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Abstract

The last decade has been the stage for many groundbreaking Artificial
Intelligence technologies, such as revolutionary language models: Gen-
erative models capable of synthesizing surprisingly unique data. Such
a novelty also brings about public concerns, primarily due to state-
of-the-art models’ “black box” nature. One of the domains that has
quickly adopted the generative deep learning paradigm is drug dis-
covery, which, from a pharmaceutical industry point of view, is an
extremely expensive and time-consuming process. However, the in-
ner workings of such models are not inherently understandable by hu-
mans, causing hesitation to fully trust their results. The concept of dis-
entanglement is one of the fundamental requirements to explain gen-
erative models, determining the extent to which steerability and nav-
igation can be achieved in the latent space. Unfortunately, the appli-
cation potential of interpretability approaches has some limitations de-
pending on the availability of generative latent factors. This work aims
to shed some light on the synthesized latent spaces of state-of-the-art
molecular generative models: A couple of basic assumptions made
about the latent space characteristics are analyzed and potential pit-
falls related to domain, architecture, and molecule representation pref-
erences are addressed. The degree to which the steerability in the latent
space is achieved is quantified by implementing a novel interpretability
approach, providing the basis for the comparison of alternative model
configurations. The experiments further revealed that modeling deci-
sions have a direct impact on achievable interpretability; albeit limited
by the intricacies of the medicinal chemistry domain.
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Chapter 1

Introduction

Artificial Intelligence (AI) is continuously proving its potential in a wide range of
tasks, such as in the recent development of large language models that can gener-
ate human-like dialogue, or image and video generative models capable of produc-
ing content that is almost indistinguishable from a perceptual viewpoint; techno-
logical feats that also bring along unavoidable public controversy. The last decade
has been extremely fruitful for AI research, partly because of the advancement of
computational power and the growing interest in the field that comes with the
breakthroughs provided by Deep Learning (DL) approaches. Although DL mod-
els can arguably achieve superhuman performance in a wide spectrum of specific
tasks, the black-box nature that comes with their exceeding complexity generates
concerns about their adaptation into various domains.

Generative DL models have been on the stage from as early as the 1960s [Weizen-
baum (1966)], though the ground-breaking architectures such as Generative Ad-
versarial Networks (GAN)[Goodfellow et al. (2014)], Variational Autoencoders (VAE)
[Kingma and Welling (2022)] and normalizing flow-based generative models [Dinh
et al. (2015)] such as Glow [Kingma and Dhariwal (2018)] were only introduced in
the last decade, paving the way for the current state-of-the-art architectures. A
typical generative model maintains a latent space, which is a space of lower di-
mensionality than that of the input data, and maps the input data into this synthe-
sized space. The space possesses certain properties that distinguish it from a mere
encoding that enables the model to obtain meaningful decodings when sampling
from the space. Either by implicitly or explicitly learning the statistical distribution
of the input data, never-seen data can be generated by this type of models. On the
negative side, however, their training be a challenging task. GANs can suffer from
mode collapse, a phenomenon that occurs when the generator part of the network
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Introduction 2

tends to generate the same data, in turn causing the discriminator to condition it-
self to always reject that output. Although there have been improvements in the
loss function [Arjovsky et al. (2017)], the training phase can still be brittle. On the
other hand, the VAE architecture is known to suffer from a concept called posterior
collapse [Yacoby et al. (2022)], resulting in the model to learn uninformative latent
encodings.

Within the large span of application domains, the implementation of genera-
tive models in drug discovery has led to substantial success in problems of in-
verse molecular design, also known as de novo molecular design. Virtual screening
(VS) is the traditional approach to developing drugs from known molecules, which
is a process that is extremely time-consuming and expensive. Developing a new
drug can cost as much as 2.6 billion$ to pharmaceutical companies [Avorn (2015)].
Moreover, experts estimate the space of chemically valid molecules to be in the
range of 1023 to 1060 [Polishchuk et al. (2013)][Reymond and Awale (2012)], ren-
dering its complete exploration intractable. The VS-based drug design paradigm
appears to be limited due to the constraint of operating on the basis of already
known molecules. For example, 49% of small-molecule cancer drugs were based
on natural products or their derivatives up until the year 2014 [Newman and Cragg
(2016)][Sanchez-Lengeling and Aspuru-Guzik (2018)]. However, de novo drug de-
sign potentially enables practitioners to traverse the vast chemical space more ef-
fectively [Meyers et al. (2021)], therefore unlocking a great amount of potentially
useful molecules to be used as a drug with desired properties. In 2020 [Stokes et al.
(2020)], a message-passing network-based model was able to identify Halicin as a
potent antibiotic, which was undetected with the traditional VS paradigm, due
to Halicilin being structurally divergent from known antibiotics. Also, facilitat-
ing the drug development process by utilizing generative models may potentially
translate into drugs being more accessible and cheaper. Moreover, a proper un-
derstanding of the latent space of the generative models will help practitioners to
develop an intuition about the inner workings of the black-box models, therefore
increasing the incorporation of such models into drug discovery tasks.

Unlike in the image domain, interpretability methods for drug generative mod-
els are of limited availability. Due to the intricacies of the domain, most of the work
exists in a case-based format [Du et al. (2022)]. Moreover, efforts made for genera-
tive model explainability do not translate well into drug generative models, since
ground truth latent generative factors are unknown for the molecules. The concept
of disentanglement [Zeng et al. (2022)][Du et al. (2022)] is the main approach that
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most of the interpretability efforts revolve around. To counteract such shortcom-
ings, some proposals have been made that aim to shed some light on the black-box
models: ChemSpacE [Du et al. (2023)] is a novel approach to identifying hyper-
planes that separate certain properties of the molecules in the latent space. Once
discovered, such planes enable practitioners to steer in the model’s latent direction.

In the DL field, certain datasets are designed to serve as a measuring stick for
model performance on a specific task. For example, ImageNet [Deng et al. (2009)]
is the gold standard dataset for the development of object recognition models. In
a similar sense, MOSES [Polykovskiy et al. (2020)] is a benchmark dataset that is
proposed to objectively assess drug generative models’ distribution learning capa-
bilities. Most of the work in the de novo drug design field focuses on the molecular
property optimization aspect, therefore MOSES is an important benchmark to stan-
dardize generative model performance for the assessment of distribution learning
capabilities. Within the framework of the benchmark, several models with differ-
ent architectures have been proposed to serve as a baseline.

The goal of this thesis is to implement state-of-the-art molecule generative net-
works and attempt to gain insights into the latent space synthesized by different
generative paradigms. The models are trained on the MOSES benchmark dataset
and their generative performances are evaluated on molecule validity, uniqueness,
and novelty metrics. In order to assess the disentanglement aspect of the genera-
tive models, a couple of basic assumptions over the latent space will be tested, then
a state-of-the-art latent space explorer method will be implemented to probe into
the generative processes of the de novo drug designer architectures. Later, analy-
sis and assessment of domain, representation, and architecture-based difficulties
will be laid out to address the issues faced when attempts are made to steer into
meaningful directions in the latent space.



Chapter 2

State of the Art

2.1 Basic Concepts

There are various architectures available for the task of molecule generation. Meth-
ods vary depending on many factors such as the downstream task, the choice of
molecule representation, and the complexity of the molecules being worked on.
An architecture that is capable of working with relatively small molecules may fail
to model more complex molecules.

Generative Models incorporate multiple DL concepts to process the molecular
data. Depending on the preferred architecture, certain types of Recurrent Neural
Networks (RNN), such as Long Short Term Memory (LSTM) or Gated Recurrent
Units (GRU) are commonly incorporated into the typical encoding and decoding
processes. Also, RNNs are being utilized by message-passing neural networks to
update node representations; therefore their application is not restricted to string-
based molecular representation. There are various applications where RNN-based
architectures are used as a stand-alone molecule generative architecture, but more
importantly, they are usually ingrained into many architectures, such as VAE and
GAN to process molecular sequence information intermediates.

2.1.1 Recurrent Neural Networks (RNN)

Recurrent Neural Networks [Schmidt (2019)] are typically the preferred neural net-
work architectures when working with sequence-natured data, which may come
in various modalities: sound, text, genomes, or time series, to name a few. One of
the major differences between RNNs and classic Multi-Layer Perceptrons (MLP) is
that the latter do not contain any sort of cycles when the data is being propagated,
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2.1. BASIC CONCEPTS 5

Figure 2.1: Basic diagram of the RNN architecture.

whereas in the former the network maintains information about the past states. To
calculate input Xt, all the past information X0:t−1 will be taken into consideration.

In order to describe the process mathematically, we can represent the hidden
state of the network at time step t as Ht ∈ Rn×h and input at time step t as Xt ∈ Rn×d

where n denotes the number of data points, d denotes the input dimensionality
and h denotes the number of hidden units. After defining the weight matrix as
Wxh ∈ Rd×h, hidden state-to-state matrix as Whh ∈ Rh×h and the bias parameter as
bh ∈ R1×h, we can obtain Ht after passing all the information from the activation
function ϕ, which is usually a tanh or a logistic sigmoid function:

Ht = ϕh (XtWxh + Ht−1whh + bh) (2.1)

Finally, the output Ot variable can be obtained by:

Ot = ϕo (Htwho + bo) (2.2)

The diagram 2.1 shows the typical architecture of a basic RNN.
In practice, standard RNNs struggle with long input sequences due to the van-

ishing gradient problem [Bian and Xie (2021)]. Certain improvements have been
proposed to tackle the issues related to long dependencies: the most popular meth-
ods are LSTM and GRU Networks. By introducing a carry track to propagate infor-
mation across the learning process, the signal vanishing issue is mitigated. LSTMs
have a couple of gated cells: the Output Gate Ot that reads the entries of the cell;
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the Forget Gate Ft that clears the information of the cell and It that reads the infor-
mation into the cell. The dynamics can be expressed as:

Ot = σ (XtWxo + Ht−1who + bo) (2.3)

It = σ (XtWxi + Ht−1whi + bi) (2.4)

Ft = σ (XtWxf + Ht−1whf + bf ) (2.5)

The function σ is a sigmoid activation function that scales the raw output in the
range ∈ (0, 1).

