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Abstract

Ductal carcinoma in situ and invasive carcinoma represent 90% of breast cancers. The
former is controllable, and nearly all patients at this stage can be cured, while the latter is
significantly more severe due to infiltration.

The objective of this study is to train a model capable of distinguishing between in situ
and invasive cases using sub-images extracted from Whole Slide Images stained with H&E.
To achieve this, we propose fine-tuning EfficientNet due to its high performance in similar
tasks. Additionally, in order to address the issue of limited data, we explore the application
of the SimCLR technique using the available data.

The results of this study demonstrate that SimCLR is not beneficial with the available
data. However, it is possible to achieve a well-performing classification model with an F1-
score above 0.85 only using the annotated data, with remarkable results when concatenating
each sub-image prediction as an entire Whole Slide Image.
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Resum

El carcinoma ductal in situ i el carcinoma invasiu representen el 90% dels càncers de mama.
El primer és controlable i gairebé tots els pacients en aquesta etapa poden curar-se, mentre
que el segon és significativament més greu a causa de la infiltració.

L’objectiu d’aquest estudi és entrenar un model capaç de distingir entre els casos in situ i
invasius utilitzant sub-imatges extretes d’imatges completes de talls (WSI) tenyits amb H&E.
Per aconseguir això, proposem entrenar en finetuning l’EfficientNet pel seu gran rendiment
en tasques similars. A més, per abordar el problema de les dades limitades, explorem
l’aplicació de la tècnica SimCLR utilitzant les dades disponibles.

Els resultats d’aquest estudi demostren que SimCLR no és beneficiós amb les dades
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disponibles. No obstant això, és possible obtenir un model de classificació amb un rendi-
ment destacat, amb una puntuació F1 superior a 0,85, utilitzant només les dades anotades.
A més, els resultats són notables en concatenar les prediccions de cada sub-imatge com
una imatge completa de tall (WSI).

Paraules clau

Càncer de mama, H&E, SimCLR, EfficientNet, classficació d’images

Resumen

El carcinoma ductal in situ y el carcinoma invasivo representan el 90% de los cánceres de
mama. El primero es controlable y casi todos los pacientes en esta etapa pueden curarse,
mientras que el segundo es significativamente más grave debido a la infiltración.

El objetivo de este estudio es entrenar un modelo capaz de distinguir entre los casos in
situ e invasivos utilizando subimágenes extraı́das de imágenes completas de cortes (WSI)
teñidos con H&E. Para lograr esto, proponemos entrenar en finetuning el EfficientNet por
su gran rendimiento en tareas similares. Además, para abordar el problema de los datos
limitados, exploramos la aplicación de la técnica SimCLR utilizando los datos disponibles.

Los resultados de este estudio demuestran que SimCLR no es beneficioso con los datos
disponibles. Sin embargo, es posible obtener un modelo de clasificación con un rendimiento
destacado, con un puntaje F1 superior a 0.85, utilizando solo los datos anotados. Además,
los resultados son notables al concatenar las predicciones de cada subimagen como una
imagen completa de corte (WSI).

Palabras clave

Cáncer de mama, H&E, SimCLR, EfficientNet, clasificacion de imágenes
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1. Introduction and state of the art

1.1 Breast cancer and its diagnosis

Breast cancer, as its name suggests, is characterized by the abnormal and excessive growth
of tissue originating in the breast. It is a condition where cells in the breast undergo uncon-
trolled proliferation, forming a lump or mass that can be felt or seen on imaging techniques
such as ultrasound.

According to recent reports to this work, breast cancer is the most common cancer
among women worldwide and second most common cancer overall. Specifically, it has an
estimated 2.26 million new cases during the year of 2020 for female breast cancer, followed
closely by lung cancer (2.21 million) and prostate cancers (1.41 million). At the same time,
it is also a leading type of cancer in terms of mortality in females [10].

Note that breast cancer is mainly present in female individuals. According to [14], “the
FMIRR [Female-to-Male Incidence Rate Ratio] of breast cancer is of 122”, meaning that the
female breast cancer incidence is 122 times higher than the one of male.

1.1.1 Detection, diagnosis and control

The most common sign of breast cancer is the presence of a new lump or a thickening in the
breast. To date of this work, the most common method for detecting breast cancer includes
mammography as mentioned in the review [2]. Mammography uses X-rays to create images
of the breast tissue. If an abnormal area is seen on a mammogram (image generated from
mammography), a biopsy is usually done to confirm or reject the presence of cancer.

It is worth noting that this work will primarily focus on the diagnosis process rather than
detection or control.

1.1.2 Hematoxylin and eosin staining

The small tissue samples from the biopsy might be then stained with different techniques in
order to assess several aspects of the sample and to guide the proper treatment decisions,
and later their efficiency will be then monitored with control tests.

In histology, the study of the microscopic anatomy of a tissue, staining these samples is
a standard procedure. In particular, hematoxylin and and eosin (from now, H&E) are the two
dyes commonly used for human tissue examination. Hematoxylin stains basophilic struc-
tures with purplish blue, such as cell nuclei, ribosomes or regions with rich RNA. Whereas,
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eosin stains the eosinophilic structures to pink, such as extracellular matrix and cytoplasm
[5]. At Figure 1 there is a example of hematoxylin, eosin and the merge of both (which is
usually how it is visualized) of the same region.

Figure 1: From left to right, tissue stained with hematoxylin, eosin, and the merge of both (H&E);
images of around 200 µm × 200 µm.

1.1.3 Ductal Carcinoma In Situ and Invasive Breast Cancer

There are different cases of breast cancer, and nearly 20% of them are Ductal Carcinoma
In Situ (DCIS; for convenience, also referred as in situ cases in this work) [30], and nearly
all woman in this stage can be cured [22]. According to S. Tomlinson-Hansen, M. Khan and
S. Cassarro [27]:

Ductal carcinoma in situ (DCIS), also referred to as intraductal carcinoma, is a
non-invasive breast cancer characterized by a proliferation of abnormal epithelial
cells confined within the basement membrane. Disruption of the basement mem-
brane layer would change the diagnosis from DCIS to invasive breast cancer.

Also according to the World Health Organization, it is an inherent but not necessarily
obligate tendency to invasive breast cancer [25].

Some terminologies to take into account here are “ductal” and “carcinoma”. Ductal can-
cer refers to cancer that starts from ducts: small canals that come out from the lobules
(glands that make breast milk) and carry the milk to the nipple. Carcinoma are tumors that
start in the epithelial cells that line organs and tissues throughout the body. The difference
between cancer and tumor is the following: cancer is the name for the disease; tumor is the
mass of cells that is presented in cancer.

