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a b s t r a c t 

Background and Objectives: Combining knowledge of clinical pathologists and deep learning models is 

a growing trend in morphological analysis of cells circulating in blood to add objectivity, accuracy, and 

speed in diagnosing hematological and non-hematological diseases. However, the variability in staining 

protocols across different laboratories can affect the color of images and performance of automatic recog- 

nition models. The objective of this work is to develop, train and evaluate a new system for the normal- 

ization of color staining of peripheral blood cell images, so that it transforms images from different cen- 

ters to map the color staining of a reference center (RC) while preserving the structural morphological 

features. 

Methods: The system has two modules, GAN1 and GAN2. GAN1 uses the PIX2PIX technique to fade orig- 

inal color images to an adaptive gray, while GAN2 transforms them into RGB normalized images. Both 

GANs have a similar structure, where the generator is a U-NET convolutional neural network with ResNet 

and the discriminator is a classifier with ResNet34 structure. Digitally stained images were evaluated us- 

ing GAN metrics and histograms to assess the ability to modify color without altering cell morphology. 

The system was also evaluated as a pre-processing tool before cells undergo a classification process. For 

this purpose, a CNN classifier was designed for three classes: abnormal lymphocytes, blasts and reactive 

lymphocytes. 

Results: Training of all GANs and the classifier was performed using RC images, while evaluations were 

conducted using images from four other centers. Classification tests were performed before and after 

applying the stain normalization system. The overall accuracy reached a similar value around 96% in both 

cases for the RC images, indicating the neutrality of the normalization model for the reference images. On 

the contrary, it was a significant improvement in the classification performance when applying the stain 

normalization to the other centers. Reactive lymphocytes were the most sensitive to stain normalization, 

with true positive rates (TPR) increasing from 46.3% - 66% for the original images to 81.2% - 97.2% after 

digital staining. Abnormal lymphocytes TPR ranged from 31.9% - 95.7% with original images to 83% - 

100% with digitally stained images. Blast class showed TPR ranges of 90.3% - 94.4% and 94.4% - 100%, for 

original and stained images, respectively. 

Conclusions: The proposed GAN-based normalization staining approach improves the performance of 

classifiers with multicenter data sets by generating digitally stained images with a quality similar to the 

original images and adaptability to a reference staining standard. The system requires low computation 

cost and can help improve the performance of automatic recognition models in clinical settings. 

© 2023 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 
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. Introduction 

Peripheral blood (PB) is a tissue that circulates throughout the 

uman body providing oxygen and fighting infections. Accessing 

his tissue is easy and minimally invasive. PB contains leuko- 

ytes, erythrocytes and platelets. Normal leukocytes are divided in 

eutrophil granulocytes, eosinophils, basophils, lymphocytes and 

onocytes, being in charge of fighting bacteria, viruses or other 

oreign substances. An abnormal leukocyte maturation process re- 

ults in an uncontrolled invasive proliferation of abnormal cells 

nown as cancer. Morphological analysis of cells circulating in PB 

s the starting point for the diagnosis of more than 80% of hema- 

ological [1] diseases. In this analysis, images of cells are obtained 

hat are identified according to their characteristic morphology by 

linical pathologists. 

The PB morphological analysis process begins by taking a blood 

ample from the patient and placing a drop on a slide to prepare 

 blood smear. Blood is spread with another slide to be dispersed 

n the smear creating an area where cells are observable. In the 

ext step, standardized staining is performed by adding concen- 

rations of chemicals to enhance the contrast of the cell image and 

ighlight the morphological features of the cells. Finally, digital im- 

ges of the cells are obtained under a microscope with a camera 

r using digital analyzers, such us the CellaVision DM96 (CellaV- 

sion, Lund, Sweden). The clinical pathologist identifies the mor- 

hological differences between the different classes of cells circu- 

ating in blood, observing parameters such as: cell number, size, 

ucleus/cytoplasm ratio, nuclear contour, chromatin pattern, cyto- 

lasmic size, granulation and inclusions [1] . 

May Grünwald-Giemsa (MGG) [2] is one of the most widely 

sed stains for blood smears and bone marrow. Based on the Ro- 

anowsky staining procedure, MGG is composed of eosin (an acid 

ye), methylene blue (a basic dye) and related azures (also ba- 

ic dyes). These substances are responsible for producing various 

olors, which allow us to distinguish the following morphologi- 

al aspects of nucleated blood cells: 1) cell nuclei and chromatin 

esidues (purple); 2) cytoplasm of lymphocytes (blue); 3) cyto- 

lasm of monocytes (gray-blue); 4) granules of basophils (dark 

lue); 5) granules of eosinophils (reddish to red-brown). Eosine 

nd methylene blue are very sensitivity to pH variations in cellu- 

ar structures. Each clinical laboratory has its own staining proto- 

ol, depending on factors such as the proportion and concentration 

f the components, the duration of their contact with the smears, 

nd the agents supplied by different manufacturers. Consequently, 

here is a variability in staining performance between laboratories, 

hich can induce variations in color of cell images, together with 

ther optical effects associated with the illumination of the slide 

nd the quality of the microscope lens. This variability can lead to 

nconsistencies between the diagnoses made by clinical patholo- 

ists [3] . To address this issue, stain normalization has emerged as 

 promising solution to reduce variability and improve the qual- 

ty of digital images [4] . Recent research findings [5] have demon- 

trated that automatic manipulation of color channels can be a 

aluable tool in improving pathological perception from a clinical 

tandpoint. 

The combination of morphological analysis and artificial intel- 

igence (AI) based on medical instruments has become increas- 

ngly popular in recent years. This combination makes it possible 

o recognize qualitative patterns of cell morphology under the su- 

ervision of expert clinical pathologists to aid in the diagnosis of 

ematological and non-hematological diseases. AI algorithms an- 

lyze images to perform automatic classification. The variability 

f staining in images is crucial to the performance of automatic 

ecognition systems [6] . In fact, a system trained for a certain task 

sing images from a specific laboratory may show reduced perfor- 

ance when used for the same task with similar images obtained 
2

rom another laboratory. This problem is the starting motivation 

or the approach presented in this paper, which is based on the 

se of Generative Adversarial Networks (GANs). 

Our group has experience in the development of deep learn- 

ng models to help in the morphological diagnosis of diseases such 

s leukemia, lymphoma, myelodysplastic syndrome, or malaria par- 

sites [7–10] . These models were trained using image sets an- 

otated by expert clinical pathologists and obtained from fixed 

nd stained smears following a MGG procedure established in the 

ore Laboratory of the Hospital Clinic of Barcelona (Spain) [11] , 

hich is the Reference Center (RC) for this study. Some prelimi- 

ary tests showed decreased classification performance when us- 

ng some models to recognize images from other hospitals, which 

as associated with inter-laboratory variability in color staining 

mong laboratories. In fact, color-based features of blood cell im- 

ges are among the most relevant to automatic classification sys- 

ems [12] . Therefore, color variations related to staining protocols 

ecome an issue that must be addressed to allow models trained 

t a specific center to be transferred to other centers. 

The first idea was to design a model with a single GAN struc- 

ure where the input could be color images of other centers differ- 

nt to RC. Conceptually, GANs use two groups of images, source Z

nd destination (target) Y . A generator G learns to approximate the 

istribution from Z to Y , resulting in a set X of synthetic images. 

 discriminator D distinguishes the realism of images X versus Y . 

n our work, the model should approximate the color distribution 

f input RGB blood cell images to the color distribution of the RC. 

hat is, obtain synthetic images ( X) acquiring the RC staining style 

hile maintaining the same original cell morphology. 

Initially we explored the use of VanillaGAN, Deep convolutional 

enerative adversarial networks (DCGAN), Conditional GAN (CGAN) 

nd Wasserstein GAN (WGAN) architectures. However these archi- 

ectures use random noise at the Z input. The staining of the re- 

ulting images X was similar to the RC style but the morphology 

f the source cells was randomly modified. The use of image trans- 

ation architectures such as CycleGAN to approximate the staining 

f the source images to the staining of the RC was also explored. 

owever the result was unsatisfactory, as the resulting synthetic 

mages had a combination of both stains. The trial of pixel-to-pixel 

ranslation of the PIX2PIX GAN architecture considerably improved 

he result, with X maintaining the cell morphology of source Z and 

 similar staining when using images from the RC. However, the 

pproximation to the RC staining was worse when this idea was 

sed with input images collected in centers other than RC. 

To mitigate this variability, we considered changing the color 

pace of the RGB images Z to grayscale prior to performing the 

ixel-to-pixel translation. This means to translate a single compo- 

ent instead of three. To do this, first a global linear transforma- 

ion for grayscale was used to obtain Z gray images. The applica- 

ion of the PIX2PIX GAN architecture to approximate the staining 

istribution of Z gray images to the RC standard improved the re- 

ult compared to previous tests. But when using Z images with 

arkedly different staining from other centers, the approximation 

as worse. 

Another idea was to focus on the transformation from RGB 

o grayscale. The global linear transformation is a simple equa- 

ion with fixed parameters and could be replaced by a more 

eneral ”adaptive” model. With this idea, we considered another 

IX2PIX GAN to carry out such transformation and this left to 

he scheme with two sequential GANs called Stain Normalization 

odel (SNM) shown in Fig. 1 . 

