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Current-Induced Ion Concentration Polarization at a Perfect
Ion-Exchange Patch in an Infinite Insulating Wall
Mykola P. Bondarenko,[a] Merlin L. Bruening,*[b, c] and Andriy E. Yaroshchuk[d, e]

An invited contribution to the Richard M. Crooks Festschrift

This research examines, theoretically, the ion concentration
polarization, ion fluxes, and electrostatic fields near an ion-
exchange patch in the wall of an electrified fluidic channel.
These phenomena are important in related microfluidic ion-
preconcentration systems. Under an electric field, counter ions
enter the ion-exchange patch at one side and leave at the
other, with salt depletion occurring near the entrance and
accumulation near the exit. The high patch conductivity and
the concentration profiles lead to local electric field perturba-

tions that may facilitate preconcentration. This study includes
analytical expressions of ion concentrations and electrochemical
potentials at small to moderate electric fields, as well as
numerical simulations. Additionally, a simple matrix of poly-
nomial coefficients (obtained via fitting of numerical data)
enables analytical calculation of the two-dimensional concen-
tration profiles at all electric fields within the range investigated
in the numerical simulations. This is possible because a single
dimensionless parameter controls this problem.

1. Introduction

This manuscript mathematically investigates the ion concen-
tration polarization that occurs upon application of a potential
difference across a microchannel that spans an ion-exchange
patch. Such systems provide perhaps the simplest method for
ion preconcentration in microchannels, and the important point
of this work is to demonstrate the pronounced local depletion/
enrichment phenomena that occur close to ion-exchange
patches that behave like floating electrodes (in the sense that
the net electric current through them is zero).

The Crooks group was among the first to demonstrate ion
preconcentration that results from depletion zones adjacent to
nanopores or ion-exchange membranes.[1] They inserted a
nanoporous polyester membrane between two poly(dimeth-
ylsiloxane) channels and applied a potential between the
channels (Figure 1A and 1B). DNA accumulated in the channel
above the membrane. One possible explanation for the

accumulation is that the nanoporous membrane is negatively
charged and behaves as a modestly selective cation-exchange
membrane. In such cases, supporting salt depletion will occur
on the anodic side of the membrane, whereas accumulation
will occur on the cathodic side. This leads to high local electric
fields, and when combined with electroosmotic flow, such fields
should lead to DNA accumulation.

The electrodialysis community has known about accumu-
lation and depletion zones since the 1950s.[2–3] Such membranes
contain a high concentration of net fixed charge and are
important in fuel cells and electrodialysis.[4–5] Upon application
of a current across an ion-exchange membrane, the difference
in ion electromigration flux components in the solution and the
membrane leads to ion depletion adjacent to one side of the
membrane and ion accumulation adjacent to the other side.[2,6]

Considering the cation-exchange membrane (CEM) in Figure 2,
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Figure 1. Scheme of one of the earliest devices for preconcentration in
microfluidic devices. A) Three-dimensional view. B) Vertical cross section of
the device.
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if the solution contains KCl as the dominant salt, the K+ and Cl�

ions each carry about half of the current in the solution.
However, inside the CEM, K+ carries essentially all of the
current. Thus, the electromigration of K+ to the membrane
from solution on the left is less than the electromigration flux of
K+ away from this interface into the membrane. Similarly, in the
solution on the left side of the membrane the electromigration
flux of Cl� away (to the left) from the membrane is higher than
the flux of Cl� (to the left) through the membrane because
anions carry little current in the CEM. These phenomena
deplete the concentrations of both cations and anions near the
left side of the membrane. At underlimiting currents with
negligible convective flow and a thick membrane, the sum of
diffusive and electromigration flux components of either cations
or anions in the boundary layer is equal to their electro-
migration fluxes through the CEM. In a related manner, the
difference in the fraction of current that cations and anions
carry in the membrane and in the solution to the right of the
membrane leads to an accumulation region adjacent to the
right side of the membrane (Figure 2). Note that to some extent
these accumulation and depletion regions will appear in any
case when cations and anions carry different fractions of current
in the solution and in the membrane, i. e. when their trans-
ference numbers are different in the solution and the
membrane.[3] This can occur in charged nanopores, which
function as ion-exchange membranes at low ionic strength.

After the initial Crooks paper, many groups developed ion
preconcentration using ion- exchange media, including nano-
pores, between channels in a T-junction configuration (Fig-
ure 3).[7] These devices also exploit the combination of flow with
depletion and accumulation regions that exist near the surfaces
of ion-exchange media during current flow.[8–10] Typically, flow
brings ions toward the junction, and they accumulate near
regions where their electrophoretic flux component offsets their
convective flux component. Wang and coworkers reported as
much as a million-fold preconcentration factor for proteins.[10]

Our recent computer simulations suggest that ion accumulation
near a related nanoporous interface can occur with order of
magnitude selectivity for ions with different (but relatively
close) mobilities.[11]

In research to simplify the construction of preconcentration
devices, the Crooks group expanded on their prior expertise
with bipolar electrodes[12–13] to create enrichment zones with
only a single channel that spans a bipolar electrode (Fig-
ure 4A).[14–18] Because of the potential profile in the solution
above the electrode, the electrode minus solution potential
drop is more negative at the right side of the electrode than at
the left side. Thus, (at sufficiently high electric fields in solution)
the right side of the electrode behaves as a cathode and the
left side as an anode, and current flows through the electrode
(Figure 4B). Importantly, the bipolar electrode provides a low-
resistance pathway for current flow, so the electric field in the
solution above the bipolar electrode is much smaller than in
surrounding areas. This results in minimal electromigration
above the electrode, which leads to depletion of chloride ions
(the buffer is Tris-HCl) because EOF moves them away from this
region to the left. Moreover, hydroxide generated at the
cathode neutralizes Tris-H+ ions to deplete them above and to
the right of the bipolar electrode. The ion depletion to the right

Figure 2. Scheme of concentration polarization during electrodialysis across
an ion-exchange membrane. The arrows show qualitative electromigration
(EM) and diffusion (Diff) flux components for K+ and Cl� in a solution
containing KCl. The drawing assumes negligible ion diffusion in the ion-
exchange membrane and complete anion exclusion.

Figure 3. Scheme of preconcentration during application of a potential
between two channels connected by a cation-exchange membrane (CEM).
Depletion of dominant ions above the channel leads to a large electric field
in this area. Trace anions accumulate near this region because to the left of
the dye accumulation region electroosmotic flow (EOF) is greater than the
dye electromigration, but the dye EM increases with the electric field
strength and eventually offsets the EOF to create accumulation.

Figure 4. A) Scheme of a channel that spans a bipolar electrode to create a
depletion region and high electric field to the right of the electrode. B)
Diagram of the bipolar electrode showing cathodic and anodic reactions.
Generated hydroxide ions deplete Tris-H+ to deplete cations near and to the
right of the electrode.[14]
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side of the electrode creates a large electric field that allows
accumulation of anionic dyes at a point near where their
electrophoretic and electroosmotic velocities essentially offset.
Simulations in both Tris and carbonate buffers show that the
system is complicated,[14] but the principles of ion depletion and
accumulation in regions where electrophoretic and electro-
osmotic velocities approximately counteract are vital to the
accumulation.

Following the simple single-channel preconcentration with
bipolar electrodes, Han and coworkers demonstrated trace
analyte accumulation in a single channel containing an ion-
exchange patch (Figure 5).[19] Other research employed paper-
based fluidic devices containing Nafion plugs or
membranes[20–22] Devices with a channel containing a Nafion
patch resemble those with bipolar electrodes. The high counter
ion concentration in the patch leads to a high conductivity, so
the patch may carry a significant fraction of the total current in
this region. Moreover, at the region where cations enter the
patch, ion depletion occurs and, in the region where cations
exit the patch, ions accumulate. The principle is related to that
shown in Figure 2. Due to perm-selectivity,[23] in a cation-
exchange patch cations will carry most of the current. Although
the system resembles a channel containing a bipolar electrode,
the ion-exchange patch is easier to model because of the
absence of electrode reactions.

This work aims to mathematically assess the salt depletion/
enrichment phenomena that ultimately make possible co-ionic-
species accumulation in microfluidic channels that span ion-
exchange patches. A number of studies mathematically simu-
lated the ion concentration polarization that occurs when using
T-junctions such as those in Figure 3, and such simulations are
complex as they may include nonlinear electrokinetic flow near
the junction.[24–27] Crooks and Tallarek simulated and measured
electric fields near channels containing bipolar electrodes.[15] As
noted, the system with an ion-exchange patch is simpler than

the bipolar-electrode system because there are no electrode
reactions. We previously showed that the assumption of a
highly conductive patch (no change in electrochemical poten-
tials of counter ions along the patch) and relatively low electric
fields in solution leads to expected accumulation and depletion
regions where current enters and leaves the patch.[28] However,
such a limiting case does not adequately describe strongly-
polarized systems that can give high levels of preconcentration.
This work develops methods to examine higher electric fields
under relatively simple conditions, and also examines local ion
fluxes and electric fields.

