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Abstract 

According to data, breast cancer is a significant health issue and has a considerable economic 

impact. This clearly justifies the need for breast cancer screening. However, the current diagnostic 

process used in clinical settings is prone to errors. Consequently, there is a requirement for a tool 

that can help doctors categorize mammograms into the four BI-RADS categories. 

This study presents an approach that uses deep learning. It examines the challenges and difficulties 

encountered and evaluates and compares its effectiveness. One dataset of mammograms was 

used, with experts having already classified the radiological images using the BI-RADS guidelines. 

The images in these datasets belong to categories 1 to 4. 

 
The deep learning approach employed in this study is based on a Convolutional Neural Network 

(CNN), namely a ResNet22. The propose is to use two inputs, one for the Cranio-Caudal (CC) view 

and another for the Medio-Lateral Oblique (MLO) view. Each input comprises a mammogram image 

and two heatmaps. Consequently, we have named the architecture MammoHeatNet (MHN). 

 

The algorithm initially processes the mammogram image by cropping it, extracting optimal centers, 

and obtaining the heatmaps. Once the pre-processing is complete, the inputs are fed into the 

model, which then classifies them into four BI-RADS categories. To obtain the best model, various 

parameter configurations have been tested. 

 
The ultimate model attained a maximum accuracy of 74.19%. The process of training and testing 
the model was time-intensive, requiring 150 hours to obtain the best possible model. 
 
In conclusion, the deep learning model used in this study achieve good performance. However, with 
the incorporation of a larger dataset for train it and various modifications to the model, even better 
results could be achieved. The main contribution of this work is the implementation of a deep 
neuronal network that process the images like a human specialist would do it, using to views of the 
same mammogram. 
 
 
 

 

 

 

  



 

4   

Resum 

Segons les dades, el càncer de mama és un important problema de salut i té un considerable 

impacte econòmic. Això justifica clarament la necessitat de realitzar revisions de càncer de mama. 

No obstant, el procés diagnòstic actual utilitzat en entorns clínics té tendència a cometre errors. En 

conseqüència, és necessari disposar d'una eina que pugui ajudar els metges a classificar les 

mamografies en les quatre categories BI-RADS. 

Aquest estudi presenta una enfocament que utilitza el "deep learning". S'examinen els 

desafiaments i dificultats trobades, i s'avalua i compara la seva eficàcia. S'utilitza un conjunt de 

dades de mamografies, amb experts que ja han classificat les imatges radiològiques utilitzant les 

directrius BI-RADS. Les imatges d'aquests conjunts de dades pertanyen a les categories 1 a 4. 

L’algoritme de "deep learning" utilitzat en aquest estudi es basa en una Xarxa Neuronal 

Convolucional (CNN), concretament un ResNet22. La proposta és utilitzar dues entrades, una per a 

la vista Cranio-Caudal (CC) i una altra per a la vista Medio-Lateral Oblique (MLO). Cada entrada 

comprèn una imatge de mamografia i dues "heatmaps". Per tant, s'ha nomenat a l'arquitectura 

MammoHeatNet (MHN). 

L'algoritme processa inicialment la imatge de mamografia, retallant-la, extraient centres òptims i 

obtenint les "heatmaps". Una vegada que el pre-processament està complet, les entrades es duen 

al model, que les classifica en les quatre categories BI-RADS. Per obtenir el millor model, s'han 

provat diverses configuracions de paràmetres. 

El model final assolit va obtenir una precisió màxima del 74.19%. El procés d'entrenament i prova 

del model va requerir molt de temps, amb un total de 150 hores per obtenir el millor model 

possible. 

En conclusió, el model de "deep learning" utilitzat en aquest estudi aconsegueix un bon rendiment. 

No obstant, amb la incorporació d'un conjunt de dades més gran per a l'entrenament i diverses 

modificacions al model, es podrien obtenir resultats encara millors. La principal contribució 

d'aquest treball és la implementació d'una xarxa neuronal profunda que processa les imatges com 

ho faria un especialista humà, utilitzant dues vistes de la mateixa mamografia. 

 

 

 

 



 

 

Resumen 

Según los datos, el cáncer de mama es un problema de salud significativo y tiene un impacto 

económico considerable. Esto justifica claramente la necesidad de realizar revisiones de cáncer de 

mama. Sin embargo, el proceso diagnóstico actual utilizado en entornos clínicos tiende a cometer 

errores. En consecuencia, es necesario disponer de una herramienta que pueda ayudar a los 

médicos a clasificar las mamografías en las cuatro categorías BI-RADS. 

Este estudio presenta un enfoque que utiliza el "deep learning". Se examinan los desafíos y 

dificultades encontradas, y se evalúa y compara su eficacia. Se utiliza un conjunto de datos de 

mamografías, con expertos que ya han clasificado las imágenes radiológicas utilizando las 

directrices BI-RADS. Las imágenes de estos conjuntos de datos pertenecen a las categorías 1 a 4. 

El algoritmo de "deep learning" empleado en este estudio se basa en una Red Neuronal 

Convolucional (CNN), concretamente un ResNet22. La propuesta es utilizar dos entradas, una para 

la vista Cranio-Caudal (CC) y otra para la vista Medio-Lateral Oblicua (MLO). Cada entrada 

comprende una imagen de mamografía y dos "heatmaps". Por tanto, se ha nombrado a la 

arquitectura MammoHeatNet (MHN). 

El algoritmo procesa inicialmente la imagen de mamografía, recortándola, extrayendo centros 

óptimos y obteniendo las "heatmaps". Una vez que el preprocesamiento está completo, las 

entradas se entran al modelo, que las clasifica en las cuatro categorías BI-RADS. Para obtener el 

mejor modelo, se han probado varias configuraciones de parámetros. 

El modelo final alcanzó una precisión máxima del 74,19%. El proceso de entrenamiento y prueba 

del modelo requirió mucho tiempo, con un total de 150 horas para obtener el mejor modelo 

posible. 

En conclusión, el modelo de "deep learning" utilizado en este estudio logra un buen rendimiento. 

Sin embargo, con la incorporación de un conjunto de datos más grande para el entrenamiento y 

diversas modificaciones al modelo, se podrían obtener resultados aún mejores. La principal 

contribución de este trabajo es la implementación de una red neuronal profunda que procesa las 

imágenes como lo haría un especialista humano, utilizando dos vistas de la misma mamografía. 
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1. Introduction 

1.1. Breast Cancer 

Breast cancer is a common disease in which cells in the breast begin to multiply and grow 

uncontrollably. Signs of breast cancer may include a change in the breast shape, a lump in the 

breast, dimpling of the skin, fluid coming from the nipple or a red scaly patch of skin. 

Approximately half of breast cancer develop in women who have no identifiable breast cancer risk 

factor other thank the gender (female) and age (over 40 years). The most important risks factors 

are: obesity, age, harmful use of alcohol, tobacco and family history of breast cancer. 

A breast has three main parts: lobules, ducts, and connective tissue. Ducts have the function of 

collecting and transporting milk, which is produced by the lobules. Altogether is surrounded and 

held by connective tissue made primarily by fibrous and fatty tissue. 

The most common breast cancer is carcinoma, which are tumors that start in the epithelial cells 

that line organs and tissues throughout the body. If the carcinomas start in the breast is specific 

type called adenocarcinoma which stars in cells in the ducts (85%) or the lobules (15%) [2]. 

 

Figure 1.1: Anatomy of the breast [1] 
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1.2. Cancer today 

Worldwide, there were an estimated 50.3 million cancer cases in 2022. Of these, 9.3 million cases 

were in men and 8.8 million in women. Breast and lung cancers were the most common cancers 

worldwide, contributing 12.5% and 12.2%.  Colorectal cancer was 10.7% followed by the prostate 

with a 7.8%. 

In 2020, there were 2.3 million women diagnosed with breast cancer and 685000 deaths globally. 

As of the end of 2020, there were 7.8 million women alive who were diagnosed with breast cancer 

in the past 5 years, making in the world’s most prevalent cancer [3]. 

It has been revealed that thanks to the breast cancer screening performed in the current clinical 

practice, mortality from this disease has significantly decreased when done at the age of over 50, 

which is the one with the highest incidence. In medicine, screening is looking for signs of a disease, 

such as breast cancer, before somebody has signs of it. The goal line of screening tests is to find 

cancer at an      early phase when it can be treated and might be cured. However, screening is 

needed and essential since breast cancer is a significant public health concern with considerable 

medical and economic burden. 

In Spain, using the narrow down the 85-95% of the breast cancer is detected if exists [4]. With this 

narrow down Spain reduce the total cancer costs with 9000 million of euros. A metastatic breast 

cancer costs 4 times more than a local breast cancer. The costs of a metastatic breast cancer can 

exceed the 200.000 euros per patient [5]. 

 

1.3. The mammography 

Mammography is the process of using low-energy X-rays to examine the human breast for diagnosis 

and screening. The goal of mammography is the early detection of breast cancer, typically through 

detection of characteristic masses or microcalcifications. 

During the procedure, the breast is compressed using a dedicated mammography unit for increase 

image quality by reducing the thickness of tissue that X-rays must penetrate, decreasing the amount 



 

 

of scattered radiation and reducing the required radiation dose. In screening mammography, both 

head-to-foot (CC) view and angled side-view (MLO) images of the breast are taken. 

There are few handicaps affect the variability of the resulting mammographic picture. For example, 

there is much variation in the breast’s granularity, which disturbs the radiographic density and 

appearance of the mammogram. In general, breast granularity decreases with increasing breast 

sizes, but again there can be significant differences. Breast abnormalities may appear on the 

mammogram as a soft tissue lesion that may be rounded or spiculated. However, sometimes the 

only sign of an anomaly is one or more calcifications or distortion in the breast architecture. 