Further, a new memory cell should be introduced that replaces the previous σ
function with a tanh activation function that outputs in a range ∈ (−1, 1).

C̃t = tanh (XtWxc + Ht−1whc + bc) (2.6)

By utilizing the information of the previously defined gates, we can dictate how
much of the previous information will be maintained in the next state. When we
combine the information as:

Ct = Ft ⊙ Ct−1 + It ⊙ C̃t (2.7)

Finally, by incorporating the hidden states Ht calculation, we can express the
framework as:

Ht = Ot ⊙ tanh(Ct) (2.8)

Gated Recurrent Units are also used as an alternative to LSTMs, although they
are capable of holding shorter sequence information than LSTMs [Zeng et al. (2022)].
On the other hand, LSTMs can run into the risk of overfitting the data due to hav-
ing a higher number of parameters. The choice will be depend on the size of the
molecules under analysis.

2.1.2 Message Passing Neural Network (MPNN)

Message Passing Neural Networks (MPNN) [Gilmer et al. (2017)] are the basic
backbone of how the graph information is processed by generative models. In
each successive layer of the MPNN, a node’s information will be aggregated with
its neighborhood information along with the information of connectivity. In each
successive pass, nodes start to get information about the neighbors-of-their neigh-
bors. The forward pass consists of two phases: the message-passing phase and the
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readout phase. The former runs for T time steps and it is defined by message func-
tions Mt and vertex update functions Ut. Throughout the message-passing phrase,
hidden states htv of each node is updated based on the messages mt+1

v based on:

mt+1
v = Σ

w∈N(v)
Mt(h

t
v, h

t
w, ev,w) (2.9)

ht+1
v = Ut(h

t
v,m

t+1
v ) (2.10)

where N(v) is the neighbor nodes of node v in graph G. The readout phase calcu-
lates a feature vector for the graph as a whole via readout function R as:

ŷ = R(hTv | v ∈ G) (2.11)

The functions of Mt, Ut and R are differentiable learned functions. The readout
function works on node states and it is required for the function to be invariant to
permutations, in turn enabling the MPNN to be invariant to graph isomorphism.
Although many different variations exist, the basic operation is more or less the
same across the alternatives.

2.1.3 Variational Autoencoders (VAE)

The Variational Autoencoder (VAE) [Kingma and Welling (2022)] is one of the main
architectures utilized in the domain of generative modeling. VAE compresses and
maps the input data as overlapping statistical distributions, typically Gaussian, as
opposed to mere point encodings. This concept provides a couple of desired prop-
erties in the constructed latent space: encodings of the molecules are continuous,
therefore, extrapolation between two elements will generate meaningful interme-
diates, resembling more to the point that is the closest. Also, similar items will
be mapped to the neighborhood of each other. Moreover, by sampling from the
synthesized latent space, new data can be generated.

Fundamentally, a VAE is an Autoencoder with a regularization aimed to en-
courage the model to map data as a distribution during the encoding and decod-
ing process. In order to be decoded, the point will be sampled from the learned
distribution and will be fed to the decoder. The encoder outputs the mean µ and
the covariance matrix Σ for each input, which is encouraged by the loss function
to typically be a standard Gaussian distribution. The mapping of data-point as
distribution is enforced by the Kullback-Leiber (KL) divergence term in the loss
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function. The likelihood of observing data-point x, expressed as p(x), is approxi-
mated by VAE [Du et al. (2022)]:

log p(x) = log

∫
z

p(z)p(x | z)dz

≥ Eq(z|x)[log p(x | z)−DKL(q(z | x)∥p(z))

≜ ELBO

(2.12)

The left-hand side of the ELBO equation 2.12 corresponds to the reconstruc-
tion loss, which is modeled as Gaussian distribution. The right-hand part of the
equation, the KL divergence, quantifies the deviation between p(z) and its approxi-
mation q(z | x). The preference of standard Gaussian prior p(z) ∼ N (0, I) supports
disentanglement between the latent space dimensions, although by itself it is not
sufficient to satisfy the disentanglement condition. In order to back-propagate the
gradients, the VAE utilizes a re-parameterization trick to latent vector z by adding
a random standard normal vector ϵ to the standard deviation σ and adding it to
the mean vector µ:

z = gϕ(x, ϵ) = µx + σϵ ⊙ ϵ (2.13)

where g(.) is a reconstruction function and ⊙ is element-wise product.

2.1.4 Generative Adversarial Networks (GAN)

Similar to VAE, Generative Adversarial Networks (GAN) are capable of generating
new data by sampling from the latent space and decoding it back into the original
dimensional space. Their architecture consists of two elements: a generator, which
produces outputs similar elements to the trained dataset, and a discriminator that
aims to discriminate between real and fake data. The two elements play a zero-
sum game and they work against each other. Unlike VAEs, GANs do not aim to
maximize log-likelihood directly [Du et al. (2022)].

The GAN objective can be described as:

min
G

max
D

L(D,G) = Ex∼p(z)[log(1−D(G(z))] (2.14)

The goal of the discriminator part of the network is to learn hidden patterns in
the data so that a real data point can be discriminated from the synthesized data by
the generator. On the other side, the generator learns to generate data that is iden-
tical to the qualities of the original data, which in turn tricks the discriminator to
accept the generated data as genuine. It should be noted that the generator never
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sees a real data point, but is trained by the signal back-propagated from the dis-
criminator. When this scenario is brought to the molecule generation domain, the
generator learns to generate molecules out of Gaussian noise. On the other hand,
the discriminator is introduced to a batch of molecules mixed with real and syn-
thetic data, and its loss is calculated based on whether the discriminator is capable
of distinguishing the real data from the generated ones.

The failure of the discriminator will be counted as the success of the generator,
hence its loss is calculated depending on how indistinguishable the data it is ca-
pable to generate. In the end, the discriminator and the generator will reach the
Nash equilibrium [Bian and Xie (2021). However, training can be unstable because
of the almost simultaneous optimization in case the gradient of one loss is being
favored over the other. This may lead to a discriminator being more competent
than the generator or vice versa.

2.2 Molecular Representations

Molecular representation is known to affect the extent to which the biochemical
relationships can be captured by the model [Du et al. (2022)]. Although variations
exist, two of the most popular representations are: the Simplified Molecular Input
Line Entry System (SMILES) [Weininger (1988)] representation and 2-D graph rep-
resentation of molecules in which atoms constitute vertices and bonds correspond
to the edges between the vertices. Figure 2.3 illustrates a 2-D graph representa-
tion of a molecule along with its SMILES string representation. SMILES is a 1-D
string representation of molecules and provides a relatively understandable rep-
resentation of the molecule depending on its length. On the basis of which atom
the string starts with, multiple SMILES strings can indicate the same molecule and
cause ambiguity. In order to standardize a representation for a given molecule,
canonicalization is proposed, which is provided by the RDKit library [Landrum
(2016)]. The string is usually transformed into one hot encoding of each unique
SMILES string symbol so that models like RNN can operate directly on the repre-
sentation [Bian and Xie (2021)]. A typical flow of a SMILES representation-based
generation process can be seen in Figure 2.2. There are two alternatives to rep-
resent molecules as strings, either by displaying the hydrogen atoms explicitly or
implicitly.

The common belief in the drug generative modeling field is that graph repre-
sentation enables the generative model to capture more details about the molecules,
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Figure 2.2: A representative flow of SMILES string-based generative process (taken
from [Bian and Xie (2021)]).

Figure 2.3: 2-D (top) and SMILES (bottom) representations of a molecule from the
MOSES dataset.
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since molecules are graph-alike structures by nature [Du et al. (2022)]. Although
the molecular conformations are best represented with 3-D graphs, such a geomet-
rical representation that respects the 3-D symmetry is not an easy task. Hence, 2-D
representation is preferred by most of the state-of-the-art drug generative models.
In graph representation, atom information is captured by a feature matrix, while
bond information is expressed by an adjacency matrix.

2.3 Interpretability of Generative Models

Available interpretability methods for drug generative models are scarce, as op-
posed to the classification problem, where there are multiple off-the-shelf libraries
readily provided [Kokhlikyan et al. (2020)]. In the context of generative model-
ing, the idea of interpretability mostly revolves around the concept of disentangle-
ment [Singh and Ogunfunmi (2022b)][Eastwood and Williams (2018)], where each
ground truth generative factor is mapped to at most one factor of variation in the
latent space. However, most of the already existing methods for generative models
do not translate well into the molecular generation domain, since the underlying
ground truth latent factors are unknown for molecules. In the drug generative
model domain, most of the work resembles case studies [Du et al. (2022)].

A couple of architecture improvements have been proposed [Higgins et al.
(2017)][Chen et al. (2019)] for the VAE-based generative paradigm, encouraging
the model to learn the latent space in a way that latent variables are independent
of each other. Although isotropic Gaussian distribution encourages such indepen-
dence, by itself is not enough to satisfy such a requirement. On the other hand,
VAE-based drug generative models can be prone to suffer from disentanglement,
due to the loss function it aims to optimize.

2.4 Hierarchical Generation of Molecular Graphs Us-
ing Structural Motifs

HierVAE Jin et al. (2020) is a VAE-based molecule generative architecture that aims
to improve upon the limitations of earlier architectures that consider smaller build-
ing blocks such as atoms, which limit their applicability to smaller molecules, due
to the requirement of assembling the neighborhood of substructures in one step.
In contrast, HierVAE utilizes larger molecular motifs, thereby enabling it to work
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with more complex molecules. The novel approach enables the encoder to main-
tain a multi-resolution representation of molecules from fine to coarse fashion that
ranges from atoms to connected motifs. The decoder operates in a symmetric way,
processing the information from a coarse-to-fine fashion by joining one motif at a
time, along with the decision of selecting which motif to merge with the emerging
molecule from which bonding point.

The building block motifs are extracted from the molecule dataset depending
on their frequency of occurrence. A motif belonging to a polymer is displayed in
Figure 2.4. During the generation phase, molecules will be assembled by attaching
motifs to the emerging molecule block. In turn, the decoder has to make a couple
of sequential predictions: selection of the motif to be appended, which part of it
to be attached, and which atom should be the point of contact with the partially
generated emergent molecule. The mirroring encoder layer provides information
about each consecutive decision made by the decoder. Iterative graph convolution
enables fine-to-coarse encoding which relies on the information provided by the
previous layer.

Figure 2.4: Motifs with corresponding color projections of parts highlighted in grey
(taken from [Jin et al. (2020)])

Following Jin et al. (2020), motifs from the given dataset D are expressed as
Si = (Vi, Ei) as a subgraph of molecule G consists of atoms Vi and bonds Ei. For
each molecule, motifs S1 . . .Sn are extracted in a way that their union will result
in the whole graph, that is

⋃
i Vi and

⋃
i Ei. In order to carry out the extraction,

molecule G will be partitioned into disconnected parts by removing the bridge
bonds without breaking the chemical validity constraint. After exposing all the
molecules in the dataset to this procedure, a molecule vocabulary VS is obtained.
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The autoencoder approach is designated to model the probability of graph G
to be a joint distribution of motifs S1 . . .Sn along with attachments A1 . . .An. Such
attachments, expressed as Ai = {vj | vj ∈

⋃
k Si ∩ Sk} are the intersection atoms

between motif Si and its neighbor motif. The auto-regressive factorization of P (G):

PG =

∫
z

P (z)ΠkP (Sk,Ak | S<k,A<k, z)dz (2.15)

During each step of the generation process, the decoder appends a new motif
prediction Sk along with the attachment prediction Ak before deciding how the
new motif will be attached to the current graph prediction.

In order to enable the decoder to realize such hierarchical processing, the en-
coder is needed to supply the essential information in each decoding step. There-
fore, a molecule G is represented by a hierarchical graph HG consisting of three
main layers.

The motif layer provides the broadest representation with rough topological
information about how the motifs are connected with each other. More precisely,
the layer contains n nodes as motifs S1 . . .Sn together with m edges {(Si,Sj) |
Si ∩ Sj ̸= 0} for all of the intersecting motifs Si,Sj . This tree-structured layer
supplies information about motif prediction in the decoding step.

The attachment layer is designated to represent information about motif con-
nectivity in finer detail. Node Ai = (Si, {vj} contains the information of a specific
attachment scenario of motif Si, where {vj} denote the atoms located in the inter-
section between motif Si and one of its particular neighbor motifs. For every pos-
sible attachment configuration of a motif Si, a vocabulary of attachments VA(Si) is
constructed from the training subset. The task of attachment prediction during the
decoding process is facilitated by this layer.

At the finer side of the representation spectrum, molecular graph G provides
information on atom-level connectivities. Every atom node v is associated with a
label av which keeps the atom type and charge information. Since there are multi-
ple types of bonds possible between given two atoms, the edge (u, v) is also labeled
with the bond type information buv. This layer’s information is passed into the de-
coder for supporting the task of graph prediction.

In order to provide a connection between different levels of representation lay-
ers, certain edges are introduced between motifs and atoms. After obtaining the
hierarchical graph HG with the addition of bridge edges, the graph is encoded by
a hierarchical Message Passing Network (MPN). In their experiments, Jin et al.
(2020) detect that, on average, the size of motif vocabulary | VS |< 500 and the
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attachment vocabulary size | VA(Si) |≤ 10, which are one hot encoded in order to
be processed.

For each of the representational layers of the encoder, three MPNs are main-
tained: the encoding by MPN is expressed as MPNψ(.) which is parameterized by
ψ and a regular MLP as MLP (x, y).

The encoding protocol starts from the atom level: atom layer of HG, repre-
sented as Hg

G after the encoding. Atom and bond embeddings of {e(au), e(buv)}
are fed into the MPN. For T iterations, the MPN network propagates the message
vectors between neighbor atoms, where at the end the network outputs the new
representation hv for each atom v:

cgG = {hv} =MPNψ1(H
g
G, {e(au), e(buv)}) (2.16)

The second layer in the hierarchical representation, the attachment layer Ha
G,

takes Ai as input which is the concatenation of the embedding e(Ai) and summa-
tion of its atom vectors {hv | v ∈ Si}:

fAi=MLP(e(Ai),
∑

v∈Si
hv) (2.17)

Input features of each edge (Ai,Aj) is the embedding vectors e(dij) indicating
the relative ordering between nodes Ai and Aj during the decoding step. Repre-
sentations of the motifs are obtained by:

caG = {hAi
} =MPNψ2 (Ha

G, {fAi
}, {e(dij)}) (2.18)

And for the last representational layer of the encoder, node Si in the motif layer
takes as input feature the concatenation of embedding e(Si) and node vector hAi

from the layer before:
fSi

=MLP (e(Si), hAi
) (2.19)

The motif representation is then obtained by:

cgS = {hSi
} =MPNψ3

(
HS
G, {fSi

}, {e(dij)}
)

(2.20)

As a result, a molecule G will be zG represented as in the latent space, which is
sampled by reparameterization trick with mean µ(hS1) and log variance Σ(hS1) so
that gradients can flow:

zG = µ(hS1) + exp(Σ(hS1)) · ϵ; ϵ ∼ N (0, I) (2.21)
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The motif S1 is the first motif to be generated during the reconstruction process,
identified as the root motif.

On the other hand, the decoder almost operates symmetrically to the encoder
counterpart, where the molecule G is generated by expanding its hierarchical graph.
During the decoding process, the model keeps a stack of frontier nodes F where
Sk ∈ F are the motif nodes that still have pending neighbors to be generated. The
motifs are extended in a depth-first manner. For a node Sk at the top of the stack F
at step k, the decoder predicts the following three, which are conditioned on latent
vector zG :

pSt = softmax(MLP (hSk
, zG)) (2.22)

equation 2.22 is the probability of motif St being attached to the motif Sk. After
deciding which motif to attach, the decoder has to predict which attachment con-
figuration Ak of Sk should be the case, which can be considered as a classification
problem over the vocabulary of attachments VA(St):

pAt = softmax(MLP (hAk
, zG)) (2.23)

After predicting which atoms vj ∈ St belongs to its intersection with the neigh-
bor motif, the decoder makes a final prediction of how motifs St and Sk should
be connected. This attachment is expressed as atom pairs Mtk = {(uj, vj | uj ∈
Ak, vj ∈ At} in which atoms uj and vj is bonded. Possible attachments M are
formalized based on the atom vectors huj and hvj :

pM = softmax(hM · zG) (2.24)

hM = ΣjMLP (huj ,hvj) (2.25)

These sequential predictions made by the decoder cause results to be highly
dependent on each consecutive step since the attachment prediction outlines the
motif to be predicted. The motif and layer relationship is highlighted in Figure 2.5

The training objective of the model is the minimization of the negative ELBO,
where teacher forcing is utilized in the generative steps and the order of generation
based on the depth-first traversal over the ground truth molecule:

−Ez∼Q[logP (G | z)] + λKLDKL[Q(z | G)∥P (z)] (2.26)
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Figure 2.5: The motif and layer relationship highlighted for encoder (left) and de-
coder (right) (taken from [Jin et al. (2020)])

2.5 MoFlow: An Invertible Flow Model for Generat-
ing Molecular Graphs

MoFlow [Zang and Wang (2020)] is a unique approach that guarantees validity in
the generated molecules and can re-construct the training data with 100% success,
hence it is advantageous over the more conventional generative models. There
have been a few Flow based generative models proposed for molecule genera-
tion[?][Madhawa et al. (2019)][Shi et al. (2020)], but MoFlow is the only architec-
ture that can guarantee the validity of the molecules.

Overall, the invertible flow-based models’ objective is to learn invertible map-
pings between the prior distribution and a more complex distribution through
neural networks, which is also capable of learning the exact likelihood in a tractable
manner, whereas the VAE-based models approximate the likelihood. To formal-
ize, the flow model objective is to learn a sequence of invertible transformations
fΘ = fL ◦ . . . ◦ f1 between high dimensional complex data X ∼ PX (X) and same
dimensional but simple enough to model Z ∼ PZ(Z) where independence in the
latent space is assumed. In order to express the complex data in terms of the sim-
pler distribution:

PX (X) = PZ(Z) | det(
∂Z

∂X
) |, (2.27)
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where Z = fΘ(X). In order to sample X̃ ∼ PX (X), Z̃ ∼ PZ(Z) will be sampled
instead and then transformed as X̃ = f−1

Θ (Z̃) by the reverse mapping of fΘ. In
order to train with exact likelihood, let Z = fΘ(X) = fL ◦ . . . ◦ f1(X), Hl = fl(Hl−1)

where fl(l = 1, . . . , L ∈ N+) are invertible mappings, H0 = X,HL = Z where PZ is
isotropic standard Gaussian distribution with independent dimensions. In order
to express the log-likelihood of X :

logPX (X) = logPZ(Z) + log | det( ∂Z
∂X

) |=

∑
i

logPZi(Zi) +
L∑
l=1

log | det( δfl
δHl−1

) |
(2.28)

in which PZi(Zi) denotes the probability of the ith dimension of Z and fΘ = fL ◦
. . . ◦ f1 is the invertible neural network that is aimed to be learned.

