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Abstract

Many residential environments have been equipped with sensing technologies

both to provide assistance to older people who have opted for aging-in-place

and to provide information to caregivers and family. However, such tech-

nologies are often accompanied by physical discomfort, privacy concerns, and

complexity of use. We explored the feasibility of monitoring home activity

using chemical sensors that pose fewer privacy concerns than, for example,

video-cameras and which do not suffer from blind spots. We built a mon-

itoring device that integrates a sensor array and IoT capabilities to gather

the necessary data about a resident in his/her living space. Over a period

of 3 months, we uninterruptedly measured the living space of a typical elder

person living on his/her own. To record the level of activity during the same
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period and obtain a ground truth for the activity, a set of motion sensors

were also deployed in the house. Home activity was extracted from a PCA

space moving-window which translated sensor data into the event space; this

also compensated for environmental and sensor drift. Our results show that

it is possible to monitor the person’s home activity and detect sudden de-

viations from it using a low-cost, non-invasive, system based on gas sensors

that gather data on the air composition in the living space. We made the

dataset publicly available at https://archive.ics.uci.edu/ml/index.php 1.

Keywords: Machine Olfaction, gas sensors, Human activity monitoring,

Activities of Daily Living ADL, aging-in-place, IoT sensors, older singles,

elderly, public dataset

1. Introduction1

The high uptake of smart home infrastructures capitalises on recent re-2

search advances that position highly accurate and precise sensing technologies3

in an unprecedented strengthening of remote health industries. Beyond a pre-4

cise characterisation of parameters surrounding any sensor-equipped home,5

the possibility of tracking household residents underlines much of the poten-6

tial of these technologies. The advent of the Internet of Things (IoT) and7

sensorised environments, including smart homes [1], has enabled the mon-8

itoring of a wide range of aspects of the life of a given person in relevant9

contexts. This has facilitated access to capturing details and characterising10

activities in private settings that are traditionally out of reach. The infor-11

mation that can be tracked ranges from behavioural metrics to activity and12

1full link will be provided upon acceptance of the manuscript
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ambulatory patterns, energy consumption, home appliance usage, or even13

physiological data. Previous research has been directed towards monitor-14

ing occupants in their home settings, from intelligent power meters [2], to15

advanced PIR sensors passing, inter alia, through infrared cameras charac-16

terising presence [3, 4], ambient sound recording systems keeping track of17

activity [5], and smart furniture and objects [6]. The development of such18

monitoring systems resulted in activity recognition applications and the mon-19

itoring of Activity Daily Living (ADL), aiming at better quality of life for20

semi-dependent people, in particular the elderly [7].21

In the case of aging populations, this is in line with societal efforts to face22

the challenge of a global increase of life expectancy. However, the field of23

home activity tracking poses concerns about the ease of use of the technology24

and its overall acceptability. Issues of data ownership and interpretability,25

whether the level of obtrusiveness might compromise concurrent activities,26

and level of personal exposure that subjects face (different sensing options27

present differing levels of invasiveness) [8, 9]. Video-based systems can pose28

serious privacy concerns [10] and are still affected by blind spots, thus requir-29

ing several systems to monitor a single living space. On the other hand, gas30

sensors for remote activity monitoring are non-invasive, pose fewer privacy31

concerns, and event detection is not restricted to a limited field of view. As32

a result, the detection range of chemical-based systems is larger, and the33

activity of an inhabited home can be monitored with fewer detection units.34

Moreover, chemical-based systems are also sensitive to other events, such as35

high concentration levels of volatiles [11] ,that may be relevant for monitoring36

older adults’ homes. These can be indicative of danger (running natural gas,37
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product spill, etc) or anomalous behavior (rotten food, lack of ventilation,38