The system we consider is qualitatively related to the above
preconcentration devices based on ion concentration polar-
ization. We do not pretend to describe practical systems
adequately, rather we demonstrate in what way a combination
of analytical and numerical approaches enables one to carry out
a complete parametric study of a simplest non-trivial system
and present the results in a compact and exhaustive way.
Meanwhile, one of the most serious issues with many published
numerical analyses is the presentation of results. Usually,
researchers select a few parameter combinations so parametric
studies are not exhaustive (or sometimes even representative).
Finally, we draw attention to some perils of “fully numerical”
analysis.

Ion-exchange patches may not only be simpler to model,
but they also may perform better than T-junctions in sample
preconcentration. Indeed, in T-junction configurations, different
current densities in the branches of the principal channel
(occurring due to some current shunting into the side channel)
lead to hydrostatic-pressure gradients within both principal
branches (to make the convective flows there equal). This can
give rise to Taylor dispersion and impair sample focusing. Close
to current-polarized ion-exchange patches, there are also some
perturbations of electroosmotic flow, but they do not extend
far from the patch (provided that the patch width is much
smaller than the channel length).

Moreover, ion-exchange patches give rise to a redistribution
of salt close to the patch whereas in T-junction configurations
(at noticeable current deviations into the ion exchange-filled
branch) there is predominantly either depletion or enrichment
(depending on the sign of deviating current). In the situation of
redistribution, appropriate co-ionic species accumulate at the
front edge of the buffer-depletion zone while they are “swept”
away from the buffer-enrichment zone due to the reduced
electrical flux component (and relatively stronger convective
component) there. This can lead to sharper preconcentration
profiles. This aspect has not, yet, been pointed out in the T-
junction research. Moreover, it has never been clearly stated
before that the local ion concentration polarization pattern
stems not necessarily from a net electric current flowing
through the ion exchange-containing branch but primarily due
to the current “entering” and “leaving” at different parts of the
ion-exchange region.

Figure 5. A) Scheme of a channel that spans an ion-exchange patch. B)
Diagram of the current that flows through a cation-exchange patch to create
depletion and accumulation regions.
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2. Theory

2.1. Problem Statement (Fluxes and Boundary Conditions)

In this study, we consider only solutions of single salts. For
simplicity, we assume local electroneutrality and neglect
convection. The Nernst-Planck equations describe the ion flux
vectors,~ji [Eq. (1)]:

� ~ji ¼ Di � ni � ~r~cþ
ZiF
RT

~c ~r~f

� �

(1)

where Di is the ion diffusion coefficient, ni is the ion
stoichiometric coefficient in the salt, ~c is the salt concentration,
Zi is the ion charge, ~f is the electrostatic potential, and
i ¼ 1 or 2. The symbols F, R, and T represent Faraday’s constant,
the gas constant, and temperature, respectively. Equation (1)
assumes that due to local electroneutrality [Eq. (2)]:

ni~c ¼ ~ci (2)

where ~ci is the concentration of ion i. Under steady-state
conditions, the ion fluxes must be conservative, so their
divergences have to be zero. Taking this into account as well as
the electroneutrality of the salt and combining the equations
for the two ions leads to Equations (3) and (4); see the
Supporting Information section S1 for details:

r2~c ¼ 0 (3)

~cr2 ~fþ ~r~c � ~r~f
� �

¼ 0 (4)

where the second term in Eq. (4) is the scalar product of
gradients of salt concentration and electrostatic potential.

We consider the steady-state distribution of salt concen-
tration and electrostatic potential in the vicinity of a perfect
ion-exchange patch in an infinite insulating wall (see Figure 6).
The patch extends infinitely in both z-directions. For conven-
ience, we scale the x and y coordinates on the half-width of the
patch, l, to create dimensionless variables. Additionally, we
introduce a dimensionless electrostatic potential f � F~f=RT .
Finally, we scale the salt concentration by its bulk value (i. e.,
c � ~c=~c0, where ~c0 is the bulk concentration). One can rewrite

Equations (3) and (4), in terms of these dimensionless variables
to give Equations (5) and (6):

r2c ¼ 0 (5)

c�r2fþ ~rc � ~rf
� �

¼ 0 (6)

Our statement of the surface boundary conditions (see
Figure 6) required to solve these equations begins with the
assumption that the whole wall (including the patch) is
impermeable to co-ions (termed ion “2”), so their flux in the y-
direction must be zero everywhere at y ¼ 0. (The sign of the
charge on the co-ions is equal to the sign of the fixed charge in
the ion-exchange patch.) Based on the y-direction Nernst-Planck
equation, this leads to Equation (7):

@c x; 0ð Þ

@y
þ Z2c x; 0ð Þ �

@f x; 0ð Þ

@y
¼ 0 (7)

Outside the patch, the wall is also impermeable to counter
ions (termed ion “1”, the sign of the counter ion charge is
opposite to that of the fixed charge in the patch) so:

@c x; 0ð Þ

@y
þ Z1c x; 0ð Þ �

@f x; 0ð Þ

@y
¼ 0 @ x < � 1 [ x > 1 (8)

To satisfy both Equations (7) and (8), we use Equation (9):

@c x; 0ð Þ

@y
¼ 0

@f x; 0ð Þ

@y
¼ 0 @ x < � 1 [ x > 1 (9)

Further, we assume that the electrochemical potential of
counter ions is constant (albeit generally unknown) at the patch
surface. This assumption implies that the ion-exchange patch is
infinitely conducting so that there is no change in the electro-
chemical potential of counter ions in the patch in the x-
direction. Based on the definition of the electrochemical
potential, �m1, this assumption leads to Equation (19); see the
Supporting Information, section S2:

@�m1 x; 0ð Þ

@x �
@c x; 0ð Þ

@x þ Z1c x; 0ð Þ �
@f x; 0ð Þ

@x ¼ 0

@ � 1 < x < 1
(10)

Using the condition of patch impermeability to co-ions,
Eq. (7), one can substitute for the normal derivative of electrical
potential in the expression for the normal gradient of electro-
chemical potential of counter ions. This leads to Eq. (11), which
shows that the normal derivative of the dimensionless counter
ion electrochemical potential is proportional to the normal
derivative of dimensionless salt concentration.

Figure 6. Scheme of an ion-patch in a channel wall showing coordinates and
surface boundary conditions. The patch extends infinitely in both z-
directions.
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@�m1 x; 0ð Þ

@y �
@c x; 0ð Þ

@y þ Z1c x; 0ð Þ �
@f x; 0ð Þ

@y ¼ 1 �
Z1

Z2

� �

�

@c x; 0ð Þ

@y @ � 1 < x < 1
(11)

For a patch that is impermeable to co-ions, the electric
current flowing into and out of the patch stems exclusively
from counter ions. Therefore, from the condition of zero net
current into the patch (due to the patch behaving as a floating
electrode), the integral of normal counter ion flux into the
patch must be zero. Because normal counter ion flux is
proportional to the normal derivative of its electrochemical
potential, based on Eq. (11) the integral of the normal
concentration derivative over the patch must also be zero
[Eq. (12)].

Z1

� 1

@c x; 0ð Þ

@y dx ¼ 0 (12)

Far away from the patch, there is a homogeneous electric
field parallel to the wall and a constant salt concentration
[Eqs. (13)–(15)]:

f x; yð Þ !
x!�1;y!1

� 2lx (13)

c x; yð Þ !
x!�1;y!1

1 (14)

l �
FE0l
2RT (15)

These boundary conditions complete the statement of the
problem. In this study, we consider positive counter ions, so a
positive electric field (positive l) results in movement of counter
ions from left to right and co-ions from right to left. Notably,
the strength of the external perturbation (electric field) enters
the problem [in Eq. (13)] only via l, which is the single essential
parameter. The remaining equations and boundary conditions
depend additionally solely on the valence type of the electro-
lyte. Of course, the ion fluxes also depend on the ion diffusion
coefficients, but remarkably these coefficients do not affect the
distributions of dimensionless concentration and dimensionless
electrostatic potential.

2.2. Representation of Concentration Distribution via its
Normal Derivative at the Patch

Because concentration satisfies the Laplace equation, in this
section we will represent the two-dimensional salt-concentra-
tion distributions (for each dimensionless voltage drop) in terms
of a single function of one variable defined within a finite range.
We show below that this function enables compact presenta-
tion of results and development of a procedure for the

approximation of numerical data with a set of analytical
functions.