Similar to the HierVAE model, MoFlow also operates on the graph representa-
tion of the molecules, where atoms are represented by a feature matrix A ∈ Rnxk in
a one-hot-encoded form and bonds are represented as the bond tensor B ∈ Rcxnxn,
where n, k, and c are the number of type of atoms, the maximum number of atoms
and the number of bond types respectively. As a result, a moleculeM = (A,B) can
be framed as an undirected graph with multiple types of edges and vertices. The
objective can be roughly expressed as learning molecule generative model PM(M)

that captures the probability of sampling molecule M from the molecule graph
distribution PM. In order to consider both the atom and the bond structures of the
graphs, PM(M) can be reformulated as :

PM(M) = PM(A,B) ≈ PA|B(A | B; θA|B)PB(B; θB), (2.29)

where PB is the bond distribution, PA|B is the conditional distribution of atoms
given bonds, θB and θA|B are the learnable parameters of the model. In contrast to
GAN and VAE, the exact likelihood can be obtained by:

arg
θB ,

max
θA|B

EM = (A,B)∼PM−data
[logPA|B(A | B; θA|B) + logPB(B; θB)] (2.30)

The two building blocks of the model are the graph conditional flow that con-
ditionally learns atom matrices given bond tensors and a flow that learns bond
tensors.

The graph conditional flow defines two flows that transform A given B into a
conditional variable in latent space ZA|B = fA|B(A|B) which is an isotropic Gaussian
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PZA|B . In order to get the conditional probability of atom features given bond PA|B,
a conditional variation of equation 2.27 is implemented.

On the other hand, in order to get bond tensors, a variant of Glow [Kingma
and Dhariwal (2018)] is implemented. Glow is a simple 1 × 1 invertible convolu-
tion, which will be utilized to process graph information. The goal is to learn an
invertible mapping where the transformed latent variable ZB = fB(B) is isotropic
Gaussian. The equation 2.28 can be applied to logarithmic probability of bonds
logPB(B) and bond tensors can be produced by reverse mapping B̃ = f−1

B (Z̃) in
which Z̃ ∼ PZ(Z).

In order to ensure validity, a valence constraint over each atom is defined as:∑
c,j

c×B(c, i, j) ≤ V alency(Atomi) + Ch (2.31)

where Ch is the formal charge. Instead of the reject-sampling paradigm which is
applied by many autoregressive models, each molecule M will be checked for its
atoms whether all of the atoms obey the valence constraints or not. In case of
success, the longest connected component will be returned and the validity check
procedure will be terminated. In case of detecting a violation of valence constraint,
bonds of the atom will be sorted by their order, and the smallest bond will be re-
moved. The procedure will be implemented once more until no violation is de-
tected. This way, the molecule will be minimally modified and the largest compo-
nent preserved. The overall structure of the MoFlow architecture is represented in
Figure 2.6.

2.6 ChemSpacE: Interpretable and Interactive Chemi-
cal Space Exploration

ChemSpacE [Du et al. (2023)] is an attempt to explore latent spaces constructed
by molecule generative models in a model-agnostic way. The work aims to trans-
late previous methods proposed for image generative models [Yang et al. (2020)]
into the molecule generation domain. The approach makes certain assumptions
for the latent space: structurally or functionally similar molecules are mapped in
close proximity to each other in the latent space, and interpolation between two
molecules in the latent space results in smooth changes in the structures and prop-
erties in the molecules. Therefore, by identifying the separation hyperplanes that
drive certain property changes in the latent space, the method claims to be capable
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Figure 2.6: MoFlow architecture (taken from [Jin et al. (2020)]).

of navigating the latent space of any generative model and detecting the direc-
tions which lead to smooth property changes in the decoded molecules. There-
fore, molecular properties can be optimized to a certain extent depending on the
downstream task.

Also, to quantify the success of such manipulations, the work proposes two
new metrics: Strict Success Rate (SSR) and Relaxed Success Rate (RSR). In the for-
mer, only the monotonic improvements in the selected properties are considered
an absolute success, whereas, in the latter various threshold values are set to sepa-
rate the success from the failure:

ϕSPC(x, k, f) = 1[∀ı̇ ∈ [k], s.t., f(x(i))− f(x(i+1)) ≤ 0] (2.32)

ϕSSC(x, k, δ) = 1[∀ı̇ ∈ [k], s.t., δ(x(i+1), x(1))− δ(x(i), x(1)) ≤ 0] (2.33)

ϕDIV (x, k) = 1[∃ı̇ ∈ [k], s.t., x(i) ̸= x(1)], (2.34)

where f is a property function of molecule x, k is the number of steps when manip-
ulating the molecule along the detected property boundary and δ is the structural
similarity of a pair of molecules. Therefore, the SSR is defined as:

1

|P | × |X|
∑

p∈P,x∈X

1[ϕSPC(xp, k, fp) ∧ ϕSSC(xp, k) ∧ ϕDIV (xp, k)], (2.35)
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where P is the property space fp(X). The metric will discard any manipulation
that is not monotonic, therefore the RSR can be more appropriate:

ϕSPC(x, k, f, ϵ) = 1[∀ı̇ ∈ [k], s.t., f(x(i))− f(x(i+1)) ≤ ϵ] (2.36)

ϕSSC(x, k, δ, γ) = 1[∀ı̇ ∈ [k], s.t., δ(x(i+1), x(1))− δ(x(i), x(1)) ≤ γ] (2.37)

ϕDIV (x, k) = 1[∃ı̇ ∈ [k], s.t., x(i) ̸= x(1)]. (2.38)

By introducing ϵ and γ, a certain amount of deviation between consecutive ma-
nipulations will be tolerated by the metrics for property and structure similarities
respectively. For the property similarity constraint, two variants are proposed; a
local relaxed constraint and a local relaxed constraint:

RSR− L(P,X, k, ϵl, γ) =
1

|P | × |X|∑
p∈P,x∈X

1[ϕRPC(xp, k, fp, ϵl) ∧ ϕRSC(xp, k, γ) ∧ ϕDIV (xp, k)],
(2.39)

RSR−G(P,X, k, ϵg, γ) =
1

|P | × |X|∑
p∈P,x∈X

1[ϕRPC(xp, k, fp, ϵg) ∧ ϕRSC(xp, k, γ) ∧ ϕDIV (xp, k)],
(2.40)

When compared with the global constraint RSR−G, the local constraint RSR−L

emphasizes the model’s capability to manipulate a specific property.
The task of finding property boundaries that separate each molecular property

in the latent space is a very crucial task for the method to detect steerable directions
in the latent space. After identifying boundaries, scaled surface normal vectors
n ∈ Rl will be added to the latent vector of a molecule, causing a smooth change in
the particular property value of the emergent molecule. The distance from a given
sample z to the separation hyperplane is expressed as:

d(z, n) = nT z (2.41)

As latent vector z is manipulated in a way that it gets closer to the property
boundary, the properties of the modified molecule change smoothly, as it is as-
sumed that the property p and z are linearly dependent:

fP (g(z)) = α · d(z, n) (2.42)
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As before, fP is the oracle function of property P and α is the scaling factor that
tunes down the surface normal vector of the property boundary. Generalizing the
concept for multiple properties:

fP (g(z)) = ANT z (2.43)

where matrix A = Diag(a1, . . . , am) is the diagonal matrix of linear coefficients of
each of themmolecular properties, andN = [n1, . . . , nm] consists of surface normal
vectors of separation boundaries of each of m properties. Molecular properties P
follow a multivariate normal distribution as:

µP = E(ANT z) = ANTE(z) = 0 (2.44)

ΣP = E(ANT zzT )NAT = ANTNAT (2.45)

If normal vectors inN are orthogonal to each other and ΣP is a diagonal matrix,
then molecular properties P are disentangled. In practice, not all of the properties
are uncorrelated, and the entanglement is expressed as nTi nj where i and j denote
molecular properties in P .

Lastly, the identified boundary and the direction that drives the property change
can be used to manipulate molecule z to obtain a new molecule that has a higher(or
lower) property value adjusted by the scaling parameter α:

z
′
= z + αn (2.46)

Therefore, the resultant property value by this manipulation is:

fP (g(z + αn)) = fP (g(z)) + kα, (2.47)

where k serves as a scaling factor to express the difference from the initial property
value of latent code z. This configuration will work for single property manipu-
lation cases. In contrast, when multiple properties correlate with each other, the
amount of disentanglement between the two properties will signify the manipula-
tion vector’s magnitude. The emergent direction is nothing but the disentangled
and positively correlated attributes of the directions:

n = n1 + (1[n1⊙n2≥0])⊙ n2. (2.48)
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2.7 Dimensionality Reduction

T-Distributed Stochastic Neighbor Embedding (t-SNE) [Van der Maaten and Hin-
ton (2008)] is a visualization method that projects the data into 2 or 3 dimensions.
The technique is derived from the stochastic neighbor embedding method where
optimization is easier than the earlier method and the quality of projections is im-
proved by minimizing the tendency of clustering towards the center. It is assumed
that the data lives in a lower dimensional manifold and t-SNE is able to capture
the structure of such latent information. Hence, the method is capable to capture
the local structure while still providing insights into the global structure.

