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The course SANS (Statistical Analysis of Networks and Systems) belongs to
the Master MIRI (Master of Innovation and Research in Computer Science) of
the Faculty of Computer Science of Barcelona. The course is an introduction
to some mathematical foundations used in data science. The course content
includes an introduction to probability, linear algebra, and estimation.

In this section, we study a number of techniques that are useful to model,
analyze and predict the operation of systems and networks. These techniques
are mainly based on results from probability theory and statistics.

Probability Theory and Information Theory are classic subjects, and there are
many very good books covering the main concepts touched in the course, with
different levels of depth. We can recommend some of them: W. Feller, ”An
Introduction to Probability Theory and its Applications, Vol I”, D. Mackay,
”Information Theory, Inference, and Learning Algorithms”, J. S. Rosenthal, ”A
First Look at Rigorous Probability Theory”, and T. M. Cover and J. A. Thomas,
”Elements of Information Theory”.

1 Kolmogorov’s axioms and Bayesian probabil-
ity theory

There is not a single way of defining a ”probability theory”.

In 1933, the outstanding Russian mathematician A. N. Kolmogorov proposed
a formalism for probability theory based on measure theory1. Surprisingly,
in this definition of probability, there is nothing related to ”uncertainty”, as
probability is defined as a measure, akin to an area, length, or weight. The
link with our intuitive understanding of probability comes from one of the most
important results in this theory, the Law of Large Numbers, which states that if
the probability of an event E is p(E), and we create a composed experiment in
which we perform N independent experiments, the relative frequency in which

1https://archive.org/details/foundationsofthe00kolm/page/n3/mode/2up
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the event E occurs in the sequence of results gets closer to p(E) as N goes to
infinity. Some authors refer to this formulation of probability theory based on
measure theory as ”frequentist probability”.

Alternative definitions of probability exist, the most important of them being
the Bayesian probability theory (which can be further divided into ”objective
Bayesian” and ”subjective Bayesian”). In this formulation, the probability is
closer to logic, as it is defined as a quantification of the degree of belief of a
statement being correct, given some previous knowledge or hypothesis2.

As an example, assume that we are interested in obtaining the probability of
obtaining the same results in two fair coins that are tossed independently. In
the Kolmogorov approach, we would define a sample space

Ω = {(H,H), (H,T ), (T,H), (T, T )},

while the event we are interested in would be E = {(H,H), (T, T )}. Finally,
using the fact that we have fair coins and independent experiments, we would
assign the probability as a measure to this event E, p(E) = 1/2.

The Bayesian framework would assign a degree of belief on the sentence S: ”The
result in the two coins is the same”, given the hypothesis, H1: ”The two coins
are fair”, H2: ”The two coin rolls are independent”, which in this case, using
symmetry and independence arguments, would be p(S | H1, H2) = 1/2.

We will focus on Kolmogorov’s approach to probability theory, although when
we will study Bayesian estimation, we will discuss with some more detail the
Bayesian approach.

1.1 Probability spaces

Kolmogorov’s formulation of probability is based on what is known as a proba-
bility space (Ω,A, p), which consists of a sample set Ω, a σ-algebra of events A,
whose elements are subsets of Ω, and a probability map p : A 7→ R that assigns
a real number to each event included in A.

The sample space Ω can be any arbitrary set, and can be interpreted as the
set that contains the possible outcomes of a probabilistic experiment. From the
point of view of probability theory, the only relevant characteristic of the set Ω
is its cardinality.

Although the theory is in principle the same for any arbitrary Ω, in practice we
will usually consider the following three cases:

• Discrete probability spaces: Ω is a countable set. For instance: Ω =
{(H,H), (H,T ), (T,H), (T, T )} or Ω = N.

2https://bayes.wustl.edu/etj/prob/book.pdf
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• Continuous probability spaces: Ω is an uncountable set such as [0, 1], Rn

or {0, 1}∞ (i.e. the set of infinite binary sequences).

• Stochastic Processes: Ω is a set of functions that depend on some param-
eter t ∈ T for some set T. For instance, Ω = R[0,1], i.e. the set of real
functions defined on the interval [0, 1].

As we see, each case includes the previous cases as a particular example. During
the course, we will mainly consider discrete and continuous spaces, and only
briefly will mention Markov Chains, one of the simplest and more important
examples of a stochastic process.

The set of events A must have a special structure, as it must be a sigma-algebra
(σ-algebra). This means that:

• Ω ∈ A,

• E ∈ A⇒ Ec ∈ A,

• If {En} is a countable collection of sets, with En ∈ A⇒
⋂
En ∈ A

In a σ-algebra is also true that if {En} is a countable collection of sets, with
En ∈ A⇒

⋃
En ∈ A.

The qualifier countable deserves special attention, and we will see that this
restriction is key throughout the theory.

In general, when we have a set Ω together with a σ-algebra A of subsets of Ω,
we will say that (Ω,A) is a measurable space.

The map p takes as argument one element of A (i.e. an event) and returns a
real number. To qualify as a probability map, it must fulfill three conditions:

• p(Ω) = 1,

• E ∈ A⇒ p(E) = 1− p(Ec),

• If {En} is a countable collection of disjoint events, i.e. En ∈ A, and
En
⋂
Em = ∅, with n 6= m⇒ p(

⋃
En) =

∑
p(En).

These properties correspond to what in measure theory is called a finite measure.

We will deal first with discrete probability spaces.