The contributions of this work are the following: 

1. We propose a new two-module system for the normalization 

of color staining of PB cell images, so that it transforms stained 

images from different centers to map the color staining of a 
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Fig. 1. General structure of the Stain Normalization Model (SNM) in conjunction with a classifier for images of peripheral blood cells. GAN 1 is used to convert original color 

images to an intermediate gray scale, while GAN 2 learns the standard color staining of the reference center to generate new normalized color images. 
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reference center while preserving the structural morphological 

features. 

2. The GAN 1 is in charge of mapping each incoming pixel for 

each color component to an adaptive one-dimensional gray 

space. Once the incoming images have been decolorized, GAN 

2 converts them to RGB normalized images, which are ready 

for classification. 

3. We evaluated the digitally stained images in two ways. The first 

is a quantitative evaluation of the digitally stained images ob- 

tained from the normalization model using GAN metrics. The 

second uses histograms to have visual insight and interpreta- 

tions on how the system modifies the color spaces without al- 

tering morphology. 

4. We also evaluated the effectiveness of the normalization sys- 

tem as a pre-processing tool before the cell images go through 

a classifier trained with digital images from the RC. For this 

evaluation, a new CNN classification model was specifically de- 

signed for three cell classes of interest: Blasts (BL), Abnormal 

Lymphocytes (ALC) and Reactive lymphocytes (RL). These are 

representative of three broad cell types related to leukemia, 

lymphoma and infection, respectively. 

.1. Related works 

Generative adversarial networks (GANs) are deep learning mod- 

ls that learn patterns and features from sets of digital images 

or artificial image generation, segmentation or translation, among 

ther applications. The operation of GANs is based on two net- 

orks, known as generator G and discriminator D , respectively. 

AN learning begins when G creates artificial images X from learn- 

ng a set of real data Y and D takes care of differentiating the cre-

ted images from the real ones. GAN learning ends when the Gen- 

rator G creates artificial images X that manage to trick the dis- 

riminator D by classifying the images X as real. 

GANs have different architectures depending on their applica- 

ion. The creation of images using GANs consists of converting a 

andom vector Z to a data distribution Y. VanillaGAN [13] uses 

 basic architecture of discriminator and generator to fit a ran- 

om data distribution to the data distribution of a real set. DCGAN 

14] has a more stable training between generator and discrimina- 

or when using convolutions. CGAN [15] uses labels in the discrim- 

nator to improve classification performance and WGAN [16] im- 

roves training stability using the Wasserstein metric to approxi- 

ate the random data to real data. Image-to-image translation us- 

ng GANs consists of approximating a data distribution of a set 

f images Z to a distribution of a set of images Y. The CycleGAN 

17] transforms the domain of an image Z in a different Y using 

sing a couple of generators and discriminators. SRGAN [18] uses a 

imilar concept to improve the quality of images from low to high 

esolution. StarGAN [19] transforms an image Z domain into mul- 

iple Y domains and PIX2PIX [20] uses pixel-to-pixel translation to 
3 
ransform an Z image space into a Y image space by using more 

obust architectures in the generator and discriminator. 

The implementation of GANs to manipulate medical images has 

ncreased considerably. The work in [21] presents an overview of 

ANs in medical applications. In [22] the use of GANs is proposed 

o modify color combinations in images unrecognizable to people 

ith color vision deficiency. The problem of color staining normal- 

zation using GANs has been addressed mainly for histopathologi- 

al samples. The work in [23] modifies the staining of renal pathol- 

gy images using the CycleGAN architecture to improve glomerulus 

etection. In [24] the authors use a CycleGAN architecture to mod- 

fy the staining of spots in tissues from histological images, evalu- 

ting model performance with GAN metrics and in [25] developed 

 model to learn the color mapping between source and target im- 

ges for more efficient histological staining computationally. The 

ork of [26] uses a GAN architecture to generate virtual staining 

n histological images with hematoxylin-eosin concentrations. The 

ork in [27] proposes the use of GANs to transfer the staining of 

ispathological images of breast cancer and a CNN to segment the 

mear. Finally, [28] proposes the use of two GANs to carry out a 

ransfer of histological staining. 

The use of GANs to the manipulation of peripheral blood cells 

as been recently considered. In the case of generation of artificial 

ell images from noise, three recent works are particularly rele- 

ant [29–31] . The work in [29] combines autoencoders with Style- 

AN to generate four types of leukocytes. In [30] WGAN is used 

or a similar problem. The paper [31] uses two GAN architectures 

WGAN and SRGAN) to generate artificial images of leukocytes and 

eukemic cells from a random vector. 

For the case of stain normalization in blood cells, two recent 

apers are closely relevant to our work. In [32] authors use the 

ycleGAN architecture to translate the staining style between two 

ets of images of leukocytes. This approach produces a morpho- 

ogical modification in the cells, what can affect the image inter- 

retability. In [33] they use a StarGAN-based architecture to digi- 

ally stain images of cells obtained with a differential interference 

ontrast (DIC) microscope, which are completely unstained. This is 

 nice idea in view of robust classification, but DIC images are dif- 

cult to interpret by pathologists. In this paper we focus on cell 

mages previously stained with a technique as MGG that is famil- 

ar to most of pathologists and extensively used in clinical labora- 

ories. We propose digital color normalization of this broad class 

f cell images to the color standard of a reference center that is 

ffective for automatic recognition of cells from different centers 

ith reasonable performance. 

. Materials 

To develop and assess the effectiveness of the proposed Stain 

ormalization Model (SNM), we used a dataset of digital images 

hat includes various categories of peripheral blood cells from the 

ollowing laboratories: 
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Table 1 

Summary of images collected from different centers: RC - Hospital Clinic of Barcelona, Spain; C1 - Hospital Germans Trias i Pujol, Badalona, Spain; C2 - 

Donostia University Hospital, Donostia, Spain; C3 - Cellavision, Lund, Sweden; C4 - Hospital Josep Trueta, Girona, Spain. Three cell types are considered: 

abnormal lymphocytes (ALC), blasts (BL) and reactive lymphocytes (RL). 

Center 

Number 

of images 

Cell Categories Staining 

Cell analyzer Size of images 
ALC BL RL Blood collection Protocol Sample processing 

RC 44,822 17,437 25,062 2323 EDTA as 

anticoagulant 

May Grünwald 

Giemsa staining 

AutomaticSystem CellaVision 

DM96 

360x363 

C1 163 47 80 36 

C2 1506 751 236 519 

C3 547 115 376 56 

C4 925 414 302 209 
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Table 2 

Peripheral blood cell images used in this work to develop the Stain Normalization 

Model (SNM) and the classifier used in this work. Images are grouped by class for 

each data set. 

Cell Type 

Number of images 

Balanced image database 

Database Training Validation Testing 

Abnormal Lymphocytes (ALC) 17,437 2973 530 3470 

Blasts (BL) 25,062 2970 513 5344 

Reactive Lymphocytes (RL) 2323 a 2970 527 465 

TOTAL 44,822 8913 1570 9279 

a This group was up-sampled for training with data augmentation techniques to 

balance all classes. 
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RC: Hospital Clinic of Barcelona, Spain 

C1: Hospital Germans Trias i Pujol, Badalona, Spain 

C2: Donostia University Hospital, Donostia, Spain 

C3: Cellavision, Lund, Sweden 

C4: Hospital Josep Trueta, Girona, Spain 

Blood samples were collected in EDTA as anticoagulant during 

he daily work of the laboratories. They were automatically stained 

sing the SP10 automatic system (Sysmex, Kobe, Japan) [34] and 

ay Grünwald-Giemsa staining [35] . Digital cell images were ob- 

ained from PB samples using the CellaVision DM96 system from 

ach laboratory. The system uses a motorized optical microscope 

nd proprietary software that takes images of the smear and seg- 

ents them into individual images with a resolution of 360 ×
63 × 3 pixels [36] . Clinical pathologists identified and stored the 

ells of interest for this study based on their morphological charac- 

eristics. The diagnoses of the patients were confirmed by integrat- 

ng all the complementary information such as clinical data, mor- 

hology, flow cytometry, cytogenetics and molecular biology [37] . 

igital images were labeled as ground truth according to the three 

ell groups of interest for this investigation: abnormal lymphocytes 

ALC), blasts (BL) and reactive lymphocytes (RL). It covers three 

road clinical cases: lymphoma, acute leukemia and infection, re- 

pectively. 

Table 1 presents a summary of images collected from all cen- 

ers. The total number of images collected from RC, C1, C2, C3, and 

4 were 44822, 163, 1506, 547, and 925, respectively. However, not 

ll the RC images were used for training given the need for balanc- 

ng the dataset. It is worth noting that the images from C1, C2, C3 

nd C4 were exclusively used for testing the performance of the 

NM system, and were not used as part of the training set. The 

ubsequent section details the specific subset of RC images that 

ere employed for both training and testing purposes. 