Uniform Manifold Approximation and Projection (UMAP) [McInnes et al. (2018)]
is another method mainly used for reducing high-dimensional data for multiple
purposes, including visualization. Similar to t-SNE, the method also learns the
manifolds to reduce provided data. It is inspired by Riemannian geometry and al-
gebraic topology. Moreover, being a newer approach, it can scale better than t-SNE
hence the computational cost is lower. Also, it is argued that the global structure
of the original data is preserved in greater detail when compared against t-SNE.

2.8 Clustering Algorithms

HDBSCAN [Campello et al. (2013)] is a density-based clustering algorithm that ex-
tends DBSCAN [Ester et al. (1996)] by incorporating the concept of hierarchies into
the clustering. The constructed hierarchy tree signifies the large clusters emerging
from the data points. In order to get flat clusterings, where the tree is cut at a level
that the clusters consist of only major clusters by taking into account the density
information. To do so, the stability of the clusters is maximized.

On the other hand, K-Means [Hartigan and Wong (1979)] is one of the earliest
clustering algorithms that survived the test of the time. The algorithm divides M
points in N dimensions into K clusters, in a way that within cluster elements’ sum
of squares is minimized. The clustering will balance when no movement enables
obtaining less sum of square values for any of the clusters. However, the method
is able to detect only spherical-shaped clusterings, which are typically Gaussian
distributions. Moreover, in cases where the density varies a lot from region to
region, the method is known to fail to obtain high-quality clusterings. Although
there are more modern approaches, the simplicity of the idea and its scalability still
makes the algorithm popular as a baseline method.



Chapter 3

Materials and Methods

Among multiple options of the generative modeling frameworks for molecular
generation, HierVAE [Jin et al. (2020)] and MoFlow [Zang and Wang (2020)] stand
out due to the novel approaches they offer over the basic methods. To compare,
a baseline method of a VAE from MOSES [Polykovskiy et al. (2020)] will also be
of use as a comparison reference. All the models will be trained on the MOSES
dataset since it is designated as a benchmark dataset to quantify the generative
capabilities of drug generative models. For further details about the model archi-
tecture and parameters, please refer to Appendix A.

During the training of VAE-based architectures, the balance between the re-
construction loss and the KL loss components is of great importance, so that the
model can both maintain a uniform latent space and reconstruct input molecules
accurately. As proposed in [Higgins et al. (2017)], assigning a coefficient β to the KL
term in the VAE loss further brings stability to the training. In practice, scheduling
the weight penalty of the KL term during training leads to the best results. A pop-
ular approach is to linearly increase the penalty coefficient of β to a pre-determined
maximum of max β. At the first stages of the training, the model will be similar to a
plain Autoencoder, since the KL term weight will be 0. As the training progresses
into further epochs, the KL term starts to have some weight, therefore the encod-
ings of the molecules resemble more and more distributions as opposed to being
mere points so that overlap between encoded distributions can enable extrapola-
tion. Although the ideal value may depend on the dataset, Yan et al. (2020) rec-
ommends maxβ = 0.1 for the ZINC250K[Irwin and Shoichet (2005)] subset. Since
MOSES is a subset of the ZINC dataset, the same value can potentially serve as a
good maximum. In order to compare the effect of max β with the linear annealing
schedule, the VAE-based models will be trained with values of max β = 0.1 and
max β = 1.

23
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The assumptions made about the latent space of generative models, such as
continuity and mapping of similar elements to the close neighborhood of each
other are yet to be validated, since there are a couple of pitfalls known to chal-
lenge their validity. To test such assumptions, Latent encodings of selected sub-set
of training molecules will be projected into the latent space. In order to do so, the
high-dimensional latent space will be reduced with the dimensionality reduction
algorithms t-SNE and UMAP and the corresponding encodings will be visualized.
To test if there are meaningful clusterings in the latent space, the Physicochemical,
Topological, Lipinski, and BCUT2D molecule descriptors will be calculated for the
selected molecules. The descriptor features of each approach will be filtered based
on the information content.

The extracted features will be used as input to the HDBSCAN clustering al-
gorithm, where the clustering quality with the selected hyper-parameters will be
judged by the silhouette coefficient of the resulting clusters.

After observing whether the basic assumptions on the latent space hold or not,
the latent space exploration method ChemSpacE will be implemented for each
model. Boundaries in the latent space will be discovered for a specified number of
properties. For the experiments, generally accepted molecular properties of quan-
titative estimation of drug-likeness (QED), Wildman-Crippen LogP value (Mol-
LogP), molecular weight (MolWt), a topological index meant to quantify molec-
ular complexity (BertzCT), distance-based topological index (BalabanJ), connec-
tivity topological indices (Chi1n), and the number of heavy atoms in the molecule
(HeavyAtomCount) will be considered for boundary calculation. After identifying
the boundaries, a number of molecules will be generated along with the direction
of the surface normal vector of each boundary, and the resulting molecule proper-
ties will be inspected.

In order to quantify the obtained success of identifying boundaries and the
resultant change in chemical properties of the extrapolated molecules, the SSR and
RSR, defined in the previous chapter, will be calculated.

3.1 Model Training

3.1.1 Baseline VAE

The baseline VAE model is based on the string representation of molecules. For the
training of the generative model, a subset of 200,000 molecules from the MOSES
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dataset is randomly selected. Later, the molecules are sorted in descending order
in order to be fed to the RNN layer. After the addition of the beginning of a sen-
tence (bos) and end of a sentence (eos) tokens, each string is padded to match the
length of the longest string. Before feeding the SMILES strings to the model, each
string character is mapped to an integer. Next, each integer vector is transformed
into one-hot-encoded vectors. The baseline VAE model’s encoder consists of a bi-
directional GRU of hidden size 256 with a linear output layer of output size 128,
which corresponds to the latent space dimensionality. The encoder outputs both
mean and log-variance vectors for the molecules. The decoder consists of 3 layer
GRU of 512 hidden dimensions with intermediate dropout layers with a dropout
probability of 0.2. A batch size of 128 and gradient clipping with a value of 50 are
set along with KL term weight linearly increasing from 0 to max β during training.
Adam optimizer with a learning rate of 3.10−4 is preferred and the model is trained
for 100 epochs. In order to observe the effect of the KL penalization coefficient, the
model is trained with multiple configurations with max β values of 0.025, 0.1, and
1.0 respectively.

3.1.2 HierVAE

Prior to the forward pass, the SMILES strings of the molecules must be converted
into a graph representation. Atoms and bonds are represented with atom and bond
matrices respectively. The sizes of the matrices are dependent on the dataset at
hand. In the case of the MOSES dataset, the longest molecule consists of 27 atoms
and there are 7 types of atoms the molecules consists of. In order to specify which
kind of a bond (edge) two connected atoms (vertices) have, a list of bond types
is introduced with a length of 4, representing; a single bond, double bond, triple
bond, and aromatic bond. Also, the integer 0 is appended to the list of atoms to ex-
press the non-existence of an atom in the feature(atom) matrix. Similarly, an extra
channel is introduced to the bond(adjacency) matrix to indicate no bond between
atoms. As a result, the feature matrix is of size 5x27 and the adjacency matrix is
of size 5x27x27 obtained. The HierVAE model consists of a hierarchical message
passing (HMPN) encoder and an HMPN decoder, which both utilize LSTMs. Each
maintains a three-layer representation, motif level, intermediates level, and graph
level where the latent space is of dimensionality 32. The model is trained for 20
epochs with a batch size of 50. An exponential learning rate scheduler with the an-
nealing rate of 0.9 is applied where Adam optimizer with the learning rate of 10−3
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is preferred. Gradients are clipped at 5.0 to prevent exploding gradients. Simi-
lar to baseline VAE, max β values of 0.1 and 1.0 are selected. After exceeding the
warm up phase of 10,000 steps, the weight coefficient increased linearly during the
training phase.

3.1.3 MoFlow

Similar to the HierVAE model, MoFlow operates over the graph-based molecule
representation paradigm. Hence every molecule in the dataset is processed into
adjacency and feature matrices so that a multi-resolution representation of a molecule
graph can be maintained by the model. The model is trained for 50 epochs with
a batch size of 12 and a learning rate of 1 × 10−3. The exponential learning rate
scheduler of a decay rate of 0.9 is applied during the training, which takes effect
every 450 steps during the training excluding the first 1000 steps as a warm up. In
order to prevent overfitting, dropout with a rate of 0.2 is applied. Different from
the VAE-based approach, the latent space is of the same dimensionality as the orig-
inal data, which is 5 × 27 × 27 + 5 × 7 that corresponds to the addition of sizes of
adjacency and feature tensors respectively.

3.2 Latent Space Clustering

In order to visualize the latent space, the space should be reduced to 2 or 3 di-
mensions. For that, UMAP and t-SNE algorithms are applied to the latent rep-
resentations of randomly selected 15,000 molecules from the training data. The
molecules are first subjected to the forward pass, then the outputs are fed into the
reduction algorithm. For VAE-based models, the latent µ vectors of each molecule
are selected since the re-parameterization trick of VAE-based models requires the
latent representations to be broadcasted into z vectors to enable backpropagation,
resulting in diluted representations by the addition of random normal noise.