Calcifications are crumbs of calcium hydroxyapatite or phosphate, ranging from extremely small to 

several millimeters. It is considered desirable to detect calcifications as small as 100 μm, which 

presents a significant challenge to the imaging system. 

1.4. Breast Imaging Reporting and Data System (BI-RADS®) 

Aiming to reduce the discordance in interpreting mammographic findings and homogenizing the 

terms for characterization and reporting in a standardized way, the American College of Radiology 

published, in 1993, the Breast Imaging Reporting and Data (BI-RADS®) [7]. 

This structured system aims to achieve consistency and reliability between different reports and 

facilitates clear communication between the radiologist and other medical professionals by 

providing a lexicon of descriptors. It is a reporting structure that relates assessment categories to 

management recommendations and a framework for data collection and auditing. The BI-RADS 

lexicon classifies breast imaging findings into different types: 

 

Figure 1.2: Mammography [6] 
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Table 1.1. BI-RADS categories [8] 

BI-RADS 1 

No finding is present in the imaging modality (not even a benign finding). 

Symmetrical and no masses, architectural distortion, or suspicious 

calcifications 

BI-RADS 2 

A finding in this category has a 100% chance of being benign. Even though 

BI-RADS 1 and BI-RADS 2 represent an essentially zero probability of being 

malignant. BI-RADS 1 is used when the breast is unremarkable; BI-RADS 2 

is used when the radiologist wants to highlight a benign finding. 

BI-RADS 3 
A finding is probably benign, with a shallow risk of malignancy between 0% 

and 2%. The density of the breast is higher than the previous categories. 

BI-RADS 4 

Suspicious abnormality. Lesions may not have the typical morphology of 

breast cancer. However, there is a high chance of malignancy. In these 

cases, a biopsy is recommended. The breast is very dense. The probability 

of malignancy is 2-94%. 

 

There are more categories apart from the ones above. For instance, 0 indicates that 

additional mammograms should be taken since no conclusions can be extracted (moved or 

wrong taken). BI-RADS category 5 indicates a higher chance of malignancy (>95%), and BI-

RADS category 6 represents a biopsy-proven malignancy. Hence, only the four levels in the 

table above are considered in this project. 

1.5. Origin of this project and motivation 

The origin of this project can be traced back to previous work from a final degree project from 

student of Dr. Christian Mata, the project's supervisor. Hence, this study pretends to be a continuity 

and improvement of a deep learning algorithm. Furthermore, create an actualized state of the art 

of the deep learning algorithms for the segmentation and classification of breast cancer. 

The previous project was developed on Python and used machine learning techniques and deep 

learning to classify mammograms in the BI-RADS categories using different descriptors. The idea is 

implementing a new deep learning algorithm customizing an existent code consistent with our 

interests. 

My motivation to do this project is because I like programing and deep learning has always caught 

my attention. Moreover, when I did the biomedical image processing, I found it very interesting and 



 

 

I would have liked to go deeper. But in fact, the principal reason to do this project is contribute a 

little bit in the improvement of the deep learning algorithms to detect efficiently and correctly the 

breast cancer. 

 

1.6. Objectives 

Principal objective 

The primary goal of this project is to develop an automated tool that utilizes a deep learning 

algorithm to classify the four levels of BI-RADS, thereby aiding radiologists in making final decisions. 

Furthermore, once trained, our proposed system can serve as a reproducible process that any 

professional can use as a reference for analysing mammograms. 

Specific objectives 

• Study of the theoretical framework of breast cancer and foundation of medical imaging 

modality in x-ray. 

• Do a literature review of recently published works on this area. 

• Select a strategy to be developed in the methodology according to the database we have. 

• Implementation of the proposal and discuss the results. 

• Discuss which methodology has been the most appropriate and we have obtained better 

results. 

• Limitations and problems. 

1.7. Scheduled planning 

The following figures aim to draw a roadmap of the project to organize the time and tasks that need 

to be treated. It is the final version as it was modified during the project. 
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Figure 1.3: Gannt diagram 



 

 

2. Theorical framework 

2.1. Deep Learning 

2.1.1. What is deep learning? 

Deep learning algorithms can be regarded both as a sophisticated evolution of machine learning 

algorithms. Deep learning algorithms analyze data with a logical structure similar to how a human 

would draw conclusions. To achieve this, these algorithms use a layered structure of algorithms 

called an artificial neuronal network (ANN). 

The deep learning algorithms the features are extracted automatically and learns from its own 

errors unlike machine learning that a human is needed to manually choose features. In the Figure 

2.1 we can see clearly this difference. 

 

 

 

 

 

 

Figure 2.1: Difference between ML and DL [9] 
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Consider the Figure 2.2 an example of ANN. The leftmost layer is called the input layer and the 

rightmost layer is the output layer. The middle layers are called hidden layers because their values 

aren’t observable in the training set. In simple terms, hidden layers are calculated values used by 

the network to obtain the results in the output layer [9]. 

 

2.1.2. How it works deep learning? 

How have been seen in the previous chapter the ANN is formed to set of neurons. Let’s see how a 

biological neuron works for translate this to a mathematical function to use it to create a deep 

learning algorithm.  

At its core, the neuron is optimized to receive information from other neurons, process this 

information in a unique way, and send its result to other cells. Each of these incoming connections 

is dynamically strengthened or weakened based on how often it is used and its strength of each 

connection that determines the contribution of the input to the neuron’s output. After being 

weighted by the strength of their respective connections, the inputs are summed together. This 

sum is then transformed into a new signal that’s propagated along to the other neurons. 

We can translate this functional understanding of the neurons in out brain into an artificial model 

that we can represent on our computer how we can see in the Figure 2.3. 

Figure 2.2: Simple ANN [9] 



 

 

 

Observing this diagram, we can create a model of a neuron that we can see in the Figure 3.4. Let’s 

formulate the inputs as a vector x=[x1,x2… xn] and the weights of the neuron (strengths) as a 

w=[w1,w2…wn]. Then we can express the output of the neuron as y=f((x*w) +b), where b is the bias 

term. In many cases, the logit also includes a bias, which is a constant (not show in the figure). We 

can compute the output by performing the dot product of the input and weight vectors, adding in 

the bias term to produce the logit, and the applying the transformation function. While this seems 

like a trivial reformulation, thinking about neurons as a series of vector manipulations [10]. 

 

 

 

 

In the Figure 2.5 we can see a model with the bias term. The bias term is important because allows 

you to shift the activation function by adding a constant to the input. Bias in Neural Networks can 

be thought of as analogous to the role of a constant in a linear function, whereby the line is 

effectively transposed by the constant value [11]. 

 

 

 

 

 

 

Figure 2.3: Diagram of basic function of a neuron [10] 

Figure 2.4: Mathematical model of a neuron [10] 

Figure 2.5: Model with the bias term [11] 
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There are a lot functions that are used to create different neurons, but in our case that is computer 

vision the best choice is the nonlinearity function named ReLU. It uses the function f (z) = max(0,z), 

resulting in a characteristic hockey-stick shaped response, as shown in Figure 2.6 [10].   

 

 

 

 

 

 

2.2. Convolutional Neural Networks (CNN) 

2.2.1. How it works CNN’s? 

In The traditional Neural Networks is used the called the multilayer perceptron (MLP). These are 

modeled on the human brain, whereby neurons are simulated by connected nodes are only 

activated when a certain threshold value is reached. 

There are several drawbacks of MLP’s, especially when it comes to image processing. MlPs use one 

perceptron for each input (in the case of a pixel image, multiplied by 3 in RGB case). The number of 

weights rapidly becomes unmanageable for large images. For a 250 x 250 pixels image with color 

channels there are around 190,000 weights that must be trained. As a result, difficulties arise while 

training and overfitting can occur. 

Figure 2.6: The output of a ReLU neuron as z varies [10] 

Figure 2.7: A standard multilayer perceptron [13] 



 

 

Another problem is that MLP’s react differently to an input (images) and its shifted version, they 

are not translation invariant. For example, if a picture of a cat appears in the top left of the image 

in one picture and the bottom right of another picture, the MLP will try to correct itself and assume 

that a cat will always appear in this section of the image. 

For these reasons for image processing are not use MLP’s and use Convolutional Neural Networks 

(CNN). 

In the case of CNN’s, we analyze the influence of nearby pixels by using something called a filter. A 

filter is exactly what you think it is, in our situation, we take a filter of a size specified by the user (a 

rule of thumb is 3x3 or 5x5) and we move this across the image from top left to bottom right. For 

each point on the image, a value is calculated based on the filter using a convolution operation. 

This reduces the number of weights that the neuronal network must learn compared to an MLP, 

and also means that when the location of these features changes it does not throw the neural 

network off. 

If you are wondering how the different features are learned by the network, and whether it is 

possible that the network will learn the same features. When building the network, we randomly 

specify values for the filters, which then continuously update themselves as the network is trained. 

After the filters have passed over the image, a feature map is generated for each filter. These are 

then taken through an activation function, which decides whether a certain feature is present at a 

given location in the image. We can then do a lot of things, such as adding more filtering layers and 

creating more feature maps, which become more and more abstract as we create a deeper CNN. 

We can also use pooling layers in order to select the largest values on the feature maps and use 

these as inputs to subsequent layers. In theory, any type of operation can be done in pooling layers, 

but in practice, only max pooling is used because we want to find the outliers, these are when our 

network sees the feature. 

Figure 2.8: Convolutional operation [13] 
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A good question is we have many feature maps, how are these combined in our network to help us 

get our final result? 