.1. Reference center images dataset 

The RC images were used for training the SNM, as our goal 

as to approximate the color spaces of other datasets to that of 

he RC staining, which served as a reference. This approach was 

aken to address the challenge of color variation among different 

atasets. The RC dataset consisted of a total of 44,822 images and 

as divided into two groups following the 80/20 rule [38] : 80% of 

he dataset where used for the system development and its im- 

ges were randomly divided into training and validation sets with 

he same 80/20 rule; the remaining 20% was reserved for the fi- 

al evaluation (image testing set). The training and validation sets 

ere used to train the two GAN models, and also the classifier 

sed in the experimental evaluation. Additionally, the training of 

he GAN models was performed using the concept of pixel-to-pixel 

ranslation that is presented in detail in Section 3.2.1 . This required 

uplicating the sets by changing the original color of the images to 

rayscale to obtain paired sets in two different color spaces [39] . 

he RC images dataset numbers are given in Table 2 . 
4 
In general, deep learning requires a database with a large num- 

er of samples. In previous works [7,31,40] it was shown that bal- 

ncing classes is effective in stabilizing training with high preci- 

ion. We balanced the different classes using classical data aug- 

entation techniques [41] implementing small random transfor- 

ations: vertical and horizontal twists, zoom, image rotations, and 

rightness variations [42] . In the end, the training and validation 

ets were balanced with almost the same number for each cell 

lass, as seen in Table 2 . The original test set was used to assess

he performance of both SNM and classifier using images not used 

n training. 

. Methodology 

.1. Overview 

It is initially assumed that there is a machine learning or 

eep learning model for the classification of digital images of PB 

ells. This model has been trained and tested using cells from 

mears prepared under a standardized staining protocol at a Ref- 

rence Center (RC) and images have been obtained using a specific 

icroscope-based analyzer. The objective of this work is to exploit 

he potential of Generative Adversarial Networks (GAN) to design a 

ew model that provides the classifier with a degree of robustness 

gainst variations in staining conditions when images are collected 

rom other hospitals or centers. 

Fig. 1 shows the proposed Stain Normalization Model (SNM) as 

 previous step within a classification scheme. SNM is designed 

hrough two sequential steps. In the first step, GAN 1 is respon- 

ible for converting the input image pixels from three RGB color 

omponents to a grayscale image. This serves to reduce the varia- 

ions of the three colors resulting from the smear staining, assign- 

ng each color a value in a gradation of gray. In the second step, 

AN 2 learns the standard staining of the RC image sets and trans- 

orms the pixels from gray to three normalized RGB color com- 

onents. The objective of this transformation is to obtain colored 

mages with an approximation to the color distribution of the RC 

atabase. 
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Fig. 2. Architecture of GAN 1. A) The inputs are RGB blood cell images. Generator G 1 creates synthetic images in grayscale. In the training stage, Discriminator D 1 is used 

to classify the synthetic images as real or fake. D 1 is trained to be the best possible classifier using the train set Y with real gray-scale images as a reference. On the other 

hand, G 1 is trained until it defeats the discriminator. Then, the system is ready to produce images of cells in an adaptive gray scale. B) Structure of the generator G 1 and 

discriminator D 1 . 
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Although the SNM model is general, a prototype case is adopted 

n this paper to help in the explanations and in carrying out vari- 

us evaluation experiments. Three cell groups are considered: ab- 

ormal lymphocytes (ALC), blasts (BL) and reactive lymphocytes 

RL). 

The remainder of this section describes the methodological 

teps to build the trained SNM. Sections 4 and 5 present two 

xperimental evaluations of the quality of normalized images. 

ection 6 describes the evaluation of the SNM when used in con- 

unction with a classifier for the three cell groups of interest. This 

lassifier is specifically designed and trained in this paper using RC 

mages only. The SNM evaluation performs the classification of cell 

mages from four different sources. 

.2. Structure of the stain normalization model 

.2.1. GAN 1: From RGB to adaptive grayscale 

The PIX2PIX technique is used, where the objective is to trans- 

ate a source image into an image that plausibly belongs to a cer- 

ain class. As illustrated in Fig. 2 .A, the model is trained using two

aired datasets [43] . In this work, one is the source set of RGB im-

ges of blood cells (see Table 2 ) and the other (target) is the du-

licated set of the same grayscale images. 

As seen in Fig. 2 .A, for all source images z, Generator G 1 cre-

tes the synthetic grayscale images x 1 = G 1 (z) , while Discriminator 

 1 is a binary classifier that discerns whether the new images are 

eal grayscale images or synthetic images [44] . The generator G 
1 

5 
s a U-NET convolutional neural network with ResNet. The U-Net 

totally convolutional network) architecture was developed for the 

egmentation of biomedical images [45] . It has U shape due to the 

hree sections that make up the network: contraction, bottleneck 

nd expansion (see Fig. 2 .B). In the contraction stretch, the input 

mage z is a matrix of size m × n × 3 , where m is the width, n is

he height, and 3 are the RGB color channels. This matrix is resized 

o 256 × 256 × 3 , and goes through five convolutional blocks. Each 

lock applies convolution filters of 3 × 3 followed by a maximum 

ooling of 2 × 2 , thus effectively learning complex structures, simi- 

ar to a CNN. This process is carried out until a feature map matrix 

f 16 × 16 × 1024 is obtained. This stretch is known as the bottle- 

eck, the lowest layer covering the space between the contraction 

tretch and the expansion stretch. 

In the expansion stretch, the feature matrix goes through four 

locks of transposed convolutions to increase the size. In each 

lock the matrix passes through 3 × 3 filters followed by a 2 × 2 

psampling layer where the grouping operations are replaced by 

psampling operators, thus causing the layers to increase in size. 

The stretches of contraction and expansion are interconnected 

o extrapolate the values in the pixel-to-pixel translation process. 

rom the first convolution, the feature maps are obtained and 

llocated to their corresponding transposed convolution. In this 

ay, a symmetry is maintained, ensuring that features are learned 

hen compressing and reconstructing the image influenced by the 

rayscale image set Y . In the last layer of the generator, a 1 × 1

onvolution is applied to each pixel to reduce the depth of the ar- 
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Fig. 3. Architecture of GAN 2. A) The inputs are grayscale blood cell images synthesized by GAN 1. Generator G 2 creates synthetic RGB images. In the training stage, 

Discriminator D 2 is used to classify the synthetic images as real or fake. D 2 is trained to be the best possible classifier using the train set Z with real RGB images as a 

reference. On the other hand, G 2 is trained until it beats the discriminator. Then, the system is ready to produce images of cells in RGB color space normalized to our 

database. B) Structure of the generator G 2 and discriminator D 2 . 
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ay, outputting an image of size 256 × 256 × 1 . Through this pro- 

ess, the U-Net architecture learns to assemble a precise output. 

The selection of an appropriate architecture is crucial to main- 

ain the fidelity of the input images when using image-to-image 

ranslation techniques. The use of a U-Net generator and a Patch- 

AN discriminator is a traditional approach in the pix2pix architec- 

ure [20] . While PatchGAN is a viable technique to identify a spe- 

ific type of texture in image patches, you may experience prob- 

ems with more complex shape changes, which may affect the sta- 

ility and accuracy of each patch, and a loss of global information 

n the image [46] . In the case of cell images, it is necessary to pre-

erve the morphological information of the entire image. An archi- 

ecture that considers the whole image and that has proven to be 

ffective in medical image processing is the ResNet34 architecture, 

ses residual layers to allow lossless information propagation [47] . 

onsequently, in this work the discriminator D 1 is a binary classi- 

er based on a convolutional neural network with ResNet34 archi- 

ecture, which labels the real grayscale images and the synthetic 

nes created by the generator G 1 and decides if the image is real 

r synthetic. The generator is adjusted based on this decision [48] . 

The ResNet34 architecture has a normalized input size, so the 

mages x 1 in the generator were resized from 256 × 256 × 1 to 

24 × 224 × 1 . Consistently, the size of the Y grayscale images 

ere resized from 360 × 363 × 1 to 224 × 224 × 1 . All these im-

ges go through six convolutional blocks until a feature vector of 

 × 1 × 2048 is obtained. Then two fully connected layers are im- 
6 
lemented to reduce the vector. In the last layer a sigmoid activa- 

ion function gives the binary classification (real or synthetic) with 

 probabilistic value. 

.2.2. GAN 2: From gray adaptive to RGB normalized scale 

GAN 2 has a similar structure to GAN 1 but with an oppo- 

ite objective. As illustrated in Fig. 3 .A, the source images are now 

hose synthetic images x 1 that were generated by GAN 1. The 

aired data set ( Z) is now our RGB image dataset ( Z) with the RC

taining. Input images x 1 go through Generator G 2 with the same 

-Net architecture, and create synthetic RGB images x 2 = G 2 (x 1 ) . 

he D 2 discriminator is a binary classifier that discerns whether 

he generated colour image is real or not. 

The next section presents how both GAN 1 and 2 were trained. 

fter the training was completed, the SNM was ready to operate 

s shown in Fig. 1 . In the final operational setup, only Generators 

 and 2 remain to perform the staining normalization prior to the 

lassification step. Discriminators play their role only in training 

he GANs. 

.3. Training the stain normalization model 

The augmented training set and the validation set in 

able 2 were used for the learning of the SNM. Since we used the 

IX2PIX image-to-image principle, a grayscale transformation was 

pplied on the original RGB images to have two paired training 
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Fig. 4. Loss progression during the system training. Each network was trained for 50 epochs. Figure A represents the losses of GAN 1, responsible for modifying the RGB 

input to adaptive gray. Figure B represents the losses of GAN 2 that modifies the adaptive gray space to normalized RGB. 
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ets, which were used as illustrated in Fig. 2 .A and 3 .A. A server

ith a 12 GB Nvidia Titan XP GPU was used in this work. We dis-

uss computational resources in detail in Section 7 . 

