

BACHELOR DEGREE THESIS

TFG TITLE: ANALYSIS OF OSPFv3 IN LEO SATELLITE NETWORKS

DEGREE: Double bachelor’s degree in Aerospace Systems Engineering
and Telecommunications Systems

AUTHOR: Daniel Román Martín

DIRECTOR: Sergio Machado Sánchez

CODIRECTOR: Jorge Mata Díaz

DATE: July 24th, 2023

Títol: ANÀLISI D’OSPFv3 A XARXES DE SATÈL·LITS LEO

Autor: Daniel Román Martín

Director: Sergio Machado Sánchez

Codirector: Jorge Mata Díaz

Data: 24 de juliol de 2023

Resum

La comunicació via xarxes de satèl·lits esta en continua investigació i
desenvolupament, ja que ofereix múltiples millores respecte a les xarxes terrestres
clàssiques com per exemple cobertura global, però tenen un inconvenient principal
que s’ha de solucionar, el problema d’encaminament punt a punt.

En aquest treball s’ha desenvolupat un emulador de xarxes de satèl·lits mitjançant
contenidors Linux, que han permès analitzar el comportament del protocol
d’encaminament IP OSPFv3 en aquest tipus de xarxes. Concretament, s’ha analitzat
el seu comportament a la constel·lació Iridium, ja que es àmpliament coneguda i
utilitzada en aquest tipus d’estudis. Amb aquesta intenció s’han fet servir arxius de la
topologia d’aquestes xarxes al llarg del temps, generats amb el propagador orbital
HypatiaSeam, una modificació de Hypatia realitzada pel grup d’investigació SeamSAT
de la UPC.

Aquest projectes es troba dins d’un altre més gran, que té com a objectiu poder fer
servir una xarxa de satèl·lits LEO per a la comunicació entre avions i els centres de
control de l’espai aeri. Això podria permetre centralitzar els diferents centres de
control, ja que no es necessitaria que els avions tinguessin que estar en rang directe
per a comunicar-se amb aquests centres, sinó que gràcies a la cobertura global que
proporciones aquestes xarxes, es podrien comunicar des de qualsevol punt del
planeta.

Concretament, en aquest projecte s’ha desenvolupat una plataforma d’emulació que
ha permès realitzar un anàlisi del comportament del protocol OSPFv3 per a trobar
rutes optimes, es a dir, de distancia mes curta en termes de la funció de cost del
protocol.

Presentarem el disseny i la implementació de la plataforma d’emulació, així com
l’anàlisi del rendiment d’OSPFv3 en termes de temps de convergència del protocol
degut als canvis de topologia, nombre de salts entre un satèl·lit i una estació terrestre,
el retard i la taxa de pèrdues.

Título: ANÁLISIS DE OSPFv3 EN REDES DE SATÉLITES LEO

Autor: Daniel Román Martín

Director: Sergio Machado Sánchez

Codirector: Jorge Mata Díaz

Fecha: 24 de julio de 2023

Resumen

La comunicación vía redes de satélites está en continua investigación y desarrollo ya
que ofrece múltiples avances respecto a las clásicas redes terrestres como por
ejemplo cobertura global, pero tiene un inconveniente principal a solucionar, el
problema de encaminamiento punto a punto.

En este trabajo se ha desarrollado un emulador de redes de satélites utilizando
contenedores Linux, que ha permitido analizar el comportamiento del protocolo de
encaminamiento IP OSPFv3 en este tipo de redes. Concretamente, se ha analizado
su comportamiento en la constelación Iridium, la cual es ampliamente conocida y
usada en este tipo de estudios. Para ello se ha utilizado archivos de la topología de
estas redes a lo largo del tiempo generados con el propagador orbital HypatiaSeam,
una modificación de Hypatia realizada por el grupo de investigación SeamSAT de la
UPC.

Este proyecto se enmarca dentro de otro más global cuyo objetivo es poder utilizar
una red de satélites LEO para la comunicación entre los aviones y los centros de
control del espacio aéreo. Esto podría permitir centralizar los diferentes centros de
control, ya que no seria necesario que los aviones tuviesen que estar en rango directo
para comunicarse con estos centros, sino que gracias a la cobertura global que
proporcionan estas redes, se podrían comunicar desde cualquier punto del mundo.

Concretamente, en este proyecto se ha desarrollado una plataforma de emulación
que ha permitido realizar un análisis del comportamiento del protocolo OSPFv3 para
encontrar rutas óptimas, es decir, de distancia más corta en términos de la función de
coste del protocolo.

Presentaremos el diseño y la implementación de la plataforma de emulación, así
como el análisis del rendimiento de OSPFv3 en términos de tiempo de convergencia
del protocolo ante cambios en la topología, número de saltos entre un satélite y una
estación terrestre, el retardo y la tasa de pérdidas.

Title: ANALYSIS OF OSPFv3 IN LEO SATELLITE NETWORKS

Author: Daniel Román Martín

Director: Sergio Machado Sánchez

Codirector: Jorge Mata Díaz

Date: July 24th, 2023

Overview

Communication via satellite networks is under continuous research and development
as it offers many advances over traditional terrestrial networks such as global
coverage, but has a major drawback to be solved, the problem of point-to-point
routing.

In this work we have developed a satellite network emulator using Linux containers,
which has allowed us to analyze the behavior of the IP routing protocol OSPFv3 in this
type of networks. Specifically, its behavior has been analyzed in the Iridium
constellation, which is widely known and used in this type of studies. For this purpose,
we have used files of the topology of these networks over time generated with the
HypatiaSeam orbital propagator, a modification of Hypatia made by the SeamSAT
research group of the UPC.

This project is part of a more global project whose objective is to be able to use a
network of LEO satellites for communication between aircraft and airspace control
centers. This would make it possible to centralize the different control centers, since it
would not be necessary for aircraft to be in direct range to communicate with these
centers, but thanks to the global coverage provided by these networks, they could
communicate from anywhere in the world.

Specifically, in this project we have developed an emulation platform that has allowed
us to analyze the behavior of the OSPFv3 protocol to find optimal routes, i.e., shortest
distance in terms of the cost function of the protocol.

We will present the design and implementation of the emulation platform as well as the
analysis of OSPFv3 performance in terms of protocol convergence time to topology
changes, number of hops between a satellite and a ground station, delay and loss
rate.

CONTENTS

INTRODUCTION .. 9

CHAPTER 1. LEO SATELLITE NETWORKS ... 11

1.1. Iridium constellation ... 13
1.2. Walker constellation .. 15
1.3. State of the art .. 17

CHAPTER 2. EMULATION FRAMEWORK ... 19

2.1. LXD – Linux Container Daemon ... 20
2.1.1. Images .. 22
2.1.2. Containers .. 24
2.1.3. Networking .. 27

2.2. Topology builder.. 28
2.3. Network emulation .. 37
2.4. Python libraries.. 43

2.4.1. Pylxd ... 43
2.4.2. Advanced Python Scheduler .. 44
2.4.3. NetworkX .. 44
2.4.4. PyShark .. 45

CHAPTER 3. OSPFV3 ANALYSIS IN LEO SATELLITE NETWORKS 46

3.1. OSPFv3 ... 46
3.2. Example topology .. 49

CHAPTER 4. NETWORK SATELLITE EMULATION ANALYSIS AND

EVALUATION .. 57

4.1. OSPFv3 Configuration .. 58
4.2. Results .. 59

4.2.1. Δt = 20 s ... 61
4.2.2. Δt = 5 s ... 68

CHAPTER 5. CONCLUSIONS AND FUTURE LINES 77

5.1. Conclusions ... 77
5.2. Future lines .. 78

BIBLIOGRAPHY .. 79

LIST OF ACRONYMS AND ABBREVATIONS ... 83

LIST OF FIGURES ... 84

LIST OF TABLES .. 87

APPENDIX A. EXAMPLE OF EMULATION RUNNING 90

Introduction 9

INTRODUCTION

This work is part of the SeamSAT project [1], developed by a research group of
the telematics engineering department of the Universitat Politècnica de
Catalunya (UPC) and funded by the Agencia Estatal de Investigación (AEI).

The goal of SeamSAT project is to use the new Low Latency Low Loss Scalable
Throughput Internet Service (L4S) architecture for terrestrial networks,
recommended by the Internet Engineering Task Force (IETF), and its
application in large Low Earth Orbit (LEO) communications networks. With this
objective, the SeamSAT project will produce a proposal for algorithms and
protocols to ensure the seamless integration of dense LEO communications
networks with terrestrial networks. The project will give special consideration to
the integration of aeronautical telecommunication services.

Satellite networks are networks capable not only of overcoming the
geographical limitations of terrestrial networks, but also of providing a secure
communication channel. These networks are built on a spatial platform for the
acquisition, emission and analysis of spatial information in real time and are
characterized by high transmission delays and losses, and dynamic topology
changes, which distinguishes them form conventional terrestrial networks.

The first satellite networks were implemented in the Geostationary Earth Orbit
(GEO) using the bent-pipe method. This method consists of a satellite receiving
the signal form the ground station, amplifying it, changing its frequency and
retransmitting it to another base station, which means that initial networks
consisted of a transmitter, a receiver and a relay, which was the satellite that
received and retransmit the information.

Fig. 0.1. Bent-pipe method.

Nowadays, satellite networks are composed of multiple satellites that
communicate with each other via Inter-Satellite Links (ISLs) and with the ground
stations via the Ground to Satellite Links (GSLs), forming satellite
constellations, such as Iridium. Iridium constellation will be explained later in
Section 1.1 This implies that there are a large number of paths for
communication between ground stations, which together with the large delays

10 Analysis of OSPFv3 in LEO Satellite Networks

and the dynamic topology changes appears the main problem of these
networks, i.e., the point-to-point routing problem.

In this work we are going to study and analyze the use of Open Shortest Path
First version 3 (OSPFv3) routing protocol, a well-studied solution for terrestrial
networks. The main objective is to describe the performance of the protocol as-
is, with no modifications, only adjusting some protocol configuration parameters.
The analysis will be done using an emulation framework that has been
developed on this work and that can be used in the study of other IP routing
protocols.

This work is intended to study the implementation of a new way of
communication between aircraft and control centers, since thanks to the global
coverage of satellite networks they could communicate with each other
regardless of the position of each one.

The work is organized as follows. In Chapter 1, LEO satellite networks are
introduced by explaining a typical satellite constellation, such as the Iridium
constellation, and typical LEO satellite constellation distributions such as the
Walker constellations. Chapter 2 presents the emulation framework developed.
In Chapter 3, the OSPFv3 protocol is explained. Chapter 4 presents the results
of the study. Finally, in Chapter 5 we conclude and present the future lines of
this work.

LEO Satellite Networks 11

CHAPTER 1. LEO SATELLITE NETWORKS

LEO satellites orbit at altitudes between 250 km and 2000 km above the Earth’s
surface. The orbital period, which is the time interval between two consecutive
passes of a satellite over a characteristic point of the orbit, varies from 90 to 120
min. This is shown by Kepler’s third law, Equation 1.1, where G is the
gravitational constant, Mearth is the mass of the Earth, Rearth is the radius of the
Earth and h is the height of the orbit. These satellites are only observable for 20
min by an observer who is stationary on the Earth’s surface, as would be the
case for base stations, and orbit at a rotational speed of more than 25000 km/h.

(1.1)

A LEO satellite network consists of M satellites evenly distributed in the 360º
range in N orbital planes, located at a given height and inclination. For example,
a constellation consisting of 12 satellites uniformly distributed in 3 orbital planes
would be a 3x4 satellite constellation. The typical inclination in LEO satellite
networks is usually less than 90º. Figure 1.1 shows an example of a LEO
satellite constellation.

The satellites that form these networks are cube-shaped, or a combination of
10x10x10 cm cubes. Each face of the cube usually has an antenna, except for
the one opposite to the face that looks the center of the Earth that does not
have any antenna. The side facing the surface of the Earth is used to connect to
base stations and form the GSLs.

Two of the other faces point to the satellite preceding it or succeeding it in the
same orbit. These satellites, which are in the same plane, maintain the distance
between them by being in the same orbit. Therefore, there is always a link
between them if the electrical or optical system is working properly. These links
are known as intra-plane ISLs.

The remaining two faces observe satellites in adjacent co-rotating planes that
are in a similar angular phase. These satellites modify the distance between
them and even the position, so that when a certain phase of the orbit is
exceeded, depending on the velocity vector of a satellite, the satellite on the
right moves to the left and vice versa. The links formed between these satellites
are called inter-plane ISLs.

Depending on the orbital plane in which the satellites are located, some of them
orbit to the north and others to the south. When two adjacent planes rotate in
opposite directions, also called counter-rotating planes, a phenomenon named
seam appears, which consists in the fact that no link is formed between these
two planes.

12 Analysis of OSPFv3 in LEO Satellite Networks

Fig. 1.1. LEO satellite constellation.

To establish links between satellites, antenna beamwidth is modified or
electronic guidance system is used, since satellite faces are not perfectly
aligned with those of other satellites when creating the links. When inter-plane
ISLs reach a high latitude, +60º in the northern hemisphere or -60º in the
southern hemisphere, are interrupted, because it is not feasible to maintain
them due to the high inclination of the antenna beam.

The advantages of using LEO networks compared to satellites networks located
in higher orbits are:

• Smaller satellites.

• Lower transmission losses.

• Less propagation delays.

• Higher throughput.

• Require less transmission power.

• Use of smaller antennas.

• Higher frequency reuse.

• Higher system capacity.

LEO Satellite Networks 13

The main drawbacks of LEO satellite networks are:

• Larger number of satellites are needed to provide global coverage.

• Large number of topology changes.

• The interval in which a satellite is visible is smaller.

• Shorter life span.

1.1. Iridium constellation

Iridium is a satellite constellation network consisting of 66 satellites. These
satellites are uniformly divided into 6 orbital planes which means that in each
plane there are 11 satellites. Figure 1.2 shows an example of the Iridium
satellite constellation.

Fig. 1.2. Iridium satellite constellation.

Iridium constellation is located in the LEO orbit, specifically at a height of 778
km above the Earth’s surface, and follows the Walker-star constellation
distribution with an inclination of 86.4º, which is explained in Section 1.2. The
separation angle between the co-rotating planes is 31.6º. The initial plane and

14 Analysis of OSPFv3 in LEO Satellite Networks

the final plane are counter-rotating, which as mentioned before forms a seam.
The separation angle between these two planes is 22º.

The angle of separation between the satellites that are located in the same orbit
plane is 32.7º, which corresponds to an interval distance of about 9 minutes,
which is the average time that a satellite is visible to the same ground station.
With 11 satellites per plane the orbital period is about 100 minutes. This can
also be checked by applying the Equation 1.1.

