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Abstract—Systolic array architectures have recently emerged
as successful accelerators for deep convolutional neural network
(CNN) inference. Such architectures can be used to efficiently
execute general matrix-matrix multiplications (GeMM), but com-
puting convolutions with this primitive involves transforming the
3D input tensor into an equivalent matrix, which can lead to an
inflation of the input data, increasing the off-chip memory traffic
which is critical for energy efficiency. In this work, we propose
a GeMM-based systolic array accelerator that uses a novel data
feeder architecture to perform on-chip, on-the-fly convolution
lowering (also known as im2col), supporting arbitrary tensor and
kernel sizes as well as strided and dilated (or atrous) convolutions.
By using our data feeder, we reduce memory transactions and
required bandwidth on state-of-the-art CNNs by a factor of two,
while only adding an area and power overhead of 4% and 7%
respectively. An ASIC implementation of our accelerator in 22
nm technology fits in less than 1.1 mm2 and reaches an energy
efficiency of 1.10 TFLOP/sW with 16-bit floating point arithmetic.

Index Terms—Convolutional neural network accelerators, en-
ergy efficiency, systolic arrays, im2col, convolution lowering

I. INTRODUCTION

Deep CNN models achieve high inference accuracy at the
cost of computational complexity, so the use of hardware
accelerators is key for their deployment in real-world applica-
tions. Powerful computing engines, such as GPUs, have been
extensively used for CNN training and inference [1], but for
many applications, these prove to be too power-hungry.

Systolic array-based accelerators, specialized towards deep
learning, have been shown to provide superior energy effi-
ciency than GPUs, and many different systolic architectures
have been proposed in the literature [2]–[7]. These accelerators
often focus on efficiently executing general matrix-matrix
multiplications (GeMM) [2]–[4]. Computing convolution op-
erations in this setting requires transforming the input 3D
tensor into an equivalent matrix, using a technique known as
convolution lowering [8] (a.k.a. the im2col algorithm).

Lowering the convolution helps make computations effi-
cient, but the resulting matrix can be much larger than its
tensor equivalent, greatly increasing the amount of data to be
transferred to the array. For this reason, many accelerators
choose to manage the lowering step internally by including
some im2col units, e.g. the systolic array generator Gem-
mini [9] contains an optional im2col module to accelerate
the lowering task. This relieves the CPU from the burden of
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{jordi.fornt, pau.fontova, mcaroroc, jaume.abella}@bsc.es, {francesc.moll,
josep.altet}@upc.edu, studer@iis.ee.ethz.ch.

managing the im2col, but it still suffers from the overhead in
memory accesses, as the inflated matrices are fetched from
the L2 cache or off-chip memory. SPOTS [10] implements a
GeMM-based systolic accelerator with an im2col unit for on-
the-fly convolution lowering and sparsity support. It avoids
the data overhead introduced in the lowering step by first
moving the tensors into its internal SRAM memories and
then managing the im2col task internally. However, it requires
including very large (13% of its total area) intermediate buffers
that compromise the area efficiency of the system, and its
im2col unit cannot support dilated convolutions.

To the best of our knowledge, USCA [11] is the only accel-
erator that currently provides hardware support for on-the-fly
convolution lowering as well as dilated convolutions, but it
focuses on accelerating convolutions on sparse tensors. While
some classic networks like ResNet [12] can be sparsified to
large degrees without much accuracy degradation, there is a
trend in modern architectures like transformer networks [13]
to struggle in achieving high sparsity [14]. Hence, basing the
energy efficiency strategy of an accelerator in sparsity puts it at
risk of obsolescence unless this trend is reverted. Furthermore,
USCA only reports synthesis results, lacking a full physical
design, which is critical for an accurate power estimation.

In this work, we develop a CNN accelerator that efficiently
computes convolutions with dense tensors, based on a systolic
array architecture and a novel data feeder that performs on-the-
fly im2col transformation and supports dilated convolutions.
Furthermore, we also perform the full synthesis and physical
design process for an ASIC implementation of the accelerator,
providing accurate area and power results.