6



When referring to invasive (or infiltrating) cases, these are cancers that have spread
into surrounding breast tissue, and this is the reason for them to be more challenging to
treat compared to in situ cases. Invasive cases makes up about 75% of all breast cancers
[22], and the treatment mainly depends on the severity of the actual case (the stage of the
cancer), but most cases will have some type of surgery.

Figure 2 shows an example for in situ, invasive, and a regions that are not in situ neither
invasive. These regions come from the annotation from pathologists (see section Dataset).

Figure 2: From left to right, example of “in situ” (annotated part), “invasive” and “other”; images
of around 200 µm × 200 µm.

1.2 Whole Slide Images

In the context of technological advancements, assessing sample tissues from the optical
microscopy presents disadvantages in terms of accessibility and time efficiency. Whole
“virtual microscopy” employs Whole Slide Images (from now, WSI), with the simple idea of
scanning the conventional glass slides, is very relevant among pathologists for diagnosis
[15].

The technique requires a specific high-resolution scanner to digitize glass slides, gener-
ating a large representative digital image. Then, using specialized software or programming
language libraries, these images are visualized in a monitor and be analyzed as conventional
images [15]. Obviously, it is necessary to take into account some differences in image format
and size, as WSI are images of very high resolution, typically higher than 0.2 µm × 0.2 µm
per pixel width and pixel height (as reference, human cells are usually of order 10 µm).

For convenience, the resulting images usually have continuous cuts of tissue in the same
image, as shown in Figure 19. With this, the pathologist can diagnose the case in a single
image.
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To date, the resolution of these resulting images can vary, and their quality is also not
stable as it depends on the specific slide. The resolution depends on the hardware and the
settings when scanning, the quality depends directly on the scanned slide (see Figure 3 and
section Dataset). If the tissue is not well stained or if there is any imperfection as folded cuts
of tissue or drops of liquid in the slide, the resulting image is obviously affected at the same
time by these flaws.

Figure 3: Metadata of two different WSI, using QuPath [4] version 0.4.1. under Windows 11.

The WSI aims to simulate the resulting image of inspecting the sample tissue using a
conventional light microscopy in a computer. It not only enables the possibility of review-
ing the tissue using a computer remotely, but also makes it possible to gain benefit from
computer-assisted analysis. These images can be analyzed using specialized image pro-
cessing techniques and support pathologists to diagnose quicker and more accurately.

1.3 State of the art

The great potential of these images and the information carried in them in it serves as com-
pelling motivation to explore algorithmic approaches for expeditiously extracting pertinent
insights. The ultimate reason for this is to improve patients’ quality of life and reduce mortal-
ity rate. Relevant insights include the number of specific cells, their relative or absolute size,
their density; and naturally, identifying the area of in situ and invasive cells to help defining
the grade of severity of carcinomas.

In the area of computer-assisted diagnosis, several implementations using sub-images
of WSI are present in early 2010, mainly with traditional machine learning techniques, such
as support vector machines, ensemble learning and k-nearest neighbor to solve specific
problems [9, 19, 21].

To date, using deep learning techniques to extract hidden patterns in data that are still
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not intuitive to humans is the main way to generalize the task. There are basically two dif-
ferent approaches for the identification of tumoral areas: semantic segmentation and image
classification. Due to the huge size of WSI, the idea is usually to extract sub-images with
a specific resolution and size from the entire image (sometimes with some additional data
or metadata) and solve a classification problem. In case that the classification problem is at
pixel level (i.e., decide the class of each pixel), then the model is said to be solving a seman-
tic segmentation problem. In case that the model decides the class of the overall sub-image,
it is then solving a (sub-)image classification problem.

Deep learning techniques, which employ neural networks, have gained significant promi-
nence in comparison with traditional machine learning techniques [7, 3, 11, 13, 28]. There
are already different deep learning techniques such as multi-resolution approaches or self-
attention techniques applied to solve their corresponding problem.

In the case of this work, it is important to mention the architecture of EfficientNet and
SimCLR.

1.3.1 EfficientNet

EfficientNet is a family of convolutional neural network models that have gained significant
attention for their impressive performance and computational efficiency. These models were
introduced in the paper EfficientNet: Rethinking Model Scaling for Convolutional Neural Net-
works in 2019 [24].

Figure 4: Model scaling of EfficientNet; source: [24].

The core concept behind EfficientNet is compound scaling, which uniformly scales all di-
mensions of the network - depth, width and resolution - with a fixed set of scaling coefficients
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(see Figure 4). These scaling coefficients are determined using a combination of empirical
evidence and a neural architecture search algorithm.

When the authors of EfficientNet were experimenting with various activation functions for
EfficientNet, they found that Swish performs better than other popular activation functions
like ReLU as it mitigates the issue of ReLU when some neurons become inactive and stop
learning. Note that swish activation is actually identity times sigmoid function, and when β

tends to infinity, it tends to be ReLU (see Figure 5).

x

y

(a) ReLU(x) = max(0, x)

x

y

(b) sigmoid(x) = 1
1+exp(−βx)

x

y

(c) swish(x) = x
1+exp(−βx)

Figure 5: Different activation functions; note that swish activation is actually identity times sigmoid,
and it is very similar to ReLU.

As mentioned before, EfficientNet is a family of models. Each of its members is com-
posed by several predefined modules. Depending on the number of modules repeated and
the number of layers, they are named from EfficientNet-b0 to EfficientNet-b7, eight different
models. The first one if the smallest, the most efficient and easiest to train in terms of hard-
ware requirements and number of parameters, its architecture is shown at Figure 6. The last
one is the largest and most accurate.

1.3.2 SimCLR

In many deep learning cases, the difficult part is to get enough annotations for the model
to train properly. When this is not possible due to time or economic constraints, pre-training
techniques allow the model to initialize to a reasonable state in order to train more easily.

The idea of SimCLR (a simple framework for contrastive learning of visual representa-
tions) is a self-supervised learning framework introduced in 2020 [6]. It is designed to face
the lack of data by learning powerful visual representations from unlabeled data.

The main objective of SimCLR is to maximize the agreement between differently aug-
mented views of the same sample while minimizing the agreement between views of different
samples. By training on a large amount of unlabeled data, SimCLR aims to learn general-
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Figure 6: EfficientNet-b0 architecture using Tensorboard; 11 MBConvBlocks are skipped due to
figure height.

izable and discriminative representations that can be transferred to downstream tasks such
as image classification. The pre-training framework is summarized in Figure 7.

For this, the loss functions proposed for SimCLR is Normalized Temperature-Scaled
Cross-Entropy Loss. Let the similarity function between two inputs be the normalized dot
product: sim(u, v) = u⊤v/||u|| ||v ||, then the mentioned loss for a positive pair examples (i , j)

is defined as

ℓi ,j = − log
exp(sim(zi , zj)/τ)∑2N

k=1,k ̸=j exp(sim(zi , zk)/τ)
,

where 2N is the total number of samples: when given a batch of size N , each input gener-
ates a pair of augmented inputs; the negative pairs are not generated explicitly, but given
a positive pair, the rest 2(N − 1) inputs are automatically considered as negative. The final
loss is computed using all positive pairs, even if reversed as (i , j) and (j , i).

Note that, due to the setting of the training, the pre-training step highly depends on the
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Figure 7: “A simple framework for contrastive learning of visual representations. Two separate
data augmentation operators are sampled from the same family of augmentations (t ∼ T and
t ′ ∼ T ) and applied to each data example to obtain two correlated views. A base encoder
network f (·) and a projection head g(·) are trained to maximize agreement using a contrastive
loss. After training is completed, we throw away the projection head g(·) and use encoder f (·)

and representation h for downstream tasks”; source [6].

batch size. Higher is the batch size, higher the number of negative examples. This effect
is clear in Figure 8, from the authors of SimCLR, using ResNet as the base architecture for
pre-training. Despite the effect of the batch size, the authors also mentioned that proper
temperature tau can help the model learn from hard negatives.

Figure 8: The effect of the batch size on accuracy, a figure that only those with incredible re-
sources are able to make; source [6].

Another important factor is family of data augmentation functions T . The model will be
trained on augmented data. If inappropriate augmentations are proposed for the task, then
the model will also try to learn space transformations that are later useless for the specific
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downstream task. In words of the authors, the transformations used for the pre-training
should be stronger than the one used in the specific downstream task.
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2. Goals of the project
The purpose of this project is to explore the classification of sub-images from biopsy images
of breast cancer. These biopsy images are stained with a common staining in histology
called hematoxylin and eosin (H&E), which is the gold standard in the breast cancer field for
a first-sight detection of different kinds of cancerous cells as it reveals cell structure, among
many other reasons (see section 1.1.2).

This project is developed under the supervision of Image Processing Group, within a part
of a larger project called DigiPatICS [26] that provides computer vision algorithms for Institut
Català de la Salut (Catalan Health Institute, ICS). The latter is also the provider of all internal
data (more details in section 3).

The main objectives of this project are:

1. Explore and understand the data provided by DigiPatICS.

2. Train a model using EfficientNet with/without SimCLR technique for sub-image clas-
sification in three different classes (mainly focusing on the discrimination of the first
two):

(a) Invasive

(b) In situ

(c) Other (benign tissue, necrosis, immune cells, . . . )

3. Study the performance of the trained model.

The first point is relevant for many reasons. Obviously, it is essential to understand the
available data in order to train better the model for the objective that is searching this project.
This means that there must be a data quality assessment to control the manner that data
will be ingested to the model, there might be data pre-processing and cleaning to ease the
training, there must be a bias assessment as we have three classes of target, and all this
will help to explain model’s predictions. Moreover, the scarcity of annotated data raises the
need of deciding how to efficiently annotate biopsy images. In this context, this analysis will
also serve as additional insights that contribute to defining future annotation processes.

The second point is to try to get the model with the highest performance using pre-trained
EfficientNet model [24] (to gain efficiency and performance) and SimCLR [6] technique (to
face the lack of annotated data and benefit from the large amount of non-annotated data).
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This is the main step in which the hyper-parameters, the training process and the perfor-
mance metrics are defined for further analysis. Defined metrics include loss (for pre-training
process), recall, precision and F1-score. F1-score is the metric considered as the most im-
portant in this work, as it summarizes the overall performance of the model. More details
are provided in section 4.

The third point is the final assessment of the models, using the metrics defined in the
previous point, and checking the final predictions compared with the actual ground truth, we
can derive quantitative and qualitative conclusions for future work. Over-fitting, prediction
quality, prediction discontinuity across borders of sub-images are three important factors
that should be assessed when checking the predictions.
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3. Dataset
Two internal datasets are available for this work: 5WSI and 54WSI. Both datasets are internal
Whole Slide Images from DigiPatICS, collected from eight different hospitals of ICS.

3.1 5WSI

The 5WSI dataset contains 5 WSI (H&E) of two different resolutions: 0.2431 µm × 0.2431 µm
and 0.2425 µm × 0.2426 µm per pixel. The image size depends on the case, but moves in
[89,660, 91,915] px × [143,616, 201,442] px (this is roughly for each of them 22 mm × 45 mm
or 990 mm2). Due to the great size and high resolution, each of these WSI are around
1.3 GB.

These images are from and annotated by experienced pathologists from eight Barcelona
hospitals, all of them managed by ICS ([Ref]). The annotations are done using an open
source software, specialized in manipulation of WSI, QuPath [4], previous to the start of this
project. The annotated WSI images and their names are included in the appendix.

Before injecting the images to the training of the model, it is necessary to first assess the
quality of the images and the annotations. This assessment will be done taking into account
the following points: metadata comparison, image focus and clarity, tissue coverage, artifact
and noise, and annotated regions.

For the metadata comparison, as commented previously, there are two different resolu-
tions but both are similar, so there is no problem in this aspect for the proposed task in this
project. The same happens for the varying size of the images, as the input of the models
will be sub-images of these huge WSI.

3.1.1 Image focus and clarity

In case of image focus and clarity, there is no problem (visual check) except for one WSI.
The WSI “PX001601 HE” presents an important defocus problem for the bottom section.
The defocus intensity increases from left to right, and does not happen for the section with
annotation (see Figure 9).

3.1.2 Tissue coverage

Tissue coverage aims at checking if the WSI presents all parts of the tissue. There are three
WSI that present incomplete tissue. These are “82 HE”, “5251 HE” and “PX001601 HE”.
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Figure 9: Same region but on different cuts for WSI “PX001601 HE”. The right one has an
annotation from pathologist; the left one does not.

For all of them, the left part of WSI shows tissue that continues out of image. For the first
two WSI, there are also coverage problems within the image, as the tissue image seems to
be cut, maybe because these were considered unimportant. Example of these two different
kinds of tissue coverage problem can be found in Figure 10. In this project, this problem
affects the amount of sub-images that are extracted from them.

Figure 10: Two different types of coverage problem: the dark part of the left one is the border of
the WSI, and the right one presents incomplete tissue.
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3.1.3 Artifacts and noises

When checking artifacts and noise, it is noticeable that the background of the tissue is not
white: they have a surrounding gray. This might be due to optical effects in the glass of the
slide. In most of the cases this does not affect the image quality, but for “5251 HE”, the effect
is more important for a part of tissue (see Figure 11). This part of tissue is not annotated by
the pathologist.