The Iridium system was first developed in 1987. Initially it consisted of a
network of 77 satellites, hence the name Iridium, as it was the 77th element of
the periodic table. It began to be deployed in 1997 and became operational in
1998. Iridium’s main feature is that it is the first satellite network to offer global
coverage. It provides voice and data, paging and fax services.

The first generation of Iridium satellites was in operation until 2019, when the
IridiumNEXT constellation came into use. IridiumNEXT has the same services
as Iridium. It has 66 active satellites, 9 backup satellites orbiting in case one
needs to be replaced and 6 satellites on the ground ready to be deployed in
case of need.

Table 1.1 shows the frequency plan of the different communication links of the
Iridium satellite network. The operational frequency range for communication
between satellites though ISLs is form 23.18 GHz to 23.38 GHz, frequencies
belonging to the K-band, which implies a bandwidth of 200 MHz.

Communication between ground station and satellites is separated into two
different channels. The downlink (satellite to base station), which within the K-
band, uses the operational frequency range from 19.4 GHz to 19.6 GHz. The
uplink (base station to satellite) uses the operational frequency range from 29.1
GHz to 29.3 GHz, which belongs to Ka-band. The two channels have a
bandwidth of 200 MHz. The ground stations connect the Iridium network to the
Public Switched Telephone Network (PSTN), whose function is to enable
communication between Iridium devices and the rest of the world’s devices.

Table 1.1. Iridium frequency plan.

Inter-Satellite links
Ground to satellite

links
Satellite to Iridium

devices

K-band
23.18-23.38 GHz

Downlink: K-band
19.4-19.6 GHz

Uplink: Ka-band
29.1-29.3 GHz

L-band
1.616-1.626 GHz

Communication between satellites and Iridium devices does not need to go
through ground stations. It is done through the L-band using the frequency
range from 1.616 GHz to 1.626 GHz, which implies a bandwidth of 10 MHz. To

LEO Satellite Networks 15

communicate with these devices, the Iridium satellites have 3 sets of antennas
with 16 spot beams, for a total of 48 communication cells as can be seen in
Figure 1.3. As there are 66 satellites in total there are 3168 cells, but due to the
satellites at high latitudes, there will only be 2150 cells active at a time. This
implies that the maximum capacity of the Iridium network will be 172000 users
connected at the same time, where in each cell there will be a maximum of 80
users.

Fig. 1.3. Iridium spot beams.

1.2. Walker constellation

The Walker constellation is a common organization of LEO satellite networks
and is the one on which Iridium is based. In this constellation all the satellites
have the same inclination, same argument of perigee, same semi-major axis,
follow a circular orbit (zero eccentricity) and have two different distributions.

Walker-star constellation or polar orbit constellation is the variant used in Iridium
satellite network. In this type of constellation all satellites have an inclination
close to 90º. It is characterized by an angle between adjacent planes equal to
ΔΩ = π/N (π-type constellation) and an angle between two neighboring
satellites located in the same plane equal to ω = 2π/M, where N is the number
of orbital planes of the constellation and M is the number of satellites in each
plane. Figure 1.4 shows a Walker-star constellation structure.

16 Analysis of OSPFv3 in LEO Satellite Networks

Fig. 1.4. Walker-star constellation.

Walker-delta constellation or Ballard rosette constellation is the variant used in
Globalstar satellite network. In this type of constellation all satellites have an
inclination smaller than 60º. It is characterized by an angle between adjacent
planes equal to ΔΩ = 2π/N (2π-type constellation) and an angle between two
neighboring satellites located in the same plane equal to ω = π/M. Figure 1.5
shows a Walker-delta constellation structure.

Fig. 1.5. Walker-delta constellation.

LEO Satellite Networks 17

1.3. State of the art

In [13] the authors analyze the application of the OSPF protocol in Integrated
Terrestrial-Satellite Networks (ITSN) by studying and analyzing networks
characteristics such as transmission packet loss, end-to-end delay, among
other characteristics. The results obtained in this publication are that as the
number of satellites in the satellite network increases, the efficiency of the
protocol decreases. This is due to the fact that the number of topology changes
increase considerably causing higher delays and higher losses as the satellite
network increases.

In [14] the authors propose a modification of OSPF called Orbit Prediction
Shortest Path First (OPSPF) for LEO satellite networks. This protocol
periodically calculates the routes between satellites to generate the routing
tables instantaneously and provides a routing algorithm, which is based on
flooding the network with updates to detect network irregularities, for when a
link fails or recovers. The results obtained have been to have zero path
convergence overhead for the scheduled changes and a reduction of more than
80% of the convergence time when there are unexpected changes (link failure)
compared to OSPF.

In [15] the authors present an optimized version of OSPF called Optimized
OSPF with Link Plan (OOWLP) in order to minimize OSPF convergence, packet
loss and delay by periodically updating the link state, thus eliminating the
network flooding process. The Constrained Shortest Path First (CSPF) method
is applied to improve the throughput capacity of satellite networks in case where
the network is congested. In this study, a reduction of more than 15% in packet
loss, a reduction of 50 milliseconds in average delay and a throughput capacity
improvement of almost 10 Mbps were achieved.

In [16] the authors introduce a new method known as Cross-Domain
Aggregation Routing based on Lightweight OSPF (CDAR-L) with the objective
of minimize the overhead produced with the classical OSPF, while maintaining
performance in regard to delay and throughput. The results obtained by this
study are that they manage to maintain the performance of OSPF and reduce
overhead by 66.7% compared to OSPF. Initially this study is performed on GEO
satellite networks, but they conclude that it is a first step to develop techniques
applicable to LEO and multilayer satellite networks.

In [17] the authors propound to apply and analyze an OSPF-based congestion
method to decrease packet loss in LEO satellite networks by designating new
routing cost and modifying the interface state update procedure. In this paper
the author concludes that the main purpose of reducing satellite network
congestion is achieved, in addition to enhancing resource usage and global
performance.

In [18] the authors postulate a method called OSPF-based Predictive Update
Routing (OSPF-PUR) with the objective of reducing the protocol convergence
time when a topology change occurs. To achieve this goal, the forwarding
tables is updated based on local information regarding handovers and without

18 Analysis of OSPFv3 in LEO Satellite Networks

using the flooding feature of OSPF. The results confirm that the convergence
time is reduced even while maintain full network connectivity. In terms of
network performance, both delay and packet loss are reduced by applying this
method.

All the aforementioned publications agree that there is still a lot of research to
be done to solve the routing problem of satellite networks. In this thesis we will
study and analyze the behavior of the OSPFv3 protocol applied to LEO satellite
networks. As a novelty, we study the OSPF version for IPv6, whereas, these
papers use the version for IPv4.

Emulation Framework 19

CHAPTER 2. EMULATION FRAMEWORK

This chapter explains the design and implementation of the LEO satellite
network emulation framework, on which we will perform the analysis of OSPFv3
as an IP routing protocol. Figure 2.1 shows a schematic of the scenario that is
developed and analyzed through this work.

Fig. 2.1. Schematic of the scenario to be analyzed.

Network emulation is performed using Linux containers (LXC) to emulate
satellites, ground stations, a public router and sinks. ISLs, GSLs and public
networks emulation is done using Linux bridges.

Linux Container Daemon (LXD) [19] is a container and virtual machine
management system for Linux and it is the tool that we use to create and
manage containers and bridges. It also provides a Python library, pylxd [24],
which we use to programmatically manage the containers and virtual machines.

At the beginning of this work, we used the IPMininet [32] Python library for
network emulation. IPMininet is an extension of Mininet [33] that allows the
emulation of complex IP networks and implements classes that emulate routers
and links. It also contains the implementation of routing protocols such as
OSPFv3. The main reason why this method did not work for us is that, when
executing the topology events, they could not all be executed at the same time,
but had to be executed sequentially. This implies that, for large satellite
constellations, it would take a long time to produce the changes and results
such as the convergence time of OSPFv3 would be unrealistic.

20 Analysis of OSPFv3 in LEO Satellite Networks

For this reason, using LXD and several libraries provided by Python, we have
implemented a completely new way of emulating satellite networks, which will
be explained and detailed throughout this chapter.

2.1. LXD – Linux Container Daemon

LXD is a management tool for Linux containers that makes it possible to
automate management and ease control of them using a collection of
predefined commands. LXD also offers images for many different Linux
distributions, such as Ubuntu and Alpine. In addition to Linux containers, LXD
also gives you the possibility to manage virtual machines. We will focus on
containers, as this is the instance type used for the implementation of this
project.

Figure 2.2 shows a comparison between virtual machines and containers. LXC
is a product of virtualization, but instead of virtual machines that can run a
different operating system than the host, LXC uses operating system-level
virtualization techniques. There is only one kernel which, through various
functions, provides some processes with partial views so that containers believe
they are operating on a separate system. The host and all containers use the
same kernel, but while the host can see all processes, the containers can only
see their own.

Fig. 2.2. Comparison between virtual machines and containers.

The main advantage of containers over virtual machines is efficiency. By not
needing to run a different operating system or replicate the virtual machine’s
hardware, a container is substantially lighter. After all, the processes running in
a container are native to the host computer. As a result, performance improves
and more containers can run simultaneously on a single computer than virtual
machines.

Emulation Framework 21

In the following, we detail the steps we have followed for the installation of LXD
in an Ubuntu host system.

The LXD package installation is done via snap1.

sudo snap install lxd (2.1)

The installation of LXC creates a system group named lxd. A non-root user

must be added to this group in order to execute lxd commands.

sudo adduser [username] lxd (2.2)

LXD allows several levels of configuration. For the purpose of this project the
simplest configuration of all is enough.

lxd init --minimal (2.3)

The initialization process creates a virtual bridge interface named lxdbr0 that

performs Layer 3 functionalities such as Network Address Translation (NAT2)
and Dynamic Host Configuration Protocol (DHCP3). A container with an
interface connected to the lxdbr0 bridge can access the public network.

LXD command lxc network list shows information of all the host devices.

As can be seen in Figure 2.3, after the installation it shows the lxdbr0 bridge,

and in this case, it also shows the host physical interface enp0s3.

+--------+----------+---------+----------------+---------------------------+

| NAME | TYPE | MANAGED | IPV4 | IPV6 |

+--------+----------+---------+----------------+---------------------------+

| enp0s3 | physical | NO | | |

+--------+----------+---------+----------------+---------------------------+

| lxdbr0 | bridge | YES | 10.72.162.1/24 | fd42:e487:c61c:aea5::1/64 |

+--------+----------+---------+----------------+---------------------------+

Fig. 2.3. Default LXD configuration.

1 Snap: Package manager designed to work with Linux to make it easier to install and run
applications.
2 NAT: IP address translation mechanism that connects the Internet to private addressing
networks and thus saves public IP address.
3 DHCP: Protocol that allows clients to obtain their IP configurations and avoids duplication of IP
addresses on the same subnet. Facilitates network growth and management.

22 Analysis of OSPFv3 in LEO Satellite Networks

The lxdbr0 bridge is automatically assigned an IPv4 address and an IPv6

address. The assigned IPv4 address belongs to the private network range
10.0.0.0/8. The IPv6 address is a Unique Local Address (ULA), which is part of
the private range fc00::/7. Two other important aspects are that lxdbr0 is a

bridged network and that it is managed. These two properties will be explained
in Section 2.1.3. Note that the host physical interface is not managed by LXD.

2.1.1. Images

LXD creates containers from Linux images stored in images repository servers.
Different containers can be launched from the same image. Containers can only
be created from images based on Linux, while virtual machines can run any
operating system. In addition, LXD enables you to specify aliases for each
image to simplify its management.

LXD provides a list of images available on the repository servers of each Linux
distribution for the creation of containers, that can be retrieved with the
command:

lxc image list images:[Linux_distro] type=container (2.4)

Figure 2.4 shows a list of all the Alpine distribution images available for the
creation of containers.

+------------------------------+--------------+--------+---------------------+-----------+---------+

| ALIAS | FINGERPRINT | PUBLIC | DESCRIPTION | TYPE | SIZE |

+------------------------------+--------------+--------+---------------------+-----------+---------+

| alpine/3.17 (3 more) | 8b1027a3af57 | yes | Alpine 3.17 amd64 | CONTAINER | 2.93MB |

+------------------------------+--------------+--------+---------------------+-----------+---------+

| alpine/3.17/arm64 (1 more) | eb43065cb004 | yes | Alpine 3.17 arm64 | CONTAINER | 2.71MB |

+------------------------------+--------------+--------+---------------------+-----------+---------+

| alpine/3.17/armhf (1 more) | a1c0cf89d6c2 | yes | Alpine 3.17 armhf | CONTAINER | 2.58MB |

+------------------------------+--------------+--------+---------------------+-----------+---------+

| alpine/3.17/cloud (1 more) | 8c1c7b779f67 | yes | Alpine 3.17 amd64 | CONTAINER | 19.47MB |

+------------------------------+--------------+--------+---------------------+-----------+---------+

| alpine/3.17/cloud/arm64 | 60c41fbe7de5 | yes | Alpine 3.17 arm64 | CONTAINER | 18.81MB |

+------------------------------+--------------+--------+---------------------+-----------+---------+

| alpine/3.17/cloud/armhf | a6d04a212112 | yes | Alpine 3.17 armhf | CONTAINER | 18.35MB |

+------------------------------+--------------+--------+---------------------+-----------+---------+

| alpine/3.17/cloud/i386 | 1968a71b4c26 | yes | Alpine 3.17 i386 | CONTAINER | 20.06MB |

+------------------------------+--------------+--------+---------------------+-----------+---------+

| alpine/3.17/cloud/ppc64el | e8d1f2c503f5 | yes | Alpine 3.17 ppc64el | CONTAINER | 19.50MB |

+------------------------------+--------------+--------+---------------------+-----------+---------+

| alpine/3.17/i386 (1 more) | b6c24ae6c9c2 | yes | Alpine 3.17 i386 | CONTAINER | 2.99MB |

+------------------------------+--------------+--------+---------------------+-----------+---------+

| alpine/3.17/ppc64el (1 more) | 09d0f43bd47e | yes | Alpine 3.17 ppc64el | CONTAINER | 2.82MB |

+------------------------------+--------------+--------+---------------------+-----------+---------+

| alpine/3.17/s390x (1 more) | 5ff54062a5db | yes | Alpine 3.17 s390x | CONTAINER | 2.60MB |

+------------------------------+--------------+--------+---------------------+-----------+---------+

Fig. 2.4. Alpine distribution images.

Apart from using images from remote servers, there is also the possibility to
create images by yourself. To create the new image from a container it is only

Emulation Framework 23

necessary to create and configure the container as explained in Section 2.1.2.
Once you have the container, create the image with an alias to simplify later
procedures and a description to make it easier to recognize each image when
you have more than one.

lxc publish [container] --alias [alias] description=” ” (2.5)

LXD images can be exported executing the command:

lxc image export [alias] [filename] (2.6)

Exporting the image creates a tar.gz file, which allows the image to be
distributed and imported:

lxc image import [filename].tar.gz --alias [alias] (2.7)

For the development of this work, four different images based on Alpine
distribution have been created.