2 Discrete probability spaces

The discrete case avoids many of the mathematical subtleties that appear in
continuous probability spaces and in stochastic processes. This does not nec-
essarily means that, in the application examples that we will study, obtaining
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expressions for the probabilities for specific events of interest in discrete proba-
bility spaces will be easier than in the continuous case, as this is very often not
the case.

Very often, in discrete probability spaces the σ-algebra A will be the set of all
subsets of Ω, also known as the power set, denoted as 2Ω. It is easy to prove that
the power set is always a σ-algebra. We will see, however, that in continuous
probabilistic spaces or in stochastic processes, the power set σ-algebra is usually
not used.

If Ω is a countable set, all the events of A = 2Ω are also countable sets, and
thus any event can be expressed as the countable union of singletons (i.e. of
sets formed by a single element): E ∈ A, E =

⋃
{ωn}, meaning that p(E) =∑

p({ωn}). In other words, if we know the probability for all the singleton
events, we can find the probability for any event.

When one study first this theory it is easy to be confused and think that the
probability for singletons is assigned to the elements ω ∈ Ω, however, we must
remember that probabilities are always assigned to elements of A (i.e. to specific
subsets of Ω), and not to the elements of Ω.

3 Basic combinatorial formulas

For discrete probability spaces, counting the number of elements of a given set
is usually an important step in order to obtain the probability of the events of
interest. For instance, in the special case of uniform discrete probabilities, in
which all the singletons sets have the same probability,i.e. pn = 1

|Ω| , we can

calculate the probability of any event E as p(E) = |E|
|Ω| . We review here some

basic results. Assume that |E| = n, then:

• The size of E × E × ...× E = Ek is |Ek| = nk.

• The number of subsets of k elements is
(
n
k

)
= n!

(n−k)!k! = nk
k! .

• The total number of subsets we can create (i.e. the size of the power set
2E) is 2n.

Where we have used the convention nk = n(n− 1)...(n− k + 1) for 1 ≤ k ≤ n,
and n0 = 1. Assume that we have n different elements (e.g. {1, ..., n}), and we
create the set of n-tuples: {(1, 2, ..., n), (2, 1, ..., n), ..., (n, n − 1, ..., 1)} (i.e. the
set of permutations of n distinguishable elements). Then the size of this set is
n!.

Many of these problems are described as finding the number of different ways
that n balls (distinguishable or not) can be placed in k bins or n flags can be
placed on k poles, etc. See volume 1 of the book by W. Feller for a rich number
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of examples. One must understand some conventions: when we place balls in
a bin, balls are not ordered, while when we place flags on a pole, the order
becomes important.

Some basic results are:

• There are nk ways of placing n distinguishable balls in k bins,

• There are (n+ k − 1)k ways of placing n distinguishable flags on k poles.

• There are
(
n+k−1

k

)
ways of placing n indistinguishable balls in k bins (or

equivalently n indistinguishable flags on n poles. In this case, if n ≤ k,
there are

(
k−1
n−1

)
configurations with non-empty bins or poles.

3.1 Optional: Inclusion/exclusion formula

If E1, E2 ∈ A we have p(E1 ∪ E2) = p(E1) + p(E2) − p(E1, E2). The inclu-
sion/exclusion formula generalizes this for the union of more than two events:

E1, ..., En ∈ A⇒ p(∪nEn) = S1 − S2 + ...+ (−1)n+1Sn

with Sk =
∑
p(Ei, ..., El) where the sum includes the

(
n
k

)
different combinations

of k events.

For instance:

p(E1 ∪ E2 ∪ E3) = S1 − S2 + S3

= p(E1) + p(E2) + p(E3)−
[p(E1, E2) + p(E1, E3) + p(E2, E3)] + p(E1, E2, E3)

4 Conditional probability and conditional inde-
pendence

Let E and F be two events with p(F ) 6= 0. We define the conditional probability
of E given F as:

p(E | F ) =
p(E

⋂
F )

p(F )
.

4.1 Independence and conditional independence of events

• Two events E and F are independent when p(E
⋂
F ) = p(E)p(F ). An

equivalent definition for independent events is p(E|F ) = p(E). A common
notation used to indicate that two events E and F are independent is
E ⊥⊥ F .
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• Two events E and F are conditional independent given a third event G
with p(G) 6= 0, when p(E

⋂
F | G) = p(E | G)p(F | G). The notation

used in this case is E ⊥⊥ F |G

Independence of events (or random variables) is probably one of the most im-
portant concepts in probability theory and the key aspect that differentiates
probability theory from general measure theory (see for instance page 8 of Kol-
mogorov’s text).

4.2 Total probability and Bayes formulas

Two useful identities are very often used to find expressions for the probability
of events:

• Total probability formula:

P (E) =
∑

p(E | Fn),

with {Fn} a collection of disjoint events with
⋃
Fn = Ω.

• Bayes formula:

p(E | F ) =
p(F | E)p(E)

p(F )

with p(F ) 6= 0.

4.3 Identities involving conditioning of events

It is useful to have some familiarity with manipulations involving conditional
probabilities. For instance:

p(A,B|C) =
p(A,B,C)

p(C)
=
p(A,B,C)

p(B,C)

p(B,C)

p(C)
= p(A|B,C)p(B|C),

etc, where we assume that the terms in the denominators are non-zero.

5 Random variables

Usually, our intuitive idea of a random variable corresponds to a ”random”,
”unpredictable” number. However, the mathematical definition of a random
variable corresponds to a measurable function: Let (Ω,A) and (Ψ,B) be two
measurable spaces, a function X : Ω → Ψ is a random variable (or measurable
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function) when it also fulfills a technical condition: F ∈ B ⇒ X−1(F ) ∈ A.
Otherwise stated, in this course Ψ = N or R. If Ω is a countable set, we will say
that X is a discrete random variable.