Following the suggestion in [Trozzi et al. (2021)], the data is first reduced before
the clustering, since in high dimensions, the Euclidean distance and closeness con-
cept warps due to the curse of dimensionality. Moreover, UMAP is preferred since
it is shown in [Trozzi et al. (2021)] to be superior over t-SNE and PCA-based reduc-
tion approaches when the computational costs and the balance is considered, and
the method is able to preserve the structural information well enough to model
protein dynamics. To test this claim, the Physicochemical, Lipinski, Topological,
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and BCUT2D property descriptors will be clustered both in their original dimen-
sionality and in the reduced space, then the results will be compared based on the
obtained silhouette coefficients [Rousseeuw (1987)] since real ground truth cluster
information is not available. The silhouette coefficient is calculated as:

s(i) =
b(i)− a(i)

max{a(i), b(i)}
(3.1)

where a(i) is the distance between ith data point and all other data points in its
assigned cluster, b(i) is the average distance between all other points in the closest
cluster, and s(i) is the silhouette coefficient of point i. To get the overall picture, all
of the silhouette coefficients of all data points will be averaged. The score values
range between [−1, 1], where the score of 1 indicates the point i is very well sep-
arated from the nearest cluster to its assigned cluster. Values close to 0 mean the
point is in the decision boundary of two neighboring clusters, and values close to
-1 indicate incorrect cluster assignment for a given point i

Moreover, the HDBSCAN algorithm is preferred due to factors such as: un-
known ground truth cluster number, robustness against the density differences in
the latent space, and indifference to cluster shapes, which the K-Means[Hartigan
and Wong (1979)] algorithm is known to suffer from. However, the clustering
procedure will also be carried out with the K-Means algorithm to provide a com-
parison baseline.

Before reduction, the distribution of molecule descriptor values is needed to be
normalized, since the range of values differs highly per feature as shown in 3.1.

Figure 3.1: Un-normalized physicochemical property values.

For example, the feature MolMR of Physicochemical descriptors can be seen in
figure 3.1 to have a variance of 0, hence the feature will be dropped since it does
not contain any useful information. The same approach is applied to the rest of the
feature descriptors. To determine the best set of clustering parameters for the clus-
tering algorithms, the grid search approach is applied. A range of hyperparameter
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values for the minimum cluster sizes and the minimum sample values are pro-
vided for the HDBSCAN, whereas a different range of k values for the K-Means
clustering algorithm is experimented with, and the best parameters are selected
based on the silhouette coefficient obtained by the given hyperparameters.

After extracting the cluster structure for the properties, data points close to the
cluster centers will be chosen as seed molecules and they will be fed as priors to
the decoder. Later, 100 molecules will be generated with the expectation of ob-
taining molecules being mapped to the same clusters as the prior, although some
deviations can be acceptable due to the stochastic nature of the VAE model, that is,
broadcasting latent vectors by adding random normal noise during the reparame-
terization trick. This way the assumptions about the uniformity of the latent space
and close proximity mapping of similar molecules will be tested.

3.3 Property Boundaries and Extrapolation

In order to discover the directions that drive property changes in the latent space,
the ChemSpacE method will be applied to the latent spaces of the models. First,
15,000 molecules will be generated by the generative models, and their corre-
sponding molecular property values will be calculated by the RDKit [Landrum
(2016)] library. Then a Support Vector Machine Classifier [Hearst et al. (1998)] with
a linear kernel will be trained, where the problem is framed as a bi-classification of
properties. In order to extract positive and negative samples, a hyperparameter of
the split ratio is defined, which determines how many of the generated molecules
with the highest property scores will serve as positive data, where the rest will be
labeled as negative. The procedure is repeated for all of the chemical properties of
interest. After the identification of such boundaries, their surface normal vectors
will be serving as a direction that drives given property changes in the latent space.
However, The method relies on the concepts of uniform organization of the latent
space and mapping of similar items in close proximity, therefore its success will be
highly dependent on to the degree that those assumptions hold for a given latent
space. Later, previously generated molecules that are used to calculate boundaries
will be manipulated in k steps with the direction of the identified property bound-
ary surface normal vectors. The manipulation steps k, and the manipulation range
are hyperparameters to be selected, since a very large manipulation range may
result in sampling from a part of latent space that is too far away from the given
molecules neighborhood. To find a good set of hyperparameters, the grid search
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approach is applied and the results are evaluated based on the obtained success
rate metrics.

In order to quantify the results, the SSR and RSR with different relaxation co-
efficients are calculated, so that the disentanglement and the quality of detected
property boundaries can be objectively quantified.



Chapter 4

Experimental Results and Discussion

4.1 Training Results

The baseline VAE model with max β = 0.025 was able to obtain high validity and
uniqueness scores, although the novelty of the generated molecules is the lowest
obtained among all the alternatives. The other two configurations of max β values
of 0.1 and 1.0 performed nearly the same for the evaluation metrics. However, the
validity obtained appears to be approximately 6% less from the first configuration.

On the other hand, the HierVAE model was able to achieve 100% molecule va-
lidity in both of the max β configurations, while max β = 1.0 got a slightly better
novelty score. When compared with the baseline VAE configurations, at least a
12% increase in novelty scores is obtained. Although not as drastic of an improve-
ment as in the novelty scores, roughly 2.5% to 8% increase has been observed over
the baseline.

Interestingly, the MoFlow architecture was capable of getting perfect validity,
uniqueness, and novelty scores, beating all other experimented model configura-
tions. It was expected from the model to get 100% validity since complete validity
is explicitly enforced by the model. Exact scores can be seen in Table 4.1.

Model Validity Uniqueness Novelty

MOSES VAE
maxβ=0.025

0.9737 0.998 0.6955

MOSES VAE
maxβ=0.1

0.9216 0.9987 0.8606

MOSES VAE
maxβ=1.0

0.9169 0.9985 0.8535

HierVAE
maxβ=0.1

1.0 0.9988 0.9893

HierVAE
maxβ=1.0

1.0 0.9953 0.9999

MoFlow 1.0 1.0 1.0

30
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Table 4.1: Training results.

Although the performance difference between the baseline model and the state-
of-the-art variants is noticeable, a more complex dataset that consists of longer
molecules could potentially lead to greater differences in the evaluation metrics.
State-of-the-art architectures can scale relatively well due to novel design choices
ingrained into their architecture, whereas the baseline VAE model would suffer as
it operates on the basis of character-level generation.

4.1.1 Latent Space Clustering Results

As discussed in chapter 2.1.3, the KL term is assumed to be the main actor that
distinguishes the VAE paradigm from a mere encoder of data points. The more
the KL term of VAE is penalized, the more the data points will be expressed as
standard normal Gaussian distribution. Hence, it is expected to obtain overlaps
between individual data distributions and cover the latent space extensively.

After training the baseline VAE model with three different max β values, it can
be seen that when the model highly penalizes the KL term, the obtained latent
space spreads more evenly in contrast to the lower KL penalization case, where
the model tends to construct the latent space into denser regions. In Figure 4.1,
latent spaces of models penalized with max β = 0.1 and max β = 1.0 are visualized
with the UMAP reduction method. To see the t-SNE equivalent, please refer to
Appendix B. In order to emphasize the local and global structure of the original
data separately, the number of neighbors values of 15, 50, and 200 for UMAP and
perplexity values of 40, 100, and 200 with 1000 iterations are experimented with
for t-SNE.

The selected sub-set of 15K molecules is clustered with three different approaches:
Clustering in the original dimensionality with HDBSCAN and K-Means, and clus-
tering the properties after reduction with UMAP. As discussed in chapter 3.2, the
results are evaluated based on the obtained silhouette scores. The score values
range from [−1, 1], where a value close to 0 indicates not-so-clear-cut clustering
and scores close to 1 indicate good separation between the clusters.

The HDBSCAN algorithm detected 5 clusters for physicochemical descriptors
in the UMAP-reduced data. The rest of the property clustering results can be seen
in Appendix C. A silhouette coefficient of 0.5507 is obtained by clustering param-
eters of minimum samples of 40 and minimum cluster size of 2. On the other
hand, clustering in the original dimensionality with the HDBSCAN method did
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Figure 4.1: max β = 0.1 (top) and max β = 1 (bottom) latent space with UMAP.

not provide any stable clustering results, possibly due to the curse of dimensional-
ity, where the size of the space increases at an extreme rate relative to the number
of dimensions, hence causing data points to be equidistant to each other.

Similarly, the K-Means algorithm detected 7 clusters with a silhouette score of
0.13 as the highest among a range of [6−30] for k values. As illustrated in Figure 4.2,
it appears that the attempts of clustering in the original space have failed to extract
plausible clusterings, whereas reduced space clustering is able to yield a higher
clustering score for the molecular properties. However, it should be noted that the
silhouette coefficient score might suffer from the bias of assigning higher scores for
convex-shaped clusters, which density-based clustering methods are known to be
inclined to produce. Since real cluster information is not available, there is no way
of validating the real quality of the obtained clustering of molecules out of a single
property descriptor. For the same reason, the clustering obtained by the reduced
space can possibly be unrealistically well separated.

In order to validate the assumption of uniform organization in the latent space,
the molecules situated at the center of each cluster are calculated, then they are
used as a seed molecule to generate highly similar molecules, under the assump-
tion that a generative model maintains similarity relations by mapping similar el-
ements to the same neighborhood. If this assumption holds, then the mapping of
close proximity is also expected to be observed. In order to detect the data point
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Figure 4.2: HDBSCAN clustering in reduced (left) and original (right) space and
K-Means clustering (middle) in original space of physicochemical properties.

that is closest to the center for a given cluster, each data point’s Euclidean distance
from the cluster center is calculated, where the cluster center is the average of all
the data points in the cluster. The data point with the minimum distance is selected
as the closest point to the center.