The dimensionless salt concentration satisfies the Laplace
equation [see Eq. (5)]. Direct differentiation and substitution
show that any function of the form in Equation (16):

G x; yð Þ ¼

Z1

� 1

f sð Þ � ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x � sð Þ2 þ y2

q� �

ds (16)

fulfills the Laplace equation (see the supporting information,
section S3). Via differentiation under the integral we obtain
Equation (17):

@G
@y ¼

Z1

� 1

f sð Þ �
y

x � sð Þ2 þ y2
ds (17)

Importantly, G x; yð Þ has a zero y-derivative at the wall
outside the patch, which fulfills the concentration boundary
condition in Equation (9). At very small values of y, the factor

y
x� sð Þ2þy2 behaves as a delta-function of x � sð Þ: it tends to infinity
at x ! s and is vanishingly small elsewhere. Thus, as y
approaches zero only a very small part of the integration range
(in close proximity to s ¼ xÞ where f sð Þ � f xð Þ contributes to
the integral [Eq. (18)]. Accordingly,

@G
@y � f xð Þ �

Z1

� 1

y
x � sð Þ2 þ y2

ds � f xð Þ �

atan
1 � x
y

� �

þ atan
1þ x
y

� �� �

!
y!0

pf xð Þ

(18)

Therefore, we get Equation (19):

f sð Þ ¼
1
p
�
@G s; yð Þ

@y

�
�
�
�
y!0

(19)

and one can present the distribution of perturbation of
dimensionless concentration via its normal derivative at the
patch as:

dc x; yð Þ ¼
1
p
�

Z1

� 1

@dc s; 0ð Þ

@y � ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x � sð Þ2 þ y2

q� �

ds (20)

where we have denoted

dc x; yð Þ � c x; yð Þ � 1 (21)

Note that both dc x; yð Þ and c x; yð Þ [Eq. (21)] satisfy the
Laplace equation and the concentration boundary condition in
Eq. (9) because their derivatives are equal. Addition of a 1 to
the function in Eq. (20) will still give a function that solves the
Laplace equation and have zero derivative outside the patch.
However, conveniently the value of dc x; yð Þ goes to zero at
large x and y, whereas c x; yð Þ goes to 1.
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Due to the zero net flux of counter ions through the patch
[see also Eq. (12)]:

Z1

� 1

@dc s; 0ð Þ

@y ds ¼ 0 (22)

One can take the integral in Eq. (20) by parts to yield
Eq. (23)

dc x; yð Þ ¼
1
p

Z1

� 1

F sð Þ �
x � s

x � sð Þ2 þ y2
ds (23)

where

F sð Þ �
Zs

� 1

@dc s
0

; 0
� �

@y ds0 (24)

In the integration by parts, we use the definitions of Eq. (24)
and Eq. (22) to obtain Eq. (25):

F � 1ð Þ ¼ F 1ð Þ ¼ 0 (25)

F sð Þ is proportional to the cumulative counter-ion flux (and
electric current) occurring through the part of the patch
extending from its left edge (“entrance”) to the observation
point (the upper limit of integration). Its value at the “exit” edge
(x ¼ 1) is zero because there must be no net current through
the “floating” patch.

Thus, for a given l the solution of the concentration-
distribution problem reduces to finding a function of one
variable, F sð Þ, and then inserting this function into Eq. (23).
Since many relevant dependences can be generated once this
function is found, we will refer to it is a generating function.
Finding F sð Þ requires solving for an additional variable coupled
to the salt concentration in this problem. In our numerical
calculations, this is the dimensionless electrostatic potential. As
we will see below, for analytical solutions at low fields it is more
convenient to use the electrochemical potential of co-ions as
the additional variable. This convenience stems from the
extremely simple boundary condition at the wall, zero co-ion
normal flux everywhere.

2.3. Linear Approximation

This section develops an expression for the concentration
profile at weak electric fields that produce small perturbations
in concentration gradients. This approximate expression allows
us to assess the accuracy of numerical computations because
under small fields analytical expressions are more accurate than
numerical methods due to the finite numerical mesh size. At
weak fields, one can neglect the second term in Eq. (4) because
it is proportional to the product of gradients of concentration
and electrostatic potential, both of which are proportional to

the applied field [see below, Eq. (35)]. Thus, this second term is
of higher order with respect to the field than the first term.
Accordingly, at weak electric fields we obtain Laplace equations
for both concentration and electrostatic potential and can
express them through their normal derivatives at the patch
surface as in Eq. (20). Moreover, presented in this way, the
functions automatically satisfy the condition of zero normal
derivative outside the patch [Eq. (9)]. At low fields, the variation
of concentration along the patch in Eq. (7) can be neglected (
c x; 0ð Þ � 1), which means that this condition is formulated for a
linear combination of normal gradients of concentration and
electrostatic potential. Such a condition can only be satisfied at
any point of the wall when the concentration and potential
distributions are similar functions that differ only by a constant
factor and a linear function of coordinate (which identically
satisfies the Laplace equation). To obtain the appropriate
concentrations and electric fields at negative and positive
infinity [Eqs. (13) and (14)] we seek solutions in these forms
[Eqs. (26) and (27)]:

c x; yð Þ ¼ 1þ Bc�g0 x; yð Þ; dc x; yð Þ ¼ Bc�g0 x; yð Þ (26)

f x; yð Þ ¼ � 2lx þ Bf�g0 x; yð Þ; df x; yð Þ ¼ Bf�g0 x; yð Þ (27)

where g0 x; yð Þ is a function that fulfills the Laplace equation
and goes to zero at large values of x and y. The conditions of
zero normal flux of co-ions and constant electrochemical
potential of counter ions at the patch will dictate the values of
the constants Bc; Bf.

In the linear approximation the variation of concentration
along the patch surface is negligible compared to the bulk
concentration so c x; 0ð Þ � 1. Thus, Eq. (7) becomes Equa-
tion (28):

@c x; 0ð Þ

@y þ Z2 �
@f x; 0ð Þ

@y � 0 (28)

Accordingly, taking the derivatives of the concentration and
electrical potential functions in Eqs. (26) and (27), and inserting
them into Eq. (28) gives Eq. (29):

Bc þ Z2Bf ¼ 0 (29)

Moreover, with minimal variation in concentration across
the patch (c x; 0ð Þ � 1), the condition of constant electrochem-
ical potential of counter ions at the patch [Eq. (10)] becomes
Eq. (30):

@c x; 0ð Þ

@x þ Z1 �
@f x; 0ð Þ

@x � 0 @ � 1 < x < 1 (30)

Substituting Eqs. (26), (27), and (29) into Eq. (30), we obtain
Eq. (31):

Bf � Z1 � Z2ð Þ �
@g0 x; 0ð Þ

@x

�
�
�
�
x2 � 1;1½ �

¼ 2Z1l (31)
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For a given value of l, Eq. (31) requires that @g0 x;0ð Þ

@x

�
�
�
x2 � 1;1½ �

� a

is a constant. Therefore,

Bf ¼
2Z1l

Z1 � Z2ð Þ � a (32)

By substituting Eq. (32) into Eqs. (26) and (27) [and taking
into account Eq. (29)] we obtain Eqs. (33) and (34):

dc x; yð Þ ¼ �
2Z1Z2

Z1 � Z2ð Þ � aZ1 � Z2
� l�g0 x; yð Þ (33)

df x; yð Þ � f x; yð Þ þ 2lx ¼
2Z1

Z1 � Z2ð Þ � aZ1 � Z2
� l�g0 x; yð Þ (34)

One can see that multiplication of g0 x; yð Þ by a constant
factor will not affect Eqs. (33) and (34) because any change in
the function will be offset by exactly the same change in its

derivative @g0 x;0ð Þ

@x

�
�
�
x2 � 1;1½ �

� a. It is convenient to select g0 x; yð Þ so

that @g0 x;0ð Þ

@x

�
�
�
x2 � 1;1½ �

¼ 1.

For simplicity, we carry out subsequent analyses for
Z1 ¼ 1; Z2 ¼ � 1. In this case, Eq. (35):

dc x; yð Þ ¼ l�g0 x; yð Þ (35)

Representing this concentration perturbation at y ¼ 0 in
terms of the generating function [Eq. (23)] and taking into

account that g0 x; 0ð Þ ¼ x since @g0 x;0ð Þ

@x

�
�
�
x2 � 1;1½ �

¼ 1 we obtain

Eq. (36):

Z1

� 1

F sð Þ
x � s ds ¼ plx (36)

By substituting Eq. (37) into Eq. (36) and taking the integral
in the sense of the Cauchy principal value one can verify that

F sð Þ ¼ l �
ffiffiffiffiffiffiffiffiffiffiffiffi
1 � s2
p

(37)

Thus, in the linear approximation, one can insert this F sð Þ
[Eq. (37)] into Eq. (23) to determine dc x; yð Þ for any small value
of l.