• seamsat-router: Image intended for the creation of the containers
emulating satellites and the public router. This image has the FRRouting
protocol suite (FRR4) and a traffic generator installed.

• seamsat-eb: Image intended for the creation of the containers emulating
ground stations. This image has only FRR installed.

• seamsat-sink: Image intended for the creation of the containers
emulating sinks. A sink is a receiver of the generator traffic.

• alpine-compiler: Image intended for compiling c files. This image has the
make package, the C compiler gcc and C libraries such as libevent
library installed. This image has been created in order to not increase the
weight of the other images with the compiler and C libraries. So, if we
need to build any source package, we will build it in this image, and then
install the executables or libraries in the corresponding seamsat-router,
seamsat-eb or seamsat-sink image.

4 FRR: Open-source routing protocol suite for Linux and other Unix platforms, which contains
routing protocols as OSPFv3.

24 Analysis of OSPFv3 in LEO Satellite Networks

2.1.1.1. Alpine Linux distribution

Alpine distribution is a free, standalone, general-purpose Linux distribution
intended for advanced users who highly value security, simplicity and resource
efficiency.

This distribution is compiled with Musl libc, which is a standard C library for
Linux kernel operating systems and is about 8 kb in size. This small size is due
to the fact that Musl has few localization data and no network services.

Alpine distribution implements BusyBox, which is a software suite that provides
multiple Unix tools in a single executable file. More than 300 commands have
their basic functionality replaced by this file.

Alpine allows you to create images up to 2.60 MB size, which is one aspect that
makes it faster to create instances than Ubuntu, whose smallest images size is
about 85.97 MB.

In Figure 2.5, you can see a comparison of an Ubuntu image and an Alpine
image size.

+--------+--------------+--------+---------------------+-----------+---------+

| ALIAS | FINGERPRINT | PUBLIC | DESCRIPTION | TYPE | SIZE |

+--------+--------------+--------+---------------------+-----------+---------+

| Alpine | 5ff54062a5db | no | Alpine 3.17 s390x | CONTAINER | 2.60MB |

+--------+--------------+--------+---------------------+-----------+---------+

| Ubuntu | ea35540608dc | no | Ubuntu jammy s390x | CONTAINER | 85.97MB |

+--------+--------------+--------+---------------------+-----------+---------+

Fig. 2.5. Comparison between Alpine and Ubuntu images sizes.

Initially, the image used in this project was based on Ubuntu, but due to the
large number of instances that had to be created, it was decided to switch to
Alpine distribution, as it considerably reduced the computation time by reducing
the size of the containers.

2.1.2. Containers

Containers are the devices we use to emulate the nodes that form the networks
analyzed in this project, such as satellites and base stations. There are two
different ways to create a container.

When using the lxc init command, a container is created but not started.

lxc init [alias] [container] --profile [profile] (2.8)

Emulation Framework 25

When using the lxc launch command, the container is created and also

started.

lxc launch [alias] [container] --profile [profile] (2.9)

In both cases, it is necessary to specify the profile name as a command line
parameter, otherwise it will be created with the default profile.

A LXD profile groups several configuration options that can be applied to a
single container or to multiple containers. Furthermore, several profiles can be
applied successively to the same container. During this process, the defined
configuration values can be overwritten. In this way, families of containers can
be easily created.

lxc profile create [profile] (2.10)

You can check the setting of any profile created at any time.

lxc profile show [profile] (2.11)

Figure 2.6 shows the profile that the lxc profile create command

creates, which is the default profile.

config: {}

description: Default LXD profile

devices:

 eth0:

 name: eth0

 network: lxdbr0

 type: nic

 root:

 path: /

 pool: default

 type: disk

name: default

used_by:

- /1.0/instances/compiler

Fig. 2.6. Default profile configuration.

26 Analysis of OSPFv3 in LEO Satellite Networks

The default profile connects the eth0 interface directly to the lxdbr0 bridge,

creating a nictype network. This type of network device is explained in

Section 2.1.3.

This profile can be edited to have the appropriate configuration.

lxc profile edit [profile] (2.12)

Containers can have their associated profile removed.

lxc profile remove [container] [profile] (2.13)

And they can be associated with another profile.

lxc profile add [container] [profile] (2.14)

The lxc list command is used to obtain a list of the containers that have

been created. This list contains the name of the containers, the state of the
containers, whether they are stopped or started, and the IP addresses assigned
to them in the lxdbr0 network.

Figure 2.7 shows two containers that have been created, one of them with lxc

init and the other with lxc launch.

+----------+---------+---------------------+-----------------+-----------+

| NAME | STATE | IPV4 | IPV6 | TYPE |

+----------+---------+---------------------+-----------------+-----------+

| Rinit | STOPPED | | | CONTAINER |

+----------+---------+---------------------+-----------------+-----------+

| Rlaunch | RUNNING | 10.72.162.77 (eth0) | | CONTAINER |

+----------+---------+---------------------+-----------------+-----------+

Fig. 2.7. Comparison between lxc init and lxc launch.

LXD allows commands to be executed without the need to be directly attached
to the container, a feature that allows changes to the interface characteristics of
each container to be made from code.

lxc exec [container] --[command] (2.15)

Emulation Framework 27

Containers created for the emulation of the nodes will be ephemeral, which
means that once they are stopped, they will also be automatically deleted. The
command for stop a container is:

lxc stop [container] (2.16)

2.1.3. Networking

LXD contains two different types of network devices, which are used to connect
to containers. These two types of devices are network device and nictype

device, which are mutually exclusive, meaning that only one of them can be
chosen.

When using the nictype option, an interface not managed by LXD can be

used. To use this interface the exact data required by LXD must be defined.
This option cannot be changed once the device has been created.

When using the network option, LXD will manage the networks created, so it

will be not necessary to provide any data to LXD.

lxc network create [network] --type=[network_type] (2.17)

If the network type is not indicated, the bridge type applies by default.

When a bridge network is created in LXD, a Layer-2 bridge is generated,
creating a Layer-2 segment with all containers attached to this bridge. This
allows communication between different containers connected to this bridge,
which will be very useful for implementing and simulating ISLs and GSLs.

Bridge network can be defined as a nictype or network device. Within

managed networks, it is a type of fully managed network, which includes most
of the features of LXD.

Once the network has been created, its configuration can be modified using a
file editor, such as nano or vi.

lxc network edit [network] (2.18)

For the network to be useful and functional, it is not enough to create and
configure it, the network must also be attached to the interface of the chosen
container.

28 Analysis of OSPFv3 in LEO Satellite Networks

lxc network attach [network] [container] [interface] (2.19)

2.2. Topology builder

The network framework is divided into two parts. The topology builder, which is
explained in this section, and the network emulation, which is explained in
Section 2.3. The purpose of the topology builder block is to generate a JSON
object with the network topology and the required configuration, such as
OSPFv3 related parameters.

Fig. 2.8. Topology builder schematic.

The first step in the construction of the topology consists of obtaining the files
generated by the Hypatia orbital propagator. Hypatia is a public framework,
which can be found on GitHub [22][23], intended for the simulation of satellite
networks in LEO orbit. Hypatia allows ns-35 simulation at the packet level, gives
visualizations for ease of understanding and pre-computes the state of the
network over time. It models the satellite network as an undirected weighted
graph in which GSLs and ISLs act as edges, and satellites and ground stations
as nodes. This tool also displays visualizations of the trajectories, the evolution
of link usage and the amount of the accessible bandwidth on the routes, among
other aspects.

The Hypatia framework used to obtain the files is not the original one, but some
modifications have been implemented. These modifications have not been

5 ns-3: Free software network simulator, whose main objective is to create an easy-to-use
simulator for the study of any type of network.

Emulation Framework 29

made by me, but by the research group in charge of the SeamSAT project. The
Hypatia version of the SeamSAT group is called HypatiaSeam.

The modifications made are focused on the satgenpy module, which is a

Python-based tool that allows you to create undirected weighted graphs. These
modifications make it possible to calculate ISLs and GSLs parameters, to
calculate the visibility between satellites and ground stations and, finally, to
generate a sequence of GML files representing the evolution of the
interconnection of these elements.

Table 2.1 shows the input parameters required by Hypatia Seam.

Table 2.1. HypatiaSeam input parameters.

Related to simulation date • Simulation epoch date.

Related to constellation
parameters

• Constellation altitude.

• Inclination of orbital planes.

• Number of orbital planes in the
constellation.

• Number of satellites in an
orbital plane.

• Phase difference between
neighboring satellites.

• Separation of orbital planes/arc
of RAAN.

Related to communication links

• Ground station antenna
elevation angle.

• Number of antennas at ground
stations.

• Minimum communication
altitude.

• ISL operating limit latitudes.

30 Analysis of OSPFv3 in LEO Satellite Networks

The files that model Iridium orbital propagation had already been generated for
another project, so we used them directly as input to generate our topology.
From all the files obtained from HypatiaSeam only three are used:

• satellite_network_i.gml: provides information on the satellites

and ISLs that form the LEO constellation.

• satellites_in_range_i.txt: provides information on the satellites

within range of each ground station, as well as the distance between the
satellite and the ground station.

• ground_stations.txt: provides information on the location of earth

stations.

Figure 2.9 shows a flowchart depicting the modules that constitute the topology
builder block and the files it uses.

Fig. 2.9. Topology builder flowchart.

Emulation Framework 31

Blank rectangles represent files and colored rectangles state the function called
in the Python source file. Now, we are going to explain the format files and each
one of the modules of the topology builder.

The satellite_network_i.gml files contain the description of the nodes

(satellites) and the edges between them (ISLs). Figure 2.10 shows the format of
a node description.

node [

 id 1

 label "1"

 sat_lat_deg "81.99874325032089"

 sat_lon_deg "170.03242308521158"

 sat_alt_m "8013414.0"

]

Fig. 2.10. Description of nodes in GML format.

Each node is identified by the integer id. The label attribute is the

representation of the id as a string. The attributes sat_lat_deg,

sat_long_deg and sat_alt_m correspond to the latitude coordinate in

degrees, the longitude coordinate in degrees and to the altitude above sea level
in meters, respectively.

Figure 2.11 shows the format of an edge description.

edge [

 source 1

 target 2

 weight 20339875.685218588

 ifa 1

 ifb 0

]

Fig. 2.11. Description of edges in GML format.

Each edge is represented by two integers, source and target, which identify

the nodes that form the link. In spite of source and target, remember that a link
is bidirectional, so source and target only define both nodes connected

through the link. The weight property is a double that represents the link

distance in meters. The ifa and ifb attributes represent the interfaces of the

nodes through which the link is interconnected.

The satellites_in_range_i.txt files contain the description of the

possible links to be established between satellites and ground stations (GSLs).
Figure 2.12 shows the content of one of these files.

32 Analysis of OSPFv3 in LEO Satellite Networks

GS:0 - [(10929068.0, 4), (11053459.0, 5), (10885853.0, 9)]

GS:1 - [(9413133.0, 8)]

GS:2 - [(11130172.0, 1), (9915706.0, 8)]

Fig. 2.12. Satellites in range in txt format.

The example topology consists of three ground stations. For example, the first
line states that the base station, whose integer id is 0, observes the satellites

with integer id 4, 5 and 9. In addition, it gives the distance to each of them in

meters.

The ground_stations.txt file contain the location of the ground stations.

For each earth station an integer id is given, the city where it is located, the

latitude, longitude an elevation of its position, and, finally, its cartesian
coordinates.

Figure 2.13 shows the content of this file.

0,Madrid,40.416500,-3.702560,0.000000,4852700.063425,-314027.764315,4113303.836106

1,Brisbane,-27.467940,153.028090,0.000000,-5047168.968040,2568544.970425,-2924317.876680

2,Tokyo,35.689500,139.691710,0.000000,-3954843.592378,3354935.154958,3700263.820217

Fig. 2.13. Ground stations in txt format.

The satellite_network_i.gml, satellites_in_range_i.txt and

ground_stations.txt files are the input to the topology builder block, which

will generate the topology.json file.

Fig. 2.14. Topology UML class diagram.

Figure 2.14 shows the UML class diagram of the two classes that we have
implemented in order to generate the file topology.json. This file represents

Emulation Framework 33

the LEO satellite network as a single JSON object with two properties:
networks and routers. Both properties are dictionaries.

"networks": {

 "isl1": {},
 ·

 ·

 ·

}

Fig. 2.15. Networks’ property definition.

In the case of networks, each key is a label that identifies each of the links,

and the value is an empty JSON object. As it is an empty JSON object, when
creating the network, it will be created with the default configuration. This
implies that a bridge network type will be created for each defined network,
which as seen in Section 2.1.3 is the type of network that we use to emulate
ISLs and GSLs. Figure 2.15 shows partially the networks property definition

where isl1 is the name of a bridge network that will emulate an ISL between

two satellites.

"routers": {

 "R1": {

 "ephemeral": true,

 "source": {

 "type": "image",

 "alias": "seamsat-router"

 },

 "profiles": [

 "no-nic"

],

 "devices": {

 "eth0": {

 "network": "isl1",

 "type": "nic",

 "host_name": "R1-eth0"

 }

 },

 "frr": {
 ·

 ·

 ·

 },

 "router": {

 "ospf6": {}

 }

 }

 }

 }

Fig. 2.16. Routers’ property definition.

34 Analysis of OSPFv3 in LEO Satellite Networks

In the case of routers, each key is a label that identifies each one of the

satellites. For convenience this label is the char “R” concatenated with the node
id in the satellite_network_i.gml file plus one. The value is a JSON

object with multiple properties that are used in the configuration of the container
that emulates a satellite. OSPFv3 configuration parameters are include in the
frr JSON object that will be explained in Chapter 4. Figure 2.16 shows how to

define a router object.

In the case of the ground stations, they are also defined within the routers

dictionary. The label that identifies each earth station is the string “EB”
concatenated with the id attribute in the satellites_in_range_i.txt and

in the ground_stations.txt files plus one. Also included in this dictionary

are the public router, whose identifying label is publicRouter, and sinks,

which will be identified by the sink_i label.

Fig. 2.17. createTopology() flowchart.

Emulation Framework 35

Figure 2.17 shows the process followed in the createTopology() method to

build and obtain the topology.json file.

Fig. 2.18. jsonSatellites() flowchart.

The first step is to call the jsonSatellites() function of the

JSONConverter class. This method converts all

satellite_network_i.gml files to time_i.json files. Figure 2.18 shows

the process followed to obtain them. The time_i.json files contain the

description of the nodes (satellites) and edges (ISLs) that form the satellite
constellation in JSON format.