However, the experiments suggest that the baseline VAE model does not ap-
pear to generate molecules that are mapped to the same cluster as the prior seed
molecule. As displayed in Figure 4.3, only a fraction of the generated molecules
fall into the same cluster as the seed molecule, whereas the rest of the molecules
fall into all the remaining clusters. To further investigate whether the observed
groupings of the molecules are due to the model’s incapability to maintain the
expected uniform organization or due to the obtained clustering, the generated
molecules and the original prior molecule are projected onto the latent space in
Figure 4.4. The similarity analysis based on Morgan Fingerprints of the gener-
ated and the seed molecule revealed that the mean dice similarity, a usual metric
to compare molecule similarity, is approximately 24% in which the values range
from 11% to 42%. This observation leads to the fact that the generated molecules
are not only different in the considered molecular properties but also different in
terms of molecular structure.

The projection displayed in Figure 4.4 can be considered as an indicator of pos-
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Figure 4.3: Projection of generated molecules (red) and the prior seed molecule
(green) onto clusters.

terior collapse since the model appears not to focus similar molecules into a close
neighborhood of each other. The VAE-based generative paradigm is known to
suffer from such a phenomenon, where during the training the decoder tends to
ignore certain sets of latent information, resulting in the learned variational distri-
bution being close to the prior. Although it was previously believed that the issue
occurs due to a strong decoder, [Lucas et al. (2019)] indicates that it is still possi-
ble for a model to still suffer under a not-so-powerful decoder. Moreover, [Singh
and Ogunfunmi (2022a)] argues that the VAE models can suffer from inefficien-
cies when sampling from the high dimensional latent space since the prior is an
isotropic Gaussian with L2 Norm. In higher dimensions, the mass of the Gaussian
distribution no longer concentrates around the mean, and instead of resembling a
bell-shaped curve, it is similar to a uniform distribution on a hypersphere, where
most of its mass is concentrated on the shell of the sphere.

4.1.2 ChemSpacE Exploration

To further investigate the latent space, the ChemSpacE approach was applied to
all of the model variations, and the disentanglement aspect of each model’s la-
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Figure 4.4: Projection of generated molecules (red) and the prior seed molecule
(green) onto the latent space.

tent space is examined by the method. If the method is able to identify property
boundaries and produce meaningful extrapolations, such as leading to a uniform
increase or decrease in selected property values as the extrapolation goes, then
it can be assumed that the model’s latent space successfully achieves the disen-
tanglement since in an entangled space such a concept would not be achievable.
Therefore, it will be possible to navigate the synthesized space and manipulate
molecules depending on the desired molecular properties.

In order to carry out the experiment, 200 molecules are sampled from each
of the model configurations. After quantifying each of the generated molecule’s
molecular properties for 8 property descriptors via oracle calls from RDKit, the
Support Vector classifier extracted the property boundaries out of the calculated
property values by considering the task as a bi-classification problem. The grid
search revealed that the results were the best on average with considering the
obtained property values with a split of 10% positives and 90% negatives with
training and validation splits of 70% and 30% respectively. In order to extrapo-
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late, the obtained boundaries’ surface normal vectors were scaled in a range of [-1,
1] in k = 7 steps and the resultant vector was added to the latent vector of each
molecule, manipulating them gradually along the given boundary. Based on the
resultant vectors, the SSR, RSR-Global (RSR-G) with 5% and 10% allowances are
calculated as explained in equation 2.40. The global variant is preferred to demon-
strate the edge cases of the allowed deviation in the monotonic increase & decrease
trends. Figure 4.5 illustrates an example manipulation from the extrapolation step
of the MoFlow model under strict manipulation and Figure 4.6 highlights struc-
tural differences of the molecules at the opposite sides of the manipulation spec-
trum.

Figure 4.5: Molecule extrapolation along the QED property boundary with scores
(bottom).

Figure 4.6: Highligted differences between the molecules at the opposite ends of
the extrapolation spectrum.

Table 4.2 provides the achieved scores of SSR, RSR(0.05), and RSR(0.10) ob-
tained by each model for the average of 8 property extrapolations. In order to see
per property descriptor scores individually, please refer to Appendix D.
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Model Strict Success Rate(SSR) RelaxedSuccessRate−Global(RSR−G)
δ=ϵ=0.05

RelaxedSuccessRate−Global(RSR−G)
δ=ϵ=0.1

MOSES VAE
maxβ=0.1

0.000625 0.012125 0.34525

MOSES VAE
maxβ=1.0

0.000375 0.01325 0.3836

HierVAE
maxβ=0.1

0.2255 0.665125 0.834

HierVAE
maxβ=1.0

0.19525 0.618125 0.8125

MoFlow 0.665 0.730625 0.7518

Table 4.2: ChemSpacE results

The results further confirm that the baseline VAE model suffers from posterior
collapse [Singh and Ogunfunmi (2022b)], rendering the model to be unable to de-
tect valid property boundaries and extrapolate molecules along them. On average,
both of the baseline VAE configurations failed to produce molecules with mono-
tonically decreasing property values in a strict manner. After introducing a 10%

allowance to the monotonicity trend, the baseline models were able to produce
some valid extrapolations. However, the relaxation amount of %10, particularly
under the global variant, could be too much of a relaxation to conclude the results
as a definite success. On the other hand, the state-of-the-art VAE architecture Hier-
VAE was able to achieve a 22% strict success rate, drastically improving upon the
baseline model, especially when it is considered that SSR ignores even the slightest
deviation in property values from the trend of monotonicity during the extrapola-
tion. In addition to the model complexity being higher, the improved success can
be attributed to the fact that the HierVAE architecture utilizes graph representation
to process graph information, whereas the baseline VAE model is operating on the
string representation of molecules, which is known to be less capable of captur-
ing chemical details about molecules over the graph based counterpart and more
prone to generate invalid molecules. Unsurprisingly, it is observed that during the
extrapolation phase, baseline VAE often failed to obey atom-valence constraints
and ring closures, causing the generated smiles string to be invalid molecules.
When the condition is relaxed by as small as 5% of the global extrapolation range,
an enormous jump of approximately 40% is achieved in success scores during ex-
trapolation with HierVAE. The 5% threshold is a plausible compromise without
giving up too much from the monotonicity trend.

Moreover, the tendency of receiving less success rate score by highly penalized
max β configurations of VAE-based models appears to further validate the obser-
vations that the KL term is hindering models’ ability to construct a latent space
with the concept of close proximity mapping of similar molecules. The trade-off
between obtaining meaningful encodings by emphasizing the reconstruction loss
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more against making encodings close to the desired distribution by penalizing the
KL divergence term more appears to be one of the determining factors on whether
the obtained space satisfies the expected uniform organization condition or not.
The balance between two aspects of the training is of critical importance and it can
be difficult to obtain.

More interestingly, the MoFlow model was able to achieve the highest SSR score
with 66.5%, beating all other model architectures by a significant margin. The ca-
pability of the MoFlow to guarantee valid molecule generation appears to translate
well into the molecule extrapolation procedure, in contrast to the inconsistent base-
line VAE model. In terms of the steering capabilities in the latent space, MoFlow
can navigate better in its synthesized space, despite the fact that its latent space is
magnitudes larger than the rest of the experimented models.

On the other hand, there are chemical domain-specific pitfalls that limit the
amount of success attainable for model interpretability, where most of the explain-
ability approaches make oversimplifying assumptions about the latent space. The
phenomenon called activity cliff [Stumpfe et al. (2019)] limits the attainable success
with disentanglement-based approaches since molecules with highly similar struc-
tures may have disproportionately different physical properties, such as molecules
that are active against the same target but having very different potencies. The rela-
tionship between the physical structure of a molecule and corresponding chemical
property values is a highly complex and non-linear relationship, which is known
as Structure-Activity Relationship (SAR) [Muratov et al. (2020)]. Moreover, despite
the fact that graph-based representation can capture more details about molecular
similarity over other alternatives, generative modeling cannot capture all of the
complexity inherent to the molecular domain in an exhaustive manner yet.

It should be pointed out that the resulting scores of successful navigation could
potentially be lower if a more complex dataset than MOSES is preferred, since
MOSES is not the most complex dataset available for molecule generative tasks.
Unfortunately, the number of publicly available datasets is also another aspect that
hinders the efforts on drug generative model explainability, limiting most of the ex-
plainability attempts to a case-based scope. In general, it can be said that the more
the dataset complexity increases by involving molecules consisting of more atoms,
the more challenging it gets for the message-passing neural networks to propagate
neighborhood information in a reasonable amount of iteration, hence giving way
to diminishing gradients. On the other hand, SMILES representation-based RNN
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model architectures mostly fail to model such complex molecules. As an exam-
ple, the longest molecule in the selected MOSES subset for training consists of 27
atoms, whereas polymers, molecules that consist of a larger number of atoms, can
typically contain more than 70 atoms. Therefore, the applicability of certain model
architectures is ultimately limited to the dataset at hand.

For the downstream task of learning data distribution, maintaining a disentan-
gled latent space does not appear to be an absolute requirement: Although the
baseline VAE model is not disentangled, it is still capable of learning the distribu-
tion of the training dataset well and generating valid, unique, and novel molecules,
indicating the case that model interpretability and performance do not always go
hand in hand or one is indicative of the other.



Chapter 5

Conclusions and Future Work

De novo drug design is one of the recent most successful applications of DL models.
Such applications aspire to discover the vast latent space of chemically plausible
molecules, which is not feasible to cover with traditional in vitro methods.