among others).39

This paper aims to investigate the capability of a set of commercial gas40

sensors as unobtrusive and non-invasive sensing technology to monitor several41

ADLs and capture the pattern of activity of elderly living independently.42

The developed system was installed in a four-story apartment where an older43

person carried out their daily activities. We show that the system can capture44

patterns of behaviour of the occupant and detect unexpected events thus45

providing information to caregivers and family. We made the dataset publicly46

available.47

2. Related work48

Previous and recent studies have shown that several types of sensors can49

be employed to monitor human activities. For example, Multiple Thermal50

Sensor Array (TSA) using low-resolution thermal imaging can be deployed51

at home to detect the human presence [12] or falls [13, 14], while chemical52

gas sensors can improve room occupancy predictions [15].53

In this context, it is worth to mention that in the late 90’s, S. Hirobayashi54

and co-workers already employed a single commercial gas sensor to detect hu-55

man activities by using an inverse of the sensor response [16]. More recently,56

an array of polymeric gas sensors was placed in a 200 m3 room with semi-57

controlled conditions used by the JPL-NASA to simulate spaceship cabin58

atmosphere. Several volunteers performed physical activity and different59

common daily activities. It was possible to predict the level of activity per-60

formed in the room and detect the use of ethanol-based medication [17].61
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More recently, Pedersen, H. et al. showed that under simple and controlled62

conditions, all indoor climate parameters are highly correlated with occupant63

presence [18]. Results showed that room occupancy can be predicted with64

standalone measures of carbon dioxide or total volatile organic compounds65

in a test-room. However, when the system was placed in a three-room dorm66

apartment shared by two persons, performance of standalone sensors de-67

creased significantly and they were coupled to PIR sensors.68

Unlike previous works, we present a gas sensor array to capture daily69

activities and deviations from the pattern of activity.70

3. Materials and methods71

The following section describes the sensors used for signal acquisition,72

the communication system between the sensors and the database, and the73

deployment of the system. Next, the methodology is described, from sig-74

nal pre-processing to the validation of the activity patterns with reference75

sensors.76

3.1. Sensing device77

We developed a sensing unit to sample indoor air composition. It was78

integrated into a customized electronic board with wireless communication79

capabilities to upload acquired data to the Cloud in real-time. The gas80

sensing system is a heterogeneous sensor array where the sensors are exposed81

directly to the environment, with no measurement gas cell. The absence of82

a measurement chamber shortens the response time of the system, since83

the slow dynamics of the chamber are avoided, but this makes the system84

sensitive to air turbulence in the vicinity of the sensors [19, 20, 21].85
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Specifically, the sensing unit is designed to hold four metal oxide (MOX)86

gas sensors, two carbon dioxide sensors, a carbon monoxide sensor, and tem-87

perature and humidity sensors. MOX gas sensors show a broad response to88

volatiles, although the sensing layer can be adjusted to heighten sensitiv-89

ity to selected gases. To enhance the system selectivity and sensitivity, the90

selected MOX sensors are based on different commercially available sensing91

layers, provided by Figaro Inc 5. They operate isothermally, applying a 5V92

constant voltage on the built-in sensor heater. The incorporation of MOX93

sensors into the system is very convenient for the detection of a wide spec-94

trum of volatiles and untargeted chemicals that are released during a range95

of indoor daily activities.96

Carbon dioxide is suitable for monitoring room occupancy. Hence, two97

carbon dioxide sensors with different technologies have been included. More-98

over, carbon monoxide sensors can be relevant in environments where in-99

complete combustion may occur, providing additional safety measurement100

to occupants of a building [22, 23]. Although we expect that the CO sen-101

sor will rarely record measures above its baseline, we opted for adding it to102

enable further development to integrate a fire alarm system, a convenient103

feature for elderly safety. Finally, temperature and humidity sensors are also104

included to compensate for sensors’ cross-sensitivity to environmental con-105

ditions. Table 1 shows the selected sensors, together with the corresponding106

target compounds.107

The sensor array is integrated with a customized board that includes the108

5https://www.figarosensor.com
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Table 1: Sensors included in the sensing unit