To be clear here, each filter is convolved with the entirely of the 3D input cube but generates a 2D 

feature map. 

• Because we have multiple filters, we end up with a 3D output: one 2D feature map per 

filter.  

• The feature map dimension can change drastically from one convolutional layer to the next. 

• Convolving the image with a filter produces a feature map that highlights the presence of 

given feature in the image. 

In a convolutional layer, we are basically applying multiple filters at over the image to extract 

different features. But most importantly, we are learning those filters. One thing we’re missing: 

non-linearity. 

Figure 2.9: An example of CNN with two convolutional layers, two pooling layers, and a fully connected layer 
which decides the final classification of the image into one several categories [13].  

Figure 2.10: Using different filters to create more than one feature maps [13] 



 

 

For solve the problem of non-linearity we use the ReLu function that explain in a previous section. 

In the Figure 2.11 we can see a standard CNN architecture. 

 

One important thing is understood that each CNN layer learns filters of increasing complexity.  

• The first layers learn basic feature detection filters: edges, corners, etc. 

• The middle layers learn filters that detect parts of objects. For faces, they might learn to 

respond to eyes, noses, etc. 

• The last layers have higher representations: they learn to recognize full objects, in different 

shapes and positions. 

 

2.2.2. Comparison of different layers 

There are three types of layers in a CNN: convolutional layer, pooling layer and fully connected 

layer. Each of these layers has different parameters that can be optimized and performs a different 

task on the input data. 

Figure 2.11: The architecture of a standard CNN [13] 
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2.2.2.1. Convolutional layers 

Convolutional layers are the layers where filters are applied to the original image, or to other 

feature maps in a deep CNN. This is where most of the user-specified parameters are in the 

network. The most important parameters are the number of kernels and the size of the kernel. 

2.2.2.2. Pooling layers 

Pooling layers are similar to convolutional layers, but they perform a specific function such as max 

pooling, which takes the maximum value in a certain filter region, or average pooling, which takes 

the average value in a filter region. These are typically used to reduce the dimensionality of the 

network. 

  

Figure 2.12: Features of a convolutional layer [13] 

Figure 2.13: Features of a pooling layer [13] 



 

 

2.2.2.3. Fully connected layers 

Fully connected layers are placed before the classification output of a CNN and are used to flatten 

the results before classification. This is similar to the output layer of an MLP. 

 

2.2.3. How it learns the deep learning algorithm? 

2.2.3.1. Gradient Descent with Sigmoidal Neurons 

Surely you are wondering how exactly do we figure out what parameter’s vectors (the weights of 

the connection in out neuronal network) should be? This is accomplished by a process commonly 

referred to as training. During this process we show the neural net a large number of training 

examples and iteratively modify the weights to minimize the errors we make on the training 

examples. After enough examples, we expect that out neural network will be quite effective at 

solving the task it’s been trained too. 

The idea is reducing the squared error to zero because this means that our model made a perfectly 

correct prediction on every training example. Moreover, the closer E is to 0, the better our model 

is. 

For explain how are selected these parameters vectors we are going to use the sigmoidal neuron 

as a model (this is a different kind of function that is used to create neurons like the function to 

ReLU neurons). For simplicity, we assume the neurons do not use the bias term [10].  

Let’s see the mechanism by which logistic neurons compute their output value from their inputs: 

𝑧 = Σ k w k x k 

Figure 2.14: Features of a connected layer [13] 
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𝑦 = 1 1 + 𝑒 − 𝑧 

The neuron computes the weighted sum of its inputs, the logit z. It then feeds its logit into the input 

function to compute y, its final output. We want to compute the gradient of the error function with 

respect to the weights. To do so, we start by taking the derivative of the logit with respect to the 

inputs and the weights: 

𝜕𝑧 𝜕𝑤 𝑘 = 𝑥 𝑘 

𝜕𝑧 𝜕𝑥 𝑘 = 𝑤 𝑘 

The derivative of the output with respect to the logit is quite simple if you express in the terms of 

the output: 

𝑑𝑦 𝑑𝑧 = 𝑒 − 𝑧 1 + 𝑒 − 𝑧 2 

= 1 1 + 𝑒 − 𝑧 𝑒 − 𝑧 1 + 𝑒 − 𝑧 

= 1 1 + 𝑒 − 𝑧 1 − 1 1 + 𝑒 − 𝑧 

= 𝑦(1 − 𝑦) 

We then use the chain rule to get the derivative of the output with respect each weight: 

𝜕𝑦 𝜕𝑤 𝑘 = 𝑑𝑦 𝑑𝑧 𝜕𝑧 𝜕𝑤 𝑘 = 𝑥 𝑘 𝑦 (1 − 𝑦)  

Putting all of this together, we can now compute the derivative of the error function with respect 

to each weight: 

𝜕𝐸 𝜕𝑤 𝑘 = Σ i ∂E ∂y (i) 𝜕𝑦 (𝑖) 𝜕𝑤 𝑘 =  −Σ i x k (i) 𝑦 (𝑖) 1 − 𝑦 (𝑖) 𝑡 (𝑖) − 𝑦 (𝑖) 

Thus, the final rule for modifying the weights becomes: 

𝛥 𝑤 𝑘 = Σ i ∈ x k (i) 𝑦 (𝑖) 1 − 𝑦 (𝑖) 𝑡 (𝑖) − 𝑦(𝑖) 

As you may notice, the new modification rule is just like the delta rule, except with extra 

multiplicative terms included to account for the logistic component of the sigmoidal neuron. 

 

2.2.3.2. The Backpropagation Algorithm 

Now we are finally ready to tackle the problem of training multilayer neuronal networks. To 

accomplish this task, we will usen and approach known as backpropagation, pioneered by David 

E.Rumelhart, Geoffrey E. Hinton and Ronald J. Williams in 1986.  



 

 

So, what’s the idea behind backpropagation? We don’t know what the hidden units ought to be 

doing, but what we can do is compute how fast the error changes as we change the hidden activity. 

From there, we can figure out how fast the error changes when we change the weight of and 

individual connection. Essentially, we will be trying to find the path of steepest descent. The only 

catch is that we are going to be working in an extremely high-dimensional space. We start by 

calculating the error derivatives with respect to a single training example. 

Each hidden unit can affect many output units. Our strategy will be one of dynamic programing. 

Once we have the error derivatives for one layer hidden units, we will use them to compute the 

error derivatives for the activities of the layer below. And once we find the error derivatives for the 

activities of the hidden units, it is quite easy to get the error derivatives for the weights leading into 

a hidden unit. We will redefine some notation for ease of discussion and refer to Figure 2.15. 

 

 

 

 

 

 

 

 

 

The subscript we use will refer to the layer of the neuron. The symbol y will refer to the activity of 

the neuron, as usual. Similarly, the symbol z will refer to the logit of the neuron. We start by taking 

a look at the base case of the dynamic programming problem.  

Now we tackle the inductive step. Let’s presume we have the error derivatives for layer j. We next 

aim to calculate the error derivatives for the layer below it, layer i. To do so, we must accumulate 

information about how the output of a neuron in layer i affects the logits of every neuron in layer j. 

This can be done as follows, using the fact that the partial derivative of the logit with respect to the 

incoming output data from the layer beneath is merely the weight of the connection w ij: 

Figure 2.15: Reference diagram for the derivation of the backpropagation algorithm [10] 
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Once we have gone through the whole dynamic programming routine, having filled up the table 

appropriately with all of our partial derivatives (of the error function with respect to the hidden unit 

activities), we can then determine how the error changes with respect to the weights.  

Finally, to complete the algorithm, just as before, we merely sum up the partial derivatives over all 

the training examples in our dataset.  

This completes our description of the backpropagation algorithm. 

 

2.2.3.3. Stochastic and Minibatch Gradient Descent 

For a simple quadratic error surface, the backpropagation algorithm works quite well. The idea of 

use our entire dataset to compute the error surface and then follow the gradient to take the path 

of steepest descent. But in most cases, error surface may be a lot more complicated. Let’s consider 

the scenario in Figure 2.16 

 

 

 

 

 

 

 

 

The error surface has a flat region (also known as saddle point in high-dimensional spaces), and if 

we get unlucky, we might find ourselves getting stuck while performing gradient descent. 

Another potential approach is stochastic gradient descent (SGD), where at each iteration, our error 

surface is estimated with respect to only single example. This approach is illustrated in Figure 2.17, 

where instead of a single static error surface, our error surface is dynamic. As a result, descending 

on this stochastic surface significantly improves our ability to navigate flat regions [10]. 

Figure 2.16: Batch gradient descent in sensitive to saddle points, which can 
lead premature convergence [10] 



 

 

 

 

 

 

 

 

 

The major pitfall of SGD, however, is that looking at the error incurred one example at time takes a 

significant amount of time. One way to combat this problem is using minibatch gradient descent. In 

minibatch gradient descent, at every iteration we compute the error surface with respect to some 

subset of the total dataset (instead of just a single example). This subset is called a minibatch, and 

in addition to the learning rate, minibatch size is another hyperparameter. Minibatches strike a 

balance between the efficiency of batch gradient descent and the local-minima avoidance afforded 

by the stochastic gradient descent.  

The derived it is the same that we use in the previous section, but instead of summing over all the 

examples in the dataset, we sum over the examples in the current minibatch. 