Among multiple paradigms proposed for drug generative models, the VAE and
Reversible Flow-based approaches have begun to prove their superior capabilities
over complex molecular datasets, succeeding in learning the molecular distribu-
tion and generating unique molecules with desired properties. On the other hand,
the underlying operations of such models are not inherently interpretable by a hu-
man user, due to their highly complex and non-linear nature. In order to shed
some light on the mysterious black-box nature of the generative models, a handful
of research works have been published with a focus on the disentanglement aspect
of the synthesized latent space by the generative models. However, most of the
work relies on the knowledge of the ground truth factors, such as synthetic image
datasets where each data point is calculated from a known set of latent generative
factors. Moreover, the sub-category of explainability on molecular generation is
a barren landscape, since most of the work is not directly translatable due to the
biochemical domain-specific constraints such as the activity cliff phenomena and
the bond and valence constraints.

In line with that, the experimentations carried out using various architectures
that are trained with a benchmark dataset have revealed a fact: Simplifying as-
sumptions on synthesized latent space do not always hold in the case of the drug
generative model framework, partly due to model-paradigm related difficulties
and ultimately due to the implementation domain’s intricacies. In contrast, re-
gardless of whether the assumptions over the latent space hold or not, the model
can still perform reasonably well under entangled representations, from the per-
spective of the capability of synthesizing valid molecules. On the other hand, ex-

40
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periments prove that the concepts of navigation in the synthesized chemical space
and steerability in terms of manipulation of desired drug properties are possible,
although the amount of achieved success highly depends on the generative model
paradigm and molecule representation choices. As a further direction, the experi-
mentations in this thesis are yet to be enriched with different generative modeling
paradigms, such as attention-based novel generative approaches and molecular
properties that are more complex than commonly reported alternatives.

The explainability concept in drug generative modeling is still in need of over-
coming technical difficulties that hinder the extent of the achievable disentangle-
ment. Although current methods are still in their infancy, recent interpretability
approaches are definitely serving as good starting points, and the recent period has
been quite fruitful. As the utilization of the generative paradigm in the pharma-
ceutical industry becomes more prevalent, the needs for understanding the inner
workings of such models and the achievement of transparency to make informed
decisions become more relevant.
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Appendix A

Model Hyperparameters

Model hyperparameters of the baseline VAE model are given in table A.1

Parameter Value

q cell GRU

q bidir False

q d h 256

q n layers 1

q dropout 0.5

d cell GRU

d n layers 3

d dropout 0

d z 128

d d h 512

freeze embeddings False

Table A.1: Baseline VAE parameters

From top to bottom, the hyperparameters correspond to: Encoder’s RNN cell type,
a flag to specify whether the encoder RNN is bidirectional or not, the encoder
RNN’s hidden dimensionality, the number of layers for the encoder’s RNN, the
dropout rate for encoder layers, decoder’s RNN cell type, number of RNN layers
in the decoder, the dropout rate for decoder layers, the dimensionality of the la-
tent space, the hidden size of the decoder’s RNN, a flag specifying whether the
embeddings should be fixed or not respectively.

Model hyperparameters of the HierVAE model are provided in table A.2
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Parameter Value

rnn type LSTM

hidden size 250

embed size 250

latent size 32

depthT 15

depthG 15

diterT 1

diterG 3

dropout 0.2

mask row size list 1

Table A.2: HierVAE parameters

From top to bottom, the specified parameters correspond to: the type of RNN
to be used in Message Passing Network, the size of the linear layer and the size
of the node feature vector, embedding size for nn.Embedding, hidden layer num-
ber of RNN of the Message Passing Network for tree representation, hidden layer
number of RNN of the Message Passing Network for graph representation, depth
of RNN of MPN for tree and intermediate representation for the decoder, and the
dropout rate during training respectively.

The model hyperparameters for the MoFlow model are given in Table A.3

Parameter Value

b n flow 10

b n block 1

b hidden ch 128,128

b conv lu 1

a n flow 27

a n block 1

a hidden gnn 64

a hidden lin 128,64

mask row size list 1

mask row size list 1

dropout 0.2
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Table A.3: MoFlow parameters

From top to bottom, the hyperparameters correspond to: the number of masked
glow coupling layers per block for the bond tensor, the number of glow blocks for
the bond tensor, the hidden channel list for the bonds tensor and the delimited list
input, the number of masked flow coupling layers per block for atom matrix, the
hidden dimension list for graph convolution for atoms matrix and the delimited
list input, the hidden dimension list for linear transformation for atoms and de-
limited list input, mask row size list for atom matrix and delimited list input, and
mask row stride list for atom matrix, delimited list input, and dropout rate during
the training respectively.



Appendix B

Latent Space Visualization with t-SNE

The latent space visualization with t-SNE with max β = 0.1 at the top and max β =

1.0 at the bottom. The perplexity values are 40, 100, 200 from left to right respec-
tively.

Figure B.1: max β = 0.1(top) and max β = 1(bottom) latent space with t-SNE
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Appendix C

Property Clustering Results

The clustering results with UMAP reduced space for BCUT2D descriptors are at
Figure C.1. The obrained silhouette score average is 54.51% with 3 clusters. Among
the experimented parameter ranges of [2-50] for minimum cluster sizes and [1-40]
for minimum samples for HDBSCAN algorithm, the highest score is obtained with
minimum cluster size of 50 and minimum samples of 5.

The clustering of Lipinski descriptors in the UMAP reduced space is provided
in Figure C.2. The obtained silhouette score is 63.79% with 48 clusters. Highest
average silhouette score is obtained by minimum cluster sizes of 50 and minimun
number of samples 20 for HDBSCAN.

For the Topological descriptor clustering in the UMAP reduced space, a silhou-
ette coefficient score of 30% is obtained as the highest with the hyperparameter
values of minimum, cluster size of 8 and minimum samples of 5. There are 639
clusters detected in total, which seems not to be very precise given the lowest
silhouette score obtained among all other property clustering experiments. The
clustering is illustrated in Figure C.3
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Figure C.1: BCUT2D property clustering in UMAP reduced space
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Figure C.2: Lipinski property clustering in UMAP reduced space
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Figure C.3: Topological property clustering in UMAP reduced space



Appendix D

ChemSpacE Singular Property
Descriptor Values of SSR and RSR-G
Variants

Per feature scores obtained for SSR, RSR-G (0.05) and RSR-G (0.1) are provided
in tables D.1, D.2 and D.3 respectively. For the SSR, baseline VAE failed to obtain
successful extrapolations, whereas HierVAE configurations are capable of produce
strict extrapolations, although the achieved success varies between different prop-
erty descriptors. Overall, Chi1n and BalabanJ obtained the lowest scores, while
MolWt, MolMr and HeavyAtomCount descriptors lead to the best results. In the
case of MoFlow, highest strict exrapolation success is obtained by MolWt and the
lowest by MolMr descriptor.

On the other hand, the allowance of 5% over the global property ranges re-
sulted in a drastical increase in the obtained successful manipulations, especially
in the HierVAE variants. Although the success rate for baseline models also in-
creased, for the most properties the value is still less than 1%. The relative increase
in success over the strict case is not as high as HierVAE for the MoFlow model.

Most notably, the allowance of 10% over the global manipulation rates enabled
baseline model to generate successful extrapolations for certain property descrip-
tors. However, such a big leap from a success rate of around %1 to almost 72%
indicate that such a large relaxation compromises the monotonicity trend, causing
too large deviations in consecutive manipulations to be accepted as successful.
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Model QED BertzCT BalabanJ Chi1n HeavyAtomCount MolMR MolLogP MolWt
MOSES VAE

maxβ=0.1
0.0 0.0 0.001 0.0 0.002 0.0 0.001 0.001

MOSES VAE
maxβ=1.0

0.0 0.0 0.0 0.0 0.0 0.001 0.001 0.001

HierVAE
maxβ=0.1

0.202 0.289 0.114 0.099 0.327 0.254 0.215 0.304

HierVAE
maxβ=1.0

0.173 0.22 0.127 0.123 0.214 0.252 0.18 0.273

MoFlow 0.65 0.625 0.695 0.655 0.755 0.595 0.635 0.71

Table D.1: ChemSpacE results of SSR per feature value

Model QED BertzCT BalabanJ Chi1n HeavyAtomCount MolMR MolLogP MolWt
MOSES VAE

maxβ=0.1
0.008 0.008 0.017 0.007 0.029 0.01 0.005 0.013

MOSES VAE
maxβ=1.0

0.01 0.009 0.015 0.008 0.025 0.012 0.01 0.017

HierVAE
maxβ=0.1

0.43 0.75 0.37 0.72 0.754 0.738 0.739 0.82

HierVAE
maxβ=1.0

0.386 0.595 0.393 0.696 0.702 0.807 0.586 0.78

MoFlow 0.715 0.705 0.76 0.735 0.765 0.675 0.705 0.785

Table D.2: ChemSpacE results of RSR-Global with ϵ = δ = 0.05 per feature value

Model QED BertzCT BalabanJ Chi1n HeavyAtomCount MolMR MolLogP MolWt
MOSES VAE

maxβ=0.1
0.205 0.08 0.323 0.371 0.563 0.641 0.429 0.15

MOSES VAE
maxβ=1.0

0.23 0.065 0.347 0.414 0.642 0.716 0.496 0.159

HierVAE
maxβ=0.1

0.632 0.895 0.648 0.895 0.88 0.9 0.909 0.913

HierVAE
maxβ=1.0

0.572 0.821 0.657 0.886 0.898 0.926 0.839 0.901

MoFlow 0.745 0.73 0.765 0.755 0.775 0.69 0.755 0.8

Table D.3: ChemSpacE results of RSR-Global with ϵ = δ = 0.1 per feature value
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