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Abstract
The brain parenchyma undergoes several structural changes throughout life, which have a ma-
jor impact on its physiological evolution, and which are behaviorally reflected as changes in
cognition and ability. A key question is how age-related structural alterations impact the func-
tion of the different areas. Functional connectivity, measured as correlation between brain re-
gions during the resting state Magnetic Resonance Imaging (MRI), is a quantitative measure of
function that can be reliably used to characterize the evolution of the communication between
regions across the lifespan. However, most of the works so far have done it with a hypothesis
driven approach. The present work aims to identify the functional connectivity patterns of the
whole brain during resting state in a rodent model of healthy ageing. For this purpose, we have
followed the standard workflow recently proposed in a consensus paper on functional imag-
ing processing in preclinical MRI. We have set up a longitudinal functional MRI experiment
to measure functional connectivity in rats at different times. Independent component analysis
has been used to identify characteristic resting-state networks and compare them between three
different ages, corresponding to adulthood to early senescence. The goal is to highlight region-
, sex-, and age-specific patterns that drive the physiological decline in cognition observed in
senescence, with potential to identify vulnerable regions in and define targets for intervention.
Our results uncovered patterns of increased functional connectivity between adulthood and
senescence in several key regions controlling the functions known to be affected by age. Such
increase in connectivity can be explained as a compensatorymechanism that allows the brain to
cope with reduced microstructural integrity. The study of healthy ageing in absence of disease
sets the baseline for the identification of pathological conditions.

Keywords: MRI, BOLD, fMRI, rs-fMRI, functional connectivity, ICA, ageing, longitudinal, rat.
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Resumen
El parénquima cerebral experimenta varios cambios estructurales a lo largo de la vida, que
tienen un gran impacto en su evolución fisiológica, y que se reflejan conductualmente como
cambios en la cognición y la capacidad. Una cuestión clave es cómo repercuten las alteraciones
estructurales relacionadas con la edad en la función de las distintas áreas. La conectividad fun-
cional, medida como correlación entre regiones cerebrales durante la Resonancia Magnética
(RM) en estado de reposo, es una medida cuantitativa de la función que puede utilizarse de
forma fiable para caracterizar la evolución de la comunicación entre regiones a lo largo de la
vida. Sin embargo, la mayoría de los trabajos realizados hasta ahora lo han hecho con un en-
foque basado en hipótesis. El presente trabajo pretende identificar los patrones de conectividad
funcional de todo el cerebro durante el estado de reposo en un modelo de roedor de envejec-
imiento sano. Para ello, hemos seguido el flujo de trabajo estándar propuesto recientemente en
un documento de consenso sobre el procesamiento de imágenes funcionales en RM preclínica.
Hemos establecido un experimento de RM funcional longitudinal para medir la conectividad
funcional en ratas en diferentes momentos. Se ha utilizado el análisis de componentes indepen-
dientes para identificar redes características en estado de reposo y compararlas entre tres edades
diferentes, correspondientes a la edad adulta y a la senescencia temprana. El objetivo es destacar
los patrones específicos de región, sexo y edad que impulsan el declive fisiológico de la cogni-
ción observado en la senescencia, con potencial para identificar regiones vulnerables y definir
objetivos de intervención. Nuestros resultados descubrieron patrones de aumento de la conec-
tividad funcional entre la edad adulta y la senescencia en varias regiones clave que controlan
las funciones que se sabe que se ven afectadas por la edad. Este aumento de la conectividad
puede explicarse como un mecanismo compensatorio que permite al cerebro hacer frente a la
reducción de la integridad microestructural. El estudio del envejecimiento sano en ausencia de
enfermedad sienta las bases para la identificación de condiciones patológicas.

Palabras clave: MRI, BOLD, fMRI, rs-fMRI, conectividad funcional, ICA, envejecimiento, lon-
gitudinal, rata.
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Resum
El parènquima cerebral experimenta diversos canvis estructurals al llarg de la vida, que tenenun
gran impacte en la seua evolució fisiològica, i que es reflecteixen conductualment com a canvis
en la cognició i la capacitat. Una qüestió clau és com repercuteixen les alteracions estructurals
relacionades amb l’edat en la funció de les diferents àrees. La connectivitat funcional, mesurada
com a correlació entre regions cerebrals durant la Ressonància Magnètica (RM) en estat de
repòs, és una mesura quantitativa de la funció que pot utilitzar-se de manera fiable per a carac-
teritzar l’evolució de la comunicació entre regions al llarg de la vida. No obstant això, la majoria
dels treballs realitzats fins ara ho han fet amb un enfocament basat en hipòtesi. El present tre-
ball pretén identificar els patrons de connectivitat funcional de tot el cervell durant l’estat de
repòs en un model de rosegador d’envelliment sa. Per a això, hem seguit el flux de treball
estàndard proposat recentment en un document de consens sobre el processament d’imatges
funcionals en RM preclínica. Hem establit un experiment de RM funcional longitudinal per a
mesurar la connectivitat funcional en rates en diferents moments. S’ha utilitzat l’anàlisi de com-
ponents independents per a identificar xarxes característiques en estat de repòs i comparar-les
entre tres edats diferents, corresponents a l’edat adulta i a la senescència primerenca. L’objectiu
és destacar els patrons específics de regió, sexe i edat que impulsen el declivi fisiològic de la
cognició observat en la senescència, amb potencial per a identificar regions vulnerables i definir
objectius d’intervenció. Els nostres resultats van descobrir patrons d’augment de la connec-
tivitat funcional entre l’edat adulta i la senescència en diverses regions clau que controlen les
funcions que se sap que es veuen afectades per l’edat. Aquest augment de la connectivitat pot
explicar-se com un mecanisme compensatori que permet al cervell fer front a la reducció de
la integritat microestructural. L’estudi de l’envelliment sa en absència de malaltia estableix les
bases per a la identificació de condicions patològiques.

Palabras clave: MRI, BOLD, fMRI, rs-fMRI, connectivitat funcional, ICA, envelliment, longitu-
dinal, rata.
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1 Preface

1.1 Origin of the Project
The project is a collaboration with Instituto de Neurociencias de Alicante (Consejo Superior
de Investigaciones Científicas (CSIC) andMiguel Hernandez University of Elche) in the Trans-
lational Imaging Biomarkers laboratory1. Its research focuses on the development, optimiza-
tion and application of innovative, non-invasive and translational magnetic resonance imaging
tools. For this purpose, Resting-state functional Magnetic Resonance Imaging (rs-fMRI) data
acquired at the institute were used in order to study the changes in brain connectivity during
healthy ageing in rodent models.

1.2 Motivation
Animal research in neuroscience is fundamental to characterize both healthy and pathologi-
cal trajectories of brain structure and function, providing important information inaccessible in
humans.

The ease of breeding and reproduction, its small size and the ability to be genetically manipu-
lated, make rodents a popular choice in neuroscience research. Although translating the results
of studies in animal models to humans can be a complex process and not always direct, there
are several reasons for doing so. In this case, the aim is to characterize brain evolution using
Magnetic Resonance Imaging (MRI), a technique easily translatable to humans and suitable
for studies in vivo. In addition, ageing studies in rodents are ideal due to the shorter lifespan,
which allows longitudinal analyses.

1.3 Previous requirements
The requirements for the development of this project are, on the technical side:

• Hardware: 32GB RAM and 16-core CPU system (as a minimum).

• Software: FSL2, AFNI3, Nipype4, ANTs5, MATLAB & ITK-Snap6

Additionally, in order to be able to carry out the study it is necessary:

• Knowledge in neuroimaging processing.

• Knowledge in the different modalities of magnetic resonance imaging.

• Knowledge of the tools and libraries necessary for data processing

• Knowledge in rodent models for neuroimaging studies.

1https://in.umh-csic.es/es/grupos/biomarcadores-de-imaging-translacional/
2https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL
3https://afni.nimh.nih.gov/
4https://nipype.readthedocs.io/en/latest/#
5http://stnava.github.io/ANTs/
6http://www.itksnap.org/pmwiki/pmwiki.php?n=Main.HomePage
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2 Introduction

2.1 MRI
Thanks to its versatility, Magnetic Resonance Imaging (MRI) provides access to information on
brain anatomical structure, neuronal connections and their activation in a non-invasive fash-
ion. Such information can be used to highlight alterations in pathological conditions, but also
characterize trends of specific aspects of brain structure and function during maturation and
ageing.