2.3. Test sets and validation sets 

One of the major issues with artificial neural network is that models are quite complicated. For 

example, consider a neural network that pulls data from an image (28 x 28 pixels), feeds into two 

hidden layers with 30 neurons, and finally a softmax layer of 10 neurons. The total number of 

parameters in the network is nearly 25,000. This can be quite problematic, and to understand why, 

let’s consider the Figure 2.18: 

Figure 2.17: The stochastic error surface fluctuates with respect to the batch error surface, enabling 
saddle point avoidance [10]. 
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We are given a bunch of data points on a flat plane, and our goal is to find a curve that best describes 

this dataset (i.e, will allow us to predict the y coordinate of a new point given its x coordinate). Using 

the data, we train two different models: a linear model and a degree 12 polynomial. Which curve 

should we trust? The line that gets almost no training example, correct? Or the complicated curve 

that hist every single point in dataset? At this point we might trust the linear fit because it seems 

much less contrived. But just to be sure, let’s add more data to our dataset. The result is shown in 

Figure 2.19. 

 

 

 

 

 

 

 

 

 

Now the verdict is clear: the linear model is not only better subjectively but also quantitatively 

(measured using the squared error metric). This leads to an interesting point about training and 

evaluating machine learning models. By building a very complex model, it’s quite easy perfectly fit 

our training dataset because we give our model enough degrees of freedom to convert itself to fit 

Figure 2.18: Two potential models that might describe our dataset: a linear model versus a degree 12 polynomial [10] 

Figure 2.19: Evaluating our model on new data indicates that the linear fit is a much better 
model than the degree 12 polynomial [10]. 



 

 

the observations in the training set. But when evaluate such a complex model on new data, it 

performs poorly. In other words, the model does not generalize well. This is a phenomenon called 

overfitting, and it is one of the biggest challenges that a machine learning engineer must combat. 

This becomes an even more significant in deep learning, because the networks have a large number 

of layers containing many neurons [10]. 

Here we have another graphic to understand better the overfitting. The red line is the error with 

the new data and the blue line is the error of the training data. How we can see the error in the 

training data is decreasing but in the new data is increasing, the model is generalizing, this is the 

definition of overfitting. 

 

Let’s see how this looks in the context of neural network. We have a neural network with two 

inputs, a softmax output of size 2, and hidden layer with 3,6 or 20 neurons. We train these networks 

using for example minibatch gradient descent, and the results, visualized using ConvNetJS, are 

shown in Figure 2.21. 

Figure 2.21: A visualization of neural networks with 3, 6 and 20 neurons (in this order) in their hidden layer [10] 

Figure 2.20:  Representation of overfitting [10] 
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It’s already quite apparent from these images that as the number of connections in our network 

increases, so does our propensity to overfit to the data. We can similarly see the phenomenon of 

overfitting as we make our neural networks deep. These results are shown in Figure 2.22. 

This leads to three major observations. If our model is very complex (especially if we have a limited 

amount of data at our disposal), we run the risk of overfitting. 

Second, it is misleading to evaluate a model using the data we used to train it. We need to split our 

data in training set and a test set. In the real world, large dataset is hard to come by. Consequently, 

it may be tempting to reuse training data for testing or cut corners while compiling test data. 

Important: If the test set isn’t well constructed, we won’t be able draw any meaningful conclusions 

about our model [10]. 

 

 

 

 

 

Figure 2.22: Neural networks with one, two and four hidden layers (in this order) of three neurons each [10] 

Figure 2.23: Nonoverlapping training and test set [10] 



 

 

Third, it’s quite likely that while we are training our data, there is a point in time when instead of 

learning useful features, we start overfitting to the training set. To avoid that, we want to be able 

to stop the training process as soon as we start overfitting to prevent poor generalization. To do 

this, we divide our training process into epochs. An epoch is a single iteration over the entire training 

set. If we have a training set of size “x” and we are doing minibatch gradient descent with size “y”, 

then an epoch would be equivalent to “x” “y” model updates. At the end of each epoch, we want 

to measure how well our model is generalizing. To do this, we use and additional validation set, 

which is shown in Figure 2.25. 

 

At the end of an epoch, the validation set will tell us how the model does on data it has yet to see. 

If the accuracy on the training set continues to increase while the accuracy on the validation set 

stays the same (or decreases), it is good sing that it is time to stop because we are overfitting. 

For finish, let’s see the workflow we use when building and training deep learning models: 

 

How we can see in the workflow is a summary of all talked in the previous sections.  

Figure 2.25: A validation set to prevent overffiting during the training process [10]. 

Figure 2.26: Detailed workflow for training and evaluating a deep learning model [10] 
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3. State of the art 

In recent years, various deep learning algorithms have been utilized to detect and evaluate 

mammograms in different BI-RADS categories. Each algorithm employs distinct features for training 

and specific architectures for creating neural networks. These fundamental elements serve as the 

foundation for developing deep learning algorithms and offer a multitude of possibilities for 

combinations. Table 3.1 displays a comprehensive list of deep learning algorithms with their 

respective characteristics. It's worth noting that in this case, the classification column is not based 

on benign or malignant outcomes but rather on the four categories of BI-RADS. 

 

Table 3.1. Overview of the deep learning literature 

Reference Approach Architecture Segmentation Classification Dataset 

Setiawan et 

al. 2015 [29] 

Mammogram 

classification 

using Law's 

texture energy 

measure and 

deep learning 

ANN 

Classifier 

  327 images 

from Analysis 

Society (MIAS) 

Gastounioti 

et al. 2018 

[30] 

Breast patterns 

finder associated 

with breast 

cancer risk via 

deep learning 

Lattice-

based 

Texture 

Analysis 

with Multi-

channel 

CNNs 

   

Unknow 

Jadoon et al. 

2017 [31] 

Three-class 

mammogram 

classification 

based on 

descriptive CNN 

features (Deep 

learning) 

Multilayered 

CNNs 

   

Unknow 

Arora et al. 

2020 [32] 

Benign and 

malignant 

classification via 

deep learning 

    

Unknow 



 

 

Altan et al.  

2020 [33] 

Three-class 

mammogram 

classification via 

deep learning 

   Unknow 

 

Suh et al. 

2020 [34] 

Cancer 

detection in 

mammograms 

of various 

densities via 

deep learning 

   Unknow 

Shen et al. 

2019 [35] 

Classification of 

patches in 

benign or 

malignant 

calcification or 

masses via deep 

learning 

    

Unknow 

Mohamed 

et al. 2018 

[36] 

Deep learning-

based breast 

density three-

class 

mammogram 

classifier 

   22000 images 

Wang et al. 

2016 [37] 

Identifying 

metastatic 

breast cancer via 

deep learning 

   Unknow 

Adedigba et 

al.  2019 [38] 

Deep learning-

based classifier 

for small dataset 

   Unknow 

Aylet 

Akselrod-

Ballin et al. 

2019 [16] 

Combination of 

machine and 

deep learning for 

detection of 

breast cancer 

XGBoost 

algorithm 

  52936 images 
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Al-masni et 

al. 2017 [17] 

Computer-aided 

diagnosis via 

deep belief 

network 

RBM   2620 images 

from South 

Florida 

University 

Yong Joon 

Suh et al. 

2020 [18] 

Deep learning 

model based on 

various densities 

DenseNet-

169 and 

EfficientNet-

B5 

  3002 imgaes 

Dezso Ribli 

et al. 2018 

[19] 

Deep learning 

model based on 

Regional 

Proposal 

Network 

Faster R-

CNN 

(VGG16) 

  2620 DDSM + 

847 University 

of Budapest 

Kim et al. 

2021 [20] 

Deep learning 

algorithm based 

on CAD model 

(AI-CAD) 

Deep CNN, 

dANN and 

Faster R-

CNN 

   

Unknow 

Rodriguez 

Ruiz et al. 

2019 [21] 

Deep learing 

model support 

system 

AI computer 

sysytem 

Transpara 

  9000 images 

Sun et al. 

2019[22] 

Deep learning 

algorithm based 

on multi-view 

CNNs 

MVMDCNN   10400 images 

Teare et al. 

2017 [23] 

Dual deep 

convolutional 

neural networks 

Inception v3   6000 images 

Chougrad et 

al. 2018 [24] 

Deep CNNs 

trained with 

different 

architectures 

VGG16, 

ResNet50 

and 

Inception v3 

  5316 from 

DDSM + 600 

from BCDR + 

200 INbreast + 

6116 from MD 

Bandeira 

Diniz et al. 

2018 [25] 

CNNs based in 

bilateral analysis 

adapted to 

breast density 

Deep CNN   2500 images 

from 

Massachusetts 

General 

Hospital 



 

 

 

 

 

Table 3.1 demonstrates the multitude of strategies and algorithms available for detecting cancer in 

mammograms. However, only a few algorithms classify based on the different scales of BI-RADS. 

The majority of algorithms segment the mammogram and identify zones that may be sensitive to 

cancer, aiding radiologists in identifying areas of interest. Moreover, most algorithms categorize as 

malignant or non-malignant, but in this study, the focus is on classification based on the BI-RADS 

scale.  

Through this review, we gain a comprehensive understanding of the various strategies and CNN 

architectures employed in deep learning for breast cancer detection. 

Nan Wu et 

al.2020 [26] 

CNNs based in 

different images 

views 

ResNet   229426 

images 
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4. Methodology framework 

After reviewing the state of the art literature, I selected the most appropriate algorithm for 

implementing the classification of the four levels of BI-RADS. The algorithm that best fits my needs 

is described in the paper "Deep Neural Networks Improve Radiologists’ Performance in Breast 

Cancer Screening" [26]. This algorithm is based on CNNs and employs a ResNet architecture. 

The decision to choose this algorithm was based on several technical reasons. CNNs are the most 

effective in classifying images, and ResNet architecture is both simple and powerful. Moreover, I 

found the use of two different views of the breast for inputs and heatmaps to be an interesting 

feature of this algorithm. 

 

4.1. ResNet Architecture 

In the case of the paper selected uses the Resnet architecture or also known as Deep Residual 

Learning for Image Recognition. 

I am going to explain a little bit which problem resolves and how it works. 

Deep convolutional neural networks have led to a series of breakthroughs for image classification. 

Deep networks naturally integrate low/mid/high-level features and classifiers in an end-to-end 

multilayer fashion, and the “levels” of features can be enriched by the number of stacked layers 

(depth) [12]. 

Driven by the significance of depth, a question arises: Is learning better networks as easy as stacking 

more layers? The response is no. Here appears the problem of the vanishing/exploding gradients. 

Basically, this problem appears when the weights are very small (vanishing) or very big (exploding) 

which leads to a steep learning rate. 

For understand this problem first of all we need to understand what a gradient is here. Basically, 

the gradient is the relation between the error respect the weights and this indicates to the network 

how is going the learning.  

𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 =  
𝜕𝐸

𝜕𝑊
 

 

The network uses this gradient to recalculate the weights using the backpropagation algorithm to 

improve the error.  



 

 

One solution to resolve this is normalize the gradients to avoid that these gradients become small 

or big. This works well for networks that have tens of layers but no for networks that have cents of 

layers. Here is where the Resnet architecture solve this problem. 

Now that we know what is the vanishing problem let’s see with one example how it looks this 

problem: 

 

 

 

 

 

 

How we can see the network with more layers have more problems to learn. We can think that this 

is a problem of overfitting but is not the case. If it were an overfitting problem we would see that 

in the training error is decreasing every epoch but in the test error we would see an increment of 

the error.  

Now we are going to explain how it works the Resnet architecture and solve this problem. This 

architecture uses a framework named deep residual learning and conclude that a deeper model 

should no produce higher training error that its shallower counterpart. 

The idea is instead of hoping each few stacked layers directly fit a desired underlying mapping, we 

explicitly let these layers fit a residual mapping that we can see in the Figure 4.2.  

 

Figure 4.1: Training error (left) and test error (right) [12]. 

Figure 4.2: Residual learning: building block [12] 
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Formally, denoting the desired underlying mapping as H(x), we let the stacked nonlinear layers fit 

another mapping of F(x) = H(x)−x. The original mapping is recast into F(x)+x [12]. 

Let’s put an example to understand better. Imagine that you have a neuronal network that works 

well but you want to increase their depth. You can do that adding to the network the building blocks 

showed in the Figure 4.2 without causing the problem of vanishing problem. The network will look 

like that: 

Now that we have the architecture in the mind, I am going to analyse in more detail why 

implementing this not affects bad in the results of the network. Imagine that we have this scene: 

We have an input “x” that pass with a linear combination [w’*x] and we obtain an output H’ and 

goes through an activation function and we obtain an output Y’. And the same in the second part. 

We avoid bias for simplification. Imagine first that we don’t have the bypass. The equations that we 

obtain are the following: 

𝑌′′ = 𝑓(𝐻′′) = 𝑓(𝑊′′𝑌′) 

𝐻′′ = 𝑊′′𝑌′ = 𝑊′′(𝑓(𝑊′𝑥)) 

 

Now we consider the bypass, the only change is in H’’: 

𝐻′′ = 𝑊′′𝑌′ + 𝑥 

Figure 4.3: Neuronal network using ResNet architecture 

Figure 4.4: Flow of the ResNet architecture 



 

 

In the Resnet architecture [W’’*Y’] considers the residual function and we obtain the function that 

is present in the Figure 4.2: 

𝐹(𝑥) = 𝑊′′𝑌′ 

𝐻(𝑥) = 𝐹(𝑥) + 𝑥 

Perfect we obtain the residual function but surely you are thinking, what is the advantage of this? 

Well, how we can see the residual function depends on the W’’ and this implies that H(x) also. In 

the case that we have the problem of vanishing gradients the residual function will be near 0 

because the weight will be small and we can delete it. This would be a problem if we don’t have the 

bypass because we obtain a 0 but is not the case because we have the x term that is the identity 

and this not affects to the result of the neuronal network.  

This is the reason that why we can add new layers using Resnet without negatively affecting the 

result of the neuronal network. In addition, this is why most of the deep algorithms use the resent 

architecture. 

 

4.2. Explanation of the algorithm (View-wise algorithm) 

With a basic understanding of the workings of deep learning and the different CNN architectures, 

we can now delve into describing the workings of the chosen algorithm, sourced from the paper 

"Deep Neural Networks Improve Radiologists’ Performance in Breast Cancer Screening" [15]. In 

section 4.3 we will describe the reasons for the modifications for this architecture. 

The paper introduces various architectures, but we opted for the view-wise architecture, which has 

demonstrated the most promising results. Figure 4.5 illustrates the architecture in detail. 
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To understand better the architecture, I am going to segment it and explain part by part. 

 

4.2.1. Inputs and pre-processing 

 

 

 

 

Figure 4.6 provides an overview of the inputs used in the architecture. For the right breast, two 

views are considered, namely R-CC and R-MLO, while for the left breast, the views are L-CC and L-

MLO. These views are typical for mammograms, and for each view, three images are generated the 

mammography image and two heatmaps, which we will discuss later in this text. 

 

To generate these three images, the algorithm first crops the original image to remove any labels 

and pixels that do not correspond to the breast. This process adjusts the image to highlight the 

Figure 4.5: View-wise architecture [26] 

Figure 4.6: Inputs of the architecture [26] 



 

 

breast itself, as illustrated in Figure 4.7. Next, the algorithm extracts the optimal centers of the 

image to position the mammogram at the center, facilitating the model's ability to learn useful 

features. Once the image is centered, the algorithm generates the heatmaps using a Densenet, 

which is a CNN, to obtain the benign and malignant heatmaps. And that's how we obtain the inputs. 

  

Let's discuss the heatmaps in detail. These heatmaps are created to reduce the time taken to classify 

images, as we can reduce the areas of interest. There are two heatmaps - one containing the 

estimated probability of finding a malignant tumor for each pixel, and the other containing the 

estimated probability of finding a benign tumor. This is done because working with high-resolution 

images would be computationally expensive, and would significantly increase the processing time 

required to process each pixel. By using heatmaps, we can mark the zones of major interest and 

remove the irrelevant zones, which allows the main classifier to benefit from pixel-level labels 

without requiring heavy computation to produce the pixel-level predictions each time an example 

is used for learning. [15] 

Figure 4.7: Image before cropping (right) and after cropping (left) 
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In Figure 4.8, we can see an example of the heatmaps obtained using Densenet. We can observe 

that the two images are complementary in nature. The zones with a higher intensity of green or red 

indicate that this zone has a higher probability of being benign or malignant, respectively. We can 

also see that the zones with higher intensity of red have practically zero intensity in the benign 

image, and vice versa. 

 

 

 

 

In the Figure 4.9 we can see the image with the heatmaps and how the algorithm will process the 

pixels image for optimization of the computational power. 

Figure 4.8: Benign heatmap (green) and malignant heatmap (red) 

Figure 4.9: Image + Heatmaps 



 

 

 

4.2.2. CNN 

 

 

 

 

 

When we have, the inputs there are passed to the CNN, in this case is a ResNet-22 that we talk in 

the previous points.  

The architecture of this ResNet is based as columns computing 256 dimensions hidden 

representations vector of each view and each ResNet block consist of two 3x3 convolutional layers. 

Each ResNet Layer starts with 16 channels and each ResNet Block doubles the number of channels 

for a final hidden representation of 256 channels. In the Figure 4.11 we can see the evolution of the 

channels starting at 16 and ending in 256. 

 

 

Figure 4.10: Inputs of the CNN [26] 

Figure 4.11: ResNet architecture and ResNet Blocks. A) which is a brunch of the model, B) ResNet 
Layers and C) ResNet Block [26] 
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4.2.3. Average pooling and full connected layers 

At the output of the ResNet is done an average pooling and a concatenation for each view to 

unification the result to pass the result to the two fully connected layers.  

This is done because using two fully connected layers before the output layer allow more complex 

interactions between the different views. 

 

 

 

 

 

 

 

 

 

 

Figure 4.12: Average pooling, concatenation and fully connected layers [26] 



 

 

4.2.4. Softmax, average and final results 

The final step of the algorithm is to apply a two-step softmax for each view, which includes one for 

the benign/malignant and another for the not benign/malignant result. The output layer's highest 

value is chosen using the softmax function. Next, an average is calculated for each view by merging 

the information from both the left and right breasts. This produces the final results, which are then 

saved in a CSV file. Figure 4.14 provides an example of the results obtained. 

4.2.5. Training 

Now that we understand how the algorithm works, let's delve into the training process. The 

algorithm was pretrained using transfer learning, where a model pre-trained on a different task is 

used as a starting point for the target model. This approach leverages the learned representations 

from the pretraining task, improving the performance of the model. In this case, the architecture 

was pretrained on the BI-RADS classification.  

Next, the entire model was fine-tuned using the Adam optimization algorithm, which is a stochastic 

gradient descent optimization algorithm. The learning rate used was 10-5, and the minibatch size 

was set to 4. The dataset used for training consisted of 229,426 images. 

Figure 4.13: Softmax and averages [26] 

Figure 4.14: Results 
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5. Customizing the algorithm 

At the beginning of the project, I conducted a thorough review of state of the art algorithms and 

selected the one I described in the previous section based on its impressive results. I found the use 

of heatmaps to optimize computational cost and the utilization of different views for the input to 

be particularly intriguing. However, our objective is not only to classify an image as benign or 

malignant; we want to classify it into one of the four BI-RADS classes.  