If we have a probability space (Ω,A, p), a random variable X between (Ω,A)
and (Ψ,B) induces a probability space (Ψ,B, pX), with pX defined as:

pX(F ∈ B) = p(X−1(F ) ∈ A)

In the case in which Ψ = Z, we only need to know the probability for the
singletons {n}:

pX(n) = p(X−1({n})).

From now on, we will always assume that random variables take values in Ψ = R
or Ψ = Z or N.

It is usual to use the following convention when dealing with random variables:
p(X ≤ n) = p(E) where E ∈ A with E = X−1((−∞, n]), etc.

5.1 Joint (discrete) random variables and functions of ran-
dom variables

Assume that X and Y are two discrete random variables defined on the same
probability space (Ω,A, p). We can defined then a joint random variable (X,Y )
on the same probability space with (X,Y )(ω) = (X(ω), Y (ω)).

The distribution of this joint random variable (we can also say the joint distri-
bution of X and Y ) is given by:

pX,Y (n,m) = p(X−1({n}) ∩ Y −1({m})).

The marginal distribution of X (i.e. pX(n)) is given by:

pX(n) =
∑
m

pX,Y (n,m).

The conditional distribution of X given Y would be:

pX|Y (n,m) = p(X−1({n})|Y −1({m})) =
pX,Y (n,m)

pY (m)
.

These definitions for joint and marginal distributions can be extended to the
continuous case in a straightforward manner. The extension of the conditional
distribution definition requires more attention as it may happen that we are
conditioning on events of zero probability.
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5.2 Independence and conditional independence of ran-
dom variables

Two joint random variables X and Y are independent when pX,Y (n,m) =
pX(n)pY (m).

Analogously, X and Y are independent given Z when pX,Y |Z(n,m|k) = pX|Z(n|k)
pY |Z(m|k)

5.3 Function of random variables

If we have a random variable X and f is a function (e.g. a real function) we can
define a new random variable Z = f(X) with Z(ω) = f(X(ω)). E.g. Z = X2,
Z = eX , etc.

If we have joint random variables X and Y and f is a function of two variables
(e.g. a real function of two variables) we can define a new random variable
Z = f(X,Y ) with Z(ω) = f(X(ω), Y (ω)). E.g. Z = X + Y , Z = eXY , etc.

6 Expected value, variance, and moments

We define the expected value of a discrete random variable X as

E(X) = µX =
∑
ω∈Ω

X(ω)p({ω})

if this sum converges. In the mathematical theory of probability the expected
values are usually defined in terms of the Lebesgue integral, i.e.

E(X) =

∫
Ω

X(ω)dp(ω),

which coincides with the previous summation formula for discrete random vari-
ables. We do not study Lebesgue integrals, though.

We can also use the distribution function of X:

E(X) = µX =
∑

np(X−1({n})) =
∑

npX(n),

if this sum converges.

We define the variance of a discrete random variable X as

σ2
X = E((X − E(X))2),

if this expected value exists.

We define the k-th moment of a discrete random variable X is E(Xk) if this
expected value exists.

A useful identity is σ2
X = E(X2)− E2(X).
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6.1 Expected value and variance of the sum of random
variables

• E(X + Y ) = E(X) + E(Y ). Here it is not required that X and Y are
independent.

• If X and Y are independent: σ2
X+Y = σ2

X + σ2
Y .

For the case of product:

• If E(XY ) = E(X)E(Y ) we say that X and Y are uncorrelated.

• If X and Y are independent then they are also uncorrelated.

6.2 Optional: Random variables as vectors

Let us take the example of a sample space Ω = {a,b,c}. We define a random
variable X on Ω. We can represent this random variable as a three-component
vector (X(a), X(b), X(c)) ∈ R3. A constant random variable 1 would be the
vector (1, 1, 1). The set of all random variables that we can define on Ω is a
vector space.

We can define in this vector space a scalar product between two random variables
as 〈X,Y 〉 = E(XY ). The expected value of X corresponds to E(X) = 〈X, 1〉,
and give us the projection of the vector X on the axis (i.e. the subspace) created
by the vector (1, 1, 1). The variance is the square of the length of the projection
of X on the plane that includes the origin and is perpendicular to the axis
(1, 1, 1).

The identity σ2
X + E2(X) = E(X2) is thus the Pythagoras theorem applied to

these random variables.

We can extend the same ideas to a general sample space. When Ω has an
infinite number of points (e.g. Ω = N) one have infinite dimensional vector
spaces, which requires the use of the techniques of functional analysis. If we
only consider the random variables X for which E(X2) < ∞ we say that the
corresponding vector space of random variables is a Hilbert Space called l2 .

7 Common examples of discrete probability dis-
tributions

If we have a pair (Ω,A = 2Ω) and a sequence of real numbers {pn} with pn ≥ 0
and

∑
pn = 1 {pn}, we can define a probability map p with p({ωn}) = pn, and

p(E) =
∑
ωn∈E pn for E ∈ A. If we define a discrete random variable X(ωn) = n
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we say that PX(n) = pn is a discrete probability distribution. Common examples
are:

7.1 Bernouilli

• pX(1) = p and pX(0) = 1− p for 0 ≤ p ≤ 1. pX(k) = 0 for k = 2, 3, ...