In each of time_i.json files a JSON object is initialized, which has as

properties the dictionaries nodes and edges. Figure 2.19 shows the format of a

node description.

{

 "id": 1,

 "label": "1",

 "lat": "32.55980205649051",

 "lon": "-97.6636045268267",

 "alt": "785245.5"

}

Fig. 2.19. Description of nodes in JSON format.

Each node is identified by the integer id. The label attribute is the

representation of the id as a string. The attributes lat, long and alt

36 Analysis of OSPFv3 in LEO Satellite Networks

correspond to the latitude coordinate in degrees, the longitude coordinate in
degrees and to the altitude above sea level in meters, respectively.

Figure 2.20 shows the format of an edge description.

{

 "source": 1,

 "target": 2,

 "weight": "13.46793907067334",

 "ifa": 1,

 "ifb": 0

}

Fig. 2.20. Description of edges in JSON format.

Each edge is represented by two integers, source and target, which identify

the nodes that form the bidirectional link. The weight property represents the

link delay in milliseconds. Note that the information in the gml files was the
distance in meters, here it is converted to a delay in milliseconds. The ifa and

ifb attributes represent the interfaces of the nodes through which the link is

interconnected.

The second step is to call the jsonGroundStations() function of the

JSONConverter class. This method reads the

satellites_in_range_0.txt and applying the hard handover selection

method creates the initialGroundStations.json file. The hard handover

method consists of selecting the closest node to the base station to choose the
GSL to be formed. Figure 2.21 shows the process followed to obtain this file.

Fig. 2.21. jsonGroundStations() flowchart.

Emulation Framework 37

The initialGroundStations.json file consist on a JSON object that has

as property the dictionary groundStations. Figure 2.22 shows the format of a

GSL description.

{

 "groundStation": 0,

 "weight": "5.388781328181379",

 "node": 1

}

Fig. 2.22. Description of GSLs in JSON format.

For each GSL there is an integer id representing the earth station and another

integer id representing the node, which form the link. The weight attribute

represents the link delay in milliseconds.

The last step to obtain the topology.json file is to read the files

time_0.json and initialGroundStations.json, and build the networks,

routers, public router and sinks objects that constitute the networks and

routers dictionaries presented in Figure 2.15 and in Figure 2.16.

Once the topology.json file is obtained, the topology builder block is

completed and the network emulation part will start.

2.3. Network emulation

This section explains the network emulation block of the emulation framework.
Figure 2.23 shows a schematic of the network emulation block, which is divided
into two parts.

The first part consists of creating and initializing the containers that act as
routers, base stations and sinks, and the bridges that emulate ISLs and GSLs
with the corresponding end-to-end delay, from the topology.json,

time_0.json and initialGroundStations.json files.

In the second part, events representing dynamic topology changes are added.
These topology modifications will be programmed with the APScheduler Python
library, explained in Section 2.4, and will be executed throughout the emulation
every certain time interval.

The result of this emulation is a traffic capture containing the Link State
Advertisements (LSAs) generated by OSPFv3, files that will allow us to obtain
the path characteristics between each router to the nearest ground station on
different interval times, and finally, a file that will allow us to observe packet
losses, transmission delay, jitter, among other aspects.

38 Analysis of OSPFv3 in LEO Satellite Networks

Fig. 2.23. Network emulation schematic.

Figure 2.24 shows the flowchart with the procedures to follow to create and
initialize the network topology.

Fig. 2.24. Network topology initialization flowchart.

From the topology.json file, the containers and bridges necessary for

network emulation are created and initiated. To perform the emulation correctly
it is necessary to add the distance (delay) between each of the nodes of the
network. In the case of the ISLs, the initial delay is contained in the
time_0.json file. The delay is applied with the Command 2.20, where

host_name is the char “R” concatenated with the node id plus one,

Emulation Framework 39

concatenated with the symbol “-”, concatenated with the interface that is part of
the link (ethX), and delay is the one-way delay of the link in milliseconds.

tc qdisc add dev [host_name] root netem delay [delay]ms (2.20)

In the case of GSLs, a new interface is added to the container emulating the
satellite to be connected to the container emulating the ground station.
Command 2.21 and Command 2.22 are needed to create the new interface in
the container, where node is the char “R” concatenated with the node id plus

one, intf is the interface that is part of the link, isleb is the bridge emulating

the specific GSL, and host_name is the node parameter concatenated with the

symbol “-” concatenated with intf. The delay of the GSLs is applied with the

Command 2.20 from the initialGroundStations.json file.

lxc config device add [node] [intf] nic network=[isleb]

host_name=[host_name] (2.21)

lxc exec [node] -- ip link set dev [intf] up (2.22)

Figure 2.25 shows a flowchart depicting the modules that constitute the part
where events are added and the files it generates.

Fig. 2.25. Events flowchart.

40 Analysis of OSPFv3 in LEO Satellite Networks

The first step is to call satellitesEvents() function of the Events class.

This method creates from the time_i.json files the

satellitesEvents.json file, which contains all the satellite events that

have to be programmed to happen during the network emulation. Figure 2.26
shows the process followed to obtain this file.

Fig. 2.26. satellitesEvents() flowchart.

The satellitesEvents.json file consist on a JSON object that has as

property the dictionary events. Each event has an attribute time, which is the

time interval that must elapse from the start of the emulation until the event is
executed.

For each event, a JSON object named actions is defined. This object

contains the integer id of the nodes that form the link on which the event is

applied, as well as the interfaces contained in the link. It also contains another
JSON object called action, where the type of event that takes place is

defined. There are three types of events defined in the satellitesEvents()

method:

• linkup: Event executed when recovering a link that was down.

• linkdown: Event executed when a link is no longer operational.

• linkmodifiy: Event executed when the distance between the satellites that
form the link is modified.

Emulation Framework 41

Figure 2.27 shows the format of an ISL event description. In this example, the
time to pass between each snapshot is 20 seconds. It should be noted that the

event type is linkup. The weight attribute represents the one-way delay of

the link in milliseconds. If the event type were linkdown, the weight attribute

would not be defined.

{

 "time": 20.0,

 "actions": [

 {

 "node1": 9,

 "node2": 20,

 "ifa": 2,

 "ifb": 0,

 "action": [

 {

 "type": "linkup",

 "weight": "10.781447881552157"

 }

]

 }

]

}

Fig. 2.27. Description of ISL event in JSON format.

The second step is to call the groundStationsEvents() method of the

Events class. From the satellites_in_range_i.gml files the

groundStationsEvents.json file is obtained, which contains the events

related to base stations. Figure 2.28 shows the process followed to obtain this
file.

Fig. 2.28. groundStationsEvents() flowchart.

42 Analysis of OSPFv3 in LEO Satellite Networks

The groundStationsEvents.json file consist on a JSON object that has as

property the dictionary eventsGS. The groundStation attribute is the earth

station that forms the link with the satellite that has as integer id the value of

the node attribute. Each event has an attribute time, which is the time interval

that must elapse from the start of the emulation until the event is executed. The
weight attribute represents the one-way delay of the link in milliseconds.

Figure 2.29 shows the format of a GSL event description.

{

 "groundStation": 1,

 "weight": "4.284516557117658",

 "time": 20.0,

 "node": 58

}

Fig. 2.29. Description of GSL event in JSON format.

In this case there is no event type in the JSON object, since there is only one
defined for events related to ground stations.

• linkGS: Event executed when there is a modification of the topology in
relation to the ground stations.

Figure 2.30 shows the UML class diagram of the two classes that we have
implemented in order to generate the files containing the events and the
methods used to schedule and execute them.

Fig. 2.30. Events UML class diagram.

Emulation Framework 43

2.4. Python libraries

For the emulation of the LEO satellite network, apart from the use of LXD
containers and networks, several Python libraries have been required. Table 2.2
contains the most important libraries used in this project and what they have
been used for. Each of these Python libraries is explained throughout this
section.

Table 2.2. Python libraries used.

Pylxd
Used to simplify the creation of LXD containers
and LXD networks.

APScheduler
Used to program the dynamic topology changes as
events.

NetworkX
Used to read and analyze gml files coming from
HypatiaSeam.

Pyshark
Used to read and analyze the captures made in
each of the interfaces that emulate satellites and
ground stations.

2.4.1. Pylxd

Pylxd is a Python library that simplifies the use and implementation of LXD and
allows you to perform operations with containers and bridged networks, as well
as to program and automate processes such as instance creation and
networking.

The Pylxd Python module can be found in its GitHub repository [25] and
installed with pip6.

pip install pylxd (2.23)

6 Pip: Package management system used to install and manage software packages written in
Python.

44 Analysis of OSPFv3 in LEO Satellite Networks

2.4.2. Advanced Python Scheduler

Advanced Python Scheduler, known as APScheduler [26][27], is a Python
package that allows you to schedule your code to run later, once or multiple
times. Moreover, new jobs can be added or old ones deleted at any moment.

There are two main types of schedulers. The first is the Blocking Scheduler,
which blocks the main thread until the assigned job is finished. On the other
side, there is the Background Scheduler, which runs the assigned jobs in the
background as if they were a separate thread. The latter is the one used in this
project to execute the events.

There are three types of triggers, which are responsible for determining the
logic to correctly calculate the time instant at which the job is to be executed.
The first is the interval type, which is used when you want to run a job in a

specific time interval. The second is the cron type, used to execute code at

certain times of the day. And finally, the date type trigger, which is the one

used in this project. This trigger allows you to run the job only at a specific time
instant.

To correctly determine the time instant to be executed, the datetime and

timedelta functions provided by the Python datetime library are used. The

datetime function stores the time at which the code has started, just after the

initial topology has been created and started. The timedelta function adds to

this initial time the elapsed time defined in each event.

For the installation of APScheduler and datetime libraries, the Python pip

package is used.

pip install apscheduler (2.24)

pip install datetime (2.25)

2.4.3. NetworkX

NetworkX [28][29] is one of the most widely used Python libraries for working
with graphs and networks. This library allows you to create, manipulate and
analyze graphs efficiently.

One of the main advantages of NetworkX is its ability to work with large and
complex graphs, allowing you to handle graphs of millions of nodes and links.
The library has a wide variety of functionalities that allow you to create, import
and export graphs in multiple formats, as well as to analyze the properties of
these networks.

Emulation Framework 45

To install NetworkX library the Python pip package is used.

pip install networkx (2.26)

2.4.4. PyShark

PyShark [30][31] is a Python library that performs the container function for
Tshark, which is the command line version of Wireshark.

PyShark has two methods for analyzing capture packets. LiveCapture() allows
you to capture one of the local host interfaces and then analyze the capture
packets. FileCapture() imports the packets to be analyzed from a previous
capture.

To install PyShark library the Python pip package is used.

pip install pyshark (2.27)

46 Analysis of OSPFv3 in LEO Satellite Networks

CHAPTER 3. OSPFv3 ANALYSIS IN LEO SATELLITE
NETWORKS

This chapter explains how OSPFv3 has been implemented in this project, and
analyzes a small topology to describe how the exchange of LSAs and the
OSPFv3 database works.

3.1. OSPFv3

OSPF is a free-to-use link state (LS7) interior routing protocol for the TCP/IP
family. It was developed by the Internet Engineering Task Force (IETF) in 1988,
but was not formalized until 1991.

OSPFv3 that is the OSPF version for IPv6 was published in 1999 and updated
in 2008. It is specified in the RFC8 5340 [34] and it is the Interior Gateway
Protocol (IGP) recommended by the IETF due to it fast convergence and
scalability. In this version of OSPF, the main methods that characterize this
protocol are maintained, such as the transmission of information by means of
the flooding algorithm, the implementation of the shortest path algorithm, as well
as other procedures. But there have been some changes in relation to the
previous version, OSPFv2, which was used for IPv4 routing, such as
modifications in the format of addresses and identifiers, as in the case of router
IDs, and authentication is deleted due to IPv6 implementation.

In the OSPF protocol, each router in the domain is in charge of describing a part
of the network and transmitting the LSs, through the LSAs, to its neighboring
routers. LS refers to the information related to a certain network part, while LSA
is the message that contains this information. LSAs are the records of a
database that represents the topology of the network, each router has its own
database that it is the same for all routers in the same OSPF area.

OSPF is organized in so called areas. An OSPF router belongs to a single area,
except for area border routers, which belong to an area and to a special area
called backbone. Due to the characteristics of this type of network, such as
dynamic topology changes, no method has been found to divide these satellite
networks into areas and thus take profit of this function offered by the OSPF
protocol.

7 LS protocol: Type of protocol where routers send information about the links to which they are
connected to all other routers in the topology. It has a faster convergence than distance vector
protocols, since in this type of protocol each router sends its entire routing table to all its
neighbors, which slows down the convergence of the network.

8 RFC: Request for Comments is a document that describes and defines Internet protocols,
methods and programs. It is managed by the IETF.

OSPFv3 Analysis in LEO Satellite Networks 47

The flooding algorithm for distributing LSAs ensures that all routers of the same
OSPF area have an identical database except during periods when the protocol
is converging.

With the database information, each router can calculate the optimal routes to
each possible destination using the Dijkstra algorithm, which is the most optimal
algorithm for calculating the shortest path from one node to all other nodes in
the network.

OSPF routers communicate through messages directly over the IP network
layer. In total, there are five different types of OSPF messages.

• Hello message (type 1): It serves to discover and maintain the
relationship between neighboring OSPF routers.

• Database Description (type 2): Describe the content of the router’s
database.

• Link State Request (type 3): Used to request information about the link
status.

• Link State Update (type 4): Contain the LSAs with the LS information.
Are sent when there is an update of the information or in response to
type 3 messages.

• Link State Acknowledgement (type 5): Sent in response to type 4
messages to confirm that the information has been received by the
router.

By default, Hello messages are sent every 10 seconds, informing of their
presence across interfaces where OSPF is enabled. This time interval, known
as the Hello interval, defines the period of time between two consecutive Hello
messages and it is configurable. The Hello message also contains the OSPF id
of the routers used to identify neighbor relationship, and the Dead interval,
which is the time that must elapse before a neighbor router is considered down.
The Dead interval consists of an interval of 40 second by default, and it is also
configurable.

The remaining four types of messages are dedicated to database
synchronization, which is important to correctly calculate routes and avoid
loops. Synchronization occurs when a new router appears or when an update
occurs in any LSA. This process consists of each router sending a sequence of
packets with a summary of the LSAs it contains, so that the other routers can
compare them and identify the missing LSAs.

The algorithm for transmitting LSAs in this type of networks is known as reliable
flooding. It starts when a router updates an LSA created by it and send the
information in a type 4 message through all its interfaces. Besides, this type of
network does not need a designated router.

48 Analysis of OSPFv3 in LEO Satellite Networks

This LSA update is received by the neighbors, who compare it with their
OSPFv3 database and if it is more recent than the ones they have, they perform
the following steps:

• Update the OSPFv3 database.