Figure 11: Example of “rainbow” artifact for WSI “5251 HE”.

3.1.4 Annotated regions

Last but not least, the annotated regions are in general detailed and precise. The difficult
case for the annotations is for the “invasive” class. The invasive cells spread across the
tissue in a vast dimension (the reason for which these cells are called “invasive”), mixed up
with cells that are very similar to the “other” class. This means that the model is forced to
differentiate between “other” and “invasive” by extracting hidden patterns from the images,
without much information about the surrounding area (as we are only training with small size
sub-images). In case of in situ annotations, these have well-defined borders except two
cases: one in “7695 HE” and another in “PX001601 HE”. These two cases have a different
appearance, without a clear border (shown in Figure 12).

As expected, the three classes are unbalanced in the dataset. This has a direct impact
on the training of the model and will affect the way the data is ingested during its process.
The percentage of each class for each WSI is shown in Table 1. This does not correspond
to the actual distribution of the pixels, but it’s similar and shows the actual case of study in
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Figure 12: On the left, strange case of in situ highlighted with yellow: contains clearly two different
types of region; on the right, a normal case of invasive, where the region is spread across in a

vast area of densely packes invasive cells.

this work.

3.2 54WSI

The 54WSI dataset contains 54 WSI of different resolutions: some of around 0.24 µm ×
0.24 µm, and many of 0.12 µm × 0.12 µm, with a similar dimension to the 5WSI dataset in
µm2. These 54 images are not annotated, and as 5WSI, each of them has more than one
cut. The file of them basically depends on the resolution and dimension, but thanks to the
compression, they are all below 8 GB.

3.3 57WSI

It is worth mentioning the 57WSI, which is the merge of 54WSI dataset with the three training
WSI from 5WSI (the actual training WSI depends on the version of 5WSI, check Section
Proposed solution and methodology for more details). With this dataset, the model is able
to pre-train using data from both datasets, and most importantly, with data that will further
be used for fine-tuning.
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4. Proposed solution and methodology
In order to train a model that is able to classify sub-images of a WSI in “invasive”, “in situ” and
“other”, it is necessary to design the training process, starting from the data pre-processing,
then the training hyper-parameters and, at the end, the evaluation process.

4.1 Extract, transform and load

The data in this work is defined in 3 different versions:

• In the version V0, all annotations from pathologists are considered suitable for training.
It is the original version from the annotations of the pathologists, with only one cut for
each WSI.

• The version V1 is the dataset without the two strange cases of in situ commented in
the previous section when analyzing the annotated regions (see Figure 12).

• The version V2 is the dataset without the two strange cases of in situ, as V1, but with
double annotation: the cut that is not annotated by the pathologist but that is very similar
to the annotated one, is annotated by the author. The author is not a professional
pathologist but using the continuity of the cells and the annotated cut, the class regions
are easily distinguishable. A point to note is that the defocused region is not annotated
in V2, in order to avoid confusion when training the model.

Once the three different versions of 5WSI are defined, sub-images are extracted. For the
version V0 of 5WSI, two different settings are used: zero overlap and 50% pixel overlap. In
the first setting, the sub-images do not contain any pixel in common. For the latter setting, the
sub-images contain at most 50% of pixels in common. So there are two datasets for V0, with
and without overlap. For the second case, it mitigates the effect of little data that is available.
For the latter two versions, 50% overlap is defined by default. The extracted sub-images are
only those that have some pixel with annotation. So the gray or white background that does
not have any annotations are not extracted. Note that, for 54WSI and 57WSI dataset, in
order to avoid misunderstandings for the model when training, there is no overlap of pixels
between their sub-images. Actually 57WSI dataset uses the three training WSI from 5WSI
dataset V0 without overlap.

Figure 13 shows the the difference between V0 and V1.
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Figure 13: Different sub-images of 224 × 224 pixels at resolution 0.96 µm. Note the spatial
continuity between them. For V0, the sub-image in the middle would be discarded as it contains

overlapping pixels with respect to the other two sub-images.

The resolution of the images must be considered at extraction. Assuming that the pixel
size of the images does not change, more resolution will result to a more detailed image (like
if looking from a more augmented zoom), but the field of vision will be reduced compared to
an image with the same size, but less resolution. This effect is easily observable in Figure
14. In order to choose the most suitable resolution for this work, models are first trained
and compared when training on datasets of different resolutions of V0 with zero overlap, and
then the metrics are compared.

Figure 14: Sub-images of the same region but different resolution. From left to right, around
0.48 µm, 0.96 µm, 1.92 µm per pixel height and width, all of 224 × 224 pixels. The sub-image on
the left has more details on cells, but less field of vision, compared to the sub-image on the right.

At the assignment of ground truth for each sub-image, the absolute maximum is consid-
ered. This is, for each sub-image, we count the number of pixels of each class and set it
with the class that has the major number of pixels.

When splitting each of the datasets for training, validation and test, the following is con-

21



Breast Cancer Tissue Classification with Contrastive Learning on Whole Slide Images

sidered: avoid data leakage and mitigate class unbalance. For the first, it is assumed to split
the dataset at WSI level, so the sub-images of each dataset come from different cases. For
the second, it should be taken into account the distribution of classes for each WSI. Table 1)
shows the number of sub-images for each WSI in 5WSI dataset, and reveals that the most
important problem when considering the data split is in in situ cases, which only represents
the 2% of the extracted sub-images in V0. As in V1 and V2 there are two strange in situ
cases removed, the percentage is even lower, reaching only 1%.

WSI other (%) in situ (%) invasive (%) Total

18B001854 HE 1153 (90) 0 (0) 125 (10) 1278
82 HE 283 (62) 20 (5) 125 (33) 428

5251 HE 780 (51) 25 (2) 723 (47) 1528
7695 HE 700 (71) 24 (2) 268 (27) 992

PX001601 HE 527 (53) 49 (5) 234 (23) 810

Total 3443 (68) 118 (2) 1475 (29) 5036

Table 1: Number of sub-images when extracting with resolution 0.96 µm per pixel width and pixel
height for each class, and the corresponding percentage in the WSI. All WSI from 5WSI dataset

and annotations from pathologists (i.e., 5WSI V0 zero overlap).

Taking into account the that in V0 we totally trust the annotations from pathologists, the
data is split directly in alphanumerical order: “18B001854 HE”, “82 HE” and “5251 HE” for
training, “7695 HE” for validation and “PX001601 HE” for test. Note that there is no dataset
without in situ cases. In case of V1 and V2, as there is no remaining in situ cases for
“7695 HE” and less in situ cases for “PX001601 HE” after removing the two strange cases
of annotated in situ (see section dataset), the data split is reconsidered: “18B001854 HE”,
“PX001601 HE”, “7695 HE” for training, “5251 HE” for validation and “82 HE” for test. Note
that there is again no problem with in situ cases. This split of data also affects how 57WSI
is injected to the model when pre-training using SimCLR.