• E(X) = p; V ar(X) = p(1− p)

7.2 Binomial

• pX(k) =
(
N
k

)
pk(1− p)N−k for k = 0, ..., N and 0 ≤ p ≤ 1.

• E(X) = pN ; V ar(X) = p(1− p)N

7.3 Multinomial

• pX1,...,Xm(k1, ..., km) = N !
k1!...km!p

k1
1 ...p

km
m ,

for 0 ≤ ki ≤ N ,
∑
ki = N, 0 ≤ pi ≤ 1, and

∑
pi = 1.

• E(Xi) = piN ; V ar(Xi) = pi(1− pi)N ; Cov(Xi, Xj) = −Npipj , i 6= j.

7.4 Poisson

• pX(k) = e−λ λ
k

k! for k = 0, 1, ... and λ > 0

• E(X) = λ; V ar(X) = λ.

7.5 Geometric

• pX(k) = p(1− p)k for k = 0, 1, ... and 0 ≤ p ≤ 1

• E(X) = 1−p
p ; V ar(X) = 1−p

p2 .

8 Inequalities

8.1 Markov and Chebychev inequalities

Assume that X only takes non-negative values (i.e. is a non-negative random
variable), then:

εp(X ≥ ε) =
∑

ω:X(ω)≥ε

εp(ω) ≤
∑

ω:X(ω)≥ε

X(ω)p(ω) ≤
∑
ω∈Ω

X(ω)p(ω) = E(X),

10



or alternatively,

εp(X ≥ ε) =
∑
k≥ε

εpX(k) ≤
∑
k≥ε

kpX(k) ≤
∑
k≥0

kpX(k) = E(X),

leading to the Markov inequality:

p(X ≥ ε) ≤ E(X)

ε
.

Assume that X is a discrete random variable (which now can take positive and
negative values). We can define a new positive random variable Y = (X−E(X))2

defined on (Ω,A). We have that the event E ∈ A which maps to Y (E) ≥ ε2

is the same as the event which maps to |
√
Y (E) |≥ ε. Applying the Markov

inequality to this positive random variable we derive the Chebychev inequality:

p(| X − E(X) |≥ ε) = p((X − E(X))2 ≥ ε2) ≤ σ2
X

ε2
.

8.2 Jensen inequality

Another important result is the Jensen inequality. Assume that f(x) is a convex
real function, defined in some interval I, i.e. f(θx1 + (1− θ)x2) ≤ θf(x1) + (1−
θ)f(x2) for 0 ≤ θ ≤ 1 for all x1, x2 ∈ I. Then

E(f(X)) ≤ f(E(X)).

9 The (Weak) Law of Large Numbers

Assume {Xn} is an infinite collection of independent joint random variables with
the same expected value (i.e. E(Xn) = µ,∀n and variance (i.e. σ2

Xn
= σ2,∀n).

Define a collection of random variables {X∗n} defined as X∗n =
∑
k≤nXk

n

It is easy to see that: E(X∗n) = µ and σ2
X∗n

= σ2

n .

The (Weak) Law of Large Numbers (LLN) says that the distribution of X∗n
concentrates around its average for large n:

p(| X∗n − µ |≥ ε) ≤
σ2

ε2n

9.1 Chernoff inequality

In our proof of the weak LLN we have used the Chebychev bound. In our
derivation we had not required that the n random variables {Xn} are jointly
independent, but only that every pair of random variables are independent.
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A stronger result can be obtained when the n random variables {Xk} are in fact
jointly independent, by using a general trick known as ”Chernoff inequality”.

Defining as before X∗n =
∑
k≤nXk

n , the main idea is to obtain the Markov bound

of the random variable esX
∗
n for a positive value s and minimize the obtained

bound for s > 0, exploiting the joint independence of Xk.

As a simple but important example, let’s apply this trick to the sum of n jointly
independent Bernoulli r.v. and positive s:

p(X∗n ≤ a) = p(esX
∗
n ≤ esa) ≤ E(esX

∗
n)

esa
≤ mins>0 e−sa

∏
k

E(esXk).

For Bernoulli r.v. we have: E(esXk) = 1 + p(es − 1) ≤ ep(e
s−1), obtaining:∏

k E(esXk) ≤ enp(es−1).

If now we express a in terms of a positive factor δ as a = (1 + δ)np, and finding
the value s that minimizes the bound we arrive to:

p(X∗n ≤ (1 + δ)np) ≤ (
eδ

(1 + δ)(1+δ)
)np.

This expression gives a bound that decreases exponentially fast with n, which
is a much tighter bound than the one given by using the Chebychev bound.

10 Optional: convergence of sequences of ran-
dom variables

Assume that we have a succession of random variables {Xn}n∈N defined on the
same probability space (Ω,A, p).

We say that the succession converges weakly to a random variable X defined on
(Ω,A, p), when:

∀ε > 0, lim p(|Xn−X| ≥ ε) = 0.

We say that the succession converges strongly to a random variable X defined
on (Ω,A, p), when:

p({ω ∈ Ω; lim |Xn(ω)−X(ω)| = 0}) = 1.

Strong convergence implies weak convergence, but the reverse is not true.