In this section, the training of GAN 1 is described. GAN 2 was 

imilarly trained. Traditional GAN learning methods are based on 

imultaneous training of the generator and the discriminator. How- 

ver, this procedure has limits in the GPU memory, longer pro- 

essing time, instability in the results and low training control. Al- 

ernatively, we opted to use the NoGAN training method [49] . It 

onsists of training the generator and the discriminator separately 

n an initial stage, having a greater control in the training, reduc- 

ng the GPU memory and optimizing the learning time. After this 

tage, additional joint training took place. The training is counted 

n epochs. An epoch is a hyperparameter [50] that indicates the pe- 

iod in which all the images of the dataset pass through the net- 

ork for model training. We iteratively processed batches of 40 

mages until completing the total number of images in each epoch 

o improve learning efficiency. In this process, it is necessary to 

ptimize the generation and discrimination error, so we use tradi- 

ional GAN loss functions. 

First the generator is trained separately, using the RGB and 

ray-scale training sets, Z and Y respectively. At each learning 

poch, the generator G 1 creates synthetic images G 1 (z (i ) ) where 

 

(i ) is the i − th RGB input image. In this stage, all the parame-

ers of the discriminator D 1 are frozen and set with initial default 

alues. The discriminator D 1 was designed to be a classifier with 

n output vector of two elements belonging to the labels real and 

ynthetic. 

Initially, the probability D 1 (G 1 (z (i ) )) is closer to 1 in the syn-

hetic label. The generator was trained to fool the discriminator, so 

he probability D 1 (G 1 (z (i ) )) must decrease in the synthetic label. 

onsequently, this objective was stated as the minimization of the 

ollowing loss function: 

 G 1 = 

1 

m 1 

m 1 ∑ 

i =1 

log 
(
1 − D 1 

(
G 1 

(
z (i ) 

)))
(1) 

here m 1 is the number of images generated by G 1 . 

For the implementation of the system training code, we used 

astAI [51] . It is a deep learning library for the development and 

esearch of artificial intelligence algorithms, which uses the Py- 

orch numerical calculation package of the Python programming 
7 
anguage. From FastAI we used the GANLear ner library, which has 

he show _ img tool that was activated to view the images G 1 (z) and 

ollow the generator learning progression. In each epoch of training 

he generator with the NoGAN technique, we used the GANLear ner 

ibrary to obtain the produced generator loss defined in Eq. (1) , 

hose progression is displayed in Fig. 4 (A). 

After conducting several tests, using the show _ img function to 

valuate the quality of synthetic images generated by the GAN and 

nalysing the behaviour of the generator loss curve, we determined 

hat 30 training epochs using the NoGAN method were optimal 

or our purposes. We selected this number of epochs based on 

he observation that the generator loss curve was closest to 0 be- 

ore destabilizing. Additionally, we performed a visual evaluation 

f the generated images and determined that the generator’s per- 

ormance was satisfactory. At the end of the generator training, a 

et X 1 of synthetic gray scale images was produced. 

Next we used the set X 1 together with the set Y of real 

rayscale images for separate training of the discriminator as a 

inary classifier. In this case, we considered two probabilities 

 1 (x (i ) 
1 

) and D 1 (y (i ) ) . When inputting an image y (i ) , the probabil-

ty D 1 (x (i ) 
1 

) must be close to 0 and the probability D 1 (y (i ) ) must

e close to 1. When inputting an image x (i ) 
1 

the probability D 1 (x (i ) 
1 

)

ust be close to 1 and the probability D 1 (y (i ) ) must be close to 0.

his means being accurate in recognizing images in set Y as real, 

hile recognizing images in set X 1 as synthetic. Consequently, this 

bjective was established by maximizing the following loss func- 

ion: 

 D 1 = 

1 

m 1 

m 1 ∑ 

i =1 

[
log 

(
D 1 

(
y (i ) 

))
+ log 

(
1 − D 1 

(
x (i ) 

1 

))]
(2) 

here m 1 is the number of images in sets X 1 and Y . 

Fig. 4 (A) shows the D 1 loss progression defined in equation (2) . 

fter 30 epochs of training, D 1 reached an accuracy of 96.2% in 

he binary classification, we considered to be a satisfactory level of 

erformance. 

After training the generator and discriminator separately, an ad- 

itional joint training stage was carried out. In each joint train- 

ng epoch, the weights of the generator G 1 are updated and a set 

f images x 1 is created. This set is classified by the discriminator 

 1 and its weights are updated. The loss functions of the genera- 

or (1) and the discriminator (2) are optimized independently in 
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Table 3 

Quantitative evaluation metrics for the Stain Normalization Model. A) Comparison 

between original RGB and synthetic normalized RGB cell images. B) Comparison 

between adaptive gray transformation and classic gray transformation. 

Test 

Metrics 

FID IS LPIPS 

A RC 3.532 10.552 ± 0.138 0.039 

A C1 29.703 10.416 ± 0.076 0.063 

A C2 10.199 10.192 ± 0.156 0.043 

A C3 9.301 10.585 ± 0.174 0.048 

A C4 26.493 10.471 ± 0.133 0.049 

B RC 4.418 10.435 ± 0.288 0.068 

B C1 47.864 10.261 ± 0.153 0.065 

B C2 14.287 10.274 ± 0.082 0.047 

B C3 14.566 10.491 ± 0.256 0.061 

B C4 31.578 10.341 ± 0.195 0.058 
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he same training epoch. This process was repeated during sev- 

ral epochs of joint learning. At epoch 20 of joint training, the 

 1 = G 1 (z) images created by the generator beat the discriminator. 

he evaluation visual of these images indicated that the morphol- 

gy of the generated cells was visibly similar to that of the orig- 

nal set Y, thus ending the GAN 1 training. Fig. 4 (A) shows that

he joint training (20 epochs) maintained the stabilized low values 

f both the generator and the discriminator losses. The complete 

raining of GAN 1 was 50 epochs. 

The entire process described to train GAN 1 was performed to 

rain GAN 2. As highlighted in Fig. 3 , the only difference is that we

sed the grayscale set X 1 (generated by GAN 1) and the RGB set 

s paired training sets. To summarize the training result, Fig. 4 (B) 

hows the progression of the loss functions for the Generator G 2 

nd the Discriminator D 2 , respectively. We may observe that GAN 

 also stabilized its losses after the 50 training epochs. Fig. 4 shows 

hat both GAN models did not present overfitting, so the weights 

btained after the described training determined the final SNM 

odel. 

. Quantitative evaluations of the SNM 

We considered examining the staining effectiveness of the SNM 

sing a quantitative evaluation of the synthesized images. Periph- 

ral blood cell original images of RC, C1, C2, C3 and C4. These im- 

ges were not used for any training. For RC, the 9279 images of the 

esting set detailed in Table 2 were used. In addition, 163 images 

rom C1, 1506 from C2, 547 from C3 and 925 from C4 detailed in

able 1 . The images had visible staining differences between cen- 

ers. 

We started by organizing the image sets for the evaluation. The 

et of images with the original color of each center was called 

 . We duplicated the set Y of each center to Y gray by changing

he color space to grayscale using a global linear transformation. 

he set Y passed through GAN 1, obtaining the set X 1 in adaptive 

rayscale. Sequentially, the set X 1 went through GAN 2, obtaining 

he set X 2 in normalized RGB color. 

Two tests were carried out: 

A: The normalized RGB X 2 images synthesized by the SNM are 

compared with the original RGB images Y . 

B: The adaptive gray X 1 images synthesized by GAN1 are com- 

pared with the original paired gray images Y gray . This means a 

comparison between the adaptive gray transformation by GAN 

1 and the global linear transformation. 

The most regularly used metrics in GAN models were calcu- 

ated: Frechet Inception Distance (FID) [52] , Inception Score (IS) 

53] , and Learned Perceptual Image Patch Similarity (LPIPS) [54] . 

he Table 3 presents the result of the metrics of each center. 

The FID metric scores the distance between feature vectors ex- 

racted from two sets X and Y . The feature vector is extracted using 

n InceptionV3 model pretrained with its original weights and the 

alculation is performed using the 2048 feature vector of its last 

ooling layer. Conceptually, the smaller the distance from set X to 

et Y , the color of X will tend to be similar to that of Y . 

The FID score in test A between X 2 and Y is evaluated taking 

wo factors into consideration. First, we consider that the FID score 

n test A RC should ideally tend to zero since the objective of GAN 

 is to replicate the color of the RC. Second, the FID score in test

 for the other centers must be clearly greater than the score ob- 

ained for the RC case to confirm the effective color normalization 

y the SNM. The FID score of the test A RC in Table 3 is 3.532. This

s a low value that indicates a small bias in the RGB color distri- 

ution between the original RC images and those generated by the 

NM. On the contrary, the FID score in test A in the rest of the

enters is considerably higher, this being the objective of the SNM. 
8

n the other hand, the FID score in test B between X 1 and Y gray 

lso shows a small bias (4.418) for the RC between the classic lin- 

ar gray transformation and the adaptive transformation by GAN1. 

n the contrary, the score shows significant higher values for the 

est of the centers, which is consistent with the objective of GAN1. 