To accomplish this, we made some modifications to the algorithm. Specifically, we modified the 

fully connected layers and used two inputs, namely, two different views (CC and MLO) for the same 

breast (right or left), instead of four inputs as used in the paper. This is because our dataset does 

not have all four views for each breast and mammograms normally are requested by one breast at 

the time. The specialist commonly uses two views for the same breast to diagnose a patient. Hence, 

our model process mammograms in the same fashion as a specialist. 

We did not modify the ResNet because it was pretrained on BI-RADS and we believe that the results 

obtained with it are satisfactory. The fact that it was pretrained on BI-RADS is encouraging, as the 

network has already learned features that can be used to classify the different BI-RADS types we 

are interested in. You can see the modified points in the Figure 5.1. 

 

5.1.1. Dataloader 

One of the challenges we faced while modifying the algorithm was developing a custom dataloader 

since we need to process two inputs simultaneously.  

To overcome this, we looked towards the Multiview investigation field, which involves the 

classification of multiple input images at the same time. This served as my inspiration, and I was 

Figure 5.1: Modified points [26] 



 

 

able to develop a dataloader that allowed me to use two different views (CC and MLO) of the same 

breast as inputs. 

5.1.2. Retraining the fully connected layers 

To modify the architecture for the specific task of classifying BI-RADS into four categories, we 

needed to retrain the fully connected layers. Since the original code did not have any training files, 

we adapted implementations and dataloaders from other models.  

We opted to use two fully connected layers instead of three or one, as it worked better in our 

empirical analysis.  

Retraining the layers was challenging, but we persevered and used a total of 1819 images, with 

1632 for training and 187 for testing. 

 

5.1.3. Softmax 

In our implementation, we utilized only one softmax layer. The output layer produces an array with 

four logits, one for each class of BI-RADS. The softmax layer then takes this array and transforms 

the logits into probabilities (normalized to 1) and selects the highest value, thereby giving us the 

final result. 

5.3.3 Preparing for the preprocessing 

In our case, we performed the same preprocessing as the original paper, but since we needed image 

pairs and our dataset contained images without pairs, we developed a code that searches for the 

corresponding images. We used a naming convention for the images, such as "B1_Calc-

Test_P_00141_LEFT_CC". Firstly, we arranged all the images in numeric order, then we checked if 

the next image had the same number, and if not, we deleted it because it did not have a peer. 

 

After filtering the images, we needed to create an array of dictionaries and save it to a file because 

the original code used it for preprocessing. We recreated the same dictionary using two keys and 

two values for each image. The first key indicated if we wanted a horizontal flip, and in our case, all 

the values for this key were "NO". The second key indicated the view of the image, with possible 

values of "L-CC", "L-MLO", "R-CC", or "R-MLO". We created four dictionaries for each image, one 

for each view. 
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In Figure 5.2, we provide an example of one image, where the view of the image is not important 

since it is only used for preprocessing. We have four dictionaries for each image because the original 

code has four views. 

 

 

Now we are ready to start the preprocessing. First crop the images, extract the optimal centers and 

generate the heatmaps. 

5.3.4 Inputs 

As explained in previous sections, three inputs per channel are required: the mammography image, 

the benign heatmap, and the malignant heatmap. To combine these inputs into a single RGB image, 

we assigned each input to a different color channel. Specifically, we assigned the mammography 

image to the blue channel, the benign heatmap to the green channel, and the malignant heatmap 

to the red channel. These inputs were obtained during the preprocessing phase. 

We have done like this because we need to charge the inputs to the dataloader in a unique input. 

You can see an example in the Figure 5.3. 

 

 

Figure 5.3: Creation of the input image and using to the dataloader to charge the inputs to the model 

Figure 5.2: Array of dictionaries 



 

 

In the Figure 5.4 we can see an example of a combined image: 

 

 

 

 

 

 

As we combined all the images, we encountered a problem where some of the images were in the 

right position, which is problematic for the model because it expects the inputs to be in the left 

position.  

To tackle this issue, we developed a code that calculates the average of the first 15% of the columns 

of the image. If this average is close to 0, it indicates that the image is in the incorrect position 

because most of the pixels are black. In such a case, we flip the image to the correct position.  

Figure 5.5 shows a schematic representation of how this approach works. 

 

 

 

Figure 5.4: Combined image 

Figure 5.5: Turning scheme 
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5.3.5 Final model, MammoHeatNet (MHN) 

 

The visual schematic of the MHN is presented in Figure 5.6. The model consists of two inputs, one 

for each view, which are composed of three images (the mammography and the two heatmaps).  

These inputs are fed into two ResNet-22 models followed by average pooling. To combine the two 

inputs, we have used concatenation. Finally, the model is composed of one fully connected layer 

with ReLu activation and one fully connected output layer. The softmax function is applied to obtain 

the maximum logit predicted by the model, which is used to determine the BI-RADS classification. 

 

Figure 5.6: Schema of the MammoHeatNet (MHN) 



 

 

6. Implementation and results 

6.1 Mammographic database  

In the present work, digital mammograms already classified and labeled are used to train and 
assess the approaches developed. The database consists of the following image types:  

 
Tabla 6.1: Dataset 

 TRAINING TEST 

BI-RADS 1 326 32 

BI-RADS 2 462 56 

BI-RADS 3 480 58 

BI-RADS 4 364 41 

TOTAL 1632 187 

 

The database come from the University of Arkansas for Medical Sciences (UAMS) [14]. A set of 

experts has manually classified the databases following the guidelines in the Breast Imaging 

Reporting and Data System (BI-RADS).  

 

 

Figure 6.1: Example of BI-RADS 1 to 4 starting with the BI-RADS 1 
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6.2 Hyper-parameters configuration 

We have completed the model and obtained the necessary inputs to train it. It is now time to 

explore the various configurations to determine which one works best for the model. In our case, 

we have identified 7 hyper-parameters that can be modified. These are as follows: 

• Data augmentation 

• Initialization 

• Batch size 

• Learning rate 

• Dropout 

• Learning rate step size 

• Image size 

I am going to explain a little bit each to understand how can affect to the model. 

Data augmentation: Refers to the technique of artificially increasing the size of a training dataset 

by creating modified copies of the existing data. These modifications are applied using Pytorch 

library and include padding of 50 pixels, increasing the contrast 1.5 times, gaussian blur with kernel 

value of 5 sigma = (0.1, 2.0), rotation between ± 45 degrees, translation in x and y of ± 20% and 

scale between 80-100% to help to diversify the training set and improve model performance. 

Initialization: Is an important hyperparameter that can affect how quickly a model converges and 

the accuracy it ultimately achieves. In our case, we explored initializing the model with Kaiming 

initialization, a mathematical technique that calculates the best initial weights for the neural 

network. This can save time during training and help the model reach maximum accuracy more 

quickly. 

Batch size: Is another important hyperparameter that indicates to the model how many images to 

process in each epoch. Learning rate is another critical hyperparameter that regulates the weights 

of the neural network based on the loss gradient. 

Learning rate: Refers to the step size at which the model updates its parameters during training. 

Specifically, the learning rate determines how much the parameters are adjusted with respect to 

the loss gradient calculated during backpropagation. 

Dropout: Is a regularization function that discourages the model from overfitting by temporarily 

disabling some neurons during training.  

Learning rate step size: Another regularization technique involves reducing the learning rate over 

a set number of epochs. By making smaller changes to the weights of the model, this approach can 



 

 

improve the model's generalization performance. It also helps prevent overshooting, which is when 

the model's weights are updated too drastically and fail to converge to a minimum. 

Image size: Refers to the dimensions of the input images used to train the model. This can affect 

model performance and training time, so it is important to explore different sizes and find the 

optimal size for the given task. 

 

6.3 Training 

This is the final step before obtaining the results. Now that we have pre-processed inputs and a 

customized model, we move on to the training phase. To achieve this, I created a code that 

generates all possible combinations of the parameters that were explained earlier, and trains the 

model for each combination. Additionally, the code compiles information for each epoch and 

generates graphics to study and analyse the training behaviour later. 

The maximum number of epochs for each training is 100, but conducting all possible combinations 

would take a lot of time. Therefore, I set a patience value of 10, which means that if the model fails 

to achieve a better accuracy in the next 10 epochs after the best accuracy, the training stops and 

moves to the next configuration. 

I ran the training three times to characterize the statistical performance behaviour of the 

architecture and obtain the best configurations based on the accuracy of the model. The following 

are the values for each parameter: 

• Batch size: [8 16 24 32 36 48 54 64] 

• Learning rate: [1e-2 1e-3 1e-4 1e-5] 

• Learning rate step size: [16 14 12 10 8 6] 

• Image size: [224, 256, 350, 512] 

 

We explored a batch size range of 8-64 because the literature [27] suggests a minimum batch size 

of 8 and a maximum of 64 due to hardware limitations. 

For the learning rate, we chose values in the range of 1e-3 and 1e-4, as these are common values 

in the literature [27]. However, we also explored extreme values of 1e-2 and 1e-5 to observe their 

impact on the model. 
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The learning rate step size values were chosen based on our patience of 10. We experimented with 

values close to this patience to observe their effect on the model. 

Regarding the image size, we selected a range of values based on several factors. Firstly, the original 

images were 224x224 and the ResNet was pre-trained on images of this size. Secondly, 256 is a 

common resolution for images. Finally, we chose a maximum of 512 as our images have a maximum 

resolution of 600x600. 

It's worth noting that this results in a lot of combinations. In this case, there are 12 values, which 

means that there is 23^2 = 529 possible configurations. Conducting all of them would take 36 hours. 