Sensor and provider Target

SHT-75, Sensirion Temperature, humidity

MG811, Hanwei Co. Carbon dioxide

CozIR-A, Gas Sensing Solutions Co. Carbon dioxide

CO-B4, Alphasense Co. Carbon monoxide

TGS 2602, Figaro Inc VOCs, Ammonia, H2S

TGS 2611, Figaro Inc VOCs, Methane

TGS 2610, Figaro Inc VOCs, Propane, Butane

TGS 2620, Figaro Inc VOCs, Solvent Vapors

signal conditioning electronics and an ATmega32u4 microprocessor that in-109

terfaces with the Atheros AR9331 to enable wireless communication. The110

microprocessor was programmed to perform: i) Continuous data acquisition111

from the chemical gas sensors through 10-bit resolution analog-to-digital con-112

verters at a sampling rate of 20 s; ii) Temperature and humidity collection by113

means of the i2c communication protocol; iii) Data storage in an SD memory114

card for back-up purposes; and iv) data communication through a local wifi115

network to send the most recent data to a remote data server. Finally, a116

custom 3D printed enclosure was designed and implemented for the sensing117

units. The enclosure provides mechanical protection to the sensing unit while118

enabling direct environment sampling by the sensors. Figure 1 shows the de-119

veloped prototype for continuous activity monitoring. Additional images of120

the employed sensors can be found in the Supplementary Material.121

122
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Figure 1: Prototype developed for continuous activity monitoring including gas sensors

and wireless communication to send data to a remote server.

3.2. Communications and database123

The developed prototype sends live data to our database via an API appli-124

cation. The REST API was designed to receive the sensor data through the125

HTTP protocol and write them to the database. It was developed in Django126

(django REST framework 3.10.3) a programming framework for Python 3.6.8.127

In this way, every 20 seconds, the prototype sends the data to the database128

using to a specific URI of our API.129

The database and the API application are hosted in the CloudUPC ser-130

vice. This service provides a dual-core CPU, four gigabytes of RAM, thirty-131

five gigabytes of storage memory with an Ubuntu 18.04.4 LTS operating132

system.133

The database structure is defined by three relational tables (users, devices134

and samples). The user holds basic user information such as email, username135

and password. The device table contains the following fields: name, type136
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and UUID of the device; latitude and longitude coordinates of the device137

location; type of room and space where it is located; name of the location;138

user to which the device belongs. Finally, the sample table has the following139

fields: timestamp, temperature, humidity, average noise, maximum noise,140

CO2CosIRValue, CO2MG811Value, counter, MOX1, MOX2, MOX3, MOX4141

and the device that is sending it. More details on the communication protocol142

and database can be found in the Supplementary Material.143

3.3. Deployment and data acquisition144

The home of an 89-year-old person was selected for the deployment of the145

system in a real environment. The house is located in Igualada, Barcelona,146

in an urban environment but one with low population density. The house147

consists of 3 bedrooms, a living room, a dining room, a living room, a kitchen148

and a bathroom. The behavior pattern of the occupant makes this house149

a favorable environment for a pilot test, as the occupant followed a well-150

established routine.151

The floor plan of the pilot home is presented schematically in Figure 2.152

The gas measurement system was installed in the dining room where the153

volunteer spends most of the day. In addition, the dining room has one154

window that communicates with the kitchen and another with the bedroom.155

This makes the dining room a perfect location to place the system since it156

will be able to measure any activity that changes the gas composition of the157

three rooms. Over the same time period, a set of motion detectors placed in158

the different rooms of the house recorded the activity of the volunteer.159

The gas measurement system recorded a total of 87 signal days. From160

these records, a data set was extracted from a three-month time interval,161
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Figure 2: Floor plan of the pilot home, indicating the position of the gas sensor

prototype and the motion sensors used to obtain labeled information. Black lines

indicate walls, grey lines indicate door openings or large windows.

during which the volunteer lived alone and was autonomous. A data set162

without human activity was acquired at the same location (but this time163

without the volunteer) over the period of week. In this work, any change in164

signal trends whose origin is human activity is considered an event.165

3.4. Data processing and activity detection166

To detect events from the sensor signals we first correct environmental167

drift. Next, we use a moving window in the vector space. In particular, Figure168