The IS metric is used to score the quality of a set of artificially 

enerated images through the classification of the set with an In- 

eptionV3 model pretrained with its original weights. In this study, 

he score was calculated for image sets X 2 for test A and X 1 for test

, respectively, for each center. The IS score in Table 3 is similar in

he two tests for all cases. This means that GAN 1 and GAN 2 do

ot change the overall quality of the input images. 

The LPIPS metric is used to assess the visual perception of im- 

ge sets, similar to human sensation. Random patches of size 14 

14 pixels are created between pairs of corresponding images X

nd Y . The metric measures the distance between patches. In test 

, the score measured the patch distance between image sets X 2 
nd Y , while in test B the measure was the distance between X 1 
nd Y gray . The result of this metric is a considerably low value for 

ach center. This indicates a similar visual perception between the 

riginal RC images and the corresponding synthetic images. 

. Histogram evaluation and interpretation 

In this section histograms are used to get an idea of how the 

eveloped Stain Normalization Model modifies the color spaces of 

he images without affecting cell morphology. The histograms of 

he red, green and blue components of each image were obtained 

efore and after applying SNM. For each center, the average of the 

ndividual histograms was calculated as a single representative his- 

ogram of the entire set. 

An example of an individual cell from each center is presented 

n Fig. 5 . The image in (a) represents the source image, and the im-

ge in (b) shows the image after applying SNM. It is worth noting 

hat morphological changes are not observable. Additionally, the 

verage histograms of the image sets from each center before and 

fter normalization are shown in Fig. 5 (c) and (d), respectively. 

When analyzing each color channel separately, we observed 

hat the red channel in all centers (see Fig. 5 (e)) had the high-

st intensity (255) in most of the pixels. However, after applying 

NM, the maximum frequency of the red channel decreased in all 

enters, as observed in the average histograms. This reduction is 

isually noticeable in the examples presented in Fig. 5 (a) and (b), 

n the red blood cells of the background. 

In the case of the green channel of the source images (see 

ig. 5 (f)), the maximum frequency peak had some variability be- 

ween centers. However, after applying SNM, the peak was ad- 

usted to a frequency of 0.8, and in the case of C2, the two peaks

erged into one, similar to the other centers. 
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Fig. 5. Image standardization examples with SNM. (a) Original images. (b) Images with standardized staining applying SNM. (c) Average histograms for the RGB components 

of the image set from each center before normalizing the staining; pixel frequency versus color intensity. (d) The same average histograms after applying SNM. (e) Compar- 

ison of the red channel histograms between the original images and images with SNM. (f) Comparison of the green channel histograms between the original images and 

images with SNM. (g) Comparison of the blue channel histograms between the original images and images with SNM. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 
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Regarding the blue channel of the source images (see Fig. 5 (g)) 

f the Reference Center (RC), two characteristic frequency peaks 

ere observed. However, in the case of the other centers, SNM 

odified the frequency distribution of the blue color, achieving a 

ehavior similar to that of the RC. This change is noticeable visu- 

lly in the cytoplasm of the cells in Fig. 5 (a) and (b). 

The color composition in the images can be described as a 

robability distribution, which is in fact the cumulative color his- 

ogram (CCH) defined as follows: 

 C H c (x ) = 

∑ 

j≤x 

h c j (3) 

here c denotes a specific color (for example, red, green or blue), 

nd h c j is the pixel frequency of the image with color intensity j, 

hich is the histogram value for the color c. 

It has been argued that CCH is a more robust representation of 

he color distribution than the histogram for quantitatively deter- 

ining the similarity between color images [55] . Also, typical L 1 
r L 2 metrics give reasonable similarity values simply by calculat- 

ng the distances between pairs of CCH. With this objective, we 

alculated the cumulative histograms from the average histograms 
9

hown in Fig. 5 (c) and (d). They are shown in Fig. 6 for source im-

ges and SNM processed images, respectively, separated by centers 

nd color components. 

First, some details can be highlighted from a visual inspection. 

nalyzing the red channel in Fig. 6 (a) for the source CCHs, approx- 

mately 50% of the pixels have an intensity between 200 and 250, 

hile in the SNM CCHs the intensity range decreases between 220 

nd 230. This is because SNM adjusts the value of the red com- 

onent to the right and left with respect to the reference staining, 

nd the CCH curves in Fig. 6 (a) join closer to the RC curve. The

ource CCH and the SNM CCH of the green component have little 

ariation Fig. 6 (b). The blue channel of the C1 CCH source, unlike 

he rest of the centers, is notably different. Its maximum percent- 

ge of pixels is between the range of 225 and 255. When applying 

NM, the intensity is adjusted in a range between 200 and 255, 

oving the blue CCH curve to the left bringing it closer to those 

f the other centers. 

To have a quantitative measure of the previous observations, 

he CCHs of the RC for source images were used as a reference. 

or each center and color channel, we calculated the root mean 

quare error (RMSE) between the CCHs and the reference adopted 
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Fig. 6. Cumulative color histogram (CCH) of average histograms of the source staining and SNM staining. CCH for each color channel: (a) red, (b) green and (c) blue. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 7. Root mean square error (RMSE) of the cumulative color histograms (CCH) for each center, before and after using SNM, with respect to the CCH of the source color 

images of the Reference Center. 
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efore and after using SNM. All these values are shown in Fig. 7 .

n addition, Table 4 gives the differences between the RMSE before 

nd after applying SNM in percentage relative to the initial source 

alue. 

We observe that, in all cases, the RMSE after SNM is lower than 

or the source images. The greatest relative changes are observed 

or: (1) the red color for C1, from 0.052 to 0.016, which means a re-
10 
uction of 69.2% with respect the original value; (2) the blue color 

or C4, from 0.050 to 0.021, which is a reduction of 58%; and (3) 

he blue color for C3, from 0.017 to 0.009, which means a reduc- 

ion of 47.06%. 

The bottom row in Table 4 shows that the lowest average re- 

uction per center in RMSE is for Center C2 (11.63%), while it is 

etween 23.16% and 29.23% for the other centers. In terms of col- 
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Table 4 

Relative differences (in %) of the root mean square errors (RMSE) of the cumula- 

tive color histograms (CCH) before and after using SNM. The RMSE are calculated 

between the cumulative color histograms (CCH) of the different centers and the 

Reference Center. 

C1 C2 C3 C4 Average value 

per color 

Red 69.23 16.67 13.04 24.71 30.91 

Green 9.71 7.14 25.00 11.67 13.38 

Blue 15.27 10.26 47.06 58.00 32.65 

Average value per center 23.16 11.63 26.32 29.23 
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rs, the last column of the Table 4 shows that the lowest average 

eduction per color is for green (13.38%). Corroborating that the 

ed (30.91%) and blue (32.65%) components are more influenced 

y SNM than the green one. 

. Evaluation of the SNM in a multicenter classification test 

The objective of this section is to evaluate the effective- 

ess of the SNM as a pre-processing tool before the cell im- 

ges are classified within the scheme described in Fig. 1 . First, 

ection 6.1 presents a CNN model designed specifically in this 

tudy for the classification of blood cell images into the following 

lasses: abnormal lymphocytes (ALC), blasts (BL) and reactive lym- 

hocytes (RL). The model was trained on the RC color distribution 

sing the data set shown Table 2 . Section 6.2 describes the assess- 

ent of this classifier with the test set of RC images ( Table 2 ) be-

ore and after using color normalization by SNM. Finally, the most 

elevant result is the evaluation of the classifier when using images 

rom centers other than the RC ( Section 6.3 ). 

.1. Structure and training of the classifier 

Convolutional neural networks have architectures generally sep- 

rated into two sequential parts: 1) a series of blocks trained to 

btain complex characteristics from images; and 2) a block with a 

ully connected multilayer neural network that is trained to per- 

orm the classification using the learned characteristics. We inves- 

igated several architectures (Inception [56] , PNasNet5Large [57] , 

GG16 and VGG19 [58] ), and SENet154 [59] , which were used with 

atisfactory results in previous works for the recognition of cells 

irculating in blood. [7–10,40] . 

Several iterative training and testing experiments were carried 

ut with the database shown in Table 2 and determined the accu- 

acy for the classification of the ALC, BL and RL classes. The result- 

ng testing accuracy for the five CNN models is shown in Table 5 .

ENet154 was selected for the final assessment based on its high- 

st performance rating. 

In the SENet154 architecture, the images of data set where re- 

ized to a normalized size of 224 × 224 . It is advisable to normalize

he data to avoid problems of numerical instability. 

The process to train the network is iterative and the time to 

o it is divided into epochs. An epoch is usually divided into mul- 
able 5 

omparison of convolutional neural network architectures for the classification of 

LC, BL and RL. 

Images Dataset Architecture Training epochs Testing accuracy 

Training Inception V3 30 92.3% 

8913 PNasNet5Large 28 90.9% 

Validation VGG16 25 93.4% 

1570 VGG19 25 93.8% 

Testing SENet154 20 94.6% 

9279 

11
iple iterations, so that the network processes a batch of training 

amples at each iteration until the entire training set is used. In 

his work, we randomly selected mini-batches of 20 samples with- 

ut repositioning in each iteration. At each epoch, a loss function 

s used to determine the error, which is a measure of the discrep- 

ncy between the prediction made by the network and the true 

abel assigned by clinical pathologists. In this work, the following 

ategorical cross entropy loss function was used: 

 = − 1 

m 

m ∑ 

i =1 

3 ∑ 

j=1 

t (i ) 
j 

log 

(
ˆ t (i ) 

j 

)
(4) 

here m is the number of images in the training set, t (i ) 
j 

is the

rue label of the class and 

ˆ t (i ) 
j 

is the probability of the predicted 

lass. This means that t (i ) 
j 

= 1 if the image sample i belongs to the

lass j, and t (i ) 
j 

= 0 otherwise. 