This demonstrates that the process is computationally and time-intensive. 

6.4 Metrics 

The model's performance was evaluated using the following metrics: 

• Accuracy: These measures how well the model predicts the correct class labels for a given 

set of input data. It was used for early stopping and to choose the best configuration. 

• Precision: These measures how well the model correctly predicts positive class labels (true 

positives) out of all the samples it has predicted as positive (true positives and false 

positives). 

• Recall: This measures the ratio between the number of positive samples correctly classified 

as positive to the total number of positive samples. 

• F1 score: This metric combines the precision and recall scores of a model. 

Although the precision, recall, and F1 score were calculated, they were not used in this study. These 

metrics are commonly used to compare different deep learning algorithms, and were included for 

the purpose of comparison with other studies. 

6.5 Choosing the best combination 

To begin with, after running all the possible combinations, I selected the top five configurations 

based on their accuracy. To choose the best configuration among them, I ran each of them ten 

times to eliminate the effect of random initialization and obtain an average accuracy for each 

configuration. 

Apart from the accuracy, I compiled additional information to compare the configurations and 

observe their behavior. This includes the loss function, learning rate schedule, and accuracy over 

the epochs. This information helps to analyze the model's learning process and identify potential 

issues. 



 

 

6.6 Graphics 

To analyze the behavior of each model configuration, I collected important data to create a set of 

graphics including: 

Data: I saved the classification results of the best epoch for both the training and test sets. This 

involved storing the correct output classification, predicted classification, input image names, and 

logits for the four possible classes. Figure 6.1 shows an example of this data. 

Graphics: I created graphics showing the accuracy and loss for each epoch of the training and test 

sets, boxplots to visualize the average and dispersion for each configuration, and confusion matrices 

for the training and test sets. 

In the Figure 6.2 you can see an example.  

 

 

 

 

 

Figure 6.1: Example of compiled data 



 

56   

7. Results 

In this section we are going to see a table with the top five configurations with their configuration, 

test accuracy and deviation. The baseline i is the model in its simplest form using the best 

architecture configuration, without any additional optimizations such as Kaiming initialization, data 

augmentation, or dropouts. The baseline ii is the same as baseline i but without the pre-trained 

weights. The purpose of establishing a baseline is to examine the model's performance without any 

improvements, and compare it with the results obtained after applying these three enhancements. 

With the initial configuration achieves near a 47% of accuracy. This reflects the importance of doing 

the hyper-parameter search and training configuration. 

 

 

 

Figure 6.2: Graphics for epoch for accuracy, loss and confusion matrix 



 

 

 

Table 7.1: Best configurations found 

MHN Batch size Learning rate Lr. Step size Image size Accuracy 

Base Line i 48 0.001 10 224 57.42 ± 4.34 

Base Line ii 48 0.001 10 224 56.77 ± 4.26 

Conf 5 16 0.0001 6 224 63.66 ± 2.42 

Conf 4 32 0.0001 8 224 62.15 ± 2.95 

Conf 3 48 0.0001 8 224 62.69 ± 2.43 

Conf 2 8 0.0001 14 256 64.27 ± 2.96 

Conf 1 48 0.001 10 224 65.49 ± 4.43 

 

How you can see in the Table 7.1 the best configuration is the first. In this case we have the following 

parameters: 

• Batch size: 48 

• Learning rate: 0.001 

• Weight decay: 10 

• Image size: 224 

The best performance achieved by this configuration was an accuracy of 74.19%. As discussed in 

the methodology section, we experimented with different values for the learning rate and image 

size, and found that the optimal range for the learning rate was between 0.001 and 0.0001, and for 

the image size, between 224 and 256. 

In the upcoming sections, we will present various graphics to better understand the model's 

behavior. We will focus on exploring the run that produced the maximum accuracy, and only 

present graphics for the best run to avoid overwhelming the reader with too much information. 
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7.1. Accuracy  

In Figure 7.1, we can observe the evolution of the accuracy of the test and training during the 

training phase. It is worth noting that the test accuracy obtained during training does not affect the 

training of the model. 

We can see that the best accuracy is achieved in epoch 30, and the training concludes in epoch 63. 

This is because, in this case, I increased the patience to 33 epochs to allow the model more time to 

achieve a better result. 

As shown, we are obtaining better accuracy in the test set than in the training set, which is not 

typical. In this case, I am obtaining approximately 15% more accuracy in the test set. This difference 

becomes noticeable from epoch 8 and remains constant until the end of the training phase. One 

explanation for this is that the model may be over-regularized, leading to instances where the 

training performance is below the test performance, as seen in Figure 7.1. However, I am presenting 

this graphic because it represents the best result obtained. For a normal behavior, the same training 

configuration can be seen in Figure 7.2. 

 

Figure 7.1: Graphic of accuracy respect epochs 



 

 

 

7.2.  Loss function 

In this particular case, we opted to utilize a cross-entropy loss function. This choice stems from its 

prevalence in the literature, as well as its demonstrated effectiveness in achieving optimal training 

outcomes. Cross-entropy is a well-established penalization function, which makes it a reliable 

choice for training purposes. Additionally, it is simple to implement and is specifically tailored to 

optimize models with multiple categorical outputs. 

 

Figure 7.2: Graphic of a normal behavior of accuracy with the same configuration 

Figure 7.3: Graphic of loss respect epochs 
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In Figure 7.3, we can see the evolution of the loss throughout the training phase. This corresponds 

to the training configuration shown in Figure 7.1 of the previous section. We can observe that there 

is no overfitting in this case. The training and test losses are parallel, which indicates that the model 

is not overfitting to the training data. 

As mentioned earlier, in Figure 7.1, we saw a significant difference between the test and training 

accuracies, where the test accuracy was much higher. This suggests that we may be over-

regularizing the model, and this is reflected in the difference between the test and training 

performances. However, in Figure 7.3, we can see that there is no overfitting, which further 

supports the idea that we may be over-regularizing the model. 

In Figure 7.4, we can see the evolution of the accuracy and loss during the training phase for a more 

typical behavior of the model, without overregulation. As we can observe, the training and test 

accuracies are more aligned and gradually increase throughout the epochs until they converge at 

around epoch 60. The loss also decreases consistently throughout the training phase, without 

showing any significant fluctuations or overfitting. This indicates that the model is properly learning 

and generalizing from the data.  

Overall, Figure 7.4 provides a more reliable representation of the model's performance compared 

to the previous figures, which showed some atypical behaviors. 

The loss has a horizontal behavior after epoch 20 and not presents overfitting. 

 Figure 7.4: Graphic of a normal behavior of loss with the same configuration 

 



 

 

7.3. Confusion matrix 

These figures show the confusion matrix for the train and test sets, with Figure 7.5 being the most 

relevant as it reflects the expected behavior of the model when predicting BI-RADS. As seen, the 

model is not confused with the extreme BI-RADS (1 with 4), as it only confuses them once each. 

However, the most challenging task for the model is correctly classifying BI-RADS in the medium 

range, specifically the 2s and 3s, which are the most similar and difficult to differentiate. The model 

makes 74 errors when trying to differentiate between BI-RADS 3 and 4, predicting a BI-RADS 3 when 

the actual value is 4. 

For BI-RADS 1 and 2 or 2 and 1, the values are similar, indicating that the model has a consistent 

error in differentiating between them. The same happens with BI-RADS 2 and 3, but with fewer 

errors. To better understand the model's specific errors, Table 7.2 calculates several values. 

 

 

 

 

 

 

 

Figure 7.5: Test confusion matrix. The confusion matrix 
numeration (0,1,2,3) corresponds to BI-RADS (1,2,3,4). 

Figure 7.6: Train confusion matrix. The confusion matrix 
numeration (0,1,2,3) corresponds to BI-RADS (1,2,3,4). 
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Table 7.2: General precision, recall and error of the model for configuration 1 of MHN 

 BI-RADS 1 BI-RADS 2 BI-RADS 3 BI-RADS 4 

BI-RADS 1 92 57 13 1 

BI-RADS 2 67 107 53 4 

BI-RADS 3 5 47 143 45 

BI-RADS 4 1 9 74 98 

Precision 55.76 48.64 50.53 66.22 

Recall 56.44 46.32 59.58 53.85 

Error 44.24 51.36 49.47 33.78 

 

As shown in Table 7.2, the model encounters the most difficulty in classifying class 2, with an error 

rate of 51.36%. Conversely, the classes with the least difficulty are class 4, with an error rate of 

33.78%, followed by class 1, with an error rate of 44.24%. This trend makes sense as the extreme 

classes have clear indications of either having cancer or not, whereas the middle classes are more 

diffuse and less clear. 

It is also worth noting the errors in contiguous classes to identify which classes the model confuses 

the most, in the Table 7.3 we can see it: 

 

Table 7.3: Error for contiguous classes 

 

 

 

As shown in Table 7.3, the MHN has difficulty to differentiate the BI-RADS 1-2 or vice versa. 

 Error 

BI-RADS 1-2 and 2-1 38.39 

BI-RADS 2-3 and 3-2 28.57 

BI-RADS 3-4 and 4-3 33.06 

Real 



 

 

7.4. Box-plots 

Figure 7.7 presents a representation of the top five configurations using a box-plot. As previously 

mentioned, the top five configurations were run ten times to observe their behavior. Each box 

represents ten data points, which correspond to the accuracy obtained from each run. The black 

line inside each box indicates the mean accuracy of the configuration. The red line represents the 

average accuracy of the five configurations, while the blue line represents the highest accuracy 

achieved among the five. 