Assume that we have a succession of discrete random variables {Xn}n∈N, which
may be defined in different probability spaces. Assume that FXn(x)= p({ω;Xn(ω)
∈ (−∞, x]}) are the cumulative distribution functions for the random variables
Xn. We say that we have convergence in distribution to another cumulative
distribution function FX(x) when limFXn(x) = FX(x), for all the continuity
points of FX(x).
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11 Continuous probability spaces

In many applications, we define probability spaces with Ω = Rn or Ω = {0, 1}∞,
which are examples of non-countable sets. We will call these spaces continuous
probability spaces. There are two main complications in the theory compared
with the discrete case:

• Even for simple probabilistic experiments (e.g. picking a random num-
ber in the interval [0, 1] following a uniform distribution or in an infinite
number of independent experiments of tossing a fair coin), one can find
subsets of Ω for which probability cannot be assigned while fulfilling the
properties of a proper probability map (see appendix). It is important
to understand that this does not mean that the probability cannot be
computed, or that the probability is zero, but that we cannot assign a
probability for these subsets. We will thus define our probability space
using a σ-algebra of events that do not include these non-measurable sets.
It is also important to point out that the fact that a given subset is or
is not measurable is fully dependent on the specific probability map that
we are considering. In practice, non-measurable sets in continuous prob-
ability spaces are exotic sets, difficult to define. However, they must be
excluded from the σ-algebra of events in order to have a correct theory.
In the case of stochastic processes, though, many of the subsets that we
consider in practical applications may be non-measurable.

• Many events will have a non numerable number of elements, meaning
that knowing the probability for singletons will be not enough in order to
find the probability of these events. We need thus an alternative method
for assigning probability maps to events. As we will see the extensions
theorems provide the adequate machinery for this.

11.1 σ-algebra generated by a collection of sets

Assume that we have a (possibly uncountable) collection of σ-algebras defined
on the same set Ω. Then it is easy to proof that the intersection of all these
σ-algebras is itself a σ-algebra. Assume also that C is a collection of subsets of
Ω. We create the intersection of all σ-algebras on Ω that contain the subsets
of C. The results of this intersection σ(C) is again a σ-algebra, and it is the
coarsest σ-algebra containing C. We say σ(C) is the σ-algebra generated by C.

11.2 Semi-algebra of intervals and Borel σ-algebra

As we have already mentioned (see in the appendix of these lecture notes) when
Ω = R even in the simplest case of picking a random number uniformly in an
interval, there are subsets of the sample space for which we cannot assign a
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probability. In these models, we often restrict the σ-algebra of events in our
probability space to be the Borel σ-algebra, that we define now. The name
comes from Emile Borel, a French mathematician who played a prominent role
in the development of measure and probability theory.

As an example, assume Ω = R. Let J be the set of all intervals contained in
Ω. This set J is a semi-algebra as: (i) the complementary of an interval can
be expressed as the union of a finite number of disjoint intervals, (ii) a finite
number of the intersection of intervals is another interval, and (iii) Ω and ∅ are
intervals.

The Borel σ-algebra is the σ-algebra generated by J , σ(J). We usually use the
notation B(Ω). In more general terms, the Borel σ-algebra is the sigma-algebra
generated by the set of all open sets (according to some topology that defines
the open sets).

When Ω = {0, 1}N we use the cylinder σ-algebra instead.

11.3 Defining continuous probability spaces

For discrete probability spaces, we can assign a probability for every event E ∈ A
by simply defining the probability for every singleton p({ωn}), in such a way
that fulfills some conditions (p({ωn}) ≥ 0,

∑
ωn∈Ω p({ωn}) = 1), and then use

p(E) =
∑
ωn∈E p({ωn}).

For a continuous probability space (Ω,A, p) with Ω = R or Ω = {0, 1}N, this
procedure cannot be used as events, in general, are uncountable. We need then
a procedure that assigns a probability measure to every event of the sigma-
algebra A. The σ-algebras we use in these cases (usually, the Borel or the
cylinder σ-algebra) are an extremely rich collection of sets for which we cannot
assign probabilities following a direct procedure.

The Caratheodory extension theorem provides a procedure to assign a probability
to an arbitrary event of A, and it is the standard method for defining continuous
probability spaces.

11.4 Optional: The Caratheodory Extension theorem

Let’s see how this is done for the case of the Borel σ-algebra. A similar procedure
is used for the case of cylinder σ-algebra.

Assume Ω = R, and that we define a function set p that assigns a non-negative
value p(In) to each interval In ∈ J , in such a way that: (i) p(Ω) = 1, and (ii)
p(
⋃
In) =

∑
p(In) whenever {In} is a countable collection of disjoint intervals

of J with I =
⋃
In ∈ J .

The theorem says that under these conditions we can extend this function set
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p, defined on J , to a probability map defined on the Borel σ-algebra generated
by J , using the following formula:

p(E) = inf {
∑
E⊆∪nIn p(In)}, with E ∈ σ(J) = B(R), and In ∈ J .

It can be shown that this defines a legitimate probability function on the proba-
bility triple (R,B(R), p). This is the usual procedure used for defining probability
maps on real numbers.

12 Cumulative Distribution Function (CDF)

As we have seen, once we find a function set p with some specific properties on
intervals, we can extend this to a probability map defined on the corresponding
Borel σ-algebra.

The usual way of defining these probabilities for intervals is to use a function
F : R→ [0, 1], which is:

• non decreasing,

• rigth continuous i.e. limy→x+F (y) = F (x+) = F (x),∀x ∈ R.

• and with F (−∞) = 0, and F (+∞) = 1.

We define p((−∞, x]) = F (x), p((x,−∞]) = 1 − F (x), p((−∞, x)) = F (x−),
p((y, x]) = F (x) − F (y−), etc. In other words, we can determine a function
set for any interval in J , and it can be proved that it fulfills the properties
we require for the extension theorem. The function F is called a cumulative
distribution function, (CDF).