The objective of the training is to update the network weights 

o gradually reduce the loss function towards its minimum accord- 

ng to the gradient descent principle. Using the backpropagation 

pproach, the gradients with respect the weights must be deter- 

ined backward through the network. To optimize the learning 

rocess, Adaptive Moment Estimator Optimizer (Adam) [60] was 

sed to estimate the gradients along with the cyclical learning rate 

olicy [50] . 

After completing each learning epoch, the loss was calculated 

or the entire training set. In addition, the images from the vali- 

ation set were classified by the updated model to calculate the 

oss until the classification accuracy was acceptable. Fig. 8 shows 

he progress of the training and validation loss and the accuracy 

f the classifier. Based on the results shown, it was concluded con- 

luded that 20 training epochs were sufficient because at this point 

he loss was minimal and the validation accuracy reached its maxi- 

um value. Therefore, the training/validation stage was completed. 

.2. Classifier evaluation using blood cell images from the reference 

enter 

The performance of the classifier is evaluated in two experi- 

ents. The first experiment evaluated the performance of the clas- 

ifier without using the SNM. This means that all 9279 periph- 

ral blood cell images in the testing set detailed in Table 2 were 

lassified without modifying their original RC staining. Table 6 

hows the confusion matrix obtained when comparing the pre- 

icted classes with the true classes confirmed by clinical diagnosis. 

ach column represents the percentage of prediction by class and 

ach row represents the actual instances. 

From this multi-class confusion matrix, we calculated the sen- 

itivity or true positive rate (TPR), specificity or true negative rate 

TNR), precision or positive predictive value (PPV), and F 1 score for 
Table 6 

Confusion matrix of the classification results (in %) for the images of the testing 

set from the Reference Center. The diagonal shows the true positive values (TP) 

for each cell class. The balanced accuracy is 95.7%. 

RC Original Color Predicted class 

Abnormal 

lymphocytes 

Blasts Reactive 

lymphocytes 

True 

Class 

Abnormal lymphocytes 94.4 3.6 2.0 

Blasts 1.3 97.9 0.8 

Reactive lymphocytes 3.8 1.4 94.8 
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Fig. 8. Classifier training for 20 epochs. A: Progression of training and validation losses. B: Progression of the accuracy for the classification of the images in the validation 

set. 

Table 7 

Sensitivity, specificity, precision and F1 score values of the classification results of 

the images of the testing set from the Reference Center. 

Abnormal 

lymphocytes 

Blast Reactive 

lymphocytes 

Average 

values 

Sensitivity 0.944 0.979 0.948 0.957 

Specificity 0.975 0.975 0.986 0.979 

Precision 0.949 0.951 0.971 0.957 

F1 score 0.946 0.965 0.959 0.956 
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Table 8 

Confusion matrix of the classification results (in %) for the images of the testing set 

from the Reference Center after using SNM. The balanced accuracy is 96%. 

RC SNM Color Predicted class 

Abnormal 

lymphocytes 

Blasts Reactive 

lymphocytes 

True 

Class 

Abnormal lymphocytes 95.9 2.9 1.2 

Blasts 1.8 97.9 0.3 

Reactive lymphocytes 3.1 2.7 94.2 
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ach cell class i as follows: 

T P R ) i = 

(T P ) i 
(T P ) i + (F N) i 

(T NR ) i = 

(T N) i 
(T N) i + (F P ) i 

P P V ) i = 

(T N) i 
(T N) i + (F P ) i 

F 1 i = 2 · (P P V ) i · (T P R ) i 
(P P V ) i + (T P R ) i 

(5) 

n these expressions, (T P ) i (true positive) is the value in the main

iagonal of the confusion matrix. (F N) i (false negative) is the sum 

f the row values of class i excluding the diagonal. (F P ) i (false pos-

tive) is the sum of the column values of class i class excluding the

iagonal. (T N) i (true negative) is the sum of the entire matrix ex- 

luding (T P ) i , (F N) i and (F P ) i . In this way we obtain the perfor- 

ance metrics of each class compared to the other two classes. All 

hese values are displayed in Table 7 . 

Finally, the balanced accuracy is the percentage of images cor- 

ectly classified, which is the average of T P R for the three classes.

ts value was 95 . 7% . All of the above metrics indicate that the

rained model performed satisfactorily for classifying new images 

hat were obtained with the same staining protocol as the images 

sed for training. 

The second experiment aimed to evaluate the effect of SNM on 

he performance of the classifier with the same images. Therefore, 

he same 9279 cell images from the test set were run through the 

NM and then passed through the classifier. Table 8 is the classifi- 

ation confusion matrix of the normalized images with SNM. 

It is interesting to compare the results obtained in Table 6 and 

hose obtained with SNM normalization in Table 8 . The perfor- 

ance in abnormal lymphocytes slightly improves with SNM, the 

PR values increasing from 94.4% to 95.9%. In the case of blasts, 

here is no variation in TPR, the FN are distributed mainly to the 

bnormal lymphocyte class. In reactive lymphocytes, a slight TPR 

ecrease is observed (94.8% to 94.2%) when using SNM. 
12 
.3. Classifier evaluation using blood cell images from different 

enters 

In this section, we evaluate the performance of the classifier 

ith images from different centers. Sets of 163 images from C1, 

506 from C2, 547 from C3 and 925 from C4 passed through the 

lassifier in two experiments. 

In a first experiment, we passed all the images with their orig- 

nal staining through the classifier and obtained the confusion ma- 

rix for each center. In a second experiment, the images went first 

hrough the SNM, normalizing their staining according to the color 

f the RC. Then, the normalized images went through the classi- 

er and we obtained a new classification confusion matrix for each 

enter. All the confusion matrices for both experiments are shown 

n Table 9 . 

A first look at the confusion matrices for the original images 

n Table 9 reveals a significant reduction in the true positive rates 

TPR) on the main diagonal for some of cell classes. The lowest TPR 

s 31.9% for the abnormal lymphocytes from C1. For reactive lym- 

hocytes, these values are 52.8%, 46.3%, 66% and 53.6% for C1, C2, 

3 and C4, respectively. These low TPR values are in sharp contrast 

o the high values shown in Table 6 when using exclusively the 

mages collected in RC. 

On the other hand, the confusion matrices on the right side of 

able 9 show that the classification of all cell image classes from all 

enters improves considerably after normalizing the original im- 

ges using the SNM. For example, the TPR of reactive lymphocytes 

aised to values of 97.2%, 96.7%, 85.7% and 81.2% for the C1, C2, C3 

nd C4, respectively. In addition, the TPR of the abnormal lympho- 

yte class for the C1 increased drastically from 31.9% to 97.9% and 

he TPR of the RL increased from 52.8% to 97.2% for the C1, and 

rom 46.3% to 96.7% for the C2. 
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Table 9 

Confusion matrices of the classification results (in%). The general classification accuracies before using SNM of Center 1, 

Center 2, Center 3 and Center 4 were 61.2%, 73.9%, 84.3% and 82.5%, respectively. The general classification accuracies after 

using SNM of Center 1, Center 2, Center 3 and Center 4 were 98.4%, 92%, 93.4% and 92.6%, respectively. 

Center Original color SNM color 

C1 Predicted class 

Abnormal Blasts Reactive Abnormal Blasts Reactive 

True class Abnormal lymphocytes 31.9 68.1 0 97.9 2.1 0 

Blasts 1.2 98.8 0 0 100 0 

Reactive lymphocytes 8.3 38.9 52.8 0 2.8 97.2 

Global accuracy 61.2% 98.4% 

C2 Predicted class 

Abnormal Blasts Reactive Abnormal Blasts Reactive 

True class Abnormal lymphocytes 85.2 14.7 0.1 83 13.1 3.9 

Blasts 9.7 90.3 0 2.5 96.2 1.3 

Reactive lymphocytes 17.3 36.3 46.3 1.9 1.3 96.7 

Global accuracy 73.9% 92% 

C3 Predicted class 

Abnormal Blasts Reactive Abnormal Blasts Reactive 

True class Abnormal lymphocytes 95.7 1.7 2.6 100 0 0 

Blasts 8.8 91.2 0 5.3 94.4 0.3 

Reactive lymphocytes 7.5 26.4 66 8.9 5.4 85.7 

Global accuracy 84.3% 93.4% 

C4 Predicted class 

Abnormal Blasts Reactive Abnormal Blasts Reactive 

True class Abnormal lymphocytes 94 6 0 97.3 2.2 0.5 

Blasts 0 100 0 0.7 99.3 0 

Reactive lymphocytes 40.2 6.2 53.6 17.8 1 81.2 

Global accuracy 82.5% 92.6% 
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. Discussion 

Cell staining is an important step in the preparation of a PB 

mear for the diagnosis of hematological and non-hematological 

iseases. May-Grünwald Giemsa (MGG) is a physical cell staining 

echnique widely used in clinical laboratories. It highlights mor- 

hological differences in blood cells improving microscopic obser- 

ation. The current trend in modern clinical laboratories is to use 

utomated systems to improve efficiency in smear preparation, ob- 

ain digital images of blood cells, and automatically classify cell 

lasses for diagnosis purposes. CNN-based classifiers are generally 

rained to achieve performance metrics within some range. Expe- 

ience shows that this performance is sensitive to variations in the 

taining process, so new tools are needed to artificially normalize 

he color spaces without altering the distinctive morphological fea- 

ures of cells. 