2.4. Quadratic Approximation of Electrochemical Potential of
Co-ions and Salt Concentration

Using the linear approximation for the concentration profile, we
can develop a quadratic approximation for the electrochemical
potential of co-ions and, hence, determine the electric field. The
electrochemical potential of co-ions is especially convenient for
analysis due to the extremely simple boundary condition at the
wall, zero normal co-ion flux everywhere. The co-ion flux is

proportional to the negative gradient of the co-ion electro-
chemical potential [Eq. (38)]:

� ~j2 ¼ D2 � c ~r�m2 (38)

At steady state, the flux must be conservative (no sources or
sinks of ions) so [Eqs. (39) and (40)]:

div ~j2
� �

¼ 0 (39)

r2�m2 þ ~rc � ~r�m2

� �
¼ 0 (40)

The boundary conditions to Eq. (40) are the unperturbed
linear asymptotes at negative and positive infinity (i. e. flux is
constant at steady state far from the patch) and zero normal
derivative of �m2 at the wall (no co-ion flux, including the patch).
The unperturbed distribution of electrochemical potential of co-
ions is just a linear function of x to achieve constant flux parallel
to the wall. In non-dimensional variables, it is directly propor-
tional to the dimensionless voltage drop on the patch. There-
fore, it is convenient to seek a solution to Eq. (40) in the form of
Eq. (41):

�m2 � 2l � x þ d�m2 (41)

where d�m2 is a perturbation due to the concentration-polar-
ization phenomena.

After substitution into Eq. (40), we obtain Eq. (42):

r2d�m2 þ 2l �
@dc
@x þ

~rdc � ~rd�m2 ¼ 0 (42)

The supporting Information (section S4) shows how this
equation can be approximately (up to the second order in l)
solved as a Poisson equation by using the Green’s function
method to obtain this expression for the second-order
correction, d�m

2ð Þ
2 , to the distribution of electrochemical potential

of co-ions (d�m2 � l2d�m
2ð Þ

2 ):

d�m
2ð Þ

2 x; yð Þ ¼ �
1
p

Zþ1

� 1

Zþ1

� 1

dx0dy0
g0 x

0

; y
0� �
� x � x

0� �

x � x0ð Þ2 þ y � y0ð Þ2
(43)

Further, the supporting information (section S4) shows how
using Eq. (43), the condition of constant electrochemical
potential of counter ions at the patch surface, and the
approximate expression for the salt concentration in Eq. (44):

c x; yð Þ � 1þ lg0 x; yð Þ þ l2h x; yð Þ (44)

one can obtain the generating function in the quadratic
approximation, Eq. (45).
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F sð Þ ¼ l �
ffiffiffiffiffiffiffiffiffiffiffiffi
1 � s2
p

� 1þ
l

4
� s

� �

(45)

We will obtain explicit analytical expressions for the
functions g0 x; yð Þ and h x; yð Þ below (see Eqs. (58), (59), (64).

2.5. Multipole Expansion

The use of a multipole expansion to describe the function
x� s

x� sð Þ2þy2 in Eq. (23) allows us to examine the symmetry and
trends in the concentration profile at long distances from the
patch. In turn, knowledge of the asymptotic behavior can serve
as a boundary condition in numerical methods. In the multipole
expansion at

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
> 1 (sufficiently far away from the

patch):

x � s
x � sð Þ2 þ y2

�
X

n¼1

cos n � qð Þ

rn
� sn� 1

(46)

where we transformed to polar coordinates [Eqs. (47) and (48)]:

r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
(47)

q � acos
x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p

 !

(48)

Substituting Eq. (46) into Eq. (23) yields Eq. (49):

dc r; qð Þ ¼
1
p
�
X

n¼1

cos n � qð Þ

rn

Z1

� 1

F sð Þ�sn� 1ds (49)

The strengths of all multipoles, Qn,are proportional to the
n � 1ð Þ moments of the generating function as Eq. (50) shows.

Qn �
1
p
�

Z1

� 1

F sð Þ�sn� 1dsn ¼ 14 (50)

As mentioned the multipole expansion is useful because it
informs us about basic features of the long-range behavior
even without any numerical analysis. As one can see from
Eq. (49), the dipole (n=1) is the longest-range multipole
because of its 1=r dependence. Moreover, the dipole term is
anti-symmetric with respect to the vertical (y) axis because
cos p � qð Þ � � cos qð Þ. Thus, if the dipole strength is not zero, at
sufficiently large distances from the patch the dc values on one
side of the vertical axis are equal in absolute value and opposite
in sign to the perturbations on the other side. Moreover, due to
the cos qð Þ dependence, the dipole perturbation is zero at x ¼ 0.
Qualitatively the same is true for all the odd multipoles (n is
odd) but their contribution additionally turns to zero at some
intermediate values of angle, for example at q ¼

p

6 ;
5p

6 in the
case of n ¼ 3.

In the quadratic approximation, by using Eq. (45) all the
integrals in Eq. (49) can be taken to yield Eq. (51):

dc r; qð Þ �
l

2 �
cos qð Þ

r þ
cos 3qð Þ

4r3 þ

� �

þ

l2

32 �
cos 2qð Þ

r2 þ
cos 4qð Þ

2r4 þ

� �

þ

(51)

Due to the symmetry of the low-voltage limit of the
generating function [Eq. (37)], all the integrals with even n in
Eq. (49) are equal to zero in the linear approximation. Their
appearance in the quadratic approximation is due to non-linear
effects that give rise to a loss of symmetry of the generating
function. The multipole expansion also highlights that in the
linear approximation the concentration perturbation is an odd
function of x-coordinate because only odd n terms remain in
Eq. (49) and these terms are odd functions of x due to the
cos 2n � 1ð Þ � qð Þ angular dependence.

2.6. Approximation of the Generating Function Calculated
Numerically

Beyond the quadratic approximation, one must determine the
generating function numerically. This section aims to develop a
polynomial expression that describes the generating function
as a function of s and l. This will allow us to describe the
concentration profiles at a wide range of l values using a matrix
of coefficients. By differentiating Eq. (23) we see that in the
linear approximation the normal derivative of salt concentration
at the patch close to its edges has integrable singularities of

1ffiffiffiffiffiffiffi
1� s2
p kind. After integration (to obtain the generating function,
F sð Þ), they give rise to abrupt drops (with diverging derivatives)
of F sð Þ at the edges. This behavior is likely due to the jump-like
changes in the wall counter ion permeability that occur at the
patch edges. Since this physics remains under non-linear
conditions (this is confirmed by the quadratic approximation as
well as numerical analysis below) we speculate that this is a
general feature. To take it into account, we seek the generating
function in this form:

F sð Þ � l �
ffiffiffiffiffiffiffiffiffiffiffiffi
1 � s2
p

� K sð Þ (52)

This function approaches zero at both 1 and � 1. Eq. (52) is
just a redefinition of the sought-for function, F sð Þ. However, if
we additionally assume that the nonlinear-correction function,
K sð Þ, is smooth and has finite derivatives everywhere including
the patch edges we can represent it is a polynomial in s
[Eq. (53)]:

K sð Þ �
X

m¼0

Am lð Þ � sm (53)

From the linear approximation, it follows that [Eqs. (54) and
(55)]:
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A0 lð Þ !
l!0

1 (54)

Am>0 lð Þ !
l!0

0 (55)

In the quadratic approximation A1 lð Þ ¼ l=4 [see Eq. (45)].
Generally, one must determine the coefficients Am lð Þ numeri-
cally.

By substituting Eqs. (52) and (53) into Eq. (23) we obtain
Eq. (56):

dc x; yð Þ ¼
l

p
�
X

m¼0

Am lð Þ �

Z1

� 1

�sm � x � sð Þ

x � sð Þ2 þ y2
ds (56)

The integrals in the right-hand side of Eq. (56) have
analytical expressions (see the Supporting Information section
S5). Thus, in principle once the coefficients Am lð Þ are found
there is an explicit expression for the distribution of concen-
tration perturbation [Eq. (57)].

dc x; yð Þ ¼ l � A0 lð Þ � g0 x; yð Þ þ A1 lð Þ � g1 x; yð Þ½

þA2 lð Þ � g2 x; yð Þ þ A3 lð Þ � g3 x; yð Þþ�
(57)

where [Eqs. (58)–(61)]:

g0 x; yð Þ ¼ x � sign xð Þ � Rp x; yð Þ (58)

g1 x; yð Þ ¼ x2 � y2 �
1
2

� �

þ y � Rm x; yð Þ � xj j � Rp x; yð Þ (59)

g2 x; yð Þ ¼ x � x2 � 3y2 �
1
2

� �

þ 2xy � Rm x; yð Þ�

sign xð Þ � x2 � y2ð Þ � Rp x; yð Þ

(60)

g3 x; yð Þ ¼ x2 � y2 �
1
2

� �2

� 4x2y2 �
3
8þ y � 3x2 � y2ð Þ �

Rm x; yð Þ þ xj j � 3y2� x2ð Þ � Rp x; yð Þ

(61)

and where we have denoted [Eqs. (62) and (63)]:

Rp x; yð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � y2 � 1
2

� �2

þ x2y2

s

þ
x2 � y2 � 1

2

v
u
u
t (62)

Notably, Rp x; yð Þ � Rm x; yð Þ � xj jy. Figure S1 of the Support-
ing Information shows plots of g-functions at the surface (y ¼ 0)
as a function of the x coordinate.