3 summarizes the methodology to extract the level of activity. It shows two169

independent data processing branches that come together in environmental170

correction. The first branch processes all the data potentially due to human171

activity. In this branch, different signal-processing and machine learning172

techniques are used to detect statistically significant events. The second173
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branch uses a set of “clean” data (without human activity) to parameterize174

the environmental variance and then use it for environmental correction.175

In addition to these two processing paths, the diagram shows three large176

boxes representing the three main processes of the algorithm these being the177

environmental correction, the parameterization of the environmental variance178

and finally, the processing of the data for event detection.179

3.4.1. Preprocessing and environmental correction180

First, to reduce signal noise due to signal interference and remove outliers,181

a centered median filter with a window size of 11 samples is applied.182

Next, we aim at removing environmental variance to avoid false posi-183

tives in event detection. The purpose of the environmental correction is to184

eliminate the variance component arising from factors unrelated to human185

activity, such as that arising from temperature or humidity changes over the186

course of a day, or longer-term sensor drift.187

The method consists of principal component analysis (PCA) of the data188

without human activity which is then projected onto data with human ac-189

tivity. For this purpose, the data set without human activity has been used190

as reference data, since in the absence of human activity, the variance will be191

that produced by the environment. Hence, a low dimensional vector space is192

created with a PCA using the data without human activity only. Once this193

space is created, the environmental variance is parameterized. The objective194

of the parameterization of the environmental variance is to fit the variance195

that causes drifts in the trend of the sensor signals and which is of environ-196

mental origin. Then, a projection of the data with human activity is made197

on the vector space of the data without activity. In this way, the variance198

11



Figure 3: Flow diagram to extract the number of events. Data without human activity is

used to correct environmental variability. Motion sensors are used to obtain

ground-truth data.

considered to be environmental is cancelled. Finally, the data with activity199

is reconstructed in the original vector space.200
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3.4.2. Event detection201

The following section describes the methodology used to detect events202

with gas sensors. This section is divided into three parts. The first part203

introduces the use of moving window PCA to obtain the Mahalanobis dis-204

tance to determine if a sample from a data set is an event. The second part205

introduces the computation of the T-squared limit to determine if the de-206

tected event is statistically significant. Finally, the third part presents the207

procedure to calculate the number of statistically significant events for each208

hour.209

Moving Window PCA210

The moving window PCA consists of running a time series using a sam-211

ple window of size H to build a PCA model and projecting the subsequent212

observation (H+1) in the resulting vector space [24, 25]. Once the projec-213

tion of a new observation is done, the Mahalanobis distance is calculated to214

measure the distance between that observation H+1 and the distribution D215

formed by the data in the window H. This distance is a multidimensional216

generalization indicating how many standard deviations the point P is away217

from the mean of the distribution D. With each new observation, this win-218

dow excludes the oldest observation and includes the observation from the219

previous time period. In this way, the entire data set is walked through.220

The length of the window H is selected according to the rate at which221

the mean and covariance parameters change, with large windows being more222

suitable for slow change and small windows being more suitable for fast223

change. In our case, a window length of 360 samples was chosen to fit with224

the sampling frequency (a two-hour interval, since a sample is taken each 20225
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seconds).226

T-squared limit227

In order to determine whether a sample is statistically significant, the228

Hotelling T-squared statistic is calculated. Thus, if the distance of an obser-229

vation to the distribution formed H is greater than the T-squared statistic,230

this sample is a statistically significant event. To calculate the T-squared231

limit the following equation is used:232

T 2
α = X2

α(m) (1)

