. We investigate the time to failure, failure probability and reliability.
We obtain a closed-form reliability formula for the failure of a system subject to the failure of k devices.

1 Introduction
WISPs have emerged to provide access to Internet services in locations where large telecommunications operators have not
deployed their infrastructure. WISPs are made up of small companies with small-scale businesses and low profit margins. Thus,
a key issue for WISPs is the number of network devices to be deployed, and the reliability benefits they can bring, in order to
decide on the most suitable network deployment. In this report we investigate different quality metrics to evaluate the reliability
depending on the number of networking devices. In particular, we assume that the WISP infrastructure is divided in clusters.
Inside each cluster there is a set of one or more gateways, which we assume connected through optical fiber, and thus, with
high reliability. We thus focus on the number of antennas and gateways inside each cluster to assess reliability. The report is an
extension of our previous work [2].

2 Failure time analysis
Assume a cluster with a core of na antennas. Let Fk be the RV equal to the time to failure of the core, for a k-edge connected
core. We consider that the core fails if k antennas are in failure state for a k-edge connected core. As quality metric we use
E[Fk]. Assume that the time to failure of antennas is exponentially distributed with rate 1/mttfa.

The minimum of na exponential RVs with rate 1/mttfa is exponentially distributed with rate na/mttfa. Thus:

E[F1] =
mttfa
na

(1)

Assume that the repair time of an antenna is exponentially distributed with rate 1/mttra. For k = 2, E[F2] can be computed
as the first passage time from state 0 to state f in the continuous time Markov chain:

0 1 f

na/mttfa

1/mttra

(na − 1)/mttfa

which is:

E[F2] =
mttfa (mttfa + mttra (na − 1))

mttra (na − 1)na
=

mttfa + mttra (na − 1)

mttra (na − 1)
E[F1] (2)

Thus, increasing from 1-edge to 2-edge connected core we have a gain:

G =
E[F2]

E[F1]
=

mttfa + mttra (na − 1)

mttra (na − 1)
(3)

For instance, for mttfa = 11.4 y, mttra = 2 h ≈ 0.00023 y, na = 100 we have:

E[F1] = 0.114 y
E[F2] ≈ 57.2 y

G ≈ 500
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Figure 1: Gateway failure probability

3 Gateway failure probability analysis
Assume now a cluster with k gateways. We assume that the cluster fails when all k gateways fail. Assume that the time to failure
of the gateway is exponentially distributed with rate 1/mttfr, and the repair time it is also exponentially distributed with rate
1/mttrr. We have the following continuous Markov chain where the state is the number of failed gateways. We assume also that
only one gateway can be simultaneously under repair (there is only one repair team).

0 1 k

k/mttfr

1/mttrr

(k − 1)/mttfr

1/mttrr

1/mttfr

· · ·

1/mttrr

As before, the mean time to failure is the first passage time from state 0 to state k. The chain is reversible and the stationary
distribution is given by:

πi =

αi

(k−i)!∑k
j=0

αj

(k−j)!

, i = 0, · · · , k (4)

where α = mttrr
mttfr

and we take 0! = 1. Thus, the proportion of time the system is in failure state (state k) is given by:

πk =
αk∑k

j=0
αj

(k−j)!

. (5)

For instance, with mttfr = 22.8 y and mttrr = 2 h we have α = 1/99864 and:

• For a single gateway (k = 1): π1 = α∑1
j=0

αj

(k−j)!
≈ 10−5

• For 2 gateways (k = 2): π2 = α2∑2
j=0

αj

(k−j)!
≈ 2× 10−10

For a failure probability of πk = 10−3 we have the values of αk given in table 1 below (see Fig.3). Thus, increasing from
k = 1 to k = 2, and assuming the same repair time, we reduce the required time to failure in α2/α1 = (mttfr)1/(mttfr)2 ≈ 23
times.

k αk

1 1/999
2 0.0229
3 0.0584

Table 1: Values of αk for a failure probability πk = 10−3

4 Gateway reliability analysis
Let X be a random variable equal to the failure time of a system. The reliability of the system, R(t), is defined as R(t) =
P{X > t}. In other words, it is the probability that the system is working at time t. We shall use the same assumptions as in
section 3.

2



Clearly, for k = 1 gateways we have:
R1(t) = e−t/mttfr , t ≥ 0 (6)

For k = 2 we have R2(t) = 1− π2(t), where π2(t) is the probability to reach state 2 at time t in the chain below.