II. ARCHITECTURE

The architecture of the proposed accelerator, depicted in
Figure 1, is built around an Output Stationary (OS) systolic
array. Three independent SRAM memories with double buffer-
ing hold the tensors involved in the convolution (input feature
maps, weights, and outputs/partial sums). Our novel Data
Feeder module is used to lower the input tensors stored in
the ifmap SRAM and stream the resulting matrices to the
array rows. Since we fetch the data in tensor shape from the
DRAM, we avoid the inflation of memory transactions caused
by the im2col step. During the convolution lowering process,
the data feeder generates the data streams according to the
dilation rate of the convolution. In parallel, the Weight Fetcher
block streams the weight data, and the Partial Sums Manager
extracts the partially accumulated results from the array and, if
needed, inserts preload data used to initialize the partial sums.

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted 
component of this work in other works. http://dx.doi.org/10.1109/TVLSI.2023.3286122



IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 2

Weight Fetcher

Feed 
Lane

Feed 
Lane

Feed 
Lane

P
ar
�

al
 S

u
m

s 
M

an
ag

e
r

Interface

Host / DMA

D
at

a 
F

ee
d

er

Systolic Array

Ifmap SRAM Weight SRAM P. Sums SRAM

PE PE PE

PE PE PE

PE PE PE

Fig. 1. Proposed convolution accelerator architecture using a 3x3 systolic
array and our data feeder.

A. Systolic Array GeMM Engine

We implement an OS array as our GeMM engine, in which
each Processing Element (PE) is assigned to a pixel of the
output tensor. The horizontal spatial dimension of the tensor is
mapped to the array rows, and the output channels dimension
to the columns. The systolic array is composed of a mesh of
PEs, the design of which is depicted in Figure 2. We kept
the PEs as simple as possible to maximize area efficiency.
A zero detection and gating circuit, inspired by works like
[7], [15] is included before the multiplier in order to avoid
unnecessary switching when any input value is zero. Even
though our work focuses on dense CNNs rather than sparse
networks, this technique is inexpensive and can save power
even at low sparsity levels (see Section III).

The Multiply-Accumulate (MAC) operation results are ac-
cumulated in an internal register (the Accumulator). A sec-
ondary register, called Reserve Register, is used to hold partial
sum data during the extraction of results or insertion of preload
data. When the execution of a computation context finishes, the
accumulator and reserve register values are swapped, and the
first MAC of the next context is performed. This solution has
two benefits: first, it eliminates the need to access all partial
sums from outside of the array concurrently (which does not
scale well) by connecting the reserve registers together and
shifting in and out the values. Second, it allows to concatenate
computation contexts without stalling the PEs, improving the
overall performance and utilization, while having a small
power and area overhead (see Section III).

B. Data Feeder for On-the-fly im2col

Our novel data feeder (see Figure 3) is composed of the
Index Counters, a set of configuration registers, and an array of
Feed Lanes, replicated for all array rows as shown in Figure 1.
The main idea of our feeder architecture is to read all SRAM
addresses of a context in a single pass and distribute the data
values to the PEs that need them. The ifmap tensor stored in
the corresponding SRAM has its dimensions flattened in the
order [C,Y,X], with the x-axis contiguous in memory.
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Fig. 2. Processing Element design. Zero gating highlighted in purple, partial
sum management in green.

To perform the readout, we define the Interest Region of a
context as the union of the convolution kernels centered on the
output pixels currently being computed, as depicted in Figure 4
(left part). All memory locations corresponding to the interest
region are read sequentially once, and each feed lane selects
the elements it needs from every data word coming out of the
SRAM. Once all positions of the current region of interest have
been read, the region is relocated to a new context. The readout
sequence is controlled by the index counters module, which
comprises 5 independent counters with configurable step size
and limit: 3 are used to traverse the interest region (through
the x, y and channel axes), and the other 2 move the whole
region to a new context (only for the x and y axes, since the
input channel is fully reduced on each context). The sum of
all the counter outputs generates a pointer that is used to go
through the ifmap tensor.