Comparison of Eqs. (44), (45), (52), and (53) shows that
h x; yð Þ ¼

1
4 g1 x; yð Þ. Therefore, in the regular approximation up

to quadratic terms [Eq. (64)]:

dc x; yð Þ ¼ lg0 x; yð Þ þ
l2

4 g1 x; yð Þ (64)

From the definitions of Eqs. (62) and (63), we see [Eqs. (65)
and (66)]:

Rp x; 0ð Þ ¼
0 xj j < 1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1
p

xj j > 1

(

(65)

Therefore, the concentration-perturbation distribution ex-
actly at the wall has this relatively simple form [Eqs. (67) and
(68)]:

dc x; 0ð Þ ¼ l � A0 lð Þ � x þ A1 lð Þ þ A2 lð Þ � x þ A3 lð Þ � x2ð Þ �½

x2 �
1
2

� �

�
A3 lð Þ

8 þ

�

xj j < 1
(67)

dc x; 0ð Þ ¼ l � A0 lð Þ þ x � A1 lð Þ þ A2 lð Þ � x þ A3 lð Þ � x2ð Þ½ � �½

x � sign xð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1
p� �

�
1
2

�

� A1 lð Þ þ A2 lð Þ � x þ A3 lð Þ � x2ð Þ �
A3 lð Þ

8 þ

�

xj j > 1

(68)

which, in the regular second-order approximation, reduces to
Eqs. (69) and (70):

dc x; 0ð Þ ¼ l x þ
l

4 x2 �
1
2

� �� �

xj j < 1 (69)

dc x; 0ð Þ ¼ l �

1þ
lx
4

� �

� x � sign xð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1
p� �

�
l

8

� �

xj j > 1
(70)

The leading term of the long-range asymptotics is Eq. (71):

dc x; 0ð Þ !
xj j!1

A0 lð Þ þ
A2 lð Þ

4 þ

� �

�
1

2 xj j (71)

Or Eq. (72):

dc x; 0ð Þ !
xj j!1

1
2 xj j (72)

in the regular second-order approximation (A0 lð Þ ¼ 1 and other
coefficients in Eq. (71) are zero in this approximation).

The terms with odd-indexed A-coefficients (arising due to
non-linear phenomena) decay more rapidly, namely � 1=x2.

At y 6¼0, a simple expression can be obtained far away from
the patch (long range). In this case, one can use the multipole
expansion of Eq. (49) to obtain Eq. (73):
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dc r; qð Þ �
l

p
�
X

n¼1

cos n � qð Þ

rn
X

m¼0

Am lð Þ �

Z1

� 1

ffiffiffiffiffiffiffiffiffiffiffiffi
1 � s2
p

�smþn� 1ds �
l

2 �
cos qð Þ

r � A0 lð Þ þ
A2 lð Þ

4 þ

� �

þ

�

cos 2qð Þ

r2
�

A1 lð Þ

4
þ

A3 lð Þ

8
þ

� �

þ
cos 3qð Þ

r3 �
A0 lð Þ

4
þ

A2 lð Þ

8
þ

� �

þ

cos 4qð Þ

r4
�

A1 lð Þ

8
þ

5
64

A3 lð Þþ

� �

þ

�

(73)

Comparison of Eq. (73) with the multipole expansion
obtained in the quadratic approximation [Eq. (51)] shows that
non-linear effects (beyond the quadratic approximation) not
only cause appearance of non-zero quadrupole (n ¼ 2) and
octupole (n ¼ 4) terms but also give rise to modification of
dipole (n ¼ 1) and sextupole (n ¼ 3) strengths. Even multipole
distributions are symmetric functions of the x-coordinate.
Therefore, the appearance of even multipoles indicates devia-
tions (under non-linear conditions) from the antisymmetric
pattern in the salt-perturbation distribution occurring at weak
fields. One can also see that the long-range asymptotics
(dominated by the dipole) result from the same combination of
coefficients as the asymptotics at the wall [Eq. (71)].

2.7. Summary of Theory Section

This section briefly summarizes and emphasizes the most
important points in the theory. The first section defined the
governing dimensionless equations, Eqs. (5) and (6), and
boundary conditions for the problems. Subsequently, we
derived Eq. (23), which describes the concentration distribution
in terms of the generating function, F sð Þ, which one can
determine from numerical data using Eq. (24). Fitting of a set of
F sð Þ functions (obtained at different l values) using Eqs. (52)
and (53) allows expression of the concentration profiles from
Eqs. (57)–(63). Below we will show how using polynomial
approximations for the A-coefficients in Eq. (53) one can obtain
full concentration profiles over a wide range of l values using a
small matrix of coefficients.

The theory section also provides linear and quadratic
approximations that give concentration profiles at low to
moderate l values. Eqs. (35) and (58) describe the concentration
profile in the linear approximation, and Eqs. (44), (58), and (59)
with h x; yð Þ ¼

1
4 g1 x; yð Þ describe the quadratic-approximation

concentration profile. Finally, Eqs. (43) and (58) allow calculation
of the electrochemical potential of the co-ions, which in turn
will enable determination of the local electric field.

The subsection on multipole moments showed that at low
values of l the concentration profile is antisymmetric about
x ¼ 0. Moreover, regardless of l, the concentration will decay
with 1=r at long distances from the patch. As l increases even
multipole moments will lead to non-antisymmetric distribu-
tions.

2.8. Numerical Procedures

Beyond the linear and quadratic assumptions, calculations of
concentration and potential distributions require numerical
methods. However, numerical methods often suffer from
substantial computational errors. For example, some of the
boundary conditions to this problem [Eqs. (13) and (14)] are set
at negative and positive infinity, but numerically the problem
can be solved only within a finite domain. As we have seen
above [see Eq. (49)], the concentration perturbation decays
quite slowly (inversely proportional) with the distance from the
patch. Therefore, setting the concentration perturbation equal
to zero at a moderate distance from the patch can give rise to
substantial error, particularly at long range. At the same time,
using very large computational domains (in combination with
sufficiently fine meshing close to the patch) is difficult in view
of increases in the computation time. To solve this problem, we
used the fact that at large distances from the patch the
distribution of concentration perturbation depends on the
distance and angle (in polar coordinates) as the field of a dipole.
Under non-linear conditions, its strength is unknown and had
to be found iteratively. As the criterion of convergence of
iterations, we used the condition of matching r-derivatives
calculated numerically just inside the semi-cylindrical external
boundary of the computational domain and analytically (using
the large-distance asymptotics) just outside it. Strictly speaking,
the long-range asymptotics also have some contributions from
higher multipole moments, which we neglected. However, due
to their more rapid decay with distance this caused only minor
errors.

We solved the problem numerically using COMSOL Multi-
physics software, version 5.0.1.276, with the Nernst Planck
Equations module (chnp). The computational domain had a
semi-cylindrical shape with a radius of 20, while the patch half-
width was set equal to one (in dimensionless coordinates). We
used a basic triangular mesh with a maximum element size of
0.05, a minimum element size of 10� 4, a maximum element
growth rate of 1.1, a resolution of curvature of 0.2, and a
resolution of narrow region of 1. The mesh was additionally
refined close to the patch edges (<0.2 from the edges) as
much as 8 times along the y-axis and 16 times along the x-axis.

3. Results and Discussion

This section first presents some numerical concentration
profiles and examines their accuracy compared to the quadratic
approximation that applies at low to moderate values of l.
Subsequently, we compute the generating function and
approximate it using the polynomial K sð Þ [Eq. (53)]. This allows
representation of the two-dimensional concentration profiles
over a wide range of l values using a 4×7 matrix of coefficients,
half of which are zero. Without such a function, one can only
present large two-dimensional arrays for concentration profiles
at a few values of l. Subsequently, we describe the specific ion
fluxes as well as electric-field distributions at low fields. These
distributions give an initial idea of trends that could prove
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useful in patch-based preconcentration. Finally, we suggest
future work in this area.

3.1. Numerical Salt Concentration Profiles

Numerical calculations show extensive concentration polar-
ization above the patch. Figure 7A plots dimensionless concen-
tration as a function of the distance y from the patch for a l

value of 1.558. (Figure S2 gives a color-intensity plot of the two-
dimensional concentration profile.) At the patch surface (y ¼ 0)
the concentration at the right edge of the patch (x ¼ 1) is
almost 80 times greater than at the left edge (x ¼ � 1) in
Figure 7A. Remembering that l �

FE0 l
2RT , for a patch width of

2 mm (half width l of 1 mm), l=1.558 corresponds to 80 V/m.
With a patch width of 20 μm, l=1.558 would give an electric
field of 8 kV/m.

As Figure 7A shows, the concentration polarization gradu-
ally decreases on moving away from the patch in the vertical
direction. However, the ratio of concentrations at the two edges
of the patch is still nearly 3 at 500 μm above a patch with a
half-width of 1 mm (y ¼ 0:5).

Figure 7B shows the concentration profiles at the surface of
a patch (y ¼ 0) for different values of l. As expected, the extent
of concentration polarization decreases as the strength of the

electric field or the patch width decreases. The data indicate
that larger patches will give rise to greater concentration
polarization (the value of l increases linearly with the patch
width), which could allow the use of smaller electric fields.
Moreover, larger patches will lead to concentration polarization
at greater distances from the patch.

Due to their finite mesh size, numerical methods are always
approximations. To examine the extent of numerical errors, we
compared values of concentration perturbation obtained
numerically and with the quadratic solution, which is highly
accurate at values of l<0.5. As Figure 8 shows, the two
methods give similar trends, although there are small but
significant differences between their dc values. This is partic-
ularly evident at the two edges of the patch (
x ¼ � 1 and x ¼ 1Þ where concentrations change rapidly. One
would expect numerical solutions to show the most error in
such regions. However, there are also rather surprising signifi-
cant deviations (about 10%, Figure 8B) at larger distances from
the patch. Below we provide a semi-empirical method for
overcoming some of these numerical errors. Nevertheless, the
discrepancies in the numerical method and the quadratic
solution values of dc are less than 20% (Figure 8B), so the
numerical results should show the important trends that occur
in these systems.

Figure 7. Plots of dimensionless concentration, c, profiles at A) different distances from the wall with l ¼ 1:558, and B) at the wall with different values of l.
The x-coordinate is scaled on the patch half width (Figure 6 shows the coordinate system.)

Figure 8. A) Plots of concentration perturbation (dc ¼ c � 1) obtained using a full numerical solution and the quadratic approximations [Eqs. (69) and (70)] at
y ¼ 0 for l=0.1947. B) The percent difference between dc values for the quadratic solution and the numerical method. The large differences near x=0 result
from the change in sign in the value of dc in this region and do not stem from large differences in the methods.
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3.2. Representation of Concentration Profiles in Terms of the
Generating Function, and Correcting Numerical Data

The above numerical data show important trends in concen-
tration profiles, but it is not possible to present two-dimen-
sional distributions of concentration perturbation at various l

values in an exhaustive, quantitative way. To overcome this
challenge, we employ the generating function, F sð Þ, which at a
given l provides full two-dimensional concentration distribu-
tions using Eq. (23). Parameterization of this function (see the
next section) using a matrix of coefficients subsequently allows
calculation of the concentration profiles over a wide range of l

values using Eqs. (57)–(63). Importantly, the generating function
also allows correction of numerical data.

Figure 9 shows the generating function, F sð Þ, determined at
different values of l. We obtained F sð Þ using numerical data
and Eq. (24). As this equation shows, calculation of F sð Þ requires
taking the y-derivatives of the numerical concentration data at
the patch surface and then integrating these derivatives from
the left side of the patch to a given coordinate. The abrupt

drops in the generating function at the patch edges persist at
all voltages. In Eq. (52), we define F sð Þ � l �

ffiffiffiffiffiffiffiffiffiffiffiffi
1 � s2
p

� K sð Þ. The
ffiffiffiffiffiffiffiffiffiffiffiffi
1 � s2
p

part of the function allows it to model the abrupt drops
at the edge of the patch where s ¼ 1 or � 1.

With increasing voltage, F sð Þ progressively loses symmetry
with respect to the vertical axis and is ever more skewed to the
right. In the multipole approximation in Eq. (49) the asymmetry
corresponds to the rise of nonzero even (n ¼ 2; 4; Þ multipole
moments. Additionally, the integral of the function that controls
the strength of the dipole (n=1) moment in Eq. (50) increases
with voltage more slowly at larger voltages so F sð Þ increases
more slowly at higher l values (note that in Figure 9 the
dimensionless voltage drops, l, increase with a constant incre-
ment).

Figure 10 show the strengths of the first four multipole
moments, Qn, determined using Eq. (50). The strength of the
odd moments (n ¼ 1; 3) initially increases linearly with the
applied voltage, which reflects their occurrence already in the
linear approximation. The even moments (n ¼ 2; 4) appear only
in the quadratic approximation since they are due to non-linear
concentration-polarization phenomena [see Eq. (51)].

Using Eq. (52), we also determined the function K sð Þ at
different values of l. Figure 11 shows some examples of
numerically calculated K sð Þ functions. The dramatic drops in
K sð Þ at the patch edges likely stem from numerical errors.
Consistent with this supposition, Figure 12 shows that the non-
linear correction function calculated numerically for a very low
applied voltage is not unity, even when the linear approxima-
tion is perfectly applicable and K sð Þ should be equal to one
everywhere [compare Eq. (52) and Eq. (37)]. Due to numerical
errors, there are deviations of a few percent from unity in the
middle of Figure 12 and dramatic deviations at the edges. As
the figure shows, the use of a finer mesh reduced the difference
from unity (at least in the center), confirming that these
deviations stem from numerical error. The Supporting Informa-
tion shows that these deviations probably arise because Comsol
Multiphysics outputs normal derivatives not exactly at the
boundary of the numerical domain but at some short distance
from it (section S8).

Figure 9. Plot of the generating function F sð Þ calculated for a number of
dimensionless voltage drops on the patch (the legend shows the
corresponding values of parameter λ). F sð Þ was calculated using numerical
data and Eq. (24).

Figure 10. Strengths of the first four multipole moments vs dimensionless
voltage drop, λ.

Figure 11. Plot of the non-linear-correction function, K sð Þ, calculated from
numerical data for several dimensionless voltage drops (l).
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These effects cause the numerical solution for the gener-
ation function to deviate from the regular linear approximation
by ~2 percent even at very low dimensionless voltage drops.
To account for this (as well as reduce the effect of the dramatic
drops at the edges) we corrected all the generation functions
via multiplying them by the reciprocal of the function from
Figure 12 calculated with the finer mesh (the same mesh was
used for all the calculations of generating function). Concen-
trations obtained with the corrected generation function and
Eq. (23) agreed perfectly with the regular perturbations
[Eq. (45)] at low to moderate dimensionless voltage drops.
However, the correction might introduce some error at larger λ,
where we have no data for comparison.

3.3. Approximating the Generating Function using
Polynomials

The next step is approximating (at each voltage drop) the non-
linear-correction function, K sð Þ, with polynomials of coordinate
according to Eq. (53). By substituting Eqs .(52) and (53) into
Eq. (73), specifying this equation for the first four multipole
moments, taking the integrals analytically as in Eq. (73) and
solving the resulting system of linear equations for the Am lð Þ

coefficients, we obtain Eqs. (74)–(77):

A0 lð Þ ¼
4
l
� Q1 lð Þ � 2Q3 lð Þð Þ (74)

A1 lð Þ ¼
8
l
� 5Q2 lð Þ � 8Q4 lð Þð Þ (75)

A2 lð Þ ¼
16
l
� 2Q3 lð Þ �

Q1 lð Þ

2

� �

(76)

A3 lð Þ ¼
64
l
� 2Q4 lð Þ� Q2 lð Þð Þ (77)

Figure 13 shows the first four coefficients of the polynomial
representation of the non-linear-correction function calculated
from the strengths of multipole moments (shown in Figure 10)
for a range of dimensionless voltage drops. The lines in the
figure show polynomial approximations of those coefficients as
functions of l (see below). In agreement with the increased
skewing at higher l (see Figure 9), the A1 lð Þ coefficient that
controls the linear term of the polynomial increases rapidly as l

increases. The coefficient of the space-independent term, A0 lð Þ,
(the figure shows its deviation from the limiting value of one,
which corresponds to the linear approximation) controls the
progressive downward shift of the nonlinear-correction function
with increasing voltage (see Figure 11). The role of the other
two terms is subtler but their magnitude is noticeably smaller
(at least, within the investigated voltage range).

The use of the coefficients in Figure 13 gives rise to
approximations of the generating function that are visually
indistinguishable from the numerically calculated functions. To
quantify the accuracy of the approximations, we compared the
multipoles calculated using the coefficients and Eq. (73) with
the multipoles calculated using the numerical generating
function and Eq. (50). The polynomial approximation-related
relative errors for n ¼ 1; 2; and 3 were vanishingly small (below
0.02%). Only the n ¼ 4 moment featured a relative error of
1.8�0.07% that was practically independent of voltage.

The final step in expressing a wide range of concentration
distributions in terms of a relatively simple matrix of coefficients
is to fit the values of An lð Þ to polynomials. A change in the
direction of the applied electric field should give rise to a mirror
reflection of the nonlinear-correction function with respect to
the vertical axis. In view of this, the coefficients A0 lð Þ and
A2 lð Þ should be even functions of l and the coefficients
A1 lð Þ and A3 lð Þ should be odd functions of l. We kept this in
mind when defining polynomial approximations for the
dependences in Figure 13, using only even powers for A0 lð Þ

and A2 lð Þ and only odd powers for A1 lð Þ and A3 lð Þ. Table 1
shows the coefficients of the polynomial approximations of
An lð Þ. With these coefficients, one can calculate the two-
dimensional distributions of concentration perturbation for any
value of dimensionless voltage drop on the patch from the
investigated range ( lj j < 2).