When considering using 54WSI dataset for pre-training, one cut of each WSI is annotated
by the author in order to extract the tissue sub-images. These annotations, as annotations
from pathologists, is done using QuPath [4] and only marks the tissue. It is not necessary to
acquire professional knowledge in histology to annotate tissue from background.

Once data is prepared, it is injected into the training, validation and test processes after
pre-processing and data augmentation. If there is no other indication, for EfficientNet, sub-
images are normalized using mean and standard deviation of the training data, then flips
randomly with 0.5 change horizontally and vertically, and also applies random rotation of
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maximum 180°, note that if the rotation degree is not multiple of 90°, then black pixels are
filled. When pre-training using SimCLR technique, the same normalization is applied and
then the data augmentation proposed by original authors of SimCLR [6] is applied using the
specialized Python lightly library for self-supervised learning in computer vision [23].

4.2 Model training and selection

The main focus in this part is to fine-tune using a pre-trained EfficientNet model. The chosen
backbone is EfficientNet-b0 due to its size and its efficiency. It needs less memory to train
and trains faster. Also, taking into account the number of sub-images that are available, it is
more realistic to fine-tune a relatively small model.

For the search of optimal model in each case, if there is no other indication, the follow-
ing hyper-parameters are considered for random grid search (you may find more details in
Appendix - Software and hardware specifications):

• Dropout rate (only when training classification): from 0 to 0.5

• Learning rate: values from 2 to 0.00001

• Learning rate scheduler: this can be none, step scheduler or cosine annealing sched-
uler.

• Loss temperature (only for SimCLR pre-training): values from 0.1 to 0.7.

• Optimizer: this can be Adam or SGD.

• Weight decay: the weight decay parameter for the optimizers, from zero to 0.01.

• Weighted loader (only when training classification): whether to use or not the weighted
loader.

The batch size and the number of epochs are 64 and 150, respectively. These numbers
reach the limit of the available hardware, and if the validation loss does not improve for 10
epochs, then the model with the best loss is saved as the best.

When comparing between models, the average F1-score of all classes is used. Note
that using the weighted mean of F1-score would give more weight to “other” class, which is
an undesired effect, as recall or precision have different meaningfulness for the pathologists
when assessing “invasive”, “in situ” and “other” regions.
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4.3 Final evaluation

For better inspection, several metrics should be assessed. The recall, precision, confusion
matrix are presented and compared between models that are trained on different datasets.
Furthermore, in order to get better insights on how the model is predicting and checking its
ability to infer the class without surrounding information, a prediction map in a WSI level is
presented. This visualization is implemented using the specialized Python library to deal
with WSI: TIAToolbox [18].

There are different points to take into account in this section, such as if the model
presents over-fitting, check its prediction quality and the prediction on boundaries of sub-
images. Over-fitting can basically checked using the training loss. The prediction map of a
WSI can help to check visually the prediction quality, by comparing with the actual annota-
tion.

In the appendix, software and hardware specifications are attached.
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5. Results

5.1 Choose the resolution

The first step is to choose which resolution to use for the other training. For this, a simple
grid search is performed on EfficientNet-b0 using three different resolutions.

Note that when higher is the resolution, more detailed are the sub-images, but as Ef-
ficientNet should be trained on images of the same size and the cell size is important in
our case, when higher is the resolution less visual field is contained in the sub-image. At
the same time, when lower is the resolution, more information regarding the shape is con-
tained but less sub-images are generated. Figure 15 shows box-plots of F1-score for models
trained on datasets of three different resolutions.

Figure 15: Box-plot of F1-score for several models trained on datasets of different “dsr” (down-
sample rate); in this work, the resolution of the sub-images are dsr times 0.24 µm per pixel width
and height. For example, a dataset with dsr equal to 4, each of the pixels of its sub-image has
resolution 0.96 µm. All sub-images are of size 224 × 224 pixels. For each dataset, the same
set of hyper-parameters including batch size (16 and 32), learning rate (0.000001 and 0.001) are

applied.

It is clear that it is possible to find an equilibrium between number of images and F1-
score with resolution 0.96 µm (with down-sample rate equal to 4). Due to this, all following
experiments are done using this resolution.

25



Breast Cancer Tissue Classification with Contrastive Learning on Whole Slide Images

5.2 Results from the proposed methodology

Following the proposed methodology and the defined hyperparameters, we do the following
experiments in parallel:

(a) Fine-tune EfficientNet-b0 that are pre-trained with Imagenet with different versions of
5WSI.

(b) Pre-train EfficientNet-b0 (which is already pre-trained with Imagenet) with SimCLR
technique 54WSI or 57WSI, choose the pre-trained backbone with the lowest loss,
and fine-tune it with different versions of 5WSI.

Following this, results are obtained for each combination of dataset - mode of training
(using or not SimCLR). The idea is to check the resulting metrics and use a model for final
evaluation when predicting an entire WSI.

Results for (a) can be found in Table 2, and results for (b) can be found in Table 3.

In order to choose the model for final evaluation, we first discuss the results on F1-score
for both (a) and (b). Later, we discuss the difference in precision and recall for each of the
three classes and we choose the model that best suits the aim of this work: discriminate
between in situ and invasive. The chosen model is used later for model and prediction
evaluations.

5.2.1 Results without SimCLR pre-training

Comparing the average F1-scores of all the models, it is easily observable that training
EfficientNet directly with 5WSI dataset is better than pre-training using 54WSI or 57WSI
(the reader may find interesting the report for finding why SimCLR is working worse at the
Appendix).

The best F1-score considering (a) and (b) is of 0.86. Trained models reach such F1-score
when fine-tuning with 5WSI V1 or 5WSI V0 with 50% overlap without SimCLR. The second
best setting is with 5WSI V2, with a F1-score of 0.85. When training with 5WSI V0 with zero
overlap, the F1-score is clearly worse compared to the previous settings: 0.78.