Eq. 1 means that the T-squared limit follows a chi-squared distribution233

with m degrees of freedom for a particular significance level. Although there234

are more conservative choices, our dataset meets the necessary requirements,235

so the existing error between the most permissive equation and the most re-236

strictive one differs by less than 10% [26]. Hence, we used this approximation237

for the limit calculation.238

Sum of events239

The objective is to obtain the number of significant events per hour. For240

simplicity, windows (intervals) of 1 hour are chosen, but the algorithm can241

be generalized to windows of other time lengths. In this way, the number242

of statistically significant samples detected for a particular hour on different243

days can be compared.244

First, all the Mahalanobis distance values were ordered by days, obtaining245

a matrix of n x 4320, where n is the number of days analyzed and 4320 is246

the number of samples in a day. Second, the Mahalanobis distance was247

divided by the T-squared limit to obtain a ratio indicating whether that248
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sample is statistically significant. Third, the matrix has been binarized so249

the significant samples are 1 and the rest are 0. Finally, this vector of ones250

and zeros is summed every 180 samples to obtain the number of event samples251

for that hour.252

3.5. Annotation with motion detectors253

In this study, the motion sensors have been deployed as a ground-truth254

strategy to detect the daily events without interrogating the participants, but255

also for bench-marking purpose with the gas sensor-based device. To do this,256

motion data, which had a time resolution of one minute (meaning that once257

the sensor was activated, it would not turn off after at least one minute), was258

converted into a sum of minutes of activity. Therefore, a movement sensor259

could have from 0 to 60 minutes of activity per hour. The more minutes of260

activity there were in an hour, the more activity was considered to be in that261

room.262

To set a framework of the relationship between the activity measured263

by both gas and movement sensors, the reference week was also used. A264

reference for the level of activity performed at home was hence extracted265

from the motion detectors installed in the home, which was also confirmed266

by close relatives of the occupant.267

4. Experimental results268

4.1. Sensor signals269

A visual inspection of the sensor signals confirms sensor sensitivity to270

home activities. In particular, Figure 4 shows the acquired signals of the271
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nine sensors over a twenty-four hour period. The figure is divided into four272

subplots. Subplot A shows the temperature (red) and humidity (blue) sen-273

sors. Subplot B shows the CO2 signal sensor from two different sensors.274

There is a reverse dependency on the CO2 sensors due to the sensor technol-275

ogy. Subplot C shows signals from the four MOX sensors. Finally, subplot276

D shows the CO signal.277

In the presented example, there is no significant change in the gas sensor278

trends during the night period (from 00 am to 8 am). Instead, the variability279

of the signal trends appears during the periods of activity at home. The first280

event that causes significant change in the sensor signals is at 8am, when the281

occupant wakes up. At this moment the occupant opens the window and one282

observes the corresponding drop in temperature and humidity, that was ac-283

cumulating over the night. Then, the highest variability in the sensor signals284

correspond to the periods with activity in the household, between 8:00 am285

and 8:00 pm. During this time, the occupant of the house performs the com-286

mon daily activities, such as having a shower, ventilating the house, cooking,287

eating, watching television, and using the bathroom. One can observe a sud-288

den change at around 5 pm, manifested mostly in a temperature increase that289

corresponds to the occupant turning on the heating. The observed tempera-290

ture range in the 24-h period is approximately 8oC. Such variation caused by291

human activities is in accordance with the temperature variation observed292

in home settings [27] [28]. The CO sensor does not measure CO levels above293

the background baseline, as expected under no combustion or fire conditions294

[23].295

Hence, it is possible to extract human activities in home settings from296
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the sensor raw signals. Such activities have noticeable effects on tempera-297

ture, humidity and air composition, which are successfully captured by the298

deployed sensor system.299

Figure 4: Gas sensor signals and physical quantities after filtering. a: temperature and

humidity. b: CO2 sensors. c: 4 metal oxide sensors. d: CO sensor.
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4.2. Parameterization of environmental variance300

The first principal component captures 76% of the variance of the data301

during the reference week. The accumulated variance captured by the two302

and three first components is 89% and 95% respectively. Therefore, since the303

first component captures more than two thirds of the total variance of the304

data, it was decided that it is sufficient to parameterize the environmental305

variance. Thus, the first component of the PCA of the data without human306

activity is used as environmental variance for its subsequent elimination.307

4.3. Environmental correction308

To decouple the sensor variance due to the activities performed at home309

from the sensor responses due to environmental changes, the parameterized310

environmental variance was used. Figure 5 shows the projection of the un-311

corrected data while there was no activity at home. The data are distributed312

following a daily trend and drift over time. For example, in the top plot,313

warmer values representing the last eight hours of the day are generally dis-314

tributed below the samples with cooler colours, representing the first half of315