The index pointer initially points to the first interest element
in the current row of the region, as illustrated in Figure 4.
Subsequent reads on the same tensor row are performed by
incrementing the pointer by the bus width (in data elements).
When the index reaches the end of the current interest region
row, it moves to the first position of the next row that must
be read. The pointer value is split to generate the SRAM read
address (higher bits) and the Global Word Offset (lower bits),
which informs about the location inside the SRAM data word
of the first element of interest in the region.
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Fig. 4. Example and illustration of the index counters sequence, assuming
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The information provided by the global word offset fully
describes how the first feed lane (first row) can access its
first element of interest inside the SRAM data bus. For all
remaining lanes, we obtain this location by adding a Local
Offset to the global word offset, representing the difference in
kernel locations (i.e., output pixel locations) between rows of
the array. Contiguous lanes represent contiguous output values,
so a convolution is configured by setting the local offsets to
[s, 2s, ..., (Y − 1)s], with s being the strides and Y being the
number of array rows. The result of this addition is defined as
the Word Offset, and it indicates to each feed lane the location
of its first interest element.

For kernels larger than 1x1, each feed lane generally needs
to take several elements from the data bus on a single cycle.
These elements need not be contiguous to the first interest
element, since the accelerator supports dilated convolutions.
To identify which positions must be selected after the first one
(which is pointed to by the word offset), we define the Kernel
Pattern, a configurable bit vector that defines the location of
interest elements in contiguous memory positions, based on
the convolution kernel. With this signal we fully describe the
horizontal kernel size and dilation rate. Figure 3 shows an
example for a 3x3 kernel with a dilation rate of 2.

By right-shifting the kernel pattern by the word offset, we
align it with the correct location of the interest elements on
the data bus, as depicted in the lower part of Figure 3. Once
aligned, each bit of the shifted pattern points to the data
elements that must be taken. If several contiguous reads are
needed to cover all elements of interest, the bus width (in
data elements) is subtracted to the shift amount after every
read. A negative shift amount in this case denotes a left-shift.
With this, the shifted kernel pattern is aligned with the interest
elements in subsequent reads. When the readout of the current
row of the interest region complete, the shift amount is reset
and the sequence is repeated. After all positions of the region
of interest have been covered, we move to a new context.

A simple multiplexer-based selection circuit takes the data
elements pointed by the shifted kernel pattern and stores them
in a set of intermediate registers. When all registers are full,
their contents are pushed to a FIFO memory that holds the
values until they are consumed by the array. The number of
intermediate registers (M ) determines how many values in
parallel can be taken on each feed lane. If there are more
interest elements in the bus than free registers, a stall signal is
raised by the feed lane, indicating that the index counting and

TABLE I
CONVOLUTION ACCELERATOR SPECIFICATIONS (POST-LAYOUT)

Technology GF22FDX (22 nm)
Chip Area 1 mm x 1.09 mm
Logic Gate Count 2657k (NAND2)
No. of PEs 256 (16x16)
Arithmetic Precision 16-bit floating point
SRAM Sizes / Total memory 32 kB (x2) / 192 kB
Supply Voltage 0.8 V
Clock Period / Max. Frequency 1.8 ns / 555 MHz
Peak Throughput 284 GFLOP/s
Avg. Power @ Peak Throughput 258 mW
Peak Enery Efficiency 1.10 TFLOP/sW

Total Area = 0.897 mm ² Total Power = 258 mW1.09 mm

1 
m

m

SRAM SRAM

SRAMSRAM

Accelerator
Logic

Fig. 5. Accelerator floorplan (left). Area and power breakdown of the
accelerator (right). Power is estimated with dense random inputs.

data readout pipeline must stop until all lanes have been able
to gather the required data. Finally, the FIFO output passes
through the Feed Registers, a stage of concatenated registers
that enforce the staggered latency between array rows: e.g., if
the first array row starts getting data at cycle 0, the second
one will start at cycle 1, and so on.

III. IMPLEMENTATION AND RESULTS

We base our evaluation on an ASIC implementation of the
accelerator described in Section II, using a 16x16 systolic
array. Three double-buffered 32 kB single-port SRAMs are
used to store the ifmaps, weights and partial sums, each
with a 256-bit data bus. We implement the PE arithmetic
units in 16-bit floating point in order to compute state-of-
the-art CNNs with high accuracy and without retraining. The
accumulation of partial sums is also performed using FP16
precision. Note that the accelerator architecture is agnostic to
arithmetic representation, and could also be implemented using
integer operators. To implement the FP16 MAC operator, we
used a simplified version of the FPnew floating point unit from
the open-source PULP platform [16].