• Send a type 5 message to the router that sent the LSA update, through
the interface on which the message was received.

• Through the rest of the interfaces, it sends a new LSA update to its
neighbors.

LSA updates will continue to be sent until all acknowledgement messages are
received by all interfaces of the router.

Each OSPF router creates one or more LSA messages based on its knowledge
of the network. The LSA header contains the following fields to distinguish the
LSAs from each other.

• Type: sets the LSA type.

• Link State ID: identifies the LSA. It varies according to the LSA type.

• Advertising router: is the OSPFv3 identifier of the router that created the
LSA.

• LS Sequence number: is a 32-bit signed integer used to detect old or
redundant LSAs.

In the OSPFv3 version, different types of LSAs are defined.

• Router LSA (type 1): contains information about the router interfaces.

• Network LSA (type 2): contains all routers attached to the same link.

• Inter-Area Prefix LSA (type 3): contains IPv6 prefixes of other areas.

• Inter-Area Router LSA (type 4): contains the path to an OSPFv3 router of
other area.

• AS External LSA (type 5): contains external prefixes from other protocols,

• NSSA LSA (type 7): contains the route to an external prefix.

• Link LSA (type 8): contains a list of link local addresses9.

• Intra-Area Prefix (type 9): contains the IPv6 prefixes of the area.

9 Link local address: is defined and allows communication on a single link, outside that subnet
the address is useless.

OSPFv3 Analysis in LEO Satellite Networks 49

Of all these types of LSAs generated by OSPFv3 protocol, in this project we
focus only on three of them: Router LSAs, Link LSAs and Intra-Area Prefix
LSAs, because these are the only types of LSA that will be generated.

Router LSAs are generated one per OSPFv3 router. In these LSAs the Link

State ID attribute is always 0.0.0.0. All routers in the same area have the

same Router LSAs. For each router interface, except for the loopback interface,
the type of network, the cost of sending the packet and the interface label is
indicated. Finally, the router identifier (Neighbor Router ID) of the

designated router of the network and its interface label (Neighbor

Interface ID) are indicated.

Link LSAs are generated one per interface and neighbor connected directly to
the router. This type of LSA is used to know the IPv6 link local address that can
be used as next-hop. The link local address is specified for each router and
interface. Not all routers have the same Link LSAs as they depend on the
networks to which each router is connected.

Intra-Area Prefix LSAs are generated one for each network in the area. There
are two types of networks. Stub networks, where the Link State ID is

always 0.0.0.0, and transit networks, where this field is the interface label, 32-bit
address, of the designated router of the network. As the satellite network only
has point-to-point links, there are neither transit nor stub networks. These LSA
types indicate the IPv6 prefixes associated with the network. All routers in the
same area have the same Intra-Area Prefix LSAs.

In large networks with multiple nodes, as in the case of LEO satellite networks,
two main drawbacks can arise.

• The volume of LSAs to be transmitted would be very high.

• The computation time to find the shortest path increase by 2n, where n is
the number of nodes in the topology.

3.2. Example topology

This section shows an example of a topology from which its database will be
displayed and explained. Specifically, we will show the three types of LSAs that
are useful in this project, which are Router LSAs, Link LSAs and Intra-Area
Prefix LSAs.

Figure 3.1 shows an example of a small topology with four satellites and two
ground stations, with an IP address configuration that it is explained in Chapter
4.

50 Analysis of OSPFv3 in LEO Satellite Networks

Network 2001:2001::/64 is a terrestrial network in which all routers emulating
base stations are connected to router T, which represents a central ground
station from which information is transmitted to the sinks.

Network 2001:2002::/64 is also a terrestrial network and its function is to
connect the sinks, which represent the connected clients, to the central ground
station.

Fig. 3.1. Topology example.

Figure 3.2 shows the Router LSAs in the database. In total there are seven
LSAs, one for each OSPF router emulating the four satellites, the two ground
stations and the central base station.

OSPFv3 Analysis in LEO Satellite Networks 51

Area Scoped Link State Database

(Area 0.0.0.0)

Age: 491 Type: Router

Link State ID: 0.0.0.0

Advertising Router: 10.0.0.1

LS Sequence Number: 0x80000002

CheckSum: 0x2b65 Length: 56

Duration: 00:08:10

 Bits: -------- Options: --|-|--

|-|-|--|R|-|--|E|V6

 Type: Point-To-Point Metric: 10

 Interface ID: 0.0.0.14

 Neighbor Interface ID: 0.0.0.18

 Neighbor Router ID: 10.0.0.2

 Type: Point-To-Point Metric: 10

 Interface ID: 0.0.0.16

 Neighbor Interface ID: 0.0.0.22

 Neighbor Router ID: 10.0.0.3

Age: 490 Type: Router

Link State ID: 0.0.0.0

Advertising Router: 10.0.0.2

LS Sequence Number: 0x80000002

CheckSum: 0x2661 Length: 56

Duration: 00:08:08

 Bits: -------- Options: --|-|--

|-|-|--|R|-|--|E|V6

 Type: Point-To-Point Metric: 10

 Interface ID: 0.0.0.18

 Neighbor Interface ID: 0.0.0.14

 Neighbor Router ID: 10.0.0.1

 Type: Point-To-Point Metric: 10

 Interface ID: 0.0.0.20

 Neighbor Interface ID: 0.0.0.26

 Neighbor Router ID: 10.0.0.4

Age: 481 Type: Router

Link State ID: 0.0.0.0

Advertising Router: 10.0.0.3

LS Sequence Number: 0x80000003

CheckSum: 0x8680 Length: 72

Duration: 00:07:59

 Bits: -------- Options: --|-|--

|-|-|--|R|-|--|E|V6

 Type: Point-To-Point Metric: 10

 Interface ID: 0.0.0.22

 Neighbor Interface ID: 0.0.0.16

 Neighbor Router ID: 10.0.0.1

 Type: Point-To-Point Metric: 10

 Interface ID: 0.0.0.24

 Neighbor Interface ID: 0.0.0.28

 Neighbor Router ID: 10.0.0.4

 Type: Point-To-Point Metric: 10

 Interface ID: 0.0.0.46

 Neighbor Interface ID: 0.0.0.30

 Neighbor Router ID: 10.1.255.255

Age: 477 Type: Router

Link State ID: 0.0.0.0

Advertising Router: 10.0.0.4

LS Sequence Number: 0x80000003

CheckSum: 0x3abc Length: 72

Duration: 00:07:54

 Bits: -------- Options: --|-|--

|-|-|--|R|-|--|E|V6

 Type: Point-To-Point Metric: 10

 Interface ID: 0.0.0.26

 Neighbor Interface ID: 0.0.0.20

 Neighbor Router ID: 10.0.0.2

 Type: Point-To-Point Metric: 10

 Interface ID: 0.0.0.28

 Neighbor Interface ID: 0.0.0.24

 Neighbor Router ID: 10.0.0.3

 Type: Point-To-Point Metric: 10

 Interface ID: 0.0.0.48

 Neighbor Interface ID: 0.0.0.34

 Neighbor Router ID: 10.2.255.255

Age: 482 Type: Router

Link State ID: 0.0.0.0

Advertising Router: 10.1.255.255

LS Sequence Number: 0x80000004

CheckSum: 0x2b15 Length: 56

Duration: 00:07:54

 Bits: -------- Options: --|-|--

|-|-|--|R|-|--|E|V6

 Type: Point-To-Point Metric: 10

 Interface ID: 0.0.0.30

 Neighbor Interface ID: 0.0.0.46

 Neighbor Router ID: 10.0.0.3

 Type: Transit-Network Metric: 10

 Interface ID: 0.0.0.32

 Neighbor Interface ID: 0.0.0.38

 Neighbor Router ID: 10.3.255.255

Age: 482 Type: Router

Link State ID: 0.0.0.0

Advertising Router: 10.2.255.255

LS Sequence Number: 0x80000005

CheckSum: 0x0c27 Length: 56

Duration: 00:07:58

 Bits: -------- Options: --|-|--

|-|-|--|R|-|--|E|V6

 Type: Point-To-Point Metric: 10

 Interface ID: 0.0.0.34

 Neighbor Interface ID: 0.0.0.48

 Neighbor Router ID: 10.0.0.4

 Type: Transit-Network Metric: 10

 Interface ID: 0.0.0.36

 Neighbor Interface ID: 0.0.0.38

 Neighbor Router ID: 10.3.255.255

Age: 474 Type: Router

Link State ID: 0.0.0.0

Advertising Router: 10.3.255.255

LS Sequence Number: 0x80000005

CheckSum: 0x2f03 Length: 56

Duration: 00:07:50

 Bits: -------- Options: --|-|--

|-|-|--|R|-|--|E|V6

 Type: Transit-Network Metric: 10

 Interface ID: 0.0.0.38

 Neighbor Interface ID: 0.0.0.38

 Neighbor Router ID: 10.3.255.255

 Type: Transit-Network Metric: 10

 Interface ID: 0.0.0.40

 Neighbor Interface ID: 0.0.0.40

 Neighbor Router ID: 10.3.255.255

Fig. 3.2. Router LSAs.

52 Analysis of OSPFv3 in LEO Satellite Networks

From the Router LSA marked in blue, the part of the topology shown in Figure
3.3 can be deduced.

Fig. 3.3. Topology segment from Router LSA.

The router that generates this Router LSA has as ID the IPv4 address 10.0.0.3
(Advertising Router), which corresponds to R3. This router is connected

through interface 0.0.0.22 (Interface ID) to the router with ID 10.0.0.1

(Neighbor Router ID), which corresponds to R1, through interface 0.0.0.16

(Neighbor Interface ID). Through the interface 0.0.0.24 is connected with

the router with ID 10.0.0.4, which corresponds to R4, through interface 0.0.0.28.
Finally, through the interface 0.0.0.46 is connected with the node with ID
10.1.255.255, which corresponds to EB1, trough the interface 0.0.0.30. The
three links to which R3 belongs are point-to-point (Type) with a path cost of 10

(Metric).

Figure 3.4 shows the Link LSAs in the R1 database. As can be seen, there are
two LSAs for each link directly connected to this router, because they are point-
to-point links. Through eth0 interface it is connected to R2, which has as ID

10.0.0.2 (Advertising Router), and through the eth1 interface it is

connected to R3, which has as ID 10.0.0.3.

OSPFv3 Analysis in LEO Satellite Networks 53

I/F Scoped Link State Database (I/F eth0 in Area 0.0.0.0)

Age: 541 Type: Link

Link State ID: 0.0.0.14

Advertising Router: 10.0.0.1

LS Sequence Number: 0x80000001

CheckSum: 0x7b81 Length: 44

Duration: 00:09:00

 Priority: 1 Options: --|-|--|-|-|--|R|-|--|E|V6

 LinkLocal Address: fe80::216:3eff:fe77:854e

 Number of Prefix: 0

Age: 539 Type: Link

Link State ID: 0.0.0.18

Advertising Router: 10.0.0.2

LS Sequence Number: 0x80000001

CheckSum: 0x3dc8 Length: 44

Duration: 00:08:57

 Priority: 1 Options: --|-|--|-|-|--|R|-|--|E|V6

 LinkLocal Address: fe80::216:3eff:fe76:6264

 Number of Prefix: 0

 I/F Scoped Link State Database (I/F eth1 in Area 0.0.0.0)

Age: 541 Type: Link

Link State ID: 0.0.0.16

Advertising Router: 10.0.0.1

LS Sequence Number: 0x80000001

CheckSum: 0x42e2 Length: 44

Duration: 00:09:00

 Priority: 1 Options: --|-|--|-|-|--|R|-|--|E|V6

 LinkLocal Address: fe80::216:3eff:fe6a:2591

 Number of Prefix: 0

Age: 537 Type: Link

Link State ID: 0.0.0.22

Advertising Router: 10.0.0.3

LS Sequence Number: 0x80000001

CheckSum: 0xf3d8 Length: 44

Duration: 00:08:54

 Priority: 1 Options: --|-|--|-|-|--|R|-|--|E|V6

 LinkLocal Address: fe80::216:3eff:fe34:7ebe

 Number of Prefix: 0

Fig. 3.4. Link LSAs.

From Link LSAs marked in blue, the part of the topology shown in Figure 3.5
can be deduced.

Fig. 3.5. Topology segment from Link LSAs.

From these Link LSAs, the link local addresses of each interface of the link
formed between R3 and R1 has been obtained. The link local address of the

54 Analysis of OSPFv3 in LEO Satellite Networks

interface of R3 is fe80::216:3eff:fe34:7ebe and the link local address of the
interface of R1 is fe80::216:3eff:fe6a:2591.

Figure 3.6 shows the Intra-Prefix LSAs in the database. As in the case of
Router LSAs, there are also a total of seven Intra-Prefix LSAs in the database,
one per each OSPFv3 router.

Age: 640 Type: Intra-Prefix

Link State ID: 0.0.0.0

Advertising Router: 10.0.0.1

LS Sequence Number: 0x80000003

CheckSum: 0x2f0a Length: 52

Duration: 00:10:39

 Number of Prefix: 1

 Reference: Router Id: 0.0.0.0

Adv: 10.0.0.1

 Prefix Options: --|--|--|--|--

 Prefix: 2002::1/128

 Metric: 10

Age: 641 Type: Intra-Prefix

Link State ID: 0.0.0.0

Advertising Router: 10.0.0.2

LS Sequence Number: 0x80000003

CheckSum: 0x59dc Length: 52

Duration: 00:10:32

 Number of Prefix: 1

 Reference: Router Id: 0.0.0.0

Adv: 10.0.0.2

 Prefix Options: --|--|--|--|--

 Prefix: 2002::2/128

 Metric: 10

Age: 630 Type: Intra-Prefix

Link State ID: 0.0.0.0

Advertising Router: 10.0.0.3

LS Sequence Number: 0x80000004

CheckSum: 0x81b0 Length: 52

Duration: 00:10:28

 Number of Prefix: 1

 Reference: Router Id: 0.0.0.0

Adv: 10.0.0.3

 Prefix Options: --|--|--|--|--

 Prefix: 2002::3/128

 Metric: 10

Age: 626 Type: Intra-Prefix

Link State ID: 0.0.0.0

Advertising Router: 10.0.0.4

LS Sequence Number: 0x80000004

CheckSum: 0xab83 Length: 52

Duration: 00:10:23

 Number of Prefix: 1

 Reference: Router Id: 0.0.0.0

Adv: 10.0.0.4

 Prefix Options: --|--|--|--|--

 Prefix: 2002::4/128

 Metric: 10

Age: 631 Type: Intra-Prefix

Link State ID: 0.0.0.0

Advertising Router: 10.1.255.255

LS Sequence Number: 0x80000005

CheckSum: 0x0533 Length: 52

Duration: 00:10:23

 Number of Prefix: 1

 Reference: Router Id: 0.0.0.0

Adv: 10.1.255.255

 Prefix Options: --|--|--|--|--

 Prefix: 2002::ffff/128

 Metric: 10

Age: 631 Type: Intra-Prefix

Link State ID: 0.0.0.0

Advertising Router: 10.2.255.255

LS Sequence Number: 0x80000004

CheckSum: 0x0b2c Length: 52

Duration: 00:10:27

 Number of Prefix: 1

 Reference: Router Id: 0.0.0.0

Adv: 10.2.255.255

 Prefix Options: --|--|--|--|--

 Prefix: 2002::ffff/128

 Metric: 10

Age: 634 Type: Intra-Prefix

Link State ID: 0.0.0.38

Advertising Router: 10.3.255.255

LS Sequence Number: 0x80000001

CheckSum: 0x37e5 Length: 44

Duration: 00:10:28

 Number of Prefix: 1

 Reference: Network Id: 0.0.0.38

Adv: 10.3.255.255

 Prefix Options: --|--|--|--|--

 Prefix: 2001:2001::/64

 Metric: 0

Age: 623 Type: Intra-Prefix

Link State ID: 0.0.0.40

Advertising Router: 10.3.255.255

LS Sequence Number: 0x80000002

CheckSum: 0x4bcb Length: 44

Duration: 00:10:20

 Number of Prefix: 1

 Reference: Network Id: 0.0.0.40

Adv: 10.3.255.255

 Prefix Options: --|--|--|--|--

 Prefix: 2001:2002::/64

 Metric: 0

Fig. 3.6. Intra-Area Prefix LSAs.