the day. Looking at a single day with this color scale, samples captured at316

12:00 tend to be on the negative region of the x axis, and those captured at317

00:00 tend to be on the positive side. Thus, a correlation can be observed318

between the daily cycle and the variance captured by the first principal com-319

ponent. More clearly, the environmental variance attributed to time drift320

is observed in the bottom plot of Fig. 5. The samples are coloured by the321

days to which they belong, with dark to light green colours. The darkest322

greens are the days closest to January 27, while lightest greens correspond323

to the days close to February 2. As in the top plot, there is an ordering of324
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the samples by day, from negative to positive values, that correlates with the325

magnitude of the first principal component.326

Figure 6 shows the same data after environmental correction. The ex-327

traction of the first principal component reduced the correlation between the328

first principal component and the environmental variance that is present in329

Figure 5.330

4.4. Detection of events331

An event is composed of a set of statistically significant samples in a par-332

ticular time period. In particular, Figure 7 shows a recording of the 24-hour333

sensor signals along with the ratio that indicates whether a sample deviates334

from the mean of the distribution in a statistically significant way. Therefore,335

if the ratio for a sample is greater than 1, that sample belongs to a statis-336

tically significant event. The significant events detected with the gas sensor337

array and the ratio of the Mahalanobis distance over the T-squared limit338

matches with the activities performed by the elder, confirming the ability of339

the gas sensor system to monitor home activities.340

4.5. Activity pattern341

Using the detected events it is possible to build a map of activities per-342

formed at home. As shown in Figure 8, the most active hours are in the343

morning, when several activities are carried out. In the afternoon the num-344

ber of activities decreases, since the volunteer is usually watching television345

or going for a walk. Christmas Eve and Boxing Day, a regional holiday, show346

different behaviour patterns from the rest of the monitored days. This is347

confirmed by family gatherings during those days in the monitored home,348
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Figure 5: PCA space representation of the data set without human activity before

environmental correction. Samples colored by time of the day (top) and colored by day

(bottom). Due to environmental factors, the samples are ordered by time of the day or

by the day of acquisition.

causing an activity outside the regular activity routine detected by the gas349

measurement system.350

From the map presented in Figure 8, activity patterns have been obtained351

20



Figure 6: PCA space representation of the data set without human activity after

environmental correction. Samples colored by time of the day (top) and colored by day

(bottom). The samples overlap each other, with a reduced structure on the

environmental factors.

by calculating the median and quartiles to obtain an overview of the data352

distribution. In particular, Figure 9 shows a general description of the pattern353

generated during November by taking the data of all its days and calculating354

21



10

15

20

25

30

Te
m

pe
ra

tu
re

 (º
C

)

Temperature

1.5

2.0

2.5

3.0

3.5

Si
gn

al
 (V

) CO2 MG811

2

3

4

Si
gn

al
 (V

) MOX1
MOX2
MOX3
MOX4

0

2

4

Si
gn

al
 (V

)

CO

2019-11-15

2019-11-16

2019-11-17

2019-11-18

2019-11-19

2019-11-20

2019-11-21

2019-11-22

2019-11-23

2019-11-24

2019-11-25

2019-11-26

2019-11-27

2019-11-28

2019-11-29

2019-11-30

2019-12-01

2019-12-02

Date

0

5

10

15

20

Ev
en

ts

T-Hotelling / tlim

40

45

50

55

60

H
um

id
ity

 (%
)

Humidity

0.0

0.5

1.0

1.5

2.0

Si
gn

al
 (V

)

CO2 IR

Figure 7: Sensor signals (temperature and humidity signals; CO2 sensors; metal oxide

sensors; CO sensor) and detected events (ratio formed by the Mahalanobis distance

divided by the T-squared limit) over a period of 18 days.

the average. The red line, representing the 24th of December, follows a very355

similar trend to the one observed for the average month practically all day356

long, but after 8:00 pm the number of detected events increases considerably357

due to the celebration of Christmas Eve. This activity is successfully detected358

as being outside the regular pattern of activity.359

This behaviour can also be observed in the PCA space of different days360
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Figure 8: Heat map representing the number of significant samples detected per hour.