By visually inspecting the deviation, we can see that the configuration 1 configuration has the 

highest accuracy average, but also the largest deviation. This indicates that the accuracy of this 

configuration is highly dependent on each run and may result in vastly different accuracies. In 

contrast, configuration 3 has the smallest accuracy but the smallest deviation as well, suggesting 

that we can expect relatively consistent results regardless of the runs. 

Furthermore, we can conclude that configuration 4 is the worst-performing configuration, with the 

smallest average accuracy. However, it is worth noting that at certain points, it achieved accuracies 

that surpassed those of configuration 3. 

 

 

 

Figure 7.7: Box-plots for each configuration 
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8. Discussion and further works 

Among the different parameters we explored, the learning rate and image size stand out as the 

most crucial ones, as their values exhibit very little variation across different configurations. This 

indicates that these parameters have a strong influence on the model's performance. 

Interestingly, we consistently found that the image size was set to 224x224, even though this 

resolution may seem inadequate for capturing fine details. We hypothesize that this is because the 

ResNet was pretrained on images of this size, which made it easier for the model to extract relevant 

features for BI-RADS classification.  

As for the learning rate, we found that a value of 0.0001 yielded the best results, which is lower 

than the commonly used threshold of 0.001 in the state of the art. This suggests that our model is 

more sensitive to changes in the learning rate and benefits from a more cautious approach. The 

results shows that we need more data samples to achieve a better accuracy. This is reflected in the 

best configuration tendency to overregularization. Moreover, the dataset is challenging domain 

task since the variability of the results obtained is quite high. 

The baseline ii reflects the importance of having a pre-trained weights on a similar task or same 

type of images. Despite of the limitations of the proposal we consider valid the realized work as 

assistant tool for the specialist diagnosis because the training data is limited the performance 

results will be improved having more data. One important contribution of the work is sharing 

publicly the original dataset proposed for this work and its processed version used for its training. 

Finally, a little summary of the main points of this work are the following: 

Difficulties: 

• Understand a code that you don’t create it is a difficult task and I need a lot of time for 

achieve this point. 

• I require a significant amount of time to execute all of the configurations for the model. 

• Attempt to customize a code is not only modify the current code, I need to adapt the 

customized code for all the python libraries and this is not trivial. 

• One big problem is that I used a lot of different libraries and sometimes there are not 

compatible and I need to adapt it. The biggest challenge of this part is creating a customized 

dataloader. 

• In the original code it doesn’t have a training file, for this reason I need to implement all 

the code for training the model. 

• I need to implement all the code for the pre-processing of the images. 

 

Limitations: 



 

 

• The original dataset of the paper was public but I can’t access it [26]. For this reason, I 

contacted with them but they don’t respond me. Also, 2 weeks later they eliminate the 

web for access to the dataset.  

• Having a lot of parameters makes difficult to optimize the training procedure correctly, 

easily and reaching the optimal configuration fast. 

• Our dataset was so big but didn’t contain enough cases of four different views per patient 

with the BI-RADS classification. This is the reason why we only use two inputs instead of 

four. Due this limitation of the dataset we need to adapt the architecture for only work 

with two input images. Also, because our task is in the BI-RADS classification the outputs of 

the model have to be modified.  

If the I would have had a biggest dataset surely, I can achieve better results.  

• In summary I can group all of these problems in 3 points.  

o Implementation of the original code.  

o Creation of the dataset.  

o Customize the code for my goal. 

 

Future improvements: 

• Try to use another CNN or use the trained ResNet to create the heatmaps. 

• Find the best images for training analyzing which images the model usually fails to classify.  

• Try to use different CNN for the model architecture. 

• Use all the data to do a deep analysis for search the best configuration for the model. 

• Use new parameters for configurate the model. 
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9. Conclusions 

 

In this project, I developed a deep learning algorithm that exhibits a high level of accuracy in 

classifying the four categories of BI-RADS. However, the process required significant effort and 

dedication on my part. 

The work involved a thorough exploration of the current state-of-the-art, as well as a detailed 

understanding of the principles and mechanics of deep learning. This project was an equal 

combination of theoretical and practical aspects. 

The development of the deep learning algorithm involved a considerable amount of customization 

to ensure that it could successfully classify both benign and malignant tumors, as well as the four 

classes of BI-RADS. The task involved modifications to the image pre-processing stage, which is a 

critical component of the algorithm since it is from this stage that all features are extracted. 

Furthermore, I had to adapt the architecture of the algorithm to incorporate two inputs and 

combine multiple images into one. The creation of the data loader and training file presented a 

significant challenge, as did the resolution of incompatibilities with various libraries. 

Once the algorithm produced results, the most intriguing and enjoyable aspect of the project was 

fine-tuning the model by modifying the architecture and hyperparameters. Given that deep 

learning algorithms are considered a "black box," it was necessary to run numerous experiments 

and analyze results to obtain the optimal model. This stage provided valuable insights into the 

thinking process of the deep learning algorithm. 

After conducting a series of trial-and-error experiments, I developed an algorithm that exhibited 

commendable results, given the four possible outcomes. With additional data, the algorithm could 

potentially achieve even greater accuracy. 

Throughout the project, I gained a deeper understanding of deep learning technology and 

programming, specifically in the Python language. I also gained familiarity with numerous libraries, 

which proved to be powerful tools for development. From a medical perspective, I learned about 

the intricacies of mammography and the complexities of differentiating between BI-RADS classes. 

In conclusion, this project provided me with a valuable introduction to the world of deep learning, 

a field that I find fascinating and expect to achieve remarkable breakthroughs in the coming years. 

I intend to continue studying and developing deep learning algorithms, as programming is a passion 

of mine, and I am eager to explore the potential of these algorithms further. 



 

 

10. BUDGET 

This section outlines the hypothetical expenses associated with the development of the project. 

The budget is divided into two primary categories: personnel costs and material costs. 

10.1. Personnel cost 

Table 0.1 presents the costs associated with hiring a junior engineer to complete the tasks outlined 

in Figure 1.3 for the project's development. The average salary for this position is estimated to be 

13 € per hour [30]. Assuming a standard workday of 4 hours and a project timeline of 32 weeks, the 

total amount of work hours required is estimated to be 896, resulting in a total cost of 11648 €. 

 

Table 10.1: Personnel cost 

Task Working hours Cost (€) 

Planification 17 221 

Introducing to the topic 15 195 

Delve deeper into deep 

learning 

35 455 

Delve deeper into Python 40 520 

Literary review 25 325 

Bibliographic research 40 520 

Data preprocessing 50 650 

Customizing model 200 2600 

Creation of extra files 60 780 

Dataloader creation 30 390 

Training the model 186 2418 

Results obtention 50 650 
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Testing configurations 68 884 

Discussion 20 260 

Writing 60 780 

Final review 40 520 

TOTAL 896 11648 

10.2. Material cost 

The unique material cost has been the computer. 

 

Table 10.2: Material cost 

Hardware Cost (€) 

Computer 3500 

TOTAL 3500 

 

In conclusion, the total cost of the project is 11648 € for the junior engineer's salary, plus an 

additional 3500 € for materials, resulting in a total cost of 15148 €. It's worth noting that this 

estimation does not include the cost of project supervision or implementation. 

11. ENVIRONMENTAL IMPACT ANALYSIS 

The impact on the environment stemming from this project can be widely debated by thoroughly 

examining all the components directly or indirectly involved in its development, leading to 

numerous points of discussion. However, it should be noted that the project primarily consists of a 

series of codes created entirely with Python 3.8, meaning that no physical item has been 

manufactured or produced. Additionally, while the acquisition of radiological images may result in 

significant energy waste and environmental impact, it can be justified both ethically and 

economically. It is important to clarify that the focus of this report is solely on the environmental 

impact caused by the computer's electricity consumption and not on the image acquisition process. 

Approximately 32 weeks were employed to develop the project. Considering an average of 28 hours 

of work per week using a computer, it can be estimated that electricity was consumed for a total of 



 

 

896 hours plus the almost 186 hours required for training the model and obtain the best 

configuration. These parts were done using Alienware PC with an average consumption of 45W and 

NVIDIA GeForce GTX 1070 Ti with an average consumption of 150 W, according to the GPU's 

specifications [28].  

𝐸𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 = 896 ∗ 45 + 186 ∗ 150 = 68220𝑊ℎ 

 

Therefore, the total consumption of the computer for develop the whole project is 68.2 kWh. 

In Catalonia, it is estimated that each kW produce generates 321 CO2 [29]. 

𝐶𝑂2 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 = 68.2 ∗ 321 = 22 𝐾𝑔 𝐶𝑂2 
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Annex  

A. Confidentiality 

To ensure the privacy and confidentiality of sensitive information, this project has been 

designated as a confidential undertaking. The dataset used in this project contains potentially 

sensitive information that must be protected from unauthorized access and use. Additionally, 

as we plan to publish an article based on our findings, it is imperative that we maintain strict 

confidentiality to avoid compromising the integrity of the project and the privacy of individuals 

involved.  

B. GitHub repository 

All the implementation of this work is uploaded in a GitHub repository. Due to the confidentiality 

this link is unable for users and the access will be studied according to the scientific purposes and 

future improvements of the algorithm. 

GitHub Project:  

https://github.com/IvanOFUPC/MammoHeatNet-MHN-

/blob/main/MammoHeatNet%20(MHN)/flipping.py 

 

https://github.com/IvanOFUPC/MammoHeatNet-MHN-/blob/main/MammoHeatNet%20(MHN)/flipping.py
https://github.com/IvanOFUPC/MammoHeatNet-MHN-/blob/main/MammoHeatNet%20(MHN)/flipping.py