Figure 12. Non-linear-correction function, K sð Þ, calculated numerically for
l ¼ 1:947 � 10� 4. Theoretically the value should be unity everywhere.

Figure 13. (or 1 � A0) coefficients as a function of λ as well as their
polynomial approximations (app.).

Articles

13ChemElectroChem 2020, 7, 1–20 www.chemelectrochem.org © 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

These are not the final page numbers! ��

Wiley VCH Freitag, 21.02.2020

2004 / 158790 [S. 13/20] 1

https://doi.org/10.1002/celc.201902068
Andriy Yaroshchuk
Nota adhesiva
Ai



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

Figure 13 and Table 1 show that at low voltages A0 lð Þ tends
almost exactly to one as it should according to the result
available in the linear approximation [compare Eqs. (37), (52),
(53)]. However, the deviation of A1 lð Þ from the value of 0.25
predicted in the quadratic approximation [compare Eqs. (45),
(52), and (53)] is around 5%. Probably, this is due to our use of
only a finite number of terms in the polynomial approximation
of the non-linear correction function [Eq. (53)]. As a result, the
retained terms somehow “take over” the contribution of
neglected terms.

In the Supporting Information (see FigureS4), we compare
calculation of the concentration-perturbation distribution using
the polynomial approximations for An lð Þ with the rigorous
quadratic approximation at l ¼ 0:1947 where this approxima-
tion should have a high accuracy. The percent difference
between the polynomial and quadratic approximations are less
than 0.5% (with the exception of a couple of points inside the
patch where the function changes sign). Thus, the correction
procedure introduced above to reduce the numerical error in
the generating function is quite effective (at least, at lower l

values). Moreover, the distribution obtained using the poly-
nomial approximations and the corrected generation function is
better than the original numerical data (compare Figure 8 and
Figure S4). Correction of the generation function overcomes
some of the numerical error.

3.4. Trends in Concentration Distributions and a Simplified
Approximation

Figure 14 shows the concentration distributions calculated
(using the coefficients in Table 1) at the wall for several
dimensionless voltage drops on the patch. Note that unlike
Figure 7, these plots do not show spikes (upward or downward)
at the patch entrance and exit. At higher l values, the
progressive extension of the depleted zone towards the “exit”
results from a kind of local limiting-current phenomenon. The
current can “enter” the patch, but the depletion phenomenon
itself limits the current density. Consequently, with increasing
voltage additional current must “enter” ever more to the right
where strong diffusion from the immediately adjacent enrich-
ment zone limits the salt depletion. As the depletion zone
extends there is a decreasing area for the current to “exit” the
patch. This gives rise to an ever larger “exit” current density as
well as a narrower and higher enrichment increase. The
Supporting Information (Figure S5) quantifies the extent of
these phenomena via comparison of x-derivatives of salt

concentration at the patch surface at x ¼ � 1 (patch “entrance”)
and x ¼ 1 (patch “exit”).

The quadratic approximation [Eq.(64)] reflects the “skewing”
of the generation function to the right with increasing
dimensionless voltage drop, but it does not take into account
the progressive overall shift of the non-linear correction
function, K sð Þ, downwards as seen in Figure 11. This trend
results in a decrease of the A0 coefficient with increasing λ. In
the table of coefficients of the polynomial approximations, this
trend appears in the third order in λ. We do not have regular-
perturbation analytical results that are accurate where the third-
order λ term is significant. Nonetheless, we modified the
quadratic approximation using the numerical values of the A0

coefficient instead of value of one. Remarkably, this correction
is largely sufficient to reproduce the dimensionless-concentra-
tion-perturbation profiles with accuracy better that 2–3% at
l � 1:5. Moreover, outside the patch ( xj j > 1; especially at
positive x) such an approximation works quite well even at
l � 2. However, within the patch especially close to the
“entrance” point there are noticeable deviations. At the same
time, within the “enriched” part of the solution over the patch
the agreement is still excellent. Figure 15 illustrates these
points.

In this simplified approximation one can just use the
polynomial approximation for A0 lð Þ with the numerical coef-
ficients given in Table 1. However, Eq. (78) very accurately
approximates the dependence of A0 on λ.

Table 1. Coefficients of polynomial approximations of An lð Þ.

l0 l1 l2 l3 l4 l5 l6

A0 0.998917 0 � 0.1402 0 0.022597 0 � 0.00214
A1 0 0.26267 0 � 0.02429 0 0.001595 0
A2 0.005145 0 0.010301 0 0.002242 0 � 7.1E-05
A3 0 0.048429 0 � 0.00405 0 0.00011 0

Figure 14. Dimensionless concentration at the wall (y ¼ 0) at various
dimensionless voltage drops, as calculated using the polynomial coefficients
in Table 1 and Eqs. (57)–(63).
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A0 lð Þ � 1 �
l2

8 � 1 �
l2

12

� �

(78)

By substituting Eq. (78) instead of one into the quadratic
approximation [Eq. (64)] we obtain this relatively simple
expression Eq. (79):

dc x; yð Þ � l � 1 �
l2

8 � 1 �
l2

12

� �� �

�

x � sign xð Þ � Rp x; yð Þ
� �

þ
l2

4 � x2 � y2 �
1
2

� �

þ xj j �
y2

Rp x; yð Þ
� Rp x; yð Þ

� �� �
(79)

where we have additionally taken into account that
Rp x; yð Þ � Rm x; yð Þ � xj jy as can be seen from the definitions of
these functions [Eqs. (62) and (63)].

3.5. Co-Ion Flux Distribution

Thus far, we focused on the distribution of concentration
perturbations because they are of primary practical interest.
Moreover, one can present a large amount of data in a relatively
simple way in terms of the generating function and its
moments. Nonetheless, the ion electrochemical potentials are
also important as they allow calculation of ion fluxes as well as
the electric field. The next three sections provide methods for
approximating the distribution of ion fluxes and the electric
field and give a physical picture of these quantities.

In the Theory section we derived an explicit expression in
quadratures for the second-order correction to the distribution
of the electrochemical potential of co-ions]Eq. (43)]. This
enables us to obtain Eqs. (80) and (81), which express co-ion
flux components that are valid up to the second order
approximations in l. This approximation is reasonably valid for
l � 0:7:

� j2x � c �
@�m2

@x
� 2lþ l2 � 2g0 þ

@d�m
2ð Þ

2

@x

 !

(80)

� j2y � c �
@�m2

@y � l2 �
@d�m

2ð Þ
2

@y (81)

The first term on the right-hand side of Eq. (80) corresponds
to the unperturbed tangential flux of co-ions directed from

right to left. The second term, l2 � 2g0 þ
@d�m

2ð Þ
2

@x

� �
, is the perturba-

tion due to the concentration polarization. The unperturbed
vertical flux, jy , is zero so the quadratic correction in Eq. (81),

l2 �
@d�m

2ð Þ
2

@y , is proportional to the total vertical flux as well as to its

perturbation. @d�m
2ð Þ

2
@y values were obtained via numerical double

integration as shown in Eq. (43), and the g0 function is given by
Eq. (58).

Figure 16 shows the vector field proportional to the co-ion
flux perturbations in Eqs. (80) and (81) (actually, perturbation of
product of concentration and negative gradient of electro-
chemical potential of co-ions) divided by l2. Because the net
co-ion flow is from right to left (negative), a positive x-
component correction means that the horizontal flux is smaller
(in absolute value) than the unperturbed flux. Similarly, a

Figure 15. Dimensionless concentration perturbation calculated via the full approximation of Eqs. (57)–(63) and via its simplified version in Eq. (79). The
profiles are those at (y ¼ 0) for A) l ¼ 1:460 and B) l ¼ 1:753.

Figure 16. Perturbation of co-ion fluxes divided by l2. The perturbation is
the difference between the local flux and the flux far away from the patch.
The correction employs the quadratic approximation [Eq. (43)], which is
reasonable for l < 0:7.
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negative x-component correction indicates increased flux
relative to the unperturbed value. With our choice of signs, at
positive x the concentration increases (relative to the unper-
turbed value). Close to the wall this increase in the concen-
tration is only partially compensated by a decrease in @�m2

@x so
overall the tangential-flux magnitude, c � @�m2

@x , increases here. At
negative x, the situation is opposite, the concentration
decreases and the increase in the electrochemical potential
gradient does not completely compensate this concentration
decrease.

One can also think of transport in terms of diffusive and
electromigration components. Based on the concentration
profiles in Figure 7, at low fields the concentration gradient
above the patch is approximately constant. This should result in
diffusion that enhances the co-ion flux from right to left above
the patch. However, electromigration slows sufficiently to the
left of zero (due to lower concentration) such that the
magnitude of the flux decreases above the patch in this region.
Note that electromigration decreases with concentration, but it
also depends on the electric field.

As Figure 16 shows, the magnitude of the tangential-flux-
component correction varies along the x-coordinate. To main-
tain steady state ion concentrations, this variation requires the
appearance of corresponding vertical fluxes. Remarkably, the
vector field shown in Figure 16 is universal since it does not
depend on any problem parameters, as long as the value of l is
not too large.