The x-axis represents 24 hours per day and the y-axis represents different days. Within

each cell there are number of samples that are statistically significant events. The

colouring goes from cool to warm colours as more events are detected.

(see Figure 10). For example, comparing three days, one with no human361

activity, a day with regular human activity, and Christmas Eve where human362

activity increases significantly.363

Hence, a regular pattern of activity was set for the monitored home.364

Days (or part of a day) that follow different level of activity fall outside the365

established pattern. This information can be sent to the care-givers and366

family members to provide relevant information from the monitored elder.367
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Figure 9: Box plots of the activity detected for each hour of the day, using data acquired

during the month of November. Activity detected during Christmas eve (in red). The

number of events detected during dinner time in Christmas Eve deviate from the regular

pattern of behavior due to a family gathering.

4.6. Benchmark with motion sensors368

The activity captured by the movement sensors is used to set a ground-369

truth reference for the developed system. Figure 11 shows a benchmark370

between the activity measured by the movement sensors and the calculated371

by the gas sensing node, during two different days with different level of372

activity and a reference day with no activity at all. It becomes evident that373

the gas-measured activity is affected by the real activity in the house. The374

average of the normalized gas-activity (0.196) is approximately three times375

higher when there is activity as compared to the empty house (0.066). The376

bottom plots of Figure 11 show a stationary state of the empty house up377

until a sudden activity at 3 pm (affecting the gas-activity as well). This378

data corresponds to a day during which the house was unoccupied, but at379

around 3 pm, someone entered to the apartment for a short period of time380
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Figure 10: PCA space representation of the data set for three different days. The x and

y axes represent the first two principal components that capture 85% of the variance of

the data. Each point in the graph represents a sample and has been colored according to

the day to which it belongs (blue: normal activity day; green: no activity day (reference

day); orange: very active day (Christmas).

and stayed mainly in the living room and the bathroom. This data illustrates381

that gas sensors react to human activity fast and the changes induced in the382

air composition remain after the activity in the house has finished.383

Figure 12 shows the activity during a regular day, breaking down the384

movement activity into its different rooms of origin. This result shows that385

a system based on gas sensors is not affected by blind spots and can produce386

a pattern of activity covering different rooms with one single unit, unlike387

presence sensors and video-cameras.388
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Figure 11: Events detected with gas sensors (blue) and motion sensors (orange) during a

day with regular activity (top), the mean of the days with no activity at all (middle),

and a day with a short and sudden activity at 3 pm.

5. Discussion and Conclusions389

This paper demonstrates that an array of chemical sensors can collect data390

related to activities in an inhabited space. Furthermore, since the activity391

of a person, specially an older one, tends to follow stable routines, the more392

data is collected, the better the behaviour of that person can be predicted,393

making the system more efficient at finding anomalies. For example, levels394

of activity measured by the gas sensor always rise when the person wakes up.395

The lack of events at that time can be an important event by itself, setting396

an alarm signal if the elder has not started the morning routine at the time397

they usually do.398
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Figure 12: Activity detected with gas sensors (top) and movement sensors (bottom).

The gas sensing system is able to detect activities that occur in different rooms.

We showed that human activity patterns (and thus deviations from these399

patterns) can be linked with air composition using a single unit of gas sen-400

sors as an event tracker. An accurate measure of the concentration of target401

compounds is not necessary to detect an activity: our system relies on the402

relative changes of gas composition in air, rather than their absolute val-403

ues. A full system calibration would provide additional information to the404

caregiver, but linking activities to chemical signatures requires specific cal-405

ibration for each activity. For instance, the activity “cooking” will depend406

on the meal under preparation and the activity “cleaning” will depend on407

the used chemicals and cleaning products. Instead, in this work, we focused408
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our efforts in building activity patterns using directly the time signals of the409