In many cases, we define continuous random variables as a mapping between
an arbitrary set Ω equipped with a σ-algebra A to the set R (or an interval
of R) equipped with the Borel sigma-algebra. As we see, once we know the
probability p({X(ω) ∈ (−∞, x]}) = p({X(ω) ≤ x}), we can assign a probability
to any event in the borel-sigma algebra. Again we can define a CDF FX(x)
as p({X(ω) ≤ x}) = FX(x), where the subindex X is used to refer to the
corresponding random variable.

12.1 Continuous and absolutely continuous random vari-
ables

A random variable X is continuous when every singleton in R has zero proba-
bility, in other words, p(X = x) = 0.

A random variable X is absolutely continuous when every set of length zero has
zero probability. Not all the continuous random variables are also absolutely
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continuous (although the reverse is obviously true). However, most continuous
random variables that we find in applications are also absolutely continuous.

12.2 Probability density functions

Let FX(x) be a Cumulative Distribution Function of a random variable X which
is absolutely continuous. The function fX(x) defined by fX(x) = dFX(x)dx,
when FX(x) is differentiable at x, is called the probability density function (PDF)
of X.

This definition can be extended to multivariate CDFs. For instance, for abso-
lutely continuous joint random variables X and Y , with CDF FX,Y (x, y), we
can define the probability density function as fX,Y (x, y) = ∂2FX(x)/∂x∂y, at
the points where the double partial derivative exists. The order of derivation is
irrelevant.

We can give the following interpretation for the probability density function:
p(X ∈ (x, x+ ∆x]) = fX(x)∆x+ o(∆x). For the bivariate case we would have:
p(X ∈ (x, x+ ∆x], Y ∈ (y, y + ∆y]) = fX,Y (x, y)∆x∆y + o(∆x∆y).

Let D be a measurable set included in R, then we have p(X ∈ D) =
∫
D
fX(x) dx.

For the bivariate case, we have that if D is a measurable set included in R2,
then we have p((X,Y ) ∈ D) =

∫∫
D
fXY (x, y) dx dy.

Regarding expected values, we will have E(X) =
∫
D
x fX(x) dx, and more in

general E(g(X)) =
∫
D
g(x) fX(x) dx.

13 Common examples of continuous probability
distributions

13.1 (Continuous) Uniform

• fX(x) = 1
b−a if x ∈ [a, b], and fX(x) = 0 otherwise.

• E(X) = b+a
2 ; V ar(X) = (b−a)2

12 .

13.2 Exponential

• fX(x) = λe−λx if x ≥ 0, and fX(x) = 0 otherwise, with λ > 0.

• E(X) = 1
λ ; V ar(X) = 1

λ2 .
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13.3 Univariate Gaussian

• fX(x) = 1√
2πσ

e−
(x−µ)2

2σ2 with σ 6= 0.

• E(X) = µ; V ar(X) = σ2.

13.4 Beta

• fX(x) = 1
B(α,β)x

α−1(1 − x)β−1 if x ∈ [0, 1], with fX(x) = 0 otherwise.

α > 0, β > 0. B(α, β) is the beta function.

• E(X) = α
α+β ; V ar(X) = αβ

(α+β)2(α+β+1) .

14 Multivariate Gaussian

14.1 Linear combination of independent Gaussians is a
Gaussian

Let X and Y be two joint independent Gaussian distributions, with X ∼
Gaussian(µx, σ

2
x;x) and Y ∼ Gaussian(µy, σ

2
y; y). Then Z = αX+βY , where α

and β are arbitrary constants, is a Gaussian distributions with µz = αµx + βµy
and σ2

z = α2σ2
x + β2σ2

y.

14.2 Multivariate Gaussian distribution

Let X = (X1, ..., Xn) a random vector with components n joint random vari-
ables. We say thatX follows a multivariate Gaussian distribution of parameters
µ and Σ, where µ ∈ Rn and Σ is a positive definite matrix, if the joint probability
density function of X is of the form:

fX(x) =
1

(2π)n/2|Σ|1/2
e−

1
2 (x−µ)>Σ−1(x−µ).

We use the notation Gaussian(µ,Σ;x) for multivariate Gaussian distributions.
The expected value ofX is: E(X) = µ, and Σ is the variance-covariance matrix.

14.3 The variance-covariance matrix

The variance-covariance matrix of a general (not necessarily multivariate Gaus-
sian) random vector X is defined as

Cov(X) = E((X − E(X))(X − E(X))>)
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In general Cov(X) is a n × n positive semi-definite matrix, with components:
Cov(X)i,i = σ2

Xi
and Cov(X)i,j = σXiXj . If Xi and Xj are uncorrelated (for

instance, if they are independent), σXiXj = 0.

14.4 The variance-covariance matrix of a multivariate Gaus-
sian

For the specific case of X being a multivariate Gaussian, we have Cov(X) = Σ.
In this case, Σi,j = 0 implies that Xi and Xj are independent (and not simply
uncorrelated). As an example, if all the components of the ransom vector X
are independent random variables, the matrix Σ would be a diagonal matrix.

Note that in our definition of multivariate Gaussian rv we forced Σ to be positive
definite (and not only positive semidefinite), meaning that it has always an
inverse Σ−1 called the precision matrix.

Determinants of positive definite matrices are positive, meaning that |Σ|1/2 ≥ 0
always.

14.5 Isocontour lines

For multivariate Gaussian, the points that fulfill the equation

(x− µ)>Σ−1(x− µ) = c2

correspond to points for which the probability density function takes a constant

value, fX(x) = 1
(2π)n/2|Σ|1/2 e

− c22 .