MRI employs electromagnetic radiation on a sample exposed to a strong magnetic field. It is
based on the ability of protons to resonate under an external magnetic field (Bo) known as Nu-
clear Magnetic Resonance (NMR). In this resonance state, the protons are able to absorb energy
when a radiofrequency pulse is applied, and release it when the stimulation is off. This energy
emission will be different depending on the environment surrounding the protons, which gives
information about the composition of the tissue (White matter (WM), Grey matter (GM) or
Cerebrospinal fluid (CSF)), but also on its location inside the scanner, allowing images of the
whole brain to be reconstructed.

A radio frequency (RF) pulse is applied in a plane perpendicular to the magnetic field, known
as transverse magnetisation, and causes the hydrogen nuclei to deviate their longitudinal mag-
netisation and rotate around the magnetic field. When the RF pulse stops, the hydrogen nuclei
begin to relax and return to their original longitudinal magnetisation state. During this process,
the hydrogen nuclei emit a signal dependent on several factors, such as the applied magnetic
field, the frequency and duration of the RF pulse, and the relaxation properties of the body’s
tissues. The relaxation time is the time to return to magnetization equilibrium. Relaxation com-
bines two mechanisms: longitudinal relaxation and transversal relaxation. The relaxation time
T1 or longitudinal relaxation time defines the time taken by the net magnetization M returns
to its initial maximum value Mo parallel to the magnetic field Bo [1]. The relaxation time T2,
also known as transversal relaxation time or spin-spin, is the time required for the transverse
magnetization to fall to approximately 37% of its initial value [2].

By applying magnetic field gradients in addition to the Bo, it is possible to localize spatially
the origin of the signal; in this way, 3D images can be reconstructed. The anatomical details in
the image depend on how the hydrogen nuclei in different body tissues respond to the mag-

(a) T2*-weighted imaging (b) Diffusion MRI (c) Functional MRI

Figure 1: Main modalities of MRI.
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netic field and the RF pulse. For example, tissues with more water, such as the brain, generate
stronger signals than tissues with less water, such as bone [3].

There are different MRI modalities but the three main ones are: structural, diffusion and func-
tional imaging (figure 1). Structural imaging provides anatomical structures information. Dif-
fusion MRI (dMRI) or Diffusion-weighted imaging provides microstructural and anatomical
connectivity information. Functional imaging or FunctionalMagnetic Resonance Imaging (fMRI),
provides information about brain neurons activity, in response to an specific stimuli or task (task
fMRI) or in relation to the spontaneous activity of the neurons (Resting-state functional Mag-
netic Resonance Imaging (rs-fMRI)).

The combination of different modalities allows counteracting the limitations presented by each
of them separately, such as low spatial resolution in fMRI compared to better spatial resolu-
tion in structural MRI but with longer acquisition time for a single volume, for example. Mul-
timodality eniches the information extracted by an MRI experiment, allowing to boost both
specificity and sensitivity[3].

(a) Protons in the body (b) Protons in MRI scanner

(c) Protons with a RF pulse

Figure 2: Behaviour of hydrogen protons. Image adapted from [69]

2.1.1 fMRI

Functional Magnetic Resonance Imaging (fMRI) is a non-invasive neuroimaging tool that mea-
sures small changes in blood flow (the hemodynamics) due to brain activity. The communi-
cation between neurons requires energy provided in the form of oxygen and glucose. When
neurons are activated, they trigger a cascade of biochemical and metabolic events in the brain
involving oxygen consumption. In order for neurons to receive the oxygenated blood supply
in response to increased neuronal activity, blood flow and local cerebral blood volume are in-
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creased. This also means that the concentration of oxygenated hemoglobin increases in areas of
increased neuronal activity and this disturbs the local magnetic field (Bo). Specifically, the lo-
cal magnetic field (Bo) in the presence of deoxyhemoglobin becomes less uniform which leads
to a reduction of the signal of water molecules in the region. These changes in the magnetic
resonance signal are known as the Blood-oxygen-level-dependent (BOLD) effect.

fMRI relies upon the quantification of the Blood-oxygen-level-dependent (BOLD) effect through
T2* relaxation: slower T2 attenuation indicates activity.

2.1.2 Resting State fMRI

While fMRI can be used to highlight structures that gets activated during a task, the brain also
possess an intrinsic activity when at rest. This phenomenon can be quantified by rs-fMRI.

Functional connectivity (FC) can be defined as the temporal correlation between two BOLD
signals at very low frequencies (<0.1Hz) from different parts of the brain. The similarity of
these may indicate that the regions are communicating. It should be noted that this functional
relationship does not indicate directionality. Given two related regions, we cannot interpret that
one region is responsible for the activity in the other [4, 5].

Figure 3: Hemodynamic response function representation.

This intrinsic activity is a relatively slow process that peaks at approximately 5-6 seconds after
the onset of neuronal activity as shown in figure 3.

2.1.3 Resting State Networks

The similarity of two BOLD signals is quantified by observing temporal correlation maps. The
brain regions that have similar patterns of oscillation during the resting state are called Resting
State Networks (RSN). By grouping regions on the basis of their similarity in the BOLD sig-
nal fluctuations, several networks consistently emerge both in humans and rodents, the most
prominent being the Default Mode Network (DMN) (figure 4). This network is characterized
by being active at rest and inactive during cognitive tasks. This network is related with several
cognitive processes such as episodic memory, self-referential processing and mind wandering
[6].

Two other networks of interest in humans are the salience and the executive control network
(ECN). ECN network is engaged in cognitively demanding tasks, such as decision-making and
working memory. Salience is involved in evaluating the relevance of internal and external stim-
uli in order to generate appropriate responses [7].

Other networks can also be identified, both in humans and rats, such as the visual network,
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primary somatosensory network, auditory and dorsal attention among others [66]. In rodents
it is possible to find RSN such as those shown in the figure 8.

Figure 4: Default mode network (DMN). Brain structures active during resting state. Image
extracted from [8]

2.2 Ageing
Ageing is the primary risk factor for most neurodegenerative diseases, including Alzheimer’s
disease (AD) and Parkinson disease (PD) [9]. Throughout the lifespan, the brain experiences
numerous microstructural and functional alterations that significantly impact its physiological
and cognitive evolution. It is important to characterize the patterns of both healthy development
anddeterioration in order to comprehend the factors contributing to a healthy aging process and
establish a reference point for identifying pathological conditions.

Characterizing brain evolution as we age, is crucial to uncover the factors that contribute to a
healthy aging process. This information also lays the foundation for comprehending aging as a
risk factor for illnesses. Hence, it is imperative to establish and describe specific, non-invasive
indicators of brain health throughout one’s lifetime, which have the possibility of enhancing
current methods of diagnosis and monitoring treatment effectiveness [10, 11]. It’s important to
take into account the relationship between aging and the structural, neurochemical changes, cell
proliferation, synaptogenesis and myelination, as well as differential immune responses seen at
different ages and its impact in cognition [12].

Aging is accompanied by cognitive deficits in areas such as episodic andworkingmemory (abil-
ity to retain andmanipulate short-term information) and executive control. The speed at which
we process information is also reducedwith age. Ageing affects cognitive flexibility and inhibits
automatic responses[13, 14]. The cognitive consequences may be due to changes in different
brain areas. For example, the frontal-striatal and medial frontal areas influence the capacity for
attention and working memory. Also, in the face of a reduction in these capacities, increased
recruitment in frontal areas is observed as a form of compensation [15]. On the other hand, the
retrosplenial cortex acts as an interface between the working memory functions enabled by the
prefrontal cortex and the long-term memory functions supported by the medial temporal lobe
memory system. Memory dysfunction in aging may be related to the disruption of the func-
tioning of connected cortical networks, including the retrosplenial cortex. Cognitive memory
deficits are also due to reduced connectivity in posterior cortical areas [14].

Despite differences between the two species, it is worth to study the evolution of the brain
parenchyma over time both in rodents, as a model for human ageing. The advantage is that
the time scale between these two species is quite different (figure 6) but the sequence of key
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events in brain maturation coincides to a large extent [12]. It is important to note that aging
affects each individual uniquely, and cognitive changes may vary in their magnitude and rate
of progression. Superagers, for example, are individuals aged 80 years or older who pass tests
of memory, attention and other cognitive skills at levels comparable to adults decades younger
[16].