0 1 2

2/mttfr

1/mttrr

1/mttfr

The infinitesimal generator of the chain is

Q =

−2 f 2 f 0
r −(r + f) f
0 0 0

 (7)

where we define to simplify the notation f = 1/mttfr and r = 1/mttrr. And we have

R2(t) =
λ1

λ1 − λ2
eλ2 t − λ2

λ1 − λ2
eλ1 t, t ≥ 0 (8)

where λ1 and λ2 are the nonzero eigenvalues of Q:

λ1 =
−1

2

(
3 f + r +

√
(3 f + r)2 − 8 f2

)
λ2 =

−1

2

(
3 f + r −

√
(3 f + r)2 − 8 f2

)
Assuming a worst case f � r, that is, mttfr � mttrr (no taking into account repairs) we can approximate:

λ1 ≈ −2 f

λ2 ≈ −f

and
R2(t) ≈ R̃2(t) = 2 e−f t − e−2f t, t ≥ 0 (9)

If we want a 99% reliability in one year, solving for R1(1) = 0.99 and R̃2(1) = 0.99 in equations (10) and (9), respectively,
we get:

R1(1) = 0.99⇒ mttfr ≈ 99 years

R̃2(1) = 0.99⇒ mttfr ≈ 9.5 years

Thus, increasing the number of gateways from 1 to 2 we reduce the required mttf approximately by a factor of 10. For the sake
of comparison, using (12) with mttfr = 10 mttrr (i.e. r = 10 f ) we get a further reduction of mttfr to:

mttfr = 10 mttrr : R2(1) = 0.99⇒ mttfr ≈ 7.85 years

And if we fix mttrr = 1 day= 1/365 years:

mttrr = 1 day : R2(1) = 0.99⇒ mttfr ≈ 0.73 years (268 days)

5 Antennas reliability analysis
Assume as in section 2 that we have na antennas in a k-edge connected core, such that the core fails when k antennas fail. We
can proceed as in section 4 and now for k = 1 we have:

R1(t) = e−na t/mttfa , t ≥ 0 (10)

For k = 2 we have the Markov chain:

0 1 2

na/mttfa

1/mttra

(na − 1)/mttfa
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Figure 2: Mean time to failure required to have 99% reliability in 1 year (left) and 1 week (right). Comparison for k = 1 and
k = 2 edge connected cores.
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Figure 3: Mean time to failure required to have 99% reliability in 1 year (left) and 1 week (right). Comparison for k = 2 and
k = 3 edge connected cores.

with infinitesimal generator having the nonzero eigenvalues:

λ1 =
−1

2

(
(2na − 1) f + r +

√
((2na − 1) f + r)2 − 4na (na − 1) f2

)
λ2 =

−1

2

(
(2na − 1) f + r −

√
((2na − 1) f + r)2 − 4na (na − 1) f2

)
where f = 1/mttfa, r = 1/mttra and reliability given by (12). Fig. 2 shows the mttfa that would be required for the antennas
varying the number of antennas, for a 99% reliability in 1 year and 1 week.

For k = 3 we have the Markov chain:

0 1 2 3

na/mttfa

1/mttra

(na − 1)/mttfa

1/mttra

(na − 2)/mttfa

with infinitesimal generator:

Q =


−na f na f 0 0
r −(r + (na − 1) f) (na − 1) f 0
0 r −(r + (na − 2) f) (na − 2) f
0 0 0 0

 (11)

Let λ1, λ2, λ3 be the nonzero eigenvalues of Q. We have:

R3(t) =
λ2 λ3

(λ1 − λ2) (λ1 − λ3)
eλ1 t +

λ1 λ3
(λ2 − λ1) (λ2 − λ3)

eλ2 t +
λ1 λ2

(λ3 − λ1) (λ3 − λ2)
eλ3 t, t ≥ 0 (12)

Fig. 3 compares the mean time to failure for k = 2 and k = 3 edge connected cores.
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5.1 Generalization
Assume a k-edge connected core (it fails when k devices fail). Failure can be modeled with the absorbing Markov chain:

0 1 k − 1 k

na/mttfa

1/mttra

(na − 1)/mttfa

1/mttra

(na − (k − 2))/mttfa

· · ·

1/mttra

(na − (k − 1))/mttfa

with infinitesimal generator:

Q =


−na f na f · · · 0 0
r −(r + (na − 1) f) · · · 0 0
...

...
...

...
0 0 · · · −(r + (na − (k − 1)) f) (na − (k − 1)) f
0 0 · · · 0 0

 (13)

where f = 1/mttfa and r = 1/mttra. Let λi, i = 1, · · · k be the nonzero eigenvalues of the infinitesimal generator. These
are the eigenvalues of the submatrix obtained removing the last row and column of Q. This submatrix is similar to a symmetric
tridiagonal matrix with nonzero elements [4]. Thus, its eigenvalues are simple and we can guess the probability of reaching state
k at time t by [1]:

πk(t) = 1 +

k∑
i=1

ai eλi t. (14)

Imposing the boundary conditions πk(0) = 0, djπk(t)
dtj

∣∣∣
t=0

= 0, j = 1, · · · k − 1, we have that the unknown coefficients ai
in (14) can be obtained solving: 

1 1 · · · 1
λ1 λ2 · · · λk
...

λk−11 λk−12 · · · λk−1k



a1
a2
...
ak

 =


−1
0
...
0

 . (15)

Thus, we have that the coefficients are given by the first column of the inverse of the Vandermonde matrix of (15) with opposite
sign [3]. Therefore:

Rk(t) = 1− πk(t) =

k∑
i=1

−ai eλi t = (−1)k−1
k∑
i=1

Πj 6=iλj
Πj 6=i(λi − λj)

eλi t, t ≥ 0, k ≥ 1. (16)
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