OSPFv3 Analysis in LEO Satellite Networks 55

From the Intra-Area Prefix LSA marked in blue, the part of the topology shown
in Figure 3.7 can be deduced.

Fig. 3.7. Topology segment from Intra-Area Prefix LSA.

From this Intra-Area Prefix LSA it is deduced that R3 is associated to the prefix
2002::3/128.

Figure 3.8 shows the IPv6 Routing Information Base (RIB) of R1. The following
command is used to obtain this table.

lxc exec [container] --vtysh -c ‘show ipv6 route’ (3.1)

This table shows the information of the paths that R1 has to take to reach any
router.

Codes: K - kernel route, C - connected, S - static, R - RIPng,

 O - OSPFv3, I - IS-IS, B - BGP, N - NHRP, T - Table,

 v - VNC, V - VNC-Direct, A - Babel, F - PBR,

 f - OpenFabric,

 > - selected route, * - FIB route, q - queued, r - rejected, b - backup

 t - trapped, o - offload failure

O>* 2001:2001::/64 [110/30] via fe80::216:3eff:fe34:7ebe, eth1, weight 1,

00:06:37

O>* 2001:2002::/64 [110/40] via fe80::216:3eff:fe34:7ebe, eth1, weight 1,

00:06:37

O 2002::1/128 [110/10] is directly connected, lo, weight 1, 00:06:37

C>* 2002::1/128 is directly connected, lo, 00:07:03

O>* 2002::2/128 [110/20] via fe80::216:3eff:fe76:6264, eth0, weight 1,

00:06:37

O>* 2002::3/128 [110/20] via fe80::216:3eff:fe34:7ebe, eth1, weight 1,

00:06:37

O>* 2002::4/128 [110/30] via fe80::216:3eff:fe34:7ebe, eth1, weight 1,

00:06:37

 * via fe80::216:3eff:fe76:6264, eth0, weight 1,

00:06:37

O>* 2002::ffff/128 [110/30] via fe80::216:3eff:fe34:7ebe, eth1, weight 1,

00:06:37

C * fe80::/64 is directly connected, eth1, 00:07:03

C>* fe80::/64 is directly connected, eth0, 00:07:03

Fig. 3.8. R1 IPv6 RIB.

56 Analysis of OSPFv3 in LEO Satellite Networks

Through OSPFv3 (O), R1 has learned and selected (>) paths to reach prefixes

2001:2001::/64, 2001:2002::/64, 2002::3/128, 2002::4/128 and 2002::ffff/128,
through the link local address fe80::216:3eff:fe34:7ebe corresponding to the
interface of the link it forms with R3. Through the link local address
fe80::216:3eff:fe76:6264, which corresponds to R2, R1 reaches the 2002::2/128
prefix. Finally, to reach the prefix 2002::1/128 it learns the route via OSPFv3,
but does not select it since R1 is directly connected.

Results 57

Chapter 4. Network Satellite Emulation Analysis and
Evaluation

This chapter explains the OSPFv3 configuration that has been established in
the different routers that emulate satellites and ground stations, and analyzes
the results obtained from different tests performed, including traffic captures,
and characteristics and traces of the path from one router to the nearest ground
stations. Figure 4.1 shows the analyzed scenario.

Fig. 4.1. Scenario analyzed.

All tests are done by generating traffic on one of the satellites, the emulation
time covers a full lap of the Iridium constellation, which satellite is selected is
irrelevant. We have chosen the satellite labeled R1, which starts in the equator.
This satellite has a total of six interfaces. Two to connect to satellites that are in
the same plane (intra-plane ISLs), one to connect to a satellite in the contiguous
plane (inter-satellite ISL), one is in disuse because R1 is in on of the two planes
between which the seam is located, another one is the loopback interface to
assign IP addresses. Finally, the sixth interface is used to connect to the aircraft
(traffic generator) that communicates with the airspace control centers through
the ground stations.

58 Analysis of OSPFv3 in LEO Satellite Networks

The satellite network analyzed has been the Iridium constellation, which
consists of 66 satellites and 4 ground stations. These base stations are
connected to a network through which they communicate with another station
that acts as a terrestrial gateway. This station is responsible for distributing
information to the different airspace control centers (sinks). The analysis is a
worst-case scenario, i.e., a satellite will not be always sending traffic to Earth,
as an airplane will not always be connected to the same satellite during its flight.
Anyway, this setup can be interpreted as a satellite that at each time has traffic
to route, independently if it is always originated at the same source (plane) or
the source changes at any time.

4.1. OSPFv3 Configuration

Figure 4.2 shows the frr JSON object of one of the satellites, which is part of

the routers dictionary in the topology.json file, used to set the OSPFv3

configuration on each router.

"frr": {

 "interface": {

 "lo": {

 "ip_address": [

 "10.0.0.5/32"

],

 "ipv6_address": [

 "2002::5/128"

],

 "ospf6_area": "0.0.0.0",

 "ospf6_passive": true

 },

 "eth0": {

 "ospf6_area": "0.0.0.0",

 "ospf6_network": "point-to-point",

 "ospf6_dead_interval": 2,

 "ospf6_hello_interval": 1

 },

 ·

 ·

 ·

 },

 "router": {

 "ospf6": {}

 }

}

Fig. 4.2. FRR object definition.

Results 59

In the case of routers, the loopback interfaces are configured with an IPv4
address in the 10.0.X.X/32 range with 0 < X < 255. In OSPF all the routers are
unique identified by a 32 bits number in dotted quad format. This identifier can
be configured manually. In OSPFv3 if a router has an IPv4 address configured
in its loopback interface, this address becomes also the OSPFv3 router
identifier. An IPv6 address is also configured in the 2002::X/128 range with 0 <
X < 255, which will be used by OSPFv3.

In the case of ground stations, the IPv4 address is in the 10.X.255.255/32 range
with 0 < X < 255. In the case of IPv6 addressing, all base stations have the
2002::ffff/128 anycast address assigned to them.

All nodes that are included of the satellite network are part of the same OSPFv3
area, which is the 0.0.0.0 area. As already mentioned, it is difficult to divide this
type of network into areas. If the area 0.0.0.0 is determined as a grid within the
non-backbone areas are located, the problem of boundary selection arises. It
was not clear whether it was possible to guarantee that routers would always
have connectivity to the border, and if they did, it could happen that it would
take many hops to reach a router that might be only two hops away.

The loopback interface in all OSPFv3 routers is configured as passive, which
means that no messages are sent through this interface, but the network to
which it belongs is advertised in the messages sent by the other interfaces of
the router.

Bridges emulating ISLs and GSLs are configured as a point-to-point links. Doing
this, designated router selection is avoided and no Network LSAs are
generated.

The Hello interval and the Dead interval have been modified. Specifically, the
Hello interval has been set to 1 second and the Dead interval to 2 seconds. This
implies that Hello messages will be sent every second, and that an OSPF
neighboring router will be dropped if after two seconds there is no information
from it. Both values are the minimum that can be set.

Finally, in the router JSON object, the protocol that each router has to apply is

established. In this case ospf6 is set, which indicates OSPFv3.

4.2. Results

In order to analyze and study the performance of LEO satellite networks,
specifically the Iridium constellation, the following tests have been done using
the created network emulator.

• Distribution of convergence time values of OSPFv3 Router LSAs by
analyzing traffic captures (specifically captures in pcapng format) to plot
the histogram.

60 Analysis of OSPFv3 in LEO Satellite Networks

• Average number of events between snapshots.

• Histogram to quantify the number of hops between a satellite and the
nearest base station.

• Traffic generation is done using Distributed Internet Traffic Generator (D-
ITG) to obtain delay, throughput, jitter and average losses metrics.

To calculate the jitter, the D-ITG generator applies 4.1 and 4.2 formulas.

(4.1)

(4.2)

The previous formulas are based on a traffic sequence as shown in
Figure 4.3.

Fig. 4.3. Jitter calculation scheme.

To realize the study, emulations of two hours were performed, which is
equivalent to more than one full lap (100 min) of the Iridium constellation, with
different interval times between snapshots. In fact, we have analyzed for time
intervals of 20 and 5 seconds with two different transmission configurations.

• Configuration 1: 50 packets of 160 bytes per second. Equivalent to a
theoretical throughput of 64 kbps. VoIP traffic.

• Configuration 2: 4000 packets of 160 bytes per second. Equivalent to a
theoretical throughput of 5.12 Mbps. With such a high packet

Results 61

transmission rate, we have found a limitation on the D-ITG generator. In
this configuration the true packet sending rate drops from 4000 pkt/s to
3100 pkt/s.

In the following, we present the results for each of them.

4.2.1. Δt = 20 s

In this section, the time difference between snapshots is set to 20 seconds,
therefore, 360 consecutives snapshots have been emulated to complete the two
hours.

Figure 4.4 shows the convergence time distribution of OSPFv3 Router LSAs for
this time interval between snapshots. As can be observed, the most
predominant convergence time interval, and therefore the time it takes for the
routers to learn about the changes that have occurred in the topology, is
between 0 and 1 second. The average convergence time is equal to 2.3529
seconds.

Fig. 4.4. OSPFv3 convergence time histogram. Δt = 20 s.

From satelliteEvents.json file and groundStationsEvents.json file,

it has been calculated an average of 1 event per snapshot. These events
include links disconnection and connections, changes in ISL delay and GSL
events.

Figure 4.5 shows the number of hops it takes R1 to reach the nearest ground
station, in terms of OSPFv3 cost, in each snapshot. With this spacing between
snapshots, values of 3, 4, and 5 hops are dominant.

62 Analysis of OSPFv3 in LEO Satellite Networks

Fig. 4.5. Number of hops histogram. Δt = 20 s.

Figure 4.6 shows the satellite ground track during the two hours of emulation.
The satellite starts in northern Brazil, at the equator (latitude 0º), and ends in
northern Canada. The trajectory of the satellite affects the number of hops the
satellite would have to make to reach the ground stations, as the actual
distance between them varies.

Fig. 4.6. Satellite ground track. Δt = 20 s.

Results 63

Figure 4.4, Figure 4.5 and Figure 4.6 are independent of the transmission
configuration used. The metrics extracted from the D-ITG, that depend on the traffic
generator configuration, are show below.

4.2.1.1. Configuration 1

Table 4.1 shows a summary made by D-ITG of the metrics obtained during
traffic generation.

Table 4.1. D-ITG summary. Δt = 20 s. Configuration 1.

Total time 7200 s

TRANSMISSION METRICS

Total packets 357552 pkt

Average packet rate 49.66 pkt/s

RECEPTION METRICS

Total packets 356733

Minimum delay 4.168 ms

Maximum delay 134.932 ms

Average delay 45.624 ms

Average jitter 324 µs

Delay standard deviation 17.427 ms

Average packet rate 49.5463 pkt/s

Packets dropped 819 (0.23 %)

Figure 4.7 shows a comparison between the evolution of the packet delay and
the number of hops at each time step. The shapes of the two graphs are
practically the same, showing that the greater the number of hops, the greater
the packet delay. It is also worth to mention that packets with zero delay are lost
packets.

64 Analysis of OSPFv3 in LEO Satellite Networks

Fig. 4.7. Packet delay and number of hops. Δt = 20 s. Configuration 1.

Figure 4.8 shows the delay histogram of received packets. The packet delay is
concentrated between (15, 20] ms and (70, 75] ms, with the (30, 35] ms and
(45, 50] ms intervals dominating. From the D-ITG metrics summary, Table 4.1,
we obtain that the average delay in this scenario is equal to 45.624 ms.

Fig. 4.8. Packet delay histogram. Δt = 20 s. Configuration 1.

Results 65

Figure 4.9 shows the packet loss rate and compares it to the latitude at which
the satellite is located at the same time instant. There are 3 zones or points
where all the packets are lost. The first located at 20 seconds is due to the
initialization of the GSL events. One point located at 1300 seconds, where the
latitude is higher than 60º, an another at 3760 seconds, where takes place the
disconnections of the inter-plane ISL, due to satellite is approaching to -60º.

Fig. 4.9. Packet loss rate and satellite orbit latitudes. Δt = 20 s. Configuration 1.

4.2.1.2. Configuration 2

Table 4.2 shows a summary made by D-ITG of the metrics obtained during
traffic generation.

66 Analysis of OSPFv3 in LEO Satellite Networks

Table 4.2. D-ITG summary. Δt = 20 s. Configuration 2.

Total time 7200 s

TRANSMISSION METRICS

Total packets 22320000 pkt

Average packet rate 3100 pkt/s

RECEPTION METRICS

Total packets 22266443

Minimum delay 4.162 ms

Maximum delay 133.881 ms

Average delay 46.024 ms

Average jitter 92 µs

Delay standard deviation 17.152 ms

Average packet rate 3092.5615 pkt/s

Packets dropped 53557 (0.24 %)

Figure 4.10 shows a comparison between the evolution of the packet delay and
the number of hops at each time step. As in the previous configuration, it is still
maintained that the higher the number of hops between the satellite tracked and
the ground station, the higher the packet delay at the same instant time.

Fig. 4.10. Packet delay and number of hops. Δt = 20 s. Configuration 2.