2.2.1 Functional differences with sex-perspective

Asmentioned above, the study of aging is important to identify which factors contribute to this
process, but it is also important to take into account the sex perspective. Characterizing sex-
specific trajectories of healthy ageing is important to understand the different susceptibility of
male and females to many age-related brain pathologies.

Different research studies report the results of how different tests and trials help to characterize
these cognitive and functional connectivity differences both in humans and rodents but also
there are many others that do not reproduce these differences that others mention [17].

Figure 5 shows the trajectory of different cognitive functions with aging according to sex. In
general, in early and middle adulthood, women have better verbal and episodic memory [18,
19] while men have better spatial memory. Furthermore, females tend to exhibit higher initial
performance on tasks involving global cognition and executive functioning. However, as they
age, women tend to experience a more pronounced decline in their performance compared
to men [20]. In both sexes, with aging, cognitive processing speed is reduced and is more
pronounced in men than in women, which means that women can maintain a relatively better
processing speed with age [21, 22].

The fact that there are cognitive and developmental differences between sexes or that the preva-
lence of certain diseases is different is attributed to hormonal, genetic and socioeconomic factors.
Differences between sexes are observed as early as childhood due to hormonal changes caused
by puberty and later by menopause.

Figure 5: Sex differences in the trajectory of cognitive aging across different domains. Image
obtained from [23]

2.3 fMRI processing - State of the art
Rodents have become a valuable model for investigating healthy aging in research studies using
MRI. These animals are ideal for studying longitudinal age-related changes in the brain due to
the biological and physiological similarities with humans and their short life expectancy (2-3
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years) and after translate findings across species. Rats and mice are commonly used in labora-
tory research although, only a few longitudinal imaging studies are available such as Fowler et
al. [24] or Bellantuono et al. [25].

Figure 6: Development stages in animal and human model.

The state of the art focuses on what are the current objectives in the study of fMRI: research
teams work on improving and optimizing resources and unifying them so that the processing
and interpretation of results is reproducible and robust.
Current tools such as SAMRI7 or RABIES[26], an opensource pipeline created by researchers
at Computational Brain Anatomy Laboratory (CoBra Lab), allow the preprocessing and subse-
quent analysis of fMRI data in rodents. These pipelines make use of tools such as FSL, nibabel,
ANTs, among others and their goal is to promote interoperability and cooperation.

Figure 7 shows the pipeline defined by RABIES, a rat fMRI acquisition protocol with optimized
acquisition and processing parameters, a reproducible pipeline for data acquired with diverse
protocols and determined experimental and processing parameters associated with the robust
detection of Functional connectivity (FC). It is included in StandarRat, a consensus by Grand-
jean J. et al.[27]. They showed that an standardized protocol enhances biologically plausible FC
patterns relative to previous acquisitions.

In addition, it is important to highlight that "the issue of confound correction for resting-state fMRI
remains largely unresolved among human literature, and is only beginning to be studied in rodents"[27].
This is a constantly evolving field of great importance in fMRI processing and in case of fMRI
correction in humans as they mentioned, in Wang, Hao-Ting, et al.[28], they propose a new
benchmark using the fMRIPrep8 pipeline and Nilearn.

In conclusion, efforts to improve and unify fMRI processing tools in animal models allow for
better interpretation and reproducibility of results. Also, the use of rodents in MRI studies
of healthy aging offers a valuable tool for gaining a deeper understanding of the underlying
mechanisms of aging and developing new treatments to improve health and quality of life in
old age.

7Small Animal Magnetic Resonance Imaging https://github.com/IBT-FMI/SAMRI
8Robust Preprocessing Pipeline for fMRI Data https://fmriprep.org/en/stable/
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Figure 7: RABIES pipeline schema.
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Figure 8: Resting state network maps in rodents. Image extracted from [27]
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3 Objectives
Based on the introduction and the state of the art of the work, the main objective of this project
is to investigate the brain functional connectivity in a longitudinal rat model of healthy aging
using resting-state functional MRI. This longitudinal aging study is carried out by acquiring
fmri sequences on a wild type rat animal model and including both sexes.

The secondary objectives of the study are:

• Obj. 1Develop a functionalmagnetic resonance imagepreprocessing and analysis pipeline
for preclinical data including state-of-the-art analysis tools.

• Obj. 2 To identify the brain anatomical correlates of functional organization longitudi-
nally in a rat model of healthy ageing.

• Obj. 3 To interrogate significant effects of age on brain networks connectivity.

• Obj. 4 To understand functional brain differences between sexes because of ageing.
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4 Materials and methods

4.1 Animals
The analysed cohort was composed by female and male Wistar rats, exhamined at 210, 364 and
546 postnatal-days. Since not all rats completed the study and some images were removed due
to unsufficient quality, at the first timepoint the sample size was 7 females and 7male rats; at 364
days, 8 females and 8 males and on day 546, MRIs were acquired from 5 females and 4 males.

4.2 Data acquisition
MR images were acquired on a 7T (Tesla) small animal MRI scanner (Bruker, BioSpect 70/30).
Although the aim of this protocol involves functional images, anatomical and functional data
are needed.

For fMRI, an Echo planar Imaging (EPI) sequence (figure 9b)were acquiredwith a TE9 =15ms,
a TR10 = 2000 ms, Field of view (FOV) of 25×25 mm2, a matrix of 50x50, fifty-six slices covering
thewhole brainwith a FOVof 25×25mm2 and amatrix size of 50 x 50, in plane resolution 0.5×0.5
mm2, a slice thickness of 0.5 mm and a total of 600 volumes. Anatomical MRI data (figure 9a)
were acquired using a RARE sequencewith factor 8; amatrix size of 200 × 200 and fifty-six slices
that covered the whole rat brain with a plain resolution of 125 x 125 x 500 µm3 , a Field of view
(FOV) of 25×25 mm2, a TR=6253 ms and TE=11 ms and 4 averages.

(a) T2w MRI sequence.

(b) Echo planar Imaging (EPI) MRI sequence.

Figure 9: Anatomical and functional sequences acquired in the study. Sagittal (left), horizon-
tal (middle) and coronal (right) planes.

9Time to Echo (TE) is the time between the delivery of the RF pulse and the receipt of the echo signal.
10Repetition Rime (TR) is the time between successive pulse sequences applied to the same slice.
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4.3 Anesthetics
During the acquisition of the sequence in animals the use of anesthesia is required to pre-
vent movement and relieve stress on the animal. In this acquisition protocol isoflurane/O2 5%
(vol/vol) has been used for anesthesia induction. During the anatomical sequence acquisition
the anesthesia wasmaintained at 2% (vol/vol) and for rs-fMRI it was reduced to 1.5% (vol/vol).

4.4 Data preprocessing
To carry out the analysis of the RSNs, the procedure is divided into two main blocks: (I) Data
Preprocessing and (II) Brain Network Analysis. The first block details the (Data preparation,
Anatomical preprocessing and Functional preprocessing. This data processing is carried out
at the subject-levelwhile the second block, the BrainNetworkAnalysis, is a group-level analysis.
Most of the pre-processing has been carried out with the tools provided by FSL, AFNI, ANTs,
ITKSnap and the Nipype Python library. All the steps followed during the development are
described in detail and in order as follows. It is important to note that for an optimal processing
of the functional images, it is necessary to work previously with the structural MRI, which has
a higher spatial resolution.

Figure 10: Pipeline to preprocess and analyse fMRI data.

The following sections will describe in detail each of the steps followed in the processing and
analysis of the data.
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4.4.1 Data preparation

Step 1. Convert Raw data into Nifti format. The acquired images are in the Bruker software’s
native output format. Thus, the first step is to convert the rawdata intoNifti format. For that, the
Bruker-ParaVision MRI to Nifti format tool, Bru2Nii11, is used. Once the conversion was done,
the files were renamed and structured following the Brain Imaging Data Structure (BIDS)12
standard.

Step 2. Change of the resolution. The majority of MRI tools have been designed for humans
(e.g. FSL tools), therefore, the dimensions and orientations of the images are different. Since
we are working with rodent MRIs, it is necessary to increase them by a factor of 10 so that they
are comparable to human voxel size. Code 1 shows how to augment the resolution of a nifti
image using Python.

Listing 1: Python code to change the nifti image resolution.

1 img = nib.load(img)
2 header = img.header # get the header
3

4 # create a copy
5 qformcode = header[’qform_code’].copy()
6 sformcode = header[’sform_code’].copy()
7

8 # change the sform and the qform
9 # augmenting pixidm = will change the qform

10 header[’pixdim’][1:4] = header[’pixdim’][1:4] ∗ factor
11

12 # augmenting the affine = will change the sform
13 img.affine[0][0] = img.affine[0][0] ∗ factor
14 img.affine[2][1] = img.affine[2][1] ∗ factor
15 img.affine[1][2] = img.affine[1][2] ∗ factor
16

17 # create a new image using the matrix values, affine matrix & header
18 new_img = nib.Nifti1Image(values, img.affine, header)
19

20 nib.save(new_img, output_name) # save augmented image

Step 3. Modify the orientation. The orientation of the head when the animal is introduced
in the resonance is different from the reference orientation in humans and also the type of coil
used during the acquisition changes the resulting image. With the command:

fslswapdim < hdrfile > xyz < hdrfile_flip >

we reorient the image following the axis left-right, anterior-posterior and superior-inferior, ac-
cording to the standard. This command only rotates and flips the images on the three axes. The
parameters x,y and z represents the spatial coordinates from left to right, from front to back and
from bottom to top respectively13.

Another possible way to modify manually the orientation of the image according to the human
reference system is to access the header metadata. As the FSL program uses the sform matrix
to represent the image position and orientation in space, the image is reoriented by modifying
the matrix elements.

11https://github.com/neurolabusc/Bru2Nii
12https://bids.neuroimaging.io/
13https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Orientation%20Explained
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4.4.2 Anatomical preprocessing

Step 4. Bias field correction. During the acquisition of both anatomical and functional se-
quences, artifacts such as inhomogeneities in the field or themovement of the animal distort the
signal. To correct the low frequency intensity non-uniformities that appear during the acquisi-
tion of the sequence, a SimpleITK algorithm,N4BiasFieldCorrection, is applied to the anatomical
images. It uses a nonparametric approach to estimate and correct for field bias in MRI images.
The method is based on the assumption that signal inhomogeneity can be modeled as a smooth
multiplicative bias field. The tool uses local information from the image to estimate this bias
field and then applies it to correct the original image.

Step 5. Anatomical template creation. When all the images are in the correct dimensions and
orientations, we proceed to obtain an anatomical template of the set of subjects of the exper-
iment. The template is needed because with it, it is possible to obtain the brain extraction of
all the subjects of the study. Also, for the later Independent Component Analysis (ICA) of the
functional images, this template is used as a standard space for all of them.
For this purpose buildtemplateparallel.sh, an open source ANTs tool has been used. The obtained
outputs are the anatomical template and the Affine, Warp and InverseWarp files of each subject
individually. The Affine and Warp files are the result of a direct, linear and non-linear trans-
formation respectively, that is used to deform the image in moving space (native space) and
produce an output in fixed space (common space).

In another case in which an anatomical template is already available, each of the individual
anatomical images should be registered on it by the function antsRegistrationSyN.sh14 as follows,
for example.

antsRegistrationSyN.sh -d 3 -f fixedImg.nii -m movingImg.nii -o movingToFixed -t s

The algorithm implements a technique called "Synthetic Diffusive Registration" (SyN), which
is a nonlinear registration method based on deformation fields. It works by finding a non-rigid
transformation that maps a source image to a target image. To achieve this, the algorithm uses
a combination of similarity measures between the images and optimization methods to find the
optimal deformation parameters. The result of this algorithm returns the registered image, the
deformation field, the linear transformation and the registration metrics.

Step 6. Skullstripping. From the anatomical template, the mask of the brain is obtained, which
allows to segment the brain signal from the rest (figure 11). The FSL command bet is used for
this purpose. This is an example of how to use bet:

bet anat_template.nii.gz output_bet_mask -m

The result of this step is not precise enough and requires manual revision and correction of the
obtained mask but once the binary mask and the anatomical template are available, the brain
without skull is obtained using the command fslmaths as shown here:

fslmaths anat_template.nii -mul output_bet_mask.nii anat_template_brain

14https://github.com/ANTsX/ANTs/wiki/Forward-and-inverse-warps-for-warping-images,-pointsets-and-
Jacobians
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(a) Coronal slice of a T2w image. (b) Binary mask of the image a.

(c) Mask overlayed to the T2w image. (d) Resulting skullstripping (bet image).

Figure 11: Skullstripping of an anatomical T2w image. From a high-resolution anatomical
T2w image, a binary mask (b) containing only the signal coming from the brain is obtained.
From the multiplication of the binary mask with the T2w image (c) we obtain the image (d)
bet, without skull.

Since we already have the brain extracted from the template and also the required transforma-
tions of each of the subjects with respect to the common template (result of step 5), it is possible
to do the brain extraction of each of the subjects individually.

The function antsApplyTransforms is used on the mask of the template with the transformation
file Affine and InverseWarp of each of the subjects. Once the mask has been transformed to the
same space as the anatomical image (native space).

antsApplyTransforms−d < dimensions > −i < input_image > −o < output_image > −t <
transformations >

This example shows how to apply the mask transformations of the common space template on
the anatomical image of a subject to its native space with the previously obtained files.

antsApplyTransforms −d < 3 > −i < template_mask > −r < native_anat > −o <
native_anat_mask > −t < native_Affine > −t < native_InverseWarp >
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Summary of anatomical preprocessing

In this step it has been obtained: the anatomical template (common space) of the set of subjects,
the binary mask of this one and this same template without skull, only with brain signal. With
this also, each of the T2w images of each subject (native space) of the study without skull and
with the bias field correction applied.

4.4.3 Functional preprocessing

Functional MRIs follow a set of corrections to improve the signal and the subsequent identifi-
cation and interpretation of components at both, individual and group level.

Step 7. Functional skullstripping. The objective is to work onlywith the functional signal com-
ing from the brain. For this purpose, the skullstripping of each of the volumes is performed. For
that, an average volume is selected (in this case the images contain 600 volumes, so a volume
around 300 is selected), used to extract the skull and also, as a reference in the Mcflirt method
(Step 8. Head-motion correction at 4.4.3). This average volume is used to register the functional
image to the anatomical one and thus work in the same space following the pipeline showed in
figure 12. Once the registration is done and the transformation files are obtained, the transfor-
mation is applied to the rest of the volumes and the bet image is obtained in each of the native
spaces.

Step 8. Head-motion estimation. Motion correction is performed using the Motion Correction
using FMRIB’s Linear Image Registration Tool (MCFLIRT) method of FSL. The tool loads the
complete time series and uses the previously selected intermediate reference volume as the ini-
tial image for the template.
MCFLIRT performs successive searches and optimizations with different resolutions and toler-
ances to find the most accurate motion parameters. It also uses trilinear interpolation and an
initial transformation assumption to improve the efficiency and quality of motion correction. In
the initial low-resolution search, MCFLIRT assumes that there is no significant motion between
the intermediate volume and the adjacent volume, and performs a fast search to obtain an initial
estimate of the motion parameters.
The cost function in MCFLIRT is a measure used to evaluate the alignment of the images dur-
ing the process of searching and optimizing themotion parameters. The cost function quantifies
how well one image matches another in terms of similarity or discrepancy between the image
data. The cost function used is the normalized correlation (’normcorr’). It is calculated using
the normalized covariance of the pixel intensities. This measure takes into account the mean
and standard deviation of the pixel intensities in both images, which allows a more robust com-
parison of the images. It is a popular choice in MCFLIRT due to its ability to handle intensity
variations between images and its robustness in different motion correction scenarios.[29]

mcflirt −in < inputImg > −out < outputmcf > − < refvol >< examplefunc >
−plots−mats− report;

Step 9. Spatial filtering To improve the signal to noise ratio, the FWHM (full width at half
maximum) filtering method is applied. This spatial filtering method works as a convolution to
smooth the signal. The kernel size is defined in terms of the width of the smoothing window.
This value specifies the width of the Gaussian bell at half its maximum height. Several studies
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Figure 12: Description of registrationmethods used to align data from different subjects into
the same space. (a) Images are obtained in distinct "spaces," highlighting a two-stage registra-
tion process. (b) In the initial stage of registration, the focus is on estimating the necessary
transformations, which can take the form of linear matrices or non-linear warp images. (c) The
second step of registration involves applying the transformation in order to resample an image
into a different space. Through this process, The transformations can be combined and applied,
thereby enabling the resampling of EPI functional data into a standardized space. Image ob-
tained from [30]

differ on what is the correct size and value of kernel to use. Some recommend twice the pixel
size while others are more conservative. The final choice is subjective and is based on the level
of detail you want to maintain. A higher FWHM value results in stronger smoothing, while a
lower value results in softer smoothing. For fmri studies where the specificity of connectivity
is to be maintained, a kernel size not too large or close to the voxel size is chosen. A commonly
used value for FWHM in rs-fMRI with a voxel size of 5x5x5 mm is about 6 mm which implies
that the width of the Gaussian bell usedwill be about 6mm at half its maximum height [31, 32].
There are also other studies such as Zilu et al.[33] where it is recommended to use twice the
voxel size.
The way to apply this filtering has been by applying the AFNI blurfwhm method and trying
different kernel sizes e.g. [6, 6, 6], [8, 8, 8], [10, 10, 10]. Each of the values refers to each
dimension (x, y, z).