Taking into account that both 5WSI V1 and 5WSI V2 have 50% overlap, it seems to be
that the overlap is the key for the model to learn better. Actually, it should help to mitigate
the over-fitting problem when little data is available, as in 5WSI V0 with zero overlap.
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Dataset
(test)

5WSI V0
(zero overlap)

5WSI V0
(50% overlap)

5WSI V1 5WSI V2

Invasive
Precision 0.59 0.91 0.80 0.78

Recall 0.87 0.68 0.83 0.84
F1-score 0.70 0.78 0.81 0.81

In situ
Precision 0.90 0.87 0.80 0.77

Recall 0.76 0.92 0.92 0.86
F1-score 0.82 0.89 0.86 0.81

Other
Precision 0.91 0.88 0.92 0.94

Recall 0.73 0.97 0.90 0.90
F1-score 0.81 0.92 0.91 0.92

Average
Precision 0.80 0.88 0.84 0.83

Recall 0.79 0.86 0.88 0.87
F1-score 0.78 0.86 0.86 0.85

Table 2: Results of training EfficientNet-b0 using the pre-trained weights from Imagenet [8]. The
best F1-scores for each class and the best F1-score in average is in bold and italic.

Pre-training
dataset

54 WSI 57WSI

Fine-tuning
dataset

5WSI V0
(zero overlap)

5WSI V0
(50% overlap)

5WSI V0
(zero overlap)

5WSI V0
(50% overlap)

5WSI V1 5WSI V2

Invasive
Precision 0.59 0.61 0.67 0.58 0.75 0.64

Recall 0.94 0.91 0.85 0.89 0.69 0.93
F1-score 0.72 0.73 0.75 0.70 0.72 0.76

In situ
Precision 0.85 0.80 0.92 0.86 0.78 0.81

Recall 0.67 0.55 0.71 0.73 0.95 0.82
F1-score 0.75 0.65 0.80 0.79 0.86 0.81

Other
Precision 0.95 0.93 0.90 0.93 0.88 0.97

Recall 0.71 0.76 0.82 0.73 0.90 0.79
F1-score 0.81 0.84 0.86 0.82 0.89 0.87

Average
Precision 0.79 0.78 0.83 0.79 0.80 0.81

Recall 0.78 0.74 0.79 0.78 0.85 0.84
F1-score 0.76 0.74 0.80 0.77 0.82 0.81

Table 3: Results of pre-training using SimCLR technique on EfficientNet-b0. The best F1-scores
for each class and the best F1-score in average is in bold and italic.
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5.2.2 Results with SimCLR pre-training

When checking the results with SimCLR pre-training, the F1-score lives between 0.75 and
0.89. The best is when training using 57WSI dataset and using 5WSI V1 or 5WSI V2, similar
to when training without SimCLR. For these two cases, F1-score reaches 0.812 and 0.82
respectively. For other settings, it is noted that training with 5WSI V0 50% overlap works
worse than training directly without overlapping pixels. This is counterintuitive as the overlap
should help the model to generalize better.

If analyzing the average of precision and recall, both are very close for all the models.
This means that the models are achieving a good balance between precision and recall in
general. However, as we are dealing with a very unbalanced dataset (check Table 1), this
might not be a desirable outcome. The models might be good at classifying the “other” class
and getting a very high score on this specific class, but being bad at the same time when
facing in situ and invasive cases. Note that the aim of this work is to discriminate between
in situ and invasive, so it is necessary to analyze deeper in this aspect.

To check whether the models are getting high F1-score because they are good at “other”
class, we can check the F1-scores for each class separately. By averaging the difference
between F1-scores, these models are better at “other” class than in situ by roughly four
points, and better than invasive by roughly nine points. This means that they are very good
at “other” class, good at in situ, and acceptable at invasive.

This ranking can be explained by the unbalanced dataset and the nature of in situ and
invasive cases. The class “other” is the most abundant case in the dataset, representing
nearly 70%, much more than the sum of the resting two classes (Table 1). In situ cases are
characterized by their color when stained with H&E and the surrounding border that encloses
the tumoral cells, so despite the little amount of samples, the models seems to be able to
learn this pattern. For invasive cases, as mentioned in section 3, its annotation boundary is
in many times unclear as the tumoral cells spreads across the whole tissue. This effect can
be seen in Figure 12. Also, check Figure 2 for examples of sub-images of the three classes
and further discussion on this will be on next subsections.

5.2.3 Analysis of results considering precision and recall

The F1-score is a metric that combines precision and recall into a single value, using their
harmonic mean. Unlike the arithmetic mean, the F1-score penalizes discrepancies between
precision and recall. By taking both precision and recall into account, the F1-score provides
a more balanced evaluation of a model’s performance, especially in situations where class
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imbalance or misclassification costs are important factors to consider. Even though, it is still
important to consider the precision and recall.

In the medical field, specially at the detection step of a disease, it is important to consider
the recall. In most of the cases, it is not a problem to detect that a patient has a disease
when it is not the case (false positive) because many detection processes are followed to
conclude it. For example, consider the case of breast cancer: the mammogram may tell
that a patient seems to have a tumor, but it is usually not conclusive so a biopsy is done to
confirm its presence. However, it is a problem when we have a miss (false negative) and
the patient does present the disease, because of the risk that the pathologist discards any
further procedures to confirm a (false) negative when there is no hint of positive.

The same happens for the diagnosis. In case of discriminating between in situ and
invasive, the first very important idea to have in mind is whether the model is able to retrieve
those tumoral cases (in situ and invasive) from the rest. Precision makes a difference when
it is very low and introduces noise at prediction.

Evaluating the recall for these two classes helps to choose a final model to assess its
predictions. For training without SimCLR, 5WSI V0 with overlap has a very low invasive
recall, so it should be discarded. The same happens for 5WSI V1 with SimCLR. Considering
that models without SimCLR has higher F1-score and the previously discussed precision-
recall problem, the final model used for evaluation is EfficientNet-b0 without SimCLR trained
with 5WSI V1.

5.3 Model evaluation

Nowadays, it is very important for deep learning models to assess the over-fitting, as their
number of parameter are huge, but in our case little data is available. The losses are shown
in Figure 16, and shows that both training and validation loss are decreasing. Note that, at
the end, there is small increasing trend for the validation loss. This should not affect our
results as the model is chosen from the checkpoint with the lowest validation loss.

Diving into details of the performance, we can see the confusion matrices of the chosen
model for the three different processes: Table 4.

For the training process, the model is able to distinguish in situ cases from the rest, but its
prediction is not totally accurate (45 over 190 cases, 24%, predicted as in situ are actually
not in situ); for invasive cases, the model is also able to detect those invasive cases, but
sometimes even when the actual class is “other”, it still predicts it as invasive (693 over 3475
cases, 20%, predicted as invasive are actually “other”). At the end, by checking the total
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Figure 16: Losses of the chosen model. Note that at the end of validation loss there is a slightly
increasing trend. The horizontal axis shows the number of steps (sub-images ingested to the

model).

number of actuals and predictions for each class, at the end of the training the model is
classifying some “other” cases as in situ or invasive.