Results 67

Figure 4.11 shows the delay histogram of received packets. The same intervals
predominate. The average delay is equal to 46.024 ms. This figure shows that
the transmission configuration parameters does not affect the packet delay.

Fig. 4.11. Packet delay histogram. Δt = 20 s. Configuration 2.

Figure 4.12 shows the packet loss rate and compares it to the latitude at which
the satellite is located at the same time instant. There are 4 zones or points
where all the packets are lost. As in the previous test, the first critic point is due
to the starting of the GSL events. The point located at 3220 seconds is due to
the fact that it is one of the intervals where there are more hops to reach the
base station. At 3760 seconds the inter-plane ISL disconnections occurs, since
it is approaching the -60º latitude. And finally, there is a total loss of packets at
4200 seconds, a point that is in the zone below -60º latitude.

68 Analysis of OSPFv3 in LEO Satellite Networks

Fig. 4.12. Packet loss rate and satellite orbit latitudes. Δt = 20 s. Configuration 2.

4.2.2. Δt = 5 s

In this section, the time difference between snapshots is set to 5 seconds,
therefore, 1440 consecutives snapshots have been emulated to complete the
two hours.

Figure 4.13 shows the convergence time distribution of OSPFv3 Router LSAs
for this time interval between snapshots. As can be observed, the most frequent
time it takes for this type of LSAs to converge, and therefore the time it takes for
the routers to learn about the changes that have occurred in the topology, is in
the range of 0 to 1 second. The average convergence time is equal to 2.1842
second.

Results 69

Fig. 4.13. OSPFv3 convergence time histogram. Δt = 5 s.

From satelliteEvents.json file and groundStationsEvents.json file,

it has been calculated that an average of 0.25 events occur between snapshots.

Figure 4.14 shows the number of hops it takes R1 to reach the nearest, in terms
of OSPFv3 cost, ground station in each snapshot. The quantity of hops to reach
the base station is fairly even. Specifically, the most common is to be at a
distance of 3, 4 and 5 hops.

Fig. 4.14. Number of hops histogram. Δt = 5 s.

Figure 4.15 shows the satellite ground track during the two hours of emulation.
As can be observed, the snapshots for Δt = 5 s and Δt = 20 s have been
captured in the same time window and, therefore, the satellite travels exactly

70 Analysis of OSPFv3 in LEO Satellite Networks

the same trajectory, starting in northern Brazil and ending in the northern
Canada. Most points are observed, especially at latitudes above 60º and below
-60º due to the smaller spacing between snapshots.

Fig. 4.15. Satellite ground track. Δt = 5 s.

4.2.2.1. Configuration 1

Table 4.3 shows a summary made by D-ITG of the metrics obtained during
traffic generation.

Table 4.3. D-ITG summary. Δt = 5 s. Configuration 1.

Total time 7200 s

TRANSMISSION METRICS

Total packets 357552 pkt

Average packet rate 49.66 pkt/s

RECEPTION METRICS

Total packets 356996

Minimum delay 4.182 ms

Maximum delay 134.51 ms

Average delay 45.853 ms

Average jitter 325 µs

Delay standard deviation 17.083 ms

Average packet rate 49.5828 pkt/s

Packets dropped 556 (0.16 %)

Results 71

Figure 4.16 shows a comparison between the evolution of the packet delay and
the number of hops at each time step, throughout the entire emulation. The
similarity between the shapes of the two graphs is also maintained in this
scenario, showing that the greater the number of hops, the greater the packet
delay. The peaks in the two graphs that last only 5 seconds are due to the fact
that the time between snapshots is very short, and this can cause errors when
choosing the paths to create the snapshots (gml files).

Fig. 4.16. Packet delay and number of hops. Δt = 5 s. Configuration 1.

Figure 4.17 shows the delay histogram of received packets. By having the same
trajectory in the two different time intervals analyzed, the intervals where the
packet delay is most concentrated remain the same. The most predominant are
the (30, 35], the (45, 50] and (60, 65] ms intervals. The average delay is equal
to 45.853 ms, which is almost the same as the previous scenarios.

72 Analysis of OSPFv3 in LEO Satellite Networks

Fig. 4.17. Packet delay histogram. Δt = 5 s. Configuration 1.

Figure 4.18 shows the packet loss rate and compares it to the latitude at which
the satellite is located at the same time instant, to see if there is any
relationship. There are three points where 100% loss occurs and one point with
more of a 90% of losses. The first takes place at 5 seconds, these losses are
due to the initialization of GSL events due to dropping and recovering the link in
each ground station. The loss located at 3750 seconds is due to the drop of the
inter-plane ISL, as the satellite is approaching to the -60º latitude. Finally, the
points located at 1285 and 1835 seconds are above of the 60º latitude.

Results 73

Fig. 4.18. Packet loss rate and satellite orbit latitudes. Δt = 5 s. Configuration 1.

4.2.2.2. Configuration 2

Table 4.4 shows a summary made by D-ITG of the metrics obtained during
traffic generation.

Table 4.4. D-ITG summary. Δt = 5 s. Configuration 2.

Total time 7200 s

TRANSMISSION METRICS

Total packets 22320000 pkt

Average packet rate 3100 pkt/s

RECEPTION METRICS

Total packets 21298463

Minimum delay 4.177 ms

Maximum delay 132.427 ms

Average delay 46.387 ms

Average jitter 107 µs

Delay standard deviation 20.13 ms

Average packet rate 2958.12 pkt/s

Packets dropped 1021537 (4.58 %)

74 Analysis of OSPFv3 in LEO Satellite Networks

Figure 4.19 shows a comparison between the evolution of the packet delay and
the number of hops at each time step. As in the previous scenarios, the two
shapes of the graphs are equal.

Fig. 4.19. Packet delay and number of hops. Δt = 5 s. Configuration 2.

Figure 4.20 shows the delay histogram of received packets. Since they have the
same spacing between snapshots and follow the same satellite ground path,
the histogram distribution for this configuration is practically the same as for
configuration 1. The (30, 35] ms interval is still the predominant one, but the
second one now is the (55, 60] ms interval. The average delay is equal to
46.387 ms, which is almost the same.

Results 75

Fig. 4.20. Packet delay histogram. Δt = 5 s. Configuration 2.

Figure 4.21 shows the packet loss rate and compares it to the latitude at which
the satellite is located at the same time instant. In this case, there are 6 zones
or points where all the packets are lost. The first, as in the previous scenario, is
due to the starting of the GSL events. The areas from 945 to 1075 seconds and
from 7015 to 7040 seconds, are the points where the 60º of latitude are just
crossed. The peak at 1280 seconds and the zone between 1515 and 1545
seconds are above 60º latitude where the inter-plane ISL is down. The peak at
4300 seconds is a similar case, but in this case, it is below -60º. Finally, the
zone from 2640 to 2700 seconds is around the equator, which is one of the
points where there is a greater number of hops between the satellite and the
nearest base station. It is clear that at such a high rate the system becomes
saturated at certain times.

76 Analysis of OSPFv3 in LEO Satellite Networks

Fig. 4.21. Packet loss rate and satellite orbit latitudes. Δt = 5 s. Configuration 2.

Conclusions 77

Chapter 5. Conclusions and Future Lines

5.1. Conclusions

In this project we have detailed the design decisions of an emulation platform
for testing IP routing protocols in LEO satellite networks using LXC as the
virtualization technology to emulate the routing capabilities of satellites and the
ISL and GSL links. Also, we have developed a set of python tools that allow us
to launch the emulation and realize captures to analyze the routing protocols. In
particular, OSPFv3 that is the studied routing protocol.

Once the emulation platform was implemented, we analyzed the general
performance of OSPFv3 protocol. Results of convergence time, hop count,
delay, jitter delay and loss rate. The study has been done in a full-lap Iridium
constellation taking topology snapshots in steps of 20 and 5 seconds and two
data rates, one a low data rate typical of VoIP applications, and the other a high
data rate in order to stress the system.

The convergence time of the OSPFv3 protocol, which is the time it takes for all
satellite to learn about topology changes, is about 2~3 seconds on average. In
terms of average packet delay, the values oscillate between 15 ms and 75 ms,
centered at 45~46 ms. As for the delay variation, i.e., jitter, it varies by a
maximum of 325 µs. The most common number of hops is 3, 4 or 5 hops. This
last statement is not valid for all cases, since it depends on the time window in
which the topology captures are taken.

Focusing on packet losses, the most important points to take into account,
regardless of the initial events of the ground stations which is a matter of
programming, are:

• Exceed ± 60º latitudes.

• Moment in which the inter-plane ISL goes down.

• Zone near the equator, where the satellites are farther away from ground
stations in number of hops, but at mention above, the number of hops
distribution depends on the time window when the captures were taken.

• Switching from being connected to one ground station to another one.

Although there are several critical points to monitor, losses in general have
been very low, always below 5% losses on average in the four scenarios
studied.

Although final loss rate is acceptable, it is true that in short periods of time the
loss rate is high, which means that we can lose communication for periods of 5-

78 Analysis of OSPFv3 in LEO Satellite Networks

10 seconds, approximately. The highest loss rates occur in high or low
(depending of the hemisphere) latitudes.

5.2. Future lines

One of the possibilities it is to study other routing protocols as IS-IS or RIP and
compare them. Independently of the benefits in the selection of one of them as
the result of the study all these routing protocols find the optimal route in terms
of its own cost functions. As satellite networks links are all equal, all will find the
shortest hop count route.

It is not always necessary to find the optimal route. For example, if we define a
maximum delay of T time units, any route that satisfies this restriction will be
valid, and then, other non-optimal algorithms should be evaluated.

Segment Routing over IPv6 (SRv6) appears as an elegant and modern solution
that we consider that can be applied in these networks. SRv6 is a source
routing solution, that is, the source packet who includes the route to
destinations. There is a data plane, where an ingress router sets the complete
source-destination route, and a control plane where one entity, usually called
Controller, instructs the router which route apply to a particular flow of packets.

The idea is that the controller, which has the topology snapshots and the
airplane route can compute a valid route (in terms of accomplish defined
restrictions) applying routing algorithms, not necessarily optimal. Obviously, we
must also define a protocol which allows to the Controller install routes in the
satellites.

Bibliography 79

BIBLIOGRAPHY

[1] FUTUR UPC. Seamless integration of LEO Satellite, Aeronautical and

Terrestrial Networks [online]. September, 2022. [Accessed: May, 2023].
Available at: https://futur.upc.edu/34233458

[2] EUROCONTROL. ISA project – Satellite perspectives for CNS/ATM.

December, 1997. EEC Note No. 29/97, EEC Task D14

[3] Han, L.; Retana, A.; Westphal, C.; Li, R. Large Scale LEO satellite

Networks for the Future Internet: Challenges and Solutions to Addressing
and Routing. Computer Networks and Communications [online], 2022,
vol.1, no. 1, p. 31-63. [Accessed: May, 2023]. Available at:
https://ojs.wiserpub.com/index.php/CNC/article/view/2105

[4] Xiaogang, Q.; Jiulong, M.; Dan, W.; Lifang, L.; Shaolin, H. A survey of

routing techniques for satellite networks. Journal of Communications and
Information Networks. 2016, vol. 1, no. 4, p. 66-85. [Accessed: May,
2023]. Available at: https://doi.org/10.11959/j.issn.2096-1081.2016.058

[5] Hussein, M.; Hanani, A. Routing in IP/LEO satellite communication

systems: past, present and future. International Journal of Electronics
and Communication Engineering, 2016, vol. 3, p. 745. [Accessed: May,
2023]. Available at: http://hdl.handle.net/20.500.11889/4353

[6] Chen, Q.; Guo, J.; Yang, L.; Liu, X.; Chen, X. Topology virtualization and

dynamics shielding method for LEO satellite networks. IEE
Communication Letters, 2020, vol. 24, no. 2, p. 433-437. [Accessed:
May, 2023]. Available at: https://doi.org/10.1109/LCOMM.2019.2958132

[7] Wood, L.; Clerget, A.; Andrikopoulos, I.; Pavlou, G.; Dabbous, W. IP

routing issues in satellite constellation networks. International Journal of
Satellite Communications. 2001, vol. 19, no. 1, p. 69-92. [Accessed: May,
2023]. Available at: https://doi.org/10.1002/sat.655

[8] Duan, C.; Feng, J.; Chang, H.; Song, B.; Xu, Z. A Novel Handover

Control Strategy Combined with Multi-hop Routing in LEO Satellite
Networks. 2018 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW). 2018, p. 845-851. [Accessed: May,
2023]. Available at: https://doi.org/10.1109/IPDPSW.2018.00132

[9] Fossa, C. E.; Raines, R. A.; Gunsch, G. H.; Temple, M. A. An overview of

the Iridium® low Earth orbit (LEO) satellite system. Proceeding of the
IEEE 1998 National Aerospace and Electronics Conference. NAECON
1998. Celebrating 50 Years (Cat. No.98CH36185). 1998, p. 152-159.
[Accessed: May, 2023]. Available at:
https://doi.org/10.1109/NAECON.1998.710110

https://futur.upc.edu/34233458
https://ojs.wiserpub.com/index.php/CNC/article/view/2105
https://doi.org/10.11959/j.issn.2096-1081.2016.058
http://hdl.handle.net/20.500.11889/4353
https://doi.org/10.1109/LCOMM.2019.2958132
https://doi.org/10.1002/sat.655
https://doi.org/10.1109/IPDPSW.2018.00132
https://doi.org/10.1109/NAECON.1998.710110

80 Analysis of OSPFv3 in LEO Satellite Networks

[10] Lemme, P. W.; Glenister, S. M.; Miller, A. W. Iridium® aeronautical
satellite communications. IEEE Aerospace and Electronic Systems
Magazine. 1999, vol. 14, no. 11, p. 11-16. [Accessed: May, 2023].
Available at: https://doi.org/10.1109/62.809197

[11] Champlin, C. Iridium® satellite: A large system application of design for

testability. Proceedings of IEEE International Test Conference – (ITC).
1993, p. 392-398. [Accessed: May, 2023]. Available at:
https://doi.org/10.1109/TEST.1993.470673

[12] Anderson, B.J.; Angappan, R.; Barik, A.; Vines, S. K.; Stanley, S.;

Bernasconi, P. N.; Korth, H.; Barnes, R. J. Iridium® communications
satellite constellation data for study of Earth’s magnetic field.
Geochemistry, Geophysics, Geosystems, 2021, vol. 22. [Accessed: May,
2023]. Available at: https://doi.org/10.1029/2020GC009515

[13] Bo, W.; Lixiang, L.; Shuaijun, L.; Shan, W.; Hailong, H. Performance of

analysis of OSPF in integrated satellite and terrestrial network. 2022
International Symposium on Networks, Computers and Communications
(ISNCC), 2022, p. 1-4. [Accessed: June, 2023]. Available at:
https://doi.org/10.1109/ISNCC55209.2022.9851783