Step 10. Intensity normalization. Intensity normalization is performed to ensure that different
fMRI images are comparable and on a consistent scale. Normalizing intensity involves scaling
all fMRI images so that they have a common mean intensity and standard deviation. This is
accomplished by adjusting the pixel intensities of each fMRI image to correspond to a reference
scale.
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The global intensity normalization is obtained by multiplying the signal by the scaling value.
First the average intensity is calculated with the function fsl.ImageStats() and then it is scaled.

Step 11. High-pass filter Since there is no expected model of the signal, only drifts of frequen-
cies lower than 0.01Hz are eliminated since the resting state signal oscillates between 0.01-0.1
Hz. When applying the filter, the cut-off frequency must be taken into account according to the
TR:

Cutting_freq = 1(2 ∗ TR)

Step 12. Melodic. Multivariate Exploratory LinearOptimizedDecomposition into Independent
Components (MELODIC) is an FSL tool that is used at both, single-subject and group level to
decompose the fMRI signal into time-courses and spatial maps using Probabilistic ICA (PICA).
It allows to classify and discard those noise components out of true neuronal signal.

Figure 13: Analysis steps involved in estimating the PICA model. Image obtained from [34]

The classical ICA is a multivariate approach that analyses all voxels at once assuming that brain
areas responsible for a particular task are independently distributed from brain areas respond-
ing to other sources of variability. In classical ICA there is no variable that accounts for noise
so that can lead to overfitting compared to Probabilistic ICA (PICA). PICA assumes that the
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fMRI time series are generated from a set of fewer sources than observations in time statistically
independent non-Gaussian sources (spatial maps) via a linear and instantaneous mixing pro-
cess corrupted by additive Gaussian noise. First, the data is adjusted to have a uniform variance
on a voxelwise basis and a covariancematrix is calculated. Probabilistic PCA (PPCA) is utilized
to estimate the noise as well as a collection of orthogonal (uncorrelated) spatially whitened ob-
servations. This method also allows for the determination of the ICs’ dimensionality, although
it can sometimes be set by the user. The noise covariance structure can be estimated from the
residuals to temporally pre-whiten and re-standardize the data [35]. By applying PPCA to the
spatially whitened observations, individual component maps are generated using a modified
fixed-point iteration technique called FastICA[36]. This optimization process aims to maximize
negative entropy in order to identify non-Gaussian sources. Subsequently, thesemaps are trans-
formed into Z-scores, which are influenced by the amount of variability explained by the entire
decomposition at each voxel, relative to the residual noise. In other words, they represent the
extent to which the signal explained within this model fits the data. Lastly, Gaussian or Gamma
mixture models are fitted to the individual Z-maps to determine spatial locations that exhibit
significant modulation by the associated timecourse (figure 13).

The purpose is to run a single-subject analysis to clean data by removing components related
to noise(e.g. motion, physiological noise).The tool receives as input a preprocessed 4D rs-fMRI
image and the number of components. In this case, taking as reference the resting state networks
shown in figure 8, it has been specified 15, 20 and 25 components. It is also important to take
into account the number of components of the ICA. With larger dimensions, the signal may be
segmented into several components, while with a very low number of dimensions, noise and
signal may be mixed in the same component.

Step 13. Noise classification and removal The labeling and classification of the components is
done manually. As explained in Griffanti et al.[37], special attention should be paid for each
component to 1. the spatial maps, 2. the time course and 3. the power spectrum of the time
course to identify which components are signal and which are noise. An example of the classi-
fication of noise components is shown in figure 14 and in figure 15, signal.

After classification, the noise components are removed by using the fsl_regfilt command. It is a
tool that allows the elimination of confounding variables or artifacts from functional time series
data using a design matrix and linear regression.

fsl_regfilt −i < filtered_data > −d < melodic_mix > −o < output_clean > −f < 1, 2, 3 >

The command expects the preprocessed functional image (-i), the file containing the matrix of
temporal mixtures of the identified principal components (melodic_mix) and the components
classified as noise (-f ).

The last step is to register all the fMRI images to a common space, in this case, to the anatomical
template created from all the study subjects, and then proceed to the analysis.

Summary of functional preprocessing

To summarize, the most important steps followed in the preprocessing of fmri images have
been: spatial filtering, temporal filtering, intensity normalization and removal of artifacts (e.g.
motion) by component extraction. Now the fmri images are preprocessed, in a common space
and ready to perform any kind of analysis.
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(a) Coronal view of an spatial map of a noise component overlapping into a T2w image.

(b) Time course of a noise component. X-axis, fMRI volumes (one per TR) and Y-axis, the
demeaned signal intensity.

(c) Power spectrum representation of the noise component.

Figure 14: Example of a noise component of a single-subject ICA.
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(a) Coronal view of an spatial map of a signal component overlapping into a T2w image.

(b) Time course of a signal component. X-axis, fMRI volumes (one per TR) and Y-axis, the
demeaned signal intensity.

(c) Power spectrum representation of a signal component.

Figure 15: Example of a signal component of a single-subject ICA.
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4.5 Independent Component Analysis
While the seed-based method provides a single connectivity measure for each pair of regions,
the ICA method provides three connectivity measures: total connectivity, connectivity within
networks, and connectivity between networks. As the target is to study and detect whole-brain
RSNs, we choose to use ICA [38].

4.5.1 Group ICA

To obtain the group RSNs a group ICA is performed (see code 2 adapted from the tool RABIES)
using themelodic tool of FSL (previously explained in step 12, chapter 4.4.3). After preprocess-
ing the images in a subjet-level and registering all of them to a common space they are merged
in the fourth dimension (e.g. using fslmerge -t output [list_files]where ’-t’ meansmerge volumes
in time).

Themelodic command expects as input the ICA decomposition dimensionality, the 4D concate-
nated volumes, the TR in seconds and the output directory. It returns a 4D image,melodic_IC.nii,
where each volume corresponds to an independent component.

Different dimensions are tested to extract components, from 20 to 75. The higher the dimen-
sionality, the more segregated the results, whereas, if the dimensions are very low, networks
may overlap.

Listing 2: Code in Python to run group ICA.

1def run_group_ICA(bold_file_list, mask_file, dim, random_seed):
2 file_path = os.path.abspath(’filelist.txt’)
3 merged = flatten_list(list(bold_file_list))
4 df = pd.DataFrame(data=merged)
5 df.to_csv(file_path, header=False, sep=’,’, index=False)
6

7 out_dir = os.path.abspath(’group_melodic.ica’)
8 command = f’melodic -i {file\_path} -m {mask_file} -o {out_dir} -d {dim} --report --seed={str(←↩

↪→ random_seed)}’
9 rc = run_command(command)

10 IC_file = out_dir+’/melodic_IC.nii.gz’
11 return out_dir, IC_file

4.5.2 Dual regression

Dual regression is used to investigate functional connectivity networks in the brain from an indi-
vidual point of view to examine group differences. It is divided into twomain stages (figure 16:
the first stage is the spatial decomposition and the second stage is the temporal decomposition.

Stage 1. Subject-specific time courses are calculated from the groupICA spatial maps. Here,
the IC maps obtained in the previous stage are used as templates or regressors to determine
the contribution of each component to each voxel over time. A linear regression is performed
on each voxel to estimate the time series corresponding to each IC. The output is a .txt file per
subject, each containing columns of time series, one per group-ICA component.[39]

Stage 2. Using the subject-specific time courses output of the step 1, the subject-specific spatial
maps are calculated conducting a multivariate temporal regression.
At this stage, the spatial betamaps as a 4D image file per subject (dr_stage2_subject[#SUB].nii.gz)
and the Z-stat version (dr_stage2_subject[#SUB]_Z.nii.gz) are obtained. This beta spatial maps
represents the strength and direction of the relationship between the independent variable and
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brain activity in each voxel, while Z maps indicate the statistical significance of these effects in
terms of the standard deviation of the population mean.[39]

Figure 16: General dual regression workflow. Figure obtained from [39]

4.5.3 Statistical analysis

With the FSL tool it is possible to perform various statistical analyses using Generalized Linear
Model (GLM). GLM15 is used to model the relationship between a set of independent variables
(predictors) and a dependent variable. In fMRI it is used to investigate relationships between
imaging signals and variables of interest, such as experimental conditions, clinical covariates
or measures of brain connectivity. Statistical analyses grouping data by sex or age condition
are included in a second-level type of analysis. The GLM adjusts the data to assess common
differences or effects at the group level.

Using the subject-specific spatial betamaps estimated in stage 2 of the dual regression, a between-
subjects analysis is performed to calculate the differences in FC between the different indepen-
dent components by analyzing the correlation or covariance between their time series.

Depending on the question to be studied, a group-level design has to be designed to make
comparisons. In this case, we want to determine whether:

1. There are group differences according to sex. In this analysis all the subjects of the study,
n=38, are added, of which there are 21 females and 17 males. This corresponds to a two-
group unpaired analysis where the two sex groups are contrasted and the age of the sub-
ject is added as a covariate. The configuration of the model according to the Glm tool is
the one showed in figure 17a.

15GLM https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/GLM
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(a) Two-Group Difference Adjusted for Covariate (b) Two-Group Difference

Figure 17: Representation of the model configuration through the graphic interface of Glm.
a) Two-Group Difference Adjusted for Covariate model. The two-group contrast (G1 and G2)
is defined and a third contrast with a covariate is added. b) Two-Group Difference. Contrast of
two-group (G1 and G2).

2. There were differences between two age groups regardless of sex. In this analysis, the
effect of age is contrasted between two points. First, the effect on the two extreme times
(P210 vs. P546) and then, the evolution studying the intermediate steps (P210 vs. P364
and P364 vs. P546). This analysis is a two-group difference analysis (figure 17b).

2nd Analysis
P210 P364 P546

P364 29 - 25
P546 22 29 -

Table 1: Data distribution for 2nd statistical analysis.

4.5.4 FSLNets - Inter-network connectivity

From the time series obtained in stage 1 of the dual regression it is possible to perform basic
network modeling with the FSL extension, FSLNets16. It allows the calculation of connectivity
measures, such as the functional correlation matrix and network connectivity matrices, as well
as the performance of modularity and connection density analyses. It is possible to explore the
organization of networks and how different brain regions interact with each other.

The tool needs the individual time series of each subject, the TR and the groupICA output file,
melodic_IC.nii (line 2 of code 3). In this way all the time series of all subjects and the time spectra
of the RSNs are loaded.

To obtain the networkmatrix, or netmap, for each subject, the correlations between pairs of time
series are calculated (lines 8-9 of code 3). In addition, the group average network matrix is also

16https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets
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extracted (lines 12-13 of code 3). This command stores the simple average of netmats across all
subjects (Mnet) and the results of a simple one-group t-test (against zero) across subjects as
Z-values (Znet).

The nodes, RSNs, are grouped in a hierarchy based on their covariance structure to form larger
resting state networks (line 16 of code 3).

To finish, a comparison is made between groups as to whether the netmaps differ significantly
with a two-sample t-test (line 19 code 3). This is a ’univariate’ test, as you test each edge of
the network matrix separately for a group-difference, and then estimate p-values for these tests,
correcting for multiple comparisons across all edges. The design files (design.con/mat) are the
same as those used in the previous analyses (section 4.5.3) wherewe compared two age groups.

Listing 3: FSLNets Matlab code.

1 # Networks estimation
2 ts = nets_load(’groupICA25.dr’, 2, 2); # load timeseries from DR output
3

4 ts_spectra = nets_spectra(ts); # temporal spectra of RSNs
5 ts = nets_tsclean(ts,1); # cleaning components
6

7 # Calculating netmats for each subject
8 Fnetmats = nets_netmats(ts,1,’corr’);
9 Pnetmats = nets_netmats(ts,1,’ridgep’,0.1);

10

11 # Group−average netmat summaries
12 [Znet_F,Mnet_F]=nets_groupmean(Fnetmats,0);
13 [Znet_P,Mnet_P]=nets_groupmean(Pnetmats,1);
14

15 # Group average network hierarchy
16 nets_hierarchy(Znet_F,Znet_P,ts.DD,’groupICA100.sum’);
17

18 # Cross−subject comparison with netmats
19 [p_uncorr,p_corr]=nets_glm(Pnetmats,’design/unpaired_ttest_1con.mat’,’design/unpaired_ttest_1con.con’,1);
20 nets_edgepics(ts,’groupICA25.sum’,Znet_P,reshape(p_corr,ts.Nnodes,ts.Nnodes),1);
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5 Results

5.1 Resting State Networks
As mentioned in section 4.5.1, by applying the group-level ICA analysis, the following RSNs
have been identified as reported in figure 8, as identified in Grandjean, J. et al.[27]: hippocam-
pal, motor, somatosensory (mouth), somatosensory(bf), visual, parietal associative, restrosple-
nial, auditory, cingulate/prelimbic and cerebellum (figure 18).

Figure 18: Identified RSN by group ICA analysis.
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5.2 Group level differences
According to the subject-level statistical analysis versus the group RSN, the results for the dif-
ferent analyses are as follows:

1. Group differences according to sex.

The first statistical analysis (Two-Group Difference Adjusted for Covariate model) com-
pared, for each of the RSNs (components of the ICA) and all subjects, the betas across
sexes and treating age as a covariate. This analysis indicated that there were no signifi-
cant sex differences in the contribution to the group networks. Therefore, the following
analyses focused on assessing the contribution and changes as a function of age by pool-
ing together animals of both sexes. Without taking sex into account in the analysis, we
avoided losing statistical power to detect significant effects.

2. Group differences grouped by age.

In this analysis, Two-Group Difference model, the effect of age was compared for each of
the RSNs in 3 conditions: (I) P210 vs P546, (II) P210 vs P364 and (III) P364 vs P546.

The first analysis, which compares the time points P210 vs P546, is intended to study
whether or not there are changes in the FC of the RSNs between the two more extreme
conditions. Many of them show significant differences according to age, resulting in a
higher FC of the networks at age 546. Afterwards, we compared the changes of this FC
between the extreme points and the intermediate one to characterize the temporal evolu-
tion. Table 2 shows a summary of the results.

Age (days) IC1 IC2 IC3 IC4 IC5 IC6 IC7 IC8 IC9 IC11 IC13 IC14 IC16
(I) 210 vs 546 NS ↑ NS ↑ ↑ NS NS ↑ ↑ ↑ NS NS NS
(II) 210 vs 364 NS NS ↓ ↓ NS ↓ ↓ NS ↓ NS ↓ NS NS
(III) 364 vs 546 NS ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ NS NS NS

Table 2: Statistical FC analysis results. NS: Non statistically significant, ↑ : statistically signifi-
cant increase in FC with age and ↓ : statistically significant decrease in FC with age.

In general, the FC decays significantly in certain areas between 210 and 346 days. These
reductions afterwards, from 364 to 546, undergo the opposite effect and the FC increases
significantly.

Figures 19 to 22 show the maps with the most significant areas of change for the different
networks and analyses. To represent and interpret the output statistical contrast maps we
display the values comprised between 0.95 and 1 (corresponding to 1 - p value).

5.3 Inter-network connectivity
As described in section 4.5.4, by analyzing the frequency spectrum, it is possible to differentiate
between CIs related to noise and those related to RSNs. For a proper interpretation of an RSN,
the frequency spectra should fall off smoothly as the frequency increases as shown in figure 23.