Within this context, our work uses generative adversarial net- 

orks (GANs) to develop a Stain Normalization Model (SNM) to 

djust the color spaces of digital images to the standardized color 

f a reference center (RC). The model operates in two sequen- 

ial steps. The first removes color from the input image, and 

he second model digitally stains the image using the RC col- 

rs as a target. The resulting images are realistic, preserve cell 

orphological features and mitigate the performance degrada- 

ion of CNN-based classifiers against images of cells with variable 

taining. 

Although there are a number of relevant works devoted to color 

ormalization in tissue slides, few articles have been presented in 

he literature on automatic staining of PB cells using deep learning 
13 
lgorithms. As far as the authors know, the closest to our work are 

32] and [33] . 

The work in [32] uses a CycleGAN to translate the staining style 

etween two sets of images made up of normal leukocytes (neu- 

rophils, eosinophils, basophils, monocytes, lymphocytes), myelo- 

ytes, and metamyelocytes. The model is trained on a sample 

atabase of 20 patients. The authors mention the overfitting in 

he loss function that produces a morphological modification in 

he cells. In our opinion, the preservation of morphology is very 

mportant in the staining process, since clinical pathologists and 

he automatic recognition models rely on the identification rele- 

ant features associated to geometry, color and texture. Modifying 

ell morphology can directly affect the interpretability of the im- 

ges with a misdiagnosis. 

The work in [33] presents a combined digital staining and clas- 

ification approach that uses unstained cell images obtained with 

 differential interf erence contrast (DIC) microscope. Using com- 

letely unstained images as input is attractive, as this could im- 

ly a classification ideally robust against staining variability. How- 

ver, extraction of relevant features from DIC images is difficult 

nd auxiliary tasks of segmentation and pairwise reconstruction 

re needed. On the other hand, DIC images are difficult to rec- 

gnize through morphological visual inspection. In fact, clinical 

athologists are used to working with images of stained cells, with 

GG being the most widely used staining method. In this re- 

ard, the approach in [33] includes a digital staining method aimed 

t obtaining colored RGB images with MGG-like appearance and 

reserved morphology that can be recognizable by expert clinical 

athologists. 
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In our work, the inputs are RGB cell images acquired from 

atients from different centers using the CellaVision DM96 and 

tained with their own MGG protocol (with different staining times 

r pH), which influences the color of the cell images. The final des- 

ination of these images is to go through an automatic recognition 

odel previously trained and validated with this type of images 

ut obtained in the RC. The contribution of this work is a GAN- 

ased stain normalization model (SNM) that transfers the stain- 

ng style of the RC. The proposed system has been designed to 

aintain morphological features with high visual quality of images 

nd preserve performance when automatically recognized by the 

ccompanying classifier. The overall evaluation has been carried 

ut on three broad classes of cells representative of lymphoma, 

eukemia and infection, respectively. 

The remainder of this section deals with the following aspects: 

nalysis of results, development and training of the model, and 

omputational resource requirements. 

.1. Analysis of results 

A key idea in the proposed SNM was the sequential struc- 

ure with two specialized gain models. GAN1 transforms the initial 

GB images into an adaptive gray. The intuitive idea was to fade 

he image but keeping the morphology as fixed when the blood 

mear was prepared. The second GAN2 was designed to synthe- 

ize stained digital images from scratch while also preserving mor- 

hology. For this reason we made the two quantitative compar- 

sons summarized in Table 3 using common metrics in GAN as- 

essments. Test A was designed to evaluate the final output of the 

NM via the comparison of the original images from the five cen- 

ers involved in the study with those digitally stained final images. 

est B was designed to have a measure of how the faded images 

reated by GAN1 compared with the same images in grayscale ob- 

ained by the classic linear gray transformation. The main conclu- 

ion from the FID score comes when observing two facts. First, the 

alues for the RC (3.532 for Test A and 4.418 for Test B) are clearly

maller than the values for the other centers, which is interpreted 

s the transformations for the RC are practically neutral. Second, 

ifferences exist in the FID scores between the four centers, rang- 

ng from 9.301 to 29.703 in Test A and from 14.287 to 47.864 in

est B. This can be interpreted in terms of staining variability. The 

ore the digital staining of the centers varies from the RC stain- 

ng, the higher the score will be. The IS score values are similar for 

oth tests with values between 10.192 and 10.585. This result con- 

rms that the quality of the images with digital staining is similar 

n the five centers. We consider that this similarity is due to two 

auses. The first is because the laboratories use the same model of 

igital morphology analyzer for the acquisition of the images. The 

econd is due to the architecture of the SNM, which is able to ma- 

ipulate the color spaces without affecting cell morphology. LPIPS 

alues range from 0.039 to 0.068, which are very low values. This 

ndicates that the visual perception to differentiate the staining of 

he images before and after SNM is poorly discernible, which was 

 design objective. 

In addition to the performance metrics discussed above, an 

valuation of the variability of the color channels in the images be- 

ore and after using the SNM was carried out by using histograms 

see Fig. 5 ). It is remarkable that the histograms of the source im- 

ges showed high and variable frequencies among the five cen- 

ers while, after applying the SNM digital stain, the frequencies 

ere reduced and became similar for all centers. We separated the 

hree RGB components and calculated the root mean square error 

RMSE) values of the cumulative histograms relative to the RC. It is 

nteresting to analyze these values in Fig. 7 . By ordering the RMSE 

f the centers from smallest to largest they are C3, C2, C4 and C1. 

he order is the same as for the FID score for Test A from lowest
14 
o highest A C3 , A C2 , A C4 , and A C1 , discussed above. Consequently, 

oth evaluations (quantitative and visual) indicate the level of dig- 

tal staining variability between centers adjusted by the SNM. 

The third evaluation of the SNM was through automatic recog- 

ition of digitally stained cells by a classifier previously trained 

ith images obtained and stained in the RC. First, we compared 

he performance of the classification of RC images with their orig- 

nal staining ( Table 6 ) versus the classification of SNM-stained im- 

ges ( Table 8 ). Very slight differences exists between the balanced 

ccuracies in each case: 95.7% and 96%, respectively. Therefore, 

e can consider that the SNM normalization is neutral when us- 

ng images from the same center. The next step was a multicen- 

er evaluation, using batch images from four different centers and 

omparing the performance of the classifier before and after using 

NM staining (see Table 9 ). The first observation is the deteriora- 

ion of the classification performance when using the original im- 

ges for the different centers in comparison with the results when 

sing the images from the RC center. While the balanced accuracy 

as 95.7% for the RC case, the accuracies for C1, C2, C3, C4 before 

sing SNM digital staining were 61.2%, 73.9%, 84.3% and 82.5%, re- 

pectively. The second observation to note is that, using the SNM, 

hese accuracies increased to 98.4%, 92%, 93.4% and 92.6%, respec- 

ively. By cell class, evidence indicates that the classification of re- 

ctive lymphocytes is the most sensitive to staining variability for 

ll centers. When using the original images, the true positive rates 

TPR) fell to the range of 46.3% to 66%, and increased considerably 

o a range between 81.2% and 97.2% when using the SNM stained 

mages. In the case of abnormal lymphocytes, the TPR ranged from 

1.9% to 95.7% with the original images and from 83% to 100% with 

he SNM stained images. For the blast class, the ranges were 90.3% 

 94.4% and 94.4% - 100%, respectively. All results are consistent 

ith the general idea that the using the proposed GAN-based nor- 

alization staining approach improves the performance of classi- 

ers with multicenter data sets. 

.2. Comparison with other GAN-based approaches 

Our objective was to develop a normalization digital staining 

pproach to improve the performance of classifiers of peripheral 

lood cell images when applied to multicenter datasets after hav- 

ng been trained using images from a reference center. Without 

ny staining normalization, the overall classification average across 

our external centers using a CNN model trained with RC images 

as 75.48% (refer to Table 9 ). Initially, we attempted to improve 

he accuracy by training the CNN model with the RC database 

sing other color spaces such as HSV, YCbCr and grayscale. We 

chieved high precision for the RC test set with accuracy values 

f 94.3%, 93.3%, and 94.7%, respectively for the three-color spaces. 

owever, when testing these models with external centers, we ob- 

erved a significant decrease in accuracy, with an average global 

ccuracy between centers of only 49.69%, 50.36% and 61.36%, re- 

pectively. This was particularly significant for the reactive lym- 

hocyte (RL) group with accuracies lower than 10%. Interestingly, 

he grayscale space performed better than the other color spaces 

n terms of accuracy. 