[14] Pan, T.; Huang, T.; Li, X.; Chen, Y.; Xue, W.; Liu, Y. OPSPF: Orbit

Prediction Shortest Path First Routing for Resilient LEO Satellite
Networks. ICC 2019 – 2019 IEEE International Conference on
Communications, 2019, p. 1-6. [Accessed: June, 2023]. Available at:
https://doi.org/10.1109/ICC.2019.8761611

[15] Fu, M.; Guo, B.; Yang, H.; Pang, C.; Huang, S. Routing Optimization

Based on OSPF in Multi-Layer Satellite Network. Proceedings of CECNet
2021, 2021. [Accessed: June, 2023]. Available at:
https://doi.org/10.3233/FAIA210452

[16] He, Y.; Chen, H.; Ma, C. A Cross-Domain Aggregation Routing based on

Lightweight OSPF Protocol for the GEO Satellite-Ground Integrated
Network. 2022 2nd International Conference on Computer Science,
Electronic Information Engineering and Intelligent Control Technology
(CEI), 2022, p. 459-463. [Accessed: June, 2023]. Available at:
https://doi.org/10.1109/CEI57409.2022.9948464

[17] Cao, S.; Zhang, T. Congestion Control Based on OSPF in LEO Satellite

Constellation. 2019 IEEE 19th International Conference on
Communication Technology (ICCT), 2019, p. 1111-1115. [Accessed:
June, 2023]. Available at:
https://doi.org/10.1109/ICCT46805.2019.8947269

https://doi.org/10.1109/62.809197
https://doi.org/10.1109/TEST.1993.470673
https://doi.org/10.1029/2020GC009515
https://doi.org/10.1109/ISNCC55209.2022.9851783
https://doi.org/10.1109/ICC.2019.8761611
https://doi.org/10.3233/FAIA210452
https://doi.org/10.1109/CEI57409.2022.9948464
https://doi.org/10.1109/ICCT46805.2019.8947269

Bibliography 81

[18] Yang, H.; Guo, B.; Xue, X.; Deng, X.; Zhao, Y.; Cui, X.; Pang, C.; Ren,
H.; Huang, S. Interruption Tolerance Strategy for LEO Constellation with
Optical Inter-satellite Link. IEEE Transactions on Network and Service
Management, 2023. [Accessed: June, 2023]. Available at:
https://doi.org/10.1109/TNSM.2023.3274638

[19] Canonical Ltd. Container and virtualization tools [online]. [Accessed:

May, 2023]. Available at: https://linuxcontainers.org/

[20] What’s a Linux Container? Red Hat [online]. May 11, 2022. [Accessed:

May, 2023]. Available at:
https://www.redhat.com/en/topics/containers/whats-a-linux-container

[21] Alpine Linux. Alpine Linux [online]. [Accessed: May, 2023]. Available at:

https://www.alpinelinux.org/

[22] Kassing, S.; Bhattacherjee, D.; Águas, A. B.; Saethre, J. E.; Singla, A.

Exploring the “Internet from space” with Hypatia. IMC ’20: Proceedings of
the ACM Internet Measurement Conference, 2020, p. 214-229.
[Accessed: May, 2023]. Available at:
https://doi.org/10.1145/3419394.3423635

[23] Kassing, S.; Bhattacherjee, D.; Águas, A. B.; Saethre, J. E.; Singla, A.

Hypatia source code. Available at: https://github.com/snkas/hypatia

[24] Canonical Ltd. Pylxd documentation. Read the Docs [online]. [Accessed:

May, 2023]. Available at: https://pylxd.readthedocs.io/en/latest/

[25] Canonical Ltd. Pylxd source code. Available at:

https://github.com/lxc/pylxd

[26] Grönholm, A. Advanced Python Scheduler. Read the Docs [online].

[Accessed: May, 2023]. Available at:
https://apscheduler.readthedocs.io/en/3.x/

[27] Grönholm, A. APScheduler source code. Available at:

https://github.com/agronholm/apscheduler/tree/3.x

[28] Hagberg, A. A.; Schult, D. A.; Swart, P. J. Exploring Network Structure,

Dynamics, and Function using NetworkX. Proceedings of the 7th Python
in Science conference. 2008, p. 11-15. [Accessed: May, 2023]. Available
at: https://conference.scipy.org/proceedings/SciPy2008/paper_2/

[29] Hagberg, A. A.; Schult, D. A.; Swart, P. J. NetworkX source code.

Available at: https://github.com/networkx/networkx

[30] Newt, K. PyShark documentation. [Accessed: May, 2023]. Available at:

http://kiminewt.github.io/pyshark/

https://doi.org/10.1109/TNSM.2023.3274638
https://linuxcontainers.org/
https://www.redhat.com/en/topics/containers/whats-a-linux-container
https://www.alpinelinux.org/
https://doi.org/10.1145/3419394.3423635
https://github.com/snkas/hypatia
https://pylxd.readthedocs.io/en/latest/
https://github.com/lxc/pylxd
https://apscheduler.readthedocs.io/en/3.x/
https://github.com/agronholm/apscheduler/tree/3.x
https://conference.scipy.org/proceedings/SciPy2008/paper_2/
https://github.com/networkx/networkx
http://kiminewt.github.io/pyshark/

82 Analysis of OSPFv3 in LEO Satellite Networks

[31] Newt, K. PyShark source code. Available at:
https://github.com/KimiNewt/pyshark/

[32] Tilmans, O.; Jadin, M. IPMininet. [Accessed: February, 2023]. Available

at: https://github.com/cnp3/ipmininet

[33] Mininet Project Contributors. Mininet. [Accessed: February, 2023].

Available at: http://mininet.org/

[34] Coltun, R.; Ferguson, D.; Moy, J.; Lindem, A. RFC 5340 - “OSPF for

IPv6”. RFC editor, 2008. [Accessed: June, 2023]. Available at:
https://doi.org/10.17487/RFC5340

[35] Machado, S.; Agustí, A; León, O.; Raspall, F. Encaminament IP interior –

Protocol OSPF. Notes of the subject Arquitectura i Protocols d’Internet,
taught at Escola d’Enginyeria de Telecomunicació i Aeroespacial de
Castelldefels of the UPC. [Accessed: June, 2023]

[36] Agustí, A; León, O.; Raspall, F. Introducció al protocol IPv6. Notes of the

subject Arquitectura i Protocols d’Internet, taught at Escola d’Enginyeria
de Telecomunicació i Aeroespacial de Castelldefels of the UPC.
[Accessed: June, 2023]

[37] Botta, A.; De Donato, W.; Dainotti, A.; Avallone, S.; Pescapé, A. D-ITG

2.8.1 Manual, 2013. Accessed: July, 2023]. Available at:
https://traffic.comics.unina.it/software/ITG/manual/index.html

https://github.com/KimiNewt/pyshark/
https://github.com/cnp3/ipmininet
http://mininet.org/
https://doi.org/10.17487/RFC5340
https://traffic.comics.unina.it/software/ITG/manual/index.html

List of Acronyms and Abbrevations 83

LIST OF ACRONYMS AND ABBREVATIONS

CDAR-L Cross-Domain Aggregation Routing based on Lightweight OSPF

CSPF Constrained Shortest Path First

DHCP Dynamic Host Configuration Protocol

D-ITG Distributed Internet Traffic Generator

FRR FRRouting Protocol Suite

GEO Geostationary Earth Orbit

GSL Ground to Satellite Link

IGP Interior Gateway Protocol

ISL Inter-Satellite Link

ITSN Integrated Terrestrial-Satellite Network

L4S Low Latency Low Loss Scalable Throughput Internet Service

LEO Low Earth Orbit

LS Link State

LSA Link State Advertisement

LXC Linux Container

LXD Linux Container Daemon

NAT Network Address Translation

OOWLP Optimized OSPF with Link Plan

OPSPF Orbit Prediction Shortest Path First

OSPF-PUR OSPF-based Predictive Update Routing

OSPFv3 Open Shortest Path First version 3

PSTN Public Switched Telephone Network

RIB Routing Information Base

SRv6 Segment Routing over IPv6

UDP User Datagram Protocol

ULA Unique Local Address

84 Analysis of OSPFv3 in LEO Satellite Networks

LIST OF FIGURES

Fig. 0.1. Bent-pipe method 9

Fig. 1.1. LEO satellite constellation 12

Fig. 1.2. Iridium satellite network 13

Fig. 1.3. Iridium spot beams 15

Fig. 1.4. Walker-star constellation 16

Fig. 1.5. Walker-delta constellation 16

Fig. 2.1. Schematic of the scenario to be analyzed 19

Fig. 2.2. Comparison between virtual machines and containers 20

Fig. 2.3. Default LXD configuration 21

Fig. 2.4. Alpine distribution images 22

Fig. 2.5. Comparison between Alpine and Ubuntu images sizes 24

Fig. 2.6. Default profile configuration 25

Fig. 2.7. Comparison between lxc init and lxc launch 26

Fig. 2.8. Topology builder schematic 28

Fig. 2.9. Topology builder flowchart 30

Fig. 2.10. Description of nodes in GML format 31

Fig. 2.11. Description of edges in GML format 31

Fig. 2.12. Satellites in range in txt format 32

Fig. 2.13. Ground stations in txt format 32

Fig. 2.14. Topology UML class diagram 32

Fig. 2.15. Networks’ property definition 33

Fig. 2.16. Routers’ property definition 33

Fig. 2.17. createTopology() flowchart 34

Fig. 2.18. jsonSatellites() flowchart 35

Fig. 2.19. Description of nodes in JSON format 35

Fig. 2.20. Description of edges in JSON format 36

Fig. 2.21. jsonGroundStations() flowchart 36

Fig. 2.22. Description of GSL in JSON format 37

Fig. 2.23. Network emulation schematic 38

Fig. 2.24. Network topology initialization flowchart 38

List of Figures 85

Fig. 2.25. Events flowchart 39

Fig. 2.26. satellitesEvent() flowchart 40

Fig. 2.27. Description of ISL event in JSON format 41

Fig. 2.28. groundStationsEvents() flowchart 41

Fig. 2.29. Description of GSL event in JSON format 42

Fig. 2.30. Event UML class diagram 42

Fig. 3.1. Topology example 50

Fig. 3.2. Router LSAs 51

Fig. 3.3. Topology segment from Router LSA 52

Fig. 3.4. Link LSAs 53

Fig. 3.5. Topology segment from Link LSAs 53

Fig. 3.6. Intra-Area Prefix LSAs 54

Fig. 3.7. Topology segment from Intra-Area Prefix LSA 55

Fig. 3.8. R1 IPv6 RIB 55

Fig. 4.1. Scenario analyzed 57

Fig. 4.2. FRR object definition 58

Fig. 4.3. Jitter calculation scheme 60

Fig. 4.4. OSPFv3 convergence time histogram. Δt = 20 s 61

Fig. 4.5. Number of hops histogram. Δt = 20 s 62

Fig. 4.6. Satellite ground track. Δt = 20 s 62

Fig. 4.7. Packet delay and number of hops. Δt = 20 s. Configuration 1 64

Fig. 4.8. Packet delay histogram. Δt = 20 s. Configuration 1 64

Fig. 4.9. Packet loss rate and satellite orbit latitudes. Δt = 20 s. Configuration 1 65

Fig. 4.10. Packet delay and number of hops. Δt = 20 s. Configuration 2 66

Fig. 4.11. Packet delay histogram. Δt = 20 s. Configuration 2 67

Fig. 4.12. Packet loss rate and satellite orbit latitudes. Δt = 20 s. Configuration 2 68

Fig. 4.13. OSPFv3 convergence time histogram. Δt = 5 s 69

Fig. 4.14. Number of hops histogram. Δt = 5 s 69

Fig. 4.15. Satellite ground track. Δt = 5 s 70

Fig. 4.16. Packet delay and number of hops. Δt = 5 s. Configuration 1 71

Fig. 4.17. Packet delay histogram. Δt = 5 s. Configuration 1 72

Fig. 4.18. Packet loss rate and satellite orbit latitudes. Δt = 5 s. Configuration 1 73

86 Analysis of OSPFv3 in LEO Satellite Networks

Fig. 4.19. Packet delay and number of hops. Δt = 5 s. Configuration 2 74

Fig. 4.20. Packet delay histogram. Δt = 5 s. Configuration 2 75

Fig. 4.21. Packet loss rate and satellite orbit latitudes. Δt = 5 s. Configuration 2 76

List of Figures 87

LIST OF TABLES

Table 1.1. Iridium frequency plan 14

Table 2.1. HypatiaSeam input parameters 29

Table 2.2. Python libraries used 43

Table 4.1. D-ITG summary. Δt = 5 s. Configuration 1 63

Table 4.2. D-ITG summary. Δt = 5 s. Configuration 2 66

Table 4.3. D-ITG summary. Δt = 20 s. Configuration 1 70

Table 4.4. D-ITG summary. Δt = 20 s. Configuration 2 73

Appendices 89

APPENDICES

TFG TITLE: ANALYSIS OF OSPFv3 IN LEO SATELLITE NETWORKS

DEGREE: Double bachelor’s degree in Aerospace Systems Engineering
and Telecommunications Systems

AUTHOR: Daniel Román Martín

DIRECTOR: Sergio Machado Sánchez

CODIRECTOR: Jorge Mata Díaz

DATE: July 24th, 2023

90 Analysis of OSPFv3 in LEO Satellite Networks

APPENDIX A. EXAMPLE OF EMULATION RUNNING

The steps required to start the emulation, as well as to start the tests, are
described in the below. All steps are described from the /seamsat directory.

1. The first step is to place the satellite_network_i.gml and

satellite_in_range_i.txt files in the folders named

gmlSatellites and txtSatInRange, respectively.

2. Then you would have to set the time between snapshots in the

convertToJSON.py and createEvents.py files, in the variable

called intervalTime, at the beginning of the code.

3. You would have to do the same as in the second step, but in the

topology.py file, in the variable prevTime that is located inside the

__addEvents() function.

4. In the cli.py file, at the end in the numSnapshots variable, you set the

number of snapshots to complete the path, i.e., if you want to cover two
hours with a snapshot interval of 20 seconds, the value to set would be
360.

5. The code is executed with the command sudo python cli.py. Once

the terminal is loaded, the only thing left to do is to execute the start

command.

To start the pcapng captures, wait until all the routers have been created and
started. When the message ‘Routers started’ appears on the screen, manually
run the capture.sh script. In this script the only thing you have to modify is

the name you want to save the capture.

The code for counting the number of hops is found at the end of the
__addEvents() function. The only thing to modify is the time between

snapshots.

Finally, to start the D-ITG you would have to pen two terminals and attach on to
the generator and the other to the sink. Then, you would have to put the
commands to capture and execute them before the first events occurs.