In the settings of this work, the validation process guides the training process (it deter-
mines whether the model should be early stopped). For actual in situ cases, the model is not
able to distinguish them from invasive cases. The actual invasive are classified as invasive,
but many in situ cases are classified as invasive as well. This must be because the most
of the cases of in situ for the validation WSI (“5251 HE”, see thumbnail at Figure 19) are
difficult to distinguish from invasive: they have similar color and are contained by a huge
invasive area. This can also be seen at Figure 17.

Figure 17: A region of “5251 HE” with in situ (highlighted with yellow); note that these in situ cases
are surrounded by invasive cases (annotated with red lines), and represents the great majority of

in situ cases in this WSI. Region of around 2 mm × 2 mm.
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Training Predictions TotalIn situ Invasive Other

Actuals
In situ 145 0 0 145

Invasive 2 2782 43 2827
Other 43 693 8804 9540

Total 190 3475 8847 12512

Validation Predictions TotalIn situ Invasive Other

Actuals
In situ 29 72 0 101

Invasive 5 2784 109 2898
Other 6 642 2450 3098

Total 40 3498 2559 6097

Test Predictions TotalIn situ Invasive Other

Actuals
In situ 72 6 0 78

Invasive 3 416 85 504
Other 15 98 1044 1157

Total 90 520 1129 1739

Table 4: Confusion matrices of EfficientNet-b0 trained using 5WSI V1 after a random grid search
and choosing the model with highest F1-score.

In test, the shape of the confusion matrix follows basically the one of training. The model
is able to distinguish in situ cases from other two classes, but there are some cases of
invasive and other that are confusing for it. This might be explained by the nature of invasive
regions that are spread across the tissue, as mentioned previously in section 5.2.2.

5.4 Prediction evaluation

Metrics give an overall idea of the performance of the model and summarizes it so that
models are comparable. The real application of these models is in providing a first diagnosis
tool for the pathologists to make this process faster. In order to assess this part of the project,
the prediction of the model in discussion on the test WSI is presented in Figure 18.

We can check the performance of the model checking class by class. For in situ, we find
that the model classified correctly the actual in situ cases and with a bigger surrounding area
(bottom left). This effect is actually in favor of the actual application of the model because
the model is able to retrieve better in situ and mark the contour more clearly. The model
is able to retrieve small cases of in situ as well (see at bottom of predictions, where only a
small region with in situ is present). Despite these, the model also makes mistakes with in
situ as in the right part of the image.

31



Breast Cancer Tissue Classification with Contrastive Learning on Whole Slide Images

(a) Original (b) Annotations

(c) Ground truth (d) Predictions

Figure 18: Predictions of the chosen model on the test WSI (82 HE). Check also how the annota-
tions from pathologists are transformed into sub-images. The color of the predictions are scaled
on the confidence of the model on the prediction. For example, if there is a sub-image classified
as invasive but the score for class “other” is also high, then the sub-image is colored with light

green (merge of green and white).
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For invasive cases, it represents a great challenge to the model as it needs to avoid the
discontinuity of predictions in borders of sub-images, but without surrounding information
or additional visual field. Even though, the model seems to be able to mark with great
confidence those regions with high concentration of invasive cells.

When looking at the regions with “other”, the model is able to distinguish tumoral and no
tumoral areas. For non-tumoral areas, the model classifies it directly as “other”.
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6. Conclusions
The main focus of this work has been on the discrimination of two main types of breast
cancer: in situ and invasive cases, by using sub-images of WSI stained with H&E.

First, a data exploration is done on our main dataset (5WSI). Many findings in this analy-
sis were key to define the experiments and to explain the performance of the models later in
the experiments. Next, we proposed to use EfficientNet as our model because of its perfor-
mance and efficiency, and we proposed at the same time to explore the use of SimCLR in
order to face the little amount of annotated data. The results concluded that SimCLR does
not seem to be helpful in this work, maybe because the 54WSI dataset is not suitable (see
appendix D).

For choosing the best model from the amount the possible settings, F1-score is consid-
ered. And then an analysis on the precision and recall on all three classes as well. At the
end, the best model found with the proposed settings is trained using EfficientNet-b0 (pre-
trained with Imagenet) on the annotated data. The metrics precision, recall and F1-score
are all above 0.8, and a final evaluation of the model is done with the prediction of the test
image.

The conclusions of this work can be summarized with the following points:

• The actual annotated dataset 5WSI contains little amount of data and have some ar-
tifacts or tissue coverage problems that affects its quality. Despite this, this does not
affect the annotation of the pathologists are done over cuts that does not present seri-
ous problems.

• Despite the little amount of annotated data, it is possible to fine-tune a EfficientNet-
b0 to to get satisfactory results: metrics above 0.8, able to predict with confidence on
regions with high density of invasive cells, able to distinguish in situ cases when these
are partially surrounded by invasive. Even that sometimes the model makes mistakes
as classifying some non-tumoral tissue as in situ.

• SimCLR technique has not been helpful in this work. The models pre-trained with
SimCLR have worse results. The report on exploring why this is happening (appendix
D) seems to show that it is due to 54WSI that is not appropriate for this task.
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7. Future work
The conclusions of this work raises more questions to answer. These can be summarized in
different aspects:

• Little amount of annotated data: the little annotated data in this work makes the
training difficult, with a high probability to over-fit. Getting more annotated data or use
another pre-training technique to overcome this problem may improve the quality of the
predictions.

• Problem setting: in this work, a classification model on sub-images is build. But taking
into account the nature of invasive cases and the variable size of in situ cases, it seems
to be reasonable to use a segmentation model instead of a classification model. The
segmentation model can enable the analysis of the predictions in a pixel level and to
predict on a bigger sub-image.

• Prediction evaluation: the standard metrics as precision and recall highly depends
on the annotations of the pathologists. These annotations might not meet the require-
ments for the downstream task (for example, invasive cases, as they are spread across
a vast area of the tissue mixed up with normal cells, their annotation might be vague)
and some errors are maybe not important but affects these metrics (for example, see
the final prediction evaluation of the model, where false negative of in situ cases at
the bottom right corner should be acceptable to be predicted as in situ). Annotation
requires a lot of time, so building a pipeline for assessing the performance of the pre-
dictions in a more task-specific way may be relevant.

• Resolutions: In this work, the resolution of the sub-imaged is fixed and limited by the
number of available images. Trying to train with more sub-images but with higher visual
field may improve the model performance.

• Different staining techniques: H&E staining is the standard and is the most used,
but there are other staining techniques that reveals other information of breast tissue.
Combining different staining techniques is like combining different channels of informa-
tion, which should improve the actual results.
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A. Thumbnails of 5WSI dataset

(a) 82 HE (b) 5251 HE (c) 7695 HE

(d) 18B001854 HE (e) PX001601 HE

Figure 19: 5WSI thumbnails with the annotations; red is invasive, orange is in situ and yellow is
other; the color for each class is predefined in QuPath.
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B. Software and hardware specifications
This work has been possible thanks to the hardware resources from CALCULA computing
services. For Image Processing Group, there are several available GPUs, depending on the
server and on the partition. In general, one can find GeForce RTX 2080 Ti with 11GB of
RAM and similar GPUs1. The server in CALCULA are based in Linux and the queue system
is slurm. So the assignation of the hardware depends on the priority.

Regarding the software, almost all code in this work are implemented using Python and
Pytorch:

• For SimCLR, lightly is used [23].

• For EfficientNet and ResNet, the respective adapted Pytorch libraries are used as well
[24, 12]

• For data augmentation, transforms from Pytorch are also directly imported.

• For model log and evaluation, sklearn [17] and Tensorboard [1] are used.

• For hyper-parameters definition at training, the default values are used if no other is
specified, using optimizers and learning rate schedulers from Pytorch.

Other miscellaneous code uses other packages or languages:

• For sub-image extraction in QuPath, Groovy language is used.

• For Figure 15, Python package Altair is used, which is Vega-lite based [29, 20].

• For visualization of predictions in a WSI scale, TIAToolbox is used [18].

When generating the random grid search space and pre-training using SimCLR or fine-
tuning EfficientNet or ResNet, a random seed is set to get reproducible results. The seed is
zero and is set using lightning.

Code used for this work is uploaded in a private repository. So in case of need, you may
need to contact to the author or the thesis supervisor/co-supervisor of this work.

1https://www.tsc.upc.edu/en/it-services/computing-services/copy_of_gpi-inventory (Last visit 22 June,
2023)
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C. EfficientNet pre-training details
When loading the pre-trained EfficientNet model for SimCLR from the Python library, some
details had to be taken into account (the library is efficientnet pytorch):

• The model should be loaded using EfficientNet.from pretrained function.

• The mentioned function does not accept the parameter include top.

• The mentioned parameter controls whether the last linear model is activated (and this
is its only duty, check Listing 1) and cannot be changed once the model is loaded as it
is of type namedtuple.

Note the contradiction when, if we load the pre-trained weights form ImageNet, then the
last linear layer must be activated; if the idea is to deactivate the last layer and pre-train it,
then the model must be loaded from random weights.

1 def forward(self , inputs):

2 """ EfficientNet ’s forward function.

3 Calls extract_features to extract features , applies final linear

layer , and returns logits.

4
5 Args:

6 inputs (tensor): Input tensor.

7
8 Returns:

9 Output of this model after processing.

10 """

11 # Convolution layers

12 x = self.extract_features(inputs)

13 # Pooling and final linear layer

14 x = self._avg_pooling(x)

15 if self._global_params.include_top:

16 x = x.flatten(start_dim =1)

17 x = self._dropout(x)

18 x = self._fc(x)

19 return x

Listing 1: The original code of forward in EfficientNet. Note the use of include top.

In our case, in order to pre-train using SimCLR, it is necessary to be able to load the
weights from the pre-trained EfficientNet, but also to deactivate the last layer as we inject
another one for SimCLR (check Figure 7). The final idea is to change the original code so
that it does not affect the rest of its functionalities.

42



This idea is implemented by change a final condition of the function from pretrained,
as it checks whether all weights are loaded. When include top is set to false, then the last
linear weights are not loaded and this raises errors. The change is as simple as editing
(from source of efficientnet pytorch package), the function load pretrained weights in
the file utils.py. The line to change is 611, which asserts whether there are missing keys
for the last linear layer. One can also use code from a PR of the original repository.

When searching the parameter include top through the original repository of the Ef-
ficientNet package and surfing in its “Issues” section (comments from users that founds
problems in the code of repository), it is found that the problem is already mentioned years
ago and it already has a Pull Request2 waiting for the author of the repository to update and
accept.

A detail also to take into account is that the original EfficientNet classifies images to one
thousand classes. Loading from pre-trained model allows to change the number of classes
of the output without changing the weights of the intermediate layers.

2A Pull Request (PR) refers to a change of code proposed by users with this permission. At GitHub, in many
cases, all users are granted to propose a PR. Mentioned PR can be found in the link https://github.com/lukemelas/

EfficientNet-PyTorch/pulls (last visit 21 June, 2023).
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D. Checking SimCLR
Taking into account the strange behaviour of models that are pre-trained using SimCLR, the
idea is to find the reason behind it. For this, the next three aspects are considered:

• Code

• Backbone model

• Data

• Losses

When checking the code to train the model, there has been a problem that is related
to how to load a pre-trained EfficientNet using efficientnet pytorch library. The problem
can be found at Appendix (EfficientNet pre-training details). Once solved, there is no other
problem found. The code for pre-training using SimCLR is written by following the official
tutorial of the specialized Python package for self-supervised learning lightly [23]. The
tutorial explains in detail each step and it is, in short terms, a wrapper over the Python
library PyTorch [16].

When checking the backbone model, we are trying to answer the following question:
how would the performance change if using ResNet (the model that the original authors of
SimCLR used as backbone)? The results shows that training ResNet with 5WSI V1, the
F1-score can reach up to 0.81, and pre-training using 54WSI reaches 0.79. There is a
small difference between both, and at least it indicates that no improvement seems to be if
pre-training using 54WSI (note that ResNet18 [12] is used). Later, pre-training using 5WSI
and then fine-tuning using 5WSI V1, the best F1-score is 0.78. It seems that there is again
no essential difference when pre-training using 5WSI with SimCLR on ResNet18, and that
EfficientNet works better than ResNet in the task of this work.

Regarding checking the data, it is wondered whether introducing 54WSI into the pre-
training is actually a bias to the model. To answer this, a comparison between “fine-tuning
from pre-trained EfficientNet-b0” and “pre-train the pre-trained EfficientNet-b0 using SimCLR
with 5WSI and then fine-tune”. Dataset chosen for fine-tuning is 5WSI V2, and the results
shows that both have similar F1-score. Without SimCLR, F1-score reaches 0.86. With
SimCLR, F1-score reaches 0.84.

Losses from SimCLR does not explain any abnormality. In extreme cases when the
learning rate is set to be higher than 1, it presents very unstable losses. But in general it
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decreases slowly in both training and validation datasets. This can be seen in Figure 20.

Figure 20: SimCLR losses when pre-training using 54WSI with EfficientNet-b0. Each line repre-
sents a pre-trained model. Note that, in general, the curves decrease slowly and seems to end

converging. Here, ssl means semi-supervised learning.
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