We explored an alternative approach by normalizing the images 

o the RC standard with a single GAN using CycleGAN. Although 

his architecture combines two distributions to obtain a third, we 

ncountered problems in preserving morphological variability. To 

ddress this, we duplicated the original dataset to form a pairwise 

atabase. To more accurately simulate staining variations, we gen- 

rated a database of pairs consisting of RC images and the same 

mages with random digital lighting, color and contrast modifica- 

ions. This approach was evaluated using the same methodology as 

n Section 6.2 , training the CNN with the RC database and passing 

he test set through the CNN. However, we observed a decrease in 
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he overall classification results to 86%, with morphological varia- 

ions visible in the resulting images. When we tested images from 

xternal centers using this approach, the overall accuracy was only 

0.3%. mWe also noted that the entire RL group was recognized as 

LC. 

Another attempt was to normalize the images with a single 

AN using Pix2Pix. This trial used a pairwise dataset, where the 

C images were modified with random transformations of illumi- 

ation, contrast, and color. The results of this method were promis- 

ng in the RC test set (98.6% accuracy) and morphological variation 

as not observed in the resulting images. However, only a slight 

ariation in the color normalization was obtained in the images 

rom external centers compared to the original images. In addition, 

he average classification accuracy of the external centers only im- 

roved slightly to 78.4% compared to images without any normal- 

zation (75.48%). The conclusions of this trial were the limitations 

f Pix2Pix and the need for a better normalization method. 

In a subsequent experimentation, we addressed the stain varia- 

ion by using a single-color component, specifically the gray scale. 

o achieve this, a Pix2Pix GAN was trained to convert gray im- 

ges to the RC color space. The database consisted of paired RC 

mages in both RGB and gray formats. The RC test set achieved 

n overall classification accuracy of 94.1%. In the external centers 

est, the overall accuracy was 89.26%. This normalization method 

as considered optimal in terms of computational resources, as it 

nly requires a modification in the color space and a single GAN. 

owever, the reduction in accuracy between RC and the external 

enters using the normalization system indicated that further im- 

rovements were necessary. 

This process of testing various approaches ended with the 

wo-stage GANs proposed in this work, the first to normalize to 

daptive grayscale and the second to normalize to RC stain. This 

ethodology achieved a classification accuracy of 96% on the RC 

est set and a global average accuracy of 94.1% on external cen- 

ers. Overall, this methodology shows promising results in improv- 

ng classifier accuracy. This system utilizes more computational re- 

ources due to the use of two GANs. We discuss the computational 

equirements of this approach in the following section. 

.3. Computational resources 

GANs require a proper training method to create adversity be- 

ween the generator and the discriminator. The work in [24] uses 

he CycleGAN architecture as a starting point to change color 

paces in tissue samples with simultaneous training of the discrim- 

nator and generator. Instead, in this work we used a PIX2PIX ar- 

hitecture to manipulate each input pixel to the system and moni- 

or the result in each training epoch. We opted for this architecture 

ecause it learns from a paired database, where color is the vari- 

ble to modify and cell morphology is the variable to maintain. 

The use of PIX2PIX consumes a lot of computational resources 

or training, so it needs an adequate training technique and opti- 

ization of these resources. The learning technique used in GAN 

 and GAN 2 was the NoGAN method [61] . The method trains the

enerator and the discriminator separately, reducing the computa- 

ional learning load and avoiding instability in the training losses. 

he NoGAN technique is widely accessible because it can be used 

n conjunction with a paired database. The stability of the training 

llows the correct manipulation of the color space of a cell image 

ithout modifying the morphology, avoiding generating an erro- 

eous clinical diagnosis associated with the manipulation of im- 

ges by the GANs. We conducted 30 epochs of training until the 

osses decreased considerably (see Fig. 4 ). At the end of the epochs, 

he generator and discriminator are trained. However, it is nec- 

ssary to carry out joint training to adjust the generator weights 

ased on the discriminator prediction. For this reason, we car- 
15 
ied out 20 additional epochs of joint training. The overall training 

trategy was crucial to obtain a correct digital staining 

It is interesting to discuss on the training time. Generators G 1 

nd G 2 , and Discriminators D 1 and D 2 completed a separate train- 

ng epoch in approximately 5, 5.5, 14.5, and 13.5 minutes, respec- 

ively. The joint training of G 1 − D 1 and G 2 − D 2 was approximately 

7 and 15 minutes, respectively. The approximate total training 

ime of the SNM was 30 hours. 

In addition, we consider important to evaluate the execution 

ime of the entire scheme shown in Fig. 1 . That is, pass a set of im-

ges through SNM and the classifier, measuring the time to com- 

lete the entire process for practical use. We measured the run- 

ime in three tests. Each test used the same set of 10 0 0 images,

he initial GPU temperature of 35 degrees Celsius, and 15% of the 

apacity of the 12 GB Nvidia Titan XP GPU. In Test 1, 10 0 0 images

ere digitally stained by the SNM. Test 2 consisted in the classi- 

cation of 10 0 0 images. In Test 3, 10 0 0 images were normalized

y SNM and classified. The measured times were 53.43 seconds, 

04.09 seconds and 191.82 seconds, respectively. 

.4. Practical use of the system and limitations 

In practical use, the proposed system is intended to be used in 

linical laboratories as an additional tool to aid in diagnosis, com- 

lementing the experience and clinical practice of the pathologist. 

rom a patient’s blood sample, the first step in the workflow is 

mear preparation using staining procedures. The second step is 

he acquisition of a set of individual cell images by a digital an- 

lyzer. In the third step, the pathologist selects a number of im- 

ges that go through the system in Fig. 1 . The expected number of 

mages processed per smear would be less than 100, so the total 

rocessing time would be less than 20 seconds in the worst case. 

he normalization process is done within the SNM and the pathol- 

gist only views the original images along with the classification 

esult. The system serves as a support tool to add accuracy and 

bjectivity in case of uncertainty in the morphological inspection, 

articularly in the presence of pathological cells. It is designed as a 

omplement to pathologists in their role in the diagnosis process. 

In this work, the system was evaluated in a specific framework. 

ll training was performed using images from peripheral blood 

mears collected at the CORE Laboratory of the Hospital Clinic of 

arcelona (Spain) over a considerably long period of time, which 

as the reference center. Smear preparation was performed au- 

omatically on the Sysmex SP10 system with the May Grünwald- 

iemsa (MGG) staining technique. Cell images were acquired with 

he Cellavision DM96 digital analyzer. Three cell classes were con- 

idered as a prototype case: abnormal lymphocytes, blasts and re- 

ctive lymphocytes. They encompass broad subtypes of lymphoma, 

eukemia and infection, respectively. 

With a broad application perspective, this is a limited evalua- 

ion. Future work is needed to extend this approach to different 

mage acquisition devices and staining methods. As for digital an- 

lyzers, while the Cellavision DM96 has been widely used in many 

aboratories over the last decade, new devices are entering the 

arket helping to increase the scope of automated digital morpho- 

ogical analysis. To overcome this limitation, transfer learning tech- 

iques could be employed when a pre-existing SNM model must 

e adapted to a new device. In addition, the SNM system was eval- 

ated using MGG staining in samples from four external centers. 

he results clearly demonstrated that the image classification was 

ignificantly improved when compared to the classification of the 

riginal images. However, it is important to conduct future studies 

ncompassing a wider range of centers to expand the scope of the 

ormalization approach and enable the exploration of the system’s 

obustness against specific variations in the staining protocol. 



K. Barrera, J. Rodellar, S. Alférez et al. Computer Methods and Programs in Biomedicine 240 (2023) 107629 

c

t

p

l

t

b

c

p

8

G

e

g

t

t

e

M

a

i

t

h

c

a

h

f

a

i

a

c

t

s

f

t

A

t

d

t

p

a

m

D

e

c

o

A

o

1

H

a

G

a

f

D

S

R

 

 

 

 

 

 

[

[  
While this study considered staining normalization for three 

ell classes, it is important to note that further opportunities exist 

o explore the use of SNM in a broader range of classes. For exam- 

le, the sub-classes of blast cells associated with different types of 

eukemia and the sub-classes of abnormal lymphocytes are poten- 

ial targets for research. Furthermore, certain classes of cells may 

e more prone to changes in staining intensity due to variations in 

ytoplasmic coloration, making them especially interesting to ex- 

lore. 

. Conclusions 

This work has developed and evaluated a method based on 

ANs capable of performing normalized digital staining of periph- 

ral blood cell images without modifying their morphology. Two 

enerative adversarial networks have been developed for this sys- 

em. The first GAN removes staining from the input images, while 

he second GAN specializes in staining the images with the ref- 

rence center staining. The user enters the original images with 

GG staining through the SNM and at the output synthetic im- 

ges are obtained with the digital staining of the RC. This stain- 

ng has been validated by GAN metrics, histogram evaluation, and 

hrough artificial classifiers. Synthetic images have been shown to 

ave the same quality as real images. The system requires low 

omputational time in production, little preprocessing time, and 

llows multicenter adaptability. Therefore, we believe that it can 

elp improve the performance of automatic recognition systems 

or multicenter final clinical practice. 

The main tangible contribution of this work is the methodology 

nd the illustration of its potential in this context. It is interest- 

ng to continue working to extend this approach to different image 

cquisition devices and staining methods, as well as more source 

enters and more cell classes. As technological advances within 

his field continue to rapidly evolve, the proposed methodology is 

ubject to improvement. Therefore, future studies can build on this 

oundation to further improve this methodology in clinical labora- 

ories. 
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