The implemented data feeders use 3 intermediate registers
per lane (M=3) to optimize the performance of 3x3 kernels,
which are very common. The kernel pattern width is limited to
64 bits, so the data feeders can support any kernel shape with a
horizontal dimension that fits in this vector. For convolutions
without dilation (d=1) this means that the maximum kernel
shape is [64,Ky], with the vertical dimension Ky limited
only by the total capacity of the SRAMs. For dilated 3x3
convolutions, the maximum dilation coefficient is d=31.

The architecture was synthesized in 22 nm using Cadence
Genus, and the physical design was performed with Cadence
Innovus. Table I summarizes the most important specifications
of the implementation. The throughput and power metrics are
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TABLE II
MEMORY TRANSACTIONS AND BANDWIDTH SUMMARY, USING EXPLICIT

LOWERING (expl.) AND OUR DATA FEEDER (feed.)

Total MB Avg. GB/s Max. GB/s
Network expl. feed. expl. feed. expl. feed.

ARPN 288 59 7.93 1.57 12.0 5.46
Resnet-50 263 173 6.85 4.12 12.0 10.7
VGG-16 1231 572 9.07 4.07 29.0 16.5
YOLOv3 3005 1040 7.90 2.72 12.0 8.72

Fig. 6. Required bytes per operation during the execution of the benchmarks.

obtained from post-layout simulations of the design using this
setup. We benchmark the performance of our design with
four CNNs of different sizes: the Atrous Region Proposal
Network (ARPN) used in [17], ResNet-50 [12], VGG-16 [18],
and YOLOv3 [19] using input resolutions of 64x64, 256x256,
224x224, and 512x512, respectively.

Figure 5 shows the floorplan of the physical design of the
accelerator, as well as a breakdown of the area and power
consumption. The total area of the system is 0.897 mm2, which
we fit in a 1.09 mm2 floorplan. The systolic array PEs make up
for about 83% of the logic area excluding the SRAM macros,
and the area overhead of the data feeder is less than 7% of
the logic area (4% of the total).

The reserve registers we include in the PEs to extract the
partial sums have a total area and power overhead of 0.76%
and 0.90%, respectively. The zero gating strategy we imple-
ment in the array PEs allows to save power when the input
values are zero, decreasing the total power by about 6% when
both weights and feature maps present 10% of zeros. Taking
the worst-case scenario as a baseline, (all values are random
and the tensors are completely dense) the system consumes
258 mW during computation, with the PEs accounting for 75%
of the power and the data feeder for about 7% (see Figure 5).

By converting the tensors to data streams on-the-fly, the
data feeder decreases the overall memory traffic and bandwidth
requirements of the system with respect to the software-based
explicit im2col, which would require fetching the lowered
matrices from the off-chip memory. We find that the number
of bytes per operation decreases by more than 50% for
most of our benchmarks (see Figure 6). This results in a
significant reduction of the total data exchanged with the
DRAM memory, as well as the average bandwidth required
to feed the accelerator without stalls (see Table II).

Fewer memory transfers also enable energy savings on
the DRAM, which typically accounts for a large portion of
the system-level power consumption. Using the DRAMPower
tool [20] we estimate that off-chip memory transactions using
an LPDDR3 memory have an energy cost of about 120 pJ/byte.

TABLE III
COMPUTE TIME AND PROPORTION OF DRAM WAITING TIME ASSUMING

6.4 GB/S OF DRAM BANDWIDTH

Comp. time
[ms]

Average
GFLOP/s

DRAM stalls
[% of time]

Network expl. feed. expl. feed. expl. feed.
ARPN 45 37 215 258 19 0

Resnet-50 45 43 212 220 14 1.5
VGG-16 193 164 160 189 31 14

YOLOv3 472 384 211 260 20 0.5

Taking YOLOv3 as an example (see Table II), using our data
feeder decreases the total energy consumed by the DRAM dur-
ing inference by 236 mJ. In comparison, the energy overhead
of the data feeder is 6.9 mJ, 34x smaller than the system-level
energy reduction it enables.