3.6. Counter Ion Fluxes

The ion-exchange patch perturbs the concentration and electric
field profiles because it allows a low-resistance pathway for
current flow via counter ions. However, the net flow of counter
ions into the patch must be zero to avoid ion accumulation.
Thus, we expect counter ions to enter the patch near one end

and exit at the other. In contrast to the co-ions, for counter ions
there is a non-zero perturbation to their flux already in the
linear approximation. To calculate the counter ion flux in this
approximation, we used this relationship [Eq. (82)]:

~j1 � � c � ~r�m1 � � c � 2 ~rlnðcÞ � ~r�m2 � 2l �~ix � ~rg0 (82)

where~ix is the unit vector in the x-direction resulting from the
constant unperturbed counter ion flux along the x-axis.

Figure 17 shows the vector field ð~ix � ~rg0Þ in Eq. (82). As
expected the counter ions enter the patch on the left side and
exit at the right. The perturbation of the flow pattern becomes
smaller as one moves away from the patch. At larger fields the
picture will become asymmetric, but the principal feature will
remain of counter ions entering and leaving the patch at its
different parts.

As with co-ions, we can consider counter ion fluxes in terms
of diffusive and electromigration components. The net counter
ion flux is from left to right. However, counter ion diffusion will
occur from right to left based on concentration profiles in
Figure 7. At the surface of the patch, electrical migration exactly
compensates diffusion to give zero flux in the x-direction.

3.7. Electric Fields

To obtain an expression for the gradient of electrostatic
potential (electric field is proportional to the negative gradient
of potential) we use the definition of electrochemical potential
of co-ions to obtain in the linear approximation [Eq. (83)]:

~rf � ~rlnðcÞ � ~r�m2 � l � ð ~rg0 � 2 �~ixÞ (83)

Figure 18 shows the distribution of ~rf scaled on l. We
present the negative dimensionless electric field, so the vectors
are proportional to the electrical force that a trace negatively-

Figure 17. Vector field proportional to counter ion fluxes divided by 2l as calculated at weak electric fields in the linear approximation. (Note that these are
proportional to fluxes and not flux perturbations.)
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charged co-ion might experience in preconcentration. They are
also proportional to the flux of the trace co-ion at uniform
concentration. The electrical force on such co-ions is from right
to left in the bulk solution. Just above the patch (close to x ¼ 1)
however, the right to left electrical force decreases, and the co-
ions experiences a downward force at the right side of the
patch and an upward force at the left. Nevertheless, these ions
will not enter a perfectly selective ion-exchange patch.

Interestingly the electric field in the x-direction is not zero
at the patch surface despite the assumption of “infinite
conductivity” (constant counter ion electrochemical potential)
in the patch. Both the electric field and the concentration
gradient drive counter ion transport at the patch. Thus, the
concentration gradient at the patch surface (see Figure 14 for
example) would lead to infinite current (with an infinitely
conductive patch) in the absence of an electric field. The electric
field leads to counter ion electromigration that exactly
compensates diffusion (see Figure 17) in the x-direction at the
patch surface.

4. Conclusions

We carried out a detailed parametric study of the current-
induced concentration polarization near a perfectly perm-
selective band-like ion-exchange patch inserted in an infinite
insulating wall. An exhaustive concentration-polarization analy-
sis is possible because (due to the system simplicity) the
concentration distribution depends on only a single dimension-
less parameter proportional to the dimensionless drop of
applied voltage on the patch width. We obtained rigorous
analytical results up to second-order perturbations in the
dimensionless parameter (low to moderate dimensionless
voltage drops). At higher voltages, the problem was solved
numerically. Additionally, semi-numerical approximations pro-

vide reasonable accuracy within a broad range of applied
voltages while the regular-perturbation analytical result is more
accurate at relatively weak fields but fails at larger values of l.

The principal physical feature of the solution is the
appearance of neighboring depletion and enrichment zones. At
weak applied fields, the extents of depletion and enrichment as
well as the dimensions of these two perturbation zones are the
same. With increasing applied voltage, the depletion zone
becomes ever broader at the expense of the enrichment zone,
which gets narrower while its magnitude increases super-
linearly. The conditions of closely co-located depletion and
enrichment zones may be beneficial for counter-gradient trace-
analyte focusing. In such a system increased convective co-flow
within the enrichment zone accompanies enhancement of
electromigration counter-flow within the depletion zone, which
may enhance sample focusing.

Presentation of the two-dimensional concentration distribu-
tions in the form of Eq. (23) is useful because the whole
parametric study reduces to a family of F sð Þ curves calculated
for a range of values of dimensionless voltage drop (Figure 9).
Importantly, one can approximate these functions using a
combination of simple functions [Eqs. (52) and (53)]. We found
the coefficients of these functions numerically and approxi-
mated them with relatively simple polynomials of λ. Finally, a
4×7 table of coefficients of polynomial approximations of four
An lð Þ coefficients describes the results of the complete para-
metric study. Any interested reader can use them with
Eqs. (57)–(63) to reproduce our results (an unusual situation
with numerical studies). Note that this is not a formal fitting of
functions of two variables (which would be very difficult in view
of finding a suitable functional form that reflects all the features
of concentration distributions shown in Figure 7); the functional
form has a clear origin.

5. Future Directions

In this study, we limited ourselves to the first four terms in the
polynomial approximation of function K sð Þ. Those are largely
sufficient within the voltage range we investigated (going
beyond this range would be difficult in view of numerical
problems anyway). However, in principle, in future work one
could extend this approach towards higher-order terms. All the
corresponding integrals can be taken analytically. Therefore,
our analysis can be straightforwardly extended towards still
higher voltages just following the outlined algorithm. Perhaps
more importantly, one could easily extend the analysis to
include an opposite wall (with a similar patch or without).

Including non-zero volume flow will require more essential
modifications because the Laplace equation will no longer
describe the concentration profile. Additionally, accounting for
flow will require a numerical solution that includes the Navier–
Stokes and continuity equations. Overall, flow will likely lead to
decreased concentration polarization for the dominant salt in
solution if the sign of the fixed charge in the patch and the wall
is the same. If the signs of these charges are opposite, the
system is more complex and probably more interesting. The

Figure 18. Distribution of negative dimensionless electric field (linear
approximation, ~rg0 � 2 �~ix) scaled on l. (Fluxes of co-ionic traces immedi-
ately after their introduction in a constant concentration are proportional to
this vector.)
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results of this study will be useful, at least as a reference case,
to validate the numerical procedures.

List of Symbols

a
constant representing @g0 x;0ð Þ

@x

�
�
�
x2 � 1;1½ �

Am lð Þ coefficients of the nonlinear-correction
function, see Eq. (53)

Bc; Bf constants for solving concentration pro-
files in the linear approximation

c dimensionless salt concentration, ~c=~c0

~c salt concentration in solution
~c0 salt concentration in the bulk solution

far from the patch
~ci concentration of ion i in solution
Di ion diffusion coefficient in solution
E0 constant bulk electric field
f sð Þ integration function in G x; yð Þ, see

Eq. (16)
F Faraday’s constant
F sð Þ generating function used in solving the

concentration profile, Eqs. (23) and (24)
G x; yð Þ function that solves the Laplace equa-

tion, see Eq. (16)
g0 x; yð Þ function for
solving concentration
profiles, see Eq. (26)
gn x; yð Þ functions
used to obtain the
concentration profiles,
see Eq. (57)
h x; yð Þ function in Eq. (44)
~ji vector flux of ion i
~j1 counter ion vector flux
~j2 co-ion vector flux
K sð Þ nonlinear-correction function, see

Eq. (52)
l half-width of the ion-exchange patch
Qn moment of a multipole in the multipole

approximation, Eq. (50)
r polar coordinate, Eq. (47)
R gas constant
Rp x; yð Þ function de-
fined for convenience
in Eq. (62)
Rm x; yð Þ function de-
fined for convenience
in Eq. (63)
s integration dummy variable
s0 integration dummy variable
T temperature
x horizontal coordinate divide by the

patch half width, l
x0 integration dummy variable

y vertical coordinate divide by the patch
half width, l

y0 integration dummy variable
Zi charge of ion i
Z1 counter ion charge
Z2 co-ion charge
gi activity coefficient of ion i
dc concentration perturbation, c � 1
d�m2 perturbation of the co-ion electrochem-

ical potential
d�m

2ð Þ
2 second-order correction to the perturba-

tion of co-ion electrochemical potential
q angle in polar coordinates, Eq. (48)
l

FE0 l
2RT dimensionless voltage drop on the
quarter width of the ion-exchange patch

mo
i standard state chemical potential of ion

i
�m1 counter ion electrochemical potential
�m2 co-ion electrochemical potential
ni stoichiometric coefficient of ion i in a

salt
f dimensionless electrostatic potential in

solution (potential, ~f, multiplied by F/
RT)

~f electrostatic potential in solution
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