By analyzing FC between networks taking into account the correlation between them, the effect
of age on connectivity is tested. In this way, networks are grouped according to their covariance
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and how functionally connected they are. In figure 24 it can be seen how the groups of networks
are maintained over the time, identifying four main groups:

1. Motor(2), Somatosensorial(mouth)(3), Somatosensorial(bf)(4) andParietal associative(6).

2. Visual (5) and Auditive (8 - 9)

3. Cingulate (10) and Retrosplenial (7 - 11)

4. Hipoccampal (1) and Cerebellum (12 - 13)

These clusters depict the strong positive connectivity forming larger networks. Dark red squares
indicate strong positive correlations, light green indicates a correlation close to 0 and dark blue
represents a strong negative correlation. Full correlations between pairs of networks are shown
below the diagonal line (in gray), while partial correlations are shown above the diagonal line.
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(a) Motor RSN (364 vs 546) (b) Mean FC difference between 364 and 546 days in motor RSN.

(c) Visual RSN (364 vs 546) (d) Mean FC difference between 364 and 546 days in visual RSN.

(e) Auditory RSN (364 vs 546) (f) Mean FC difference between 364 and 546 days in auditory RSN.

Figure 19: Statistically significant difference in FC between two age points in a) Motor, c)
Visual and d) Auditory RSNs. Representation of mean fc values per subject in the areas of
significant change contrasting 364 and 546 days (subfigures b, d and f). Blue dots represents
males and red female subjects. Box and whiskers represents the 25-75% of the values and the
scores outside the middle 50% respectively. T-test, * p<0.05, ** p<0.01 and *** p<0.001.
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(a) Somatosensory (bf) RSN (210 vs 364) (b) Somatosensory (bf) RSN (364 vs 546)

(c) Mean FC difference between 210 and 364 days
in somatosensory (bf) RSN

(d) Mean FC difference between 364 and 546 days
in somatosensory (bf) RSN

(e) Somatosensory (mouth) RSN (210 vs 364) (f) Somatosensory (mouth) RSN (364 vs 546)

(g) Mean FC difference between 210 and 364 days
in somatosensory (mouth) RSN.

(h) Mean FC difference between 364 and 546 days
in somatosensory (mouth) RSN.

Figure 20: Statistically significant difference in FC between two age points in a) and b) So-
matosensory (bf) and e) and f) Somatosensory (mouth) RSNs. In green, a) and e) and b)
and f) represents the areas of significant change in FC contrasting 210-364 and 364-546 days
respectively. Representation of mean FC values per subject in the areas of significant change
contrasting, c) and g) 210 and 364, and in d) and h) 364 and 546 days. Blue dots represents
males and red female subjects. Box and whiskers represents the 25-75% of the values and the
scores outside the middle 50% respectively. T-test, * p<0.05, ** p<0.01 and *** p<0.001.
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(a) Parietal associative RSN (210 vs 364) (b) Parietal associative RSN (364 vs 546)

(c) Mean FC difference between 210 and 364 days
in parietal associative RSN

(d) Mean FC difference between 364 and 546 days
in parietal associative RSN

(e) Retrosplenial RSN (210 vs 364) (f) Retrosplenial RSN (364 vs 546)

(g) Mean FC difference between 210 and 364 days
in retrosplenial RSN

(h) Mean FC difference between 364 and 546 days
in retrosplenial RSN

Figure 21: Statistically significant difference in FC between two age points in a) and b) Pari-
etal associative and e) and f) Retrosplenial RSNs. In green, a) and e) represents the areas of
significant change in fc contrasting 210-364 and b) and f) 364-546 days respectively. Represen-
tation of mean fc values per subject in the areas of significant change contrasting, c) and g) 210
and 364, and in d) and h) 364 and 546 days. Blue dots represents males and red female subjects.
Box and whiskers represents the 25-75% of the values and the scores outside the middle 50%
respectively. T-test, * p<0.05, ** p<0.01 and *** p<0.001.
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(a) Auditory RSN (210 vs 364) (b) Auditory RSN (364 vs 546)

(c) Mean FC difference between 210 and 364 days
in auditory RSN

(d) Mean FC difference between 364 and 546 days
in auditory RSN

(e) Retrosplenial (part) RSN (210 vs 546) (f) Cingulate/Prelimbic RSN (364 vs 546)

(g) Mean FC difference between 210 and 364 days
in retrosplenial RSN

(h) Mean FC difference between 364 and 546 days
in cingulate/prelimbic RSN

Figure 22: Statistically significant difference in FC between two age points in a) and b) Au-
ditory and e) and f) Cingulate/Prelimbic RSN. In green, a) and e) represents the areas of
significant change in fc contrasting 210-364 and b) and f) 364-546 days respectively. Represen-
tation of mean FC values per subject in the areas of significant change contrasting, c) and g) 210
and 364, and in d) and h) 364 and 546 days. Blue dots represents males and red female subjects.
Box and whiskers represents the 25-75% of the values and the scores outside the middle 50%
respectively. T-test, * p<0.05, ** p<0.01 and *** p<0.001.
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Figure 23: Nodes frequency spectra. Colored, group averaged frequency spectra of individual
nodes (group independent components). In light gray line, average across all nodes.
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Figure 24: Group average network hierarchy. Clustering tree of RSN group nodes based on
covariance for A) P210-364 and B) P364-546 groups. Full correlations are shown below the
diagonal line with partial correlations shown above the diagonal line.
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6 Discussion
With aging our brain undergoes structural and functional changes which, late in life, translate
into cognitive deficits such as reduction of processing speed, long-term memory and other al-
terations, as discussed in the section 2.2. MRI in rodents is a unique tool to characterize brain
changes longitudinally, due to its non-invasiveness, versatility and to the limited lifespan of
rodents. As such, we report here preliminary results of an fMRI experiment aiming at charac-
terizing functional connectivity at different ages and for animals of both sexes.

A large number of longitudinal aging studies, both in animal models and humans, focus on the
study of functional connectivity using seed-based analysis [40, 41, 42]. The use of these analyses
allows studying functional connectivity with respect to specific brain areas selected a priori. In
contrast, in our analysis, we identify patterns of brain activity in a data-driven fashion. Unlike
seed-based analysis, ICA automatically identifies components that explain the majority of vari-
ability in fMRI data. This has the advantage of identifying intrinsic functional brain networks,
including those that may not have been previously known or considered relevant. Additionally,
the bold signal during evoked activity [43] or task-dependent activity [44] is expected to have
a more temporally defined and localized form compared to the bold signal during resting state,
where the brain exhibits spontaneous but organized activity patterns. Since the objective is to
understand the patterns of functional connectivity in aging with a global perspective, we chose
an unbiased approach.

The first result of the study is that our framework is capable of capturing the evolution of func-
tional connectivity from adulthood to early senescence. In fact, our data include animals from
210 days, the stage at which brain maturation is completed and the rats are considered adult
(the equivalent of about 18 years old in humans) to 546 days, when rats are already undergoing
senescence (corresponding to about 45-50 years old for humans [45]). Despite some inevitable
differences, rats and humans share several key aspects of their functional connectivity during
resting state. In fact, several networks are present in both species (e.g. the default mode net-
workmentioned in section 2.1.3), attend to similar functions and present comparable behaviour
in terms of inter-networks connectivity. All this justify the use of rodents as a good model to
investigate changes in functional connectivity between networks happening with age.

Our data show that the hierarchy between networks, measured as similarity in their connectiv-
ity, remains mostly unaltered over time (figure 24). Visual and auditory networks on one side,
and motor and somatosensory networks on the other, are strongly related as can be seen in
(figure 24). The functional communication between these regions is important for performing
cognitive processes by integrating information from different regions[46]. Another important
connectivity hub that emerged from our data is the retrosplenial and visual networks (5 and 7
columns in figure 24). Several studies such as Ash, J. A. et al. [47] in the rodent model showed a
positive FCmaintained in retrosplenial network. In contrast, (figures 21f and 21h) show that the
FC increases significantly with age. This network is responsible for the integration of sensory,
motor and visual information and is related to the changes obtained in other networks[48].

Certain areas of the brain increase their functional connectivity significantly as a compensatory
mechanism for aging-reared microstructural alterations. As mentioned in previous researchs,
due to the deterioration of brain microstructure, a higher activation can become necessary to
maintain certain functions[49, 15]. According to our data, the somatosensory, retrosplenial and
auditory RSNs reduce their functional connectivity in different areas between 210 and 364, but
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increase their functional connectivity between 364 and 546 (figures 20, 21 and 22). Visual and
sensory functions in humans get worse with age, causing mobility impairments. These changes
can be underlying the increase in connectivity of the motor network (figure 19a). This effect in
humans has been explained with the The Scaffolding Theory of Aging and Cognition compen-
sation theory. This theory focuses on a generalized increase in frontal activation with age as
a marker of an adaptive brain involved in compensatory scaffolding in response to challenges
posed by declining neural structures and function [15]. The same pattern of compensation is
also evident in the auditory network [50], as seen in the figure 19e.