sensors.410

Actions such as opening a window can translate into events more im-411

portant than daily routines. In this case, one could use context, such as412

information about the routine of the monitored person, to expand further413

our method. Hence, our results show that a chemical gas sensing node cou-414

pled to the pattern activity of the elder is an effective tool to warn about415

unexpected events.416

The lack of invasiveness might help to gain users and caregivers accep-417

tance, but it does come at a cost. On the one hand, deploying several gas418

sensing nodes will result in a higher-resolution network that will provide419

faster response to activities. The sensors will be exposed to the changes in420

the air composition faster since the gas sample will need less time to travel421

to the sensing node. Also, if one is interested in finding out the exact room422

where an event took place, several nodes are necessary. Nevertheless, we423

showed that a single sensing node deployed in a representative location can424

capture the activity performed in a home setting. On the other hand, data425

collected with chemical sensors may not be as precise as other technologies,426

such as video-cameras.427

The proposed method to detect events relies on a moving 2-hr window.428

Though the window prevents the event space from capturing events due to the429

natural ambient changes in the air, this can present false negatives (events)430

under certain conditions. For example, in Figure 8 it can be seen that when431

a lot of events occur in a single hour, the following hour(s) have a noticeably432

low number of events. This effect can be seen during Christmas Eve, where433
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the number of events at 9 pm and 10 pm is high but decreases at 11 pm. This434

can be explained by the window effect. It is possible to adjust the span of435

the window to enable the detection of large events, although the sensitivity436

to short events will decrease. However, events larger than the window size437

are still detected by the system, but it but fails to follow it up properly. Any438

attempt to modify the behaviour of the window under certain conditions,439

would degrade performance by introducing discontinuities into the system.440

Hence, the window size is a parameter that can be adjusted according the441

expected duration of the events.442

In the paradigm of smart home monitoring, gas sensors can provide rel-443

evant information to caregivers and family for older people living indepen-444

dently, regarding the home activities but also the surroundings and the envi-445

ronment that may lead to accidents and/or be harmful for their health (e.g.,446

toxic gas detection, high level of fine particulate matters, lack of ventilation,447

etc.). The integration of such sensors in a domestic environment inside the448

IoT network collecting data on the ADL and can provide additional infor-449

mation to a virtual assistant or virtual caregiver [29] and further assist elder450

adults in their own home.451
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[20] J. Fonollosa, I. Rodŕıguez-Luján, M. Trincavelli, A. Vergara, and

R. Huerta, “Chemical discrimination in turbulent gas mixtures with mox

sensors validated by gas chromatography-mass spectrometry,” Sensors,

vol. 14, no. 10, pp. 19336–19353, 2014.

[21] R. Huerta, T. Mosqueiro, J. Fonollosa, N. F. Rulkov, and I. Rodriguez-

Lujan, “Online decorrelation of humidity and temperature in chemical

sensors for continuous monitoring,” Chemometrics and Intelligent Lab-

oratory Systems, vol. 157, pp. 169–176, 2016.
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eds.), (Cham), pp. 835–845, Springer International Publishing, 2019.

[28] D. Roberts and K. Lay, “Variability in measured space temperatures in

60 homes,” 3 2013.

[29] M. Luperto, J. Monroy, J. Renoux, F. Lunardini, N. Basilico, M. Bul-

gheroni, A. Cangelosi, M. Cesari, M. Cid, A. Ianes, et al., “Integrating

social assistive robots, iot, virtual communities and smart objects to

assist at-home independently living elders: the movecare project,” In-

ternational Journal of Social Robotics, pp. 1–31, 2022.

34


	Introduction
	Related work
	Materials and methods
	Sensing device
	Communications and database
	Deployment and data acquisition
	Data processing and activity detection
	Preprocessing and environmental correction
	Event detection

	Annotation with motion detectors

	Experimental results
	Sensor signals
	Parameterization of environmental variance
	Environmental correction
	Detection of events
	Activity pattern
	Benchmark with motion sensors

	Discussion and Conclusions