To assess the accelerator performance for our benchmark
CNNs, we assume that a commercial 32-bit-wide LPDDR3
DRAM memory operating at 800 MHz is used, with a max-
imum bandwidth of 6.4 GB/s. As summarized in Table III,
the use of our data feeder also improves the throughput of the
accelerator under these conditions. The performance difference
comes mainly from the twofold decrease in the amount of data
transactions, which helps avoid accelerator stalls. In YOLOv3,
computation time is reduced almost by 20% when using our
data feeder, even if we neglect the overhead of the CPU
lowering the convolution in the im2col case.

Table IV compares our design with SPOTS [10] and
USCA [11], the GeMM-based systolic accelerators in the lit-
erature most similar to this work, as well as Eyeriss [6], a suc-
cessful systolic accelerator used commonly as a benchmark.
Since these designs are implemented in different technology
nodes, we also report the efficiency values scaled to 22 nm
for a better comparison, using the equations defined in [21].

In the case of SPOTS, a comparison in terms of energy
efficiency cannot be established since its power consumption is
unreported. Similarly, USCA seems to present a higher energy
efficiency, but the arithmetic used in its PEs is unreported, so a
fair comparison can not be established since this choice greatly
impacts the overall energy efficiency, as well as the accelerator
accuracy. It should also be noted that the authors of USCA
do not perform the full physical design of the accelerator,
so its reported power may be an optimistic estimate. Lastly,
compared to Eyeriss v2, our accelerator has a slightly lower
energy efficiency in absolute terms, when considering dense
tensor convolutions. However, it is important to note that
Eyeriss uses 8-bit fixed point arithmetic, which is expected

TABLE IV
COMPARISON WITH SIMILAR STATE-OF-THE-ART DESIGNS

Design Tech.
[nm] Arith. Efficiency

[GOP/sW]
GOP/sW
@22 nm

Dilated
Conv.?

SPOTS [10] 45 int16 N/Ra N/R ×
USCA [11] 28 N/Rb 1863 3521 ✓

Eyeriss v2 [6] 65 int8 253c 1799 ×
This work 22 FP16 1100 1100 ✓

a [10] does not report energy efficiency nor power consumption.
b [11] does not report the PE arithmetic.
c Top efficiency with dense tensors. With sparse AlexNet: 963 GOP/sW

(6.84 TOP/sW when scaled to 22 nm).
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to consume much less power than the 16-bit floating-point
arithmetic we support in order to execute any state-of-the-art
CNN with high accuracy. From our experiments with MAC-
based processing elements in 22 nm technology we have seen
that the difference between FP16 and int8 is more than enough
to cover the energy efficiency gap between our accelerator
and Eyeriss v2. Hence, when accounting for this difference,
our proposed accelerator surpasses Eyeriss v2 in terms of
energy efficiency when dealing with dense tensors, while also
supporting dilated convolutions.

IV. CONCLUSIONS

We have presented an energy-efficient convolution accel-
erator for CNNs built upon a GeMM-based systolic array,
coupled with our novel data feeder architecture, which en-
ables on-chip, on-the-fly convolution lowering and supports
dilated (or atrous) convolutions. Our accelerator reaches a
peak throughput of 284 GFLOP/s and an energy efficiency
of 1.10 TFLOP/sW using FP16 arithmetic and a 16x16 array.
By formulating lowering as a selection task and leveraging
the regularity of the 2D convolution, our data feeder design
achieves superior area and energy efficiency than any other
proposed im2col solution, with area and power overheads of
4% and 7%, respectively. We have demonstrated how an ASIC
implementation of our design can achieve reductions of more
than a factor of two in memory transactions when accelerating
state-of-the-art CNNs, compared to software-based im2col,
significantly improving the energy efficiency of the overall
system. Additionally, the reduction in memory transactions
relaxes the off-chip memory bandwidth requirements of the
system, boosting the overall performance and energy efficiency
of the accelerator.
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