In our data, the FC increases significantly in the motor network. With ageing, there is a well
known impaired motor ability. Human literature reported both increase [51] and decrease [52]
in the motor FC network. In line with the hypothesis of adaptative remodeling, task-fMRI ex-
periments have shown evidence that older subjects recruit a wider network of brain regions
during the performance of various motor tasks in an attempt to maintain parity of performance
levels with their younger counterparts [51].

Analyzing the sex effect in the differences in functional connectivity does not show signifi-
cant impact of sex in any of the localized RSNs. Indeed, the literature reports sex differences
where, for example, female middle-age rats, outperformmales on a temporal episodic memory
task[53]. However, when looking at FC changes, Febo, Marcelo, et al.[54] and others [55, 56]
foundno sex-dependent changes. One of the possible causes for the lack of significant sex effects
may be relatively low sample size; further studies are needed to clarify this point.

Another important factor to take into account is individual variability. Some animals show
more pronounced changes compared to others in the same network and age group (see figure
22h). The mean values of change are quite different between subjects. It would be interesting to
relate this inter-individual variability to individual performance in behavioural tasks, and also
to other characteristics like grey and white matter integrity. Similar interindividual variability
is also observed in humans, where a portion of the individuals have preserved memory and
function even at late stages of life.

An important factor is the dimensionality of the group ICA because its correct choice is crucial
to identify and interpret the RSNs found (figure 18). Selecting a dimension too big would
result in fragmenting a RSN into several unidentified components; on the other hand, selecting
a dimension too small would result in merging different RSNs and even noise. Here, the chosen
dimension allowed to obtain RSNs comparable to those proposed in a recent consensus paper
[27].

The interpretation of the results is also conditioned by the number of total observations studied.
The number of animals was limited and the groups, both by age and sex, were not balanced.
This is due to the fact that it is very difficult to carry out a longitudinal study where the same
number of animals as at the beginning is maintained over time, due to different mortality rates
across sexes and other factors.

The data acquisition and processing part is also a key part and influences the analysis and re-
sults directly. A recent consensus paper reported shared guidelines and suggestions on data
acquisition and processing [27], which were followed in the present work. Another factor to
note that directly affects the BOLD signal andmust be taken into account in animal model fMRI
studies is the choice of anesthetic. Previous studies uncovered the negative effect of the anaes-
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thesia used on the BOLD signal, since it acts as a vasodilator, and the importance of keeping the
animal within physiological limits for reliable data and interpretation [57, 32]. To this end, we
followed the pipeline proposed in Grandjean, J. et al.[27].

Data preparation is an important step before processing begins and many intermediate pre-
processing steps, such as labeling melodic components, are performed manually and can lead
to incorrect data cleaning or misinterpretation. Also certain filtering parameters such as the
spatial filtering kernel size (FWHM) are manually selected. A size of 6 mm has been chosen,
although different larger dimensions have been tested and applying a larger size did not allow
the identification of such localized networks. These values will depend on the study objective,
but an incorrect choice can also lead to poor data cleaning. In this study, consistent RSNs have
been found as reported in Grandjean, J. et al.[27].
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7 Conclusions and future work
To conclude, we have reported a region-specific increase in functional connectivity in the ageing
rat brain. Animal model is crucial for clinical applicability and translation to humans. Animal
models make possible the longitudinal tracking of the subjects providing a richer information,
difficult to obtain in clinical studies. In addition, since humans face a series of restrictions in time
or certain healthy conditions, only animal model allows the optimization of sequences and re-
search in advanced techniques in a preclinical environment. Its capability to extract information
in a non-invasive manner makes magnetic resonance imaging an optimal tool for clinics.

As future steps, we plan to complement functional analysis with structural imaging or other
metrics such as blood or histological parameters. Another study possibility is to combine the
acquisition of sequences with behavioral and memory tests. Importantly, the results of this
study will be presented as a poster at the next annual international congress ISMRM Iberian
Chapter 2023.
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8 Budget
1. Personnel costs

This project has been carried out in collaboration with the Instituto de Neurociencias de
Alicante, UMH-CSIC. The development of the project started in January 2023 and ended in
June 2023, with a total of 880 hours, spread over 22 weeks, at a cost of 15 eur/h, amounting
to a total of 13.200 eur/person.

A team of people is involved in the development of the project: the project manager, the
MRI technician and the animal facility technician. The costs associated with these are not
taken into account individually and are included in the costs associated with theMRI and
the animal facility.

The meetings on the evolution of the project with the supervisors from UPC and CSIC
have been a total of approximately 10 hours each. Taking into account that the salary of
these two people is 40 eur/h, it amounts to a total of 800 eur.

2. License costs
In the development of the project, open access software tools have been used (such as FSL
or ANTs) and tools that have had 0 cost because they have a student license granted by
the university, as is the case of Matlab.

3. Material costs

(a) Animals: The price of a Wistar rat is 18.50 eur/animal. The associated cost with the
animal service, maintenance and care is 1.54 eur/week. The purchase and acquisition
of the sequences began approximately 90 weeks ago with the purchase of 40 rats
(total of 740 eur). If only the maintenance of the animals used in this study is taken
into account, the total cost is 2339 eur.

(b) MRI facility. The acquisition of the MRI sequences includes the cost of the equip-
ment, licenses and the technical staff involved. The acquisition costs 31 eur/h and an
additional 10 eur/h for anesthetized animals. If there are a total of 38 sequences, of
approximately 2 hours each, all of them under anesthesia, the total cost is 3116 eur.

(c) Equipment. The project has been carried out using a computer with the following
characteristics and price:

i. PROCESSOR INTEL CORE i5-13600KF, 3.4GHZ, 24MB 285,2 eur

ii. Power Supply 750W 156,50 eur

iii. Tower box 45,37 eur

iv. Intel Asus PRIME B660M-K D4 board 100,70 eur

v. RAM DRAMMemory 32GB 3200Mhz 79,80 eur

vi. Cooler AM2/AM3 66,90 eur

vii. Hard disk 1TB SSD 110,60 eur
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The total cost of the computer with IVA is 845,07 + 21% = 1.022,50 eur. Based on
the duration of the project, the cost is estimated in proportion to the total cost of the
project: 170.50 eur.

8.1 Total associated costs
Taking into account the project development time, materials and equipment involved, the total
cost of the project is 10000 eur. Table 3 shows a detail of total expenses.
These costs may vary depending on the type of animals to be used, the type of sequence to be
acquired, the computer to be used and thus the time it takes to carry out the processing and
analysis of the fMRI data.

Cost summary
Personnel 13.200 eur 800 eur -
License Free - -
Materials Computer Animals Facility

170,50 eur 2.339 eur 3.116
Total 19625,50 eur

Table 3: Summary of project costs.
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9 Project management
The Gantt diagram below illustrates the organisation that was followed on this project.

Figure 25: Gantt diagram of the project
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10 Environmental impact analysis
This section evaluates the environmental impact of the development of this project.

The acquisition of images involves theMRI equipment and all the necessary additional software
and hardware (coils, computers, anesthesia system, etc). The power consumption and heat
dissipation is≈ 7.5kW plus≈ 7 kW from the high power gradient amplifier. It is estimated that
an average of 27.4 kWh is used during the sequence. This equipment was not purchased for
the development of this project so its manufacturing impact will not be taken into account. In
addition, a number of contaminated wastes are generated and have to be processed after use
(needles, syringes, packaging, gauze, reagents, etc).
The use of isoflurane in combination withO2 as an anesthetic and its release must also be taken
into account. The use of anesthetic gases has a direct impact on greenhouse gas emissions and
constitutes a high percentage of global emissions.

The maintenance of animals also has a large environmental impact but is necessary for their
welfare. They must be kept in a roomwith constant temperature and relative humidity control.
They must also follow light/dark cycles of 12 hours each. After completion of the study, the
animals must be incinerated, generating emissions of various gases into the atmosphere.

The computer used to preprocess and analyze the data consumes between 200-230W at maxi-
mum power.

During the development of the project, the way to get to work has always been walking, thus
reducing the emission of polluting fumes.
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