These points form an n-dimensional ellipsoid centered at µ.

The axis of this ellipsoid are aligned with qi, the eigenvectors of Σ (which are
orthogonal vectors according to the spectral theorem, as Σ is an asymmetric
definite positive matrix).

The semi-axis of this ellipsoid aligned with vector qi has a length of c
√
λi, where

λi is the eigenvalue associated with qi, which will be a positive real number as
Σ is a symmetric definite positive matrix.

15 Some concepts of Information Theory

15.1 Entropy of a distribution

Assume that (X1, ..., XN ) is a vector of N joint iid random variables. Assume
first that Xk follow a Bernoulli distribution with p(Xk = 1) = p and p(Xk =
0) = 1− p.
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For each rv Xk we define a new random variable through the function f(Xk)
given by: f(0) = −log2(1 − p) and f(1) = −log2(p). At first, this seems a
strange self-referencing rv, as its values are dependent on the parameters of the
distribution of Xk, but this is still a valid definition for a function.

With this definition for f , (f(X1), ..., f(XN )) is now a vector of N joint iid
random variables following a Bernoulli distribution p(f(Xk) = −log2(p)) = p,
and p(f(Xk) = −log2(1− p)) = 1− p.

We can apply the LLN to the components of this vector:

lim p(|
∑N
k=1 f(Xk)

N
− E(f(Xk))| ≤ ε) = 1.

or in other words, for every ε, δ > 0, there is a value N0 so that N > N0 implies:

p(|
∑N
k=1 f(Xk)

N
− E(f(Xk))| ≤ ε) ≥ 1− δ.

This inequality tells us that the aggregated probability of the sequences (X1, ..., XN )

that fulfill the condition |
∑N
k=1 f(Xk)

N − E(f(Xk))| ≤ ε is almost 1. We call this
set the ε-typical set, or simply the typical set (TS).

Note that the aggregated probability of the typical set is almost one, but this
does not mean that the typical set contains the most probable sequences. For
instance, if p > 1/2, the most probable sequence is (1, ..., 1), which does not
belong to the TS.

The expected value H(Xk) = E(f(Xk)) = −p log2(p) − (1 − p) log2(1 − p) is
called the entropy of the random variable Xk.

Using a similar reasoning, for a discrete rv taking values in the set {0, ...,m−1}
with probabilities p(i) = pi we define the entropy H(X) as:

H(X) = −
m−1∑
k=0

pi log2(pi),

and the typical set as the set of sequences (X1, ..., XN ) for which

2−N(H+ε) ≤ p(X1, ..., XN ) ≤ 2−N(H−ε). (15.1.1)

we know that the accumulated probability of these sequences in the TS is at
least 1− δ.
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15.2 The Asymptotic Equipartition Property (AEP)

If we add the previous inequalities for all the sequences in the TS we obtain:

|TS|2−N(H+ε) ≤
∑
TS

p(X1, ..., XN ) ≤ |TS|2−N(H−ε)

and:

(1− δ) ≤
∑
TS

p(X1, ..., XN ) ≤ 1,

which leads to the following bounds to the size of the TS:

(1− δ)2N(H−ε) ≤ |TS| ≤ 2N(H+ε).

As δ and ε can be chosen as close to zero as we want, this means that for large
enough N the size of the TS is approximately 2NH and that the sequences of
the TS have probability approximately equal to 2−NH . This is the Asymptotic
Equipartition Property (AEP) of the TS.

15.3 Shannon source coding theorem

Assume that we want to compress the sequences (X1, ..., XN ) for very large N .
A possible (not very practical) method would be the following:

• We number the sequences in the TS, using log2(|TS|) ≤ NH bits (in fact,
would be the ceiling function of NH).

• If a sequence belongs to the TS, we code the sequence as (0, n), where n is
the order number of the sequence in the TS (remember that this number
can be represented using NH bits).

• If a sequence does not belong to the TS, we code it as (1, X1, ..., XN ), (in
other words, we do not compress the sequence).

The expected number of bits required to represent a sequence would be:

p((x1, ..., XN ) ∈ TS)(NH + 1) + (1− p((x1, ..., XN ) ∈ TS))(N + 1).

As for large N p((x1, ..., XN ) ∈ TS) is near to 1, we obtain that the average
number of bits to represent a sequence f length N would be NH+1, or in other
words, the factor of compression for large N would be the entropy H.
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15.4 Prefix-free codes and Kraft inequality

It is obvious that the coding method that we use in the proof of the Shannon
source coding theorem is not very practical. An alternative way of coding se-
quences from a source that produces m symbols (i.e. symbols from the alphabet
{1, ...,m}) would be the following:

Create a binary tree (in general a D-tree) of depth lmax. Pick m nodes in the
trees to be used as codeword, in such as way that in the path between the root
of the tree and a chosen node, there are no other chosen nodes. Codeword i is
represented as a sequence of li bits, each bit indicating how we traverse the tree
from the root until we reach the node. Assign the m nodes of the tree to the
symbols in the alphabet.

For instance, for an alphabet of m = 4 symbols, a possible election for nodes in
a binary tree would be {0, 10, 110, 111}. Let us assume the following symbols
to codewords: 1 −→ ”0”, 2 −→ ”10”, 3 −→ ”110”, and 4 −→ ”0”. In this case,
the sequence (1, 3, 4, 4, 2) would be coded as: (01101110111010). Note that the
original symbols can be recovered uniquely from the coded sequence. Moreover,
once we have identified a code word in the compressed sequence, there is no
question about whether this is the prefix or not of a valid code word (these are
called ”prefix-free codes”).

The Kraft inequality states that there is a prefix-free code of lengths l1, ..., lm
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iif: ∑
k=1..m

1

2lk
≤ 1.

For instance, in our previous example we have 1
2 + 1

4 + 1
8 + 1

8 = 1.

Regarding the optimal assignment of code words to symbols, we can try to
minimize the average compressed message length subject to the Kraft inequality
constraint: Minimize

∑
k=1,...,m p(k)lk, subject to

∑
k=1..m

1
2lk
≤ 1.

We can use the Lagrange multiplication method, taking derivatives respect to lk
and to λ, obtaining loptk ≥ −log2(pk), which leads to the result that the optimal
average compression rate is upper bounded by the entropy of the source H.

15.5 Source coding using the wrong distribution. Cross
entropy

Assume that our source of m symbols follows a distribution given by p. Assume
also that we do not know the true distribution p and we estimate it instead by
another distribution q. If we now source-code the symbols of the source, we
would obtain compressed messages of compression rates:

H(p, q) = −
∑

k=1,...,m

pklog2(qk).

This quantity is called cross entropy, and from our previous discussion, we
expect to be a value larger than the entropy of the distribution p, i.e. H(p, q) ≤
H(p). This can be shown to be true using Jensen’s inequality.

15.6 Kullback-Leibler (KL) divergence

The difference between the cross entropy of p and q with respect to the ”true”
entropy of p is a measure of how different are both distributions and it is called
Kullback-Leibler (KL) divergence:

D(p||q) = H(p, q)−H(p) = −
∑

k=1,...,m

pk log2(
qk
pk

).

The KL divergence can be interpreted as a distance between two distributions
p and q, although it is not a true distance as it is not symmetric, i.e. in general
D(p||q) 6= D(q||p).
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15.7 Optional: Cross entropy as a cost function in super-
vised classification

Assume that we have a collection of pictures coded as a string of bits X. We
want to design a classification function f , that takes a picture and assigns a
probability of whether the picture belongs to class 1, e.g. ”cat”. Obviously,
1− f would be the probability that the picture belongs o class −1, e.g. ”cat”.

In supervised machine learning, we have a set of n pictures for which we know
the true class of each picture (i.e. a training set). Our function f belongs to
a set of possible functions fθ, parametrized by a value θ. Our goal is to find
the optimal value of θ according to a given criterion, usually the value of θ that
minimizes a loss function.

There are many possible cost functions that can be used. A popular choice
is to use an estimation of the cross entropy between the results given by our
classification function and the true values that we know in the training set (TS).
Assume that 1(tk) is an indicator function that takes the value 1 if tk == 1,
and the value 0 otherwise. We define a cross-entropy loss function as:

J(θ) =
1

|TS|
∑

(xk,tk)∈ TS

−1(tk)

n
logfθ(xk)− (1− 1(tk))

n
log(1− fθ(xk)).

and find the parameter θ that minimizes this loss function. Take into account
that this function would also minimize the KL divergence between the true
distribution and the distributions estimated by our classification function.

A Non-measurable sets

A.1 Example of a non-measurable result in an infinity fair
coin tossing experiment

Assume that Ω = {0, 1}N, i.e. the set of binary sequences indexed by N. Assume
that ω = (a0, a1.a2, ...). We define the flipping operation FS(ω) applied to ω,
where S is a finite subset of N as follows: We flip the value of ak from 0 to 1 or
from 0 to 1 for the indexes that are contained in the set S. We can also apply
the flipping operation to a set E by applying the flipping operation to every
element of the set E.

For the fair coin-tossing experiment we would have p(E) = p(FS(E)), provided
that the probability p(E) is well defined.

We are now establishing a partition of the set of binary sequences, by grouping
in the same equivalence class sequences that are related by a flipping operation
regarding a finite set S: ω, γ ∈ Ω, ω ∼ γ when for some finite subset of integers
S we have ω = FS(γ). Here the fact that S is finite has a special importance.
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Each equivalence class, Vx has a countable number of elements (as the number
of finite subsets S is countable), and as Ω is noncountable, we will have a non-
countable number of such equivalence classes.

The axiom of choice allows us to pick one element from each equivalence class
Vx. Let us call U the set of all such elements. If we apply the FS operation to
the set U for all finite subsets S, we will generate the whole set on sequences:⋃
S F

S(U) = Ω. These sets are disjoint (think about it), and by countable
additivity of probability, we should have

∑
S p(F

S(U)) = p(Ω) = 1. But all
the terms in the sum have the same value (due to the flip invariant property
of the fair coin toss experiment), meaning that we arrive at a contradiction: If
p(U) = 0 the sum would be 0, whereas if p(U) > 0 the sum would be ∞.

This means that we cannot apply a probability to the set U in the case of a fair
coin toss experiment, or in other words: U is a non-measurable set.

A.2 Measurability is not an intrinsic property of a set

It is important to note that a set is measurable or not depending on the specific
probability map that we are considering. For instance, assume that the proba-
bility of ”0” is 1, meaning that p({(..0, 0, 0, ...)}) = 1, and p({ω}) = 0 otherwise.
In this case if the the set U contains (..0, 0, 0, ...) we would have p(U) = 1, while
p(U) = 0 otherwise.

A.3 Example of a nonmeasurable result in a uniform prob-
ability map on an interval

See the Vitali set.
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