
The final publication is available at IEEE via: https://doi.org/10.1109/ICSRS56243.2022.10067299

A Methodology for Selective Protection of Matrix
Multiplications: a Diagnostic Coverage and

Performance Trade-off for CNNs Executed on GPUs
Javier Fernández, Irune Agirre, Jon Perez-Cerrolaza

Ikerlan Technological Research Center, Basque
Research and Technology Alliance (BRTA), Spain

javier.fernandez,iagirre,jmperez@ikerlan.es

Jaume Abella, Francisco J. Cazorla
Computer Architecture-Operating Systems department

Barcelona Supercomputing Center, Spain
jaume.abella, francisco.cazorla@bsc.es

Abstract—The ability of CNNs to efficiently and accurately
perform complex functions, such as object detection, has fostered
their adoption in safety-related autonomous systems. These
algorithms require high computational performance platforms
that exploit high levels of parallelism. The detection, control
and mitigation of random errors in these underlying high
computational platforms become a must according to functional
safety standards. In this paper, we propose protecting, with
a catalog of diagnostic techniques, the most computationally
expensive operation of the CNNs, the matrix multiplication.
However, this protection entails a performance penalty, and the
complete CNN protection may be unaffordable for those systems
operating with strict real-time constraints. This paper proposes
a three-stage methodology to selectively protect CNN layers
to achieve the required diagnostic coverage and performance
trade-off: i) sensitivity analysis to misclassification per CNN
layers using a statistical fault injection campaign, ii) layer-by-
layer performance impact and diagnostic coverage analysis, and
iii) selective layer protection. Furthermore, we propose a strategy
to effectively compute the achievable diagnostic coverage of large
matrices implemented on GPUs. Finally, we apply the proposed
methodology and strategy in Tiny YOLO-v3, an object detector
based on CNNs.

Index Terms—Safety, GPU, CNN, protection, matrix multipli-
cation, fault detection

I. INTRODUCTION

Techniques based on deep neural networks (DNNs), and
more particularly on convolutional neural networks (CNNs),
are extensively used to deploy complex functionalities such as
those required by autonomous systems, e.g., object detection
tasks [1]. These highly parallelized algorithms handle massive
volumes of data and impose high-performance demands on
the underlying hardware where they are deployed. CNNs are
commonly executed on graphics processing units (GPUs) that
provide the required data parallelism through their thread-
level parallelism. However, their high parallelism and memory
hierarchy can spread a single fault to multiple, jeopardizing the
proper reliable execution [2]. For instance, a single bit-error
can lead to a dangerous misclassification of objects (e.g., not
detecting pedestrians and traffic lights) [3].

Depending on the application criticality, these errors can
lead to catastrophic consequences. Specially in safety-related
systems, where random errors must be detected, controlled
and mitigated according to functional safety standards such as
IEC 61508 [4].

This paper proposes a step-by-step methodology for se-
lective protection of matrix-matrix multiplications (MMMs)
to achieve the required diagnostic coverage (DC) with a
performance trade-off for CNN deployed on GPUs. These
arithmetic operations are the backbone of CNNs and take most
of their execution time [5]. A recent paper proposes creating
an array of execution signatures using a catalog of diagnostic
techniques implemented at the arithmetic operation level to
protect the MMM according to functional safety standards [3].
This catalog provides different degrees of DC incurring an
execution time penalty (performance penalty) according to the
implementation and the dimensions of the MMM. Therefore,
a trade-off between performance and DC shall be analyzed to
apply this safety diagnostics catalog. However, these safety-
related systems commonly operate in real-time, having to
cope with stringent timing constraints. The resulting slowdown
for the highest DCs may be unaffordable when applied to
the complete CNN. In those cases, we propose to reduce
the performance impact by considering two new factors in
the selective protection of each CNN layer: i) its sensitivity
to misclassification and ii) its performance penalty for the
complete CNN. We enumerate the main contributions of this
paper as follows:

• We define a step-by-step methodology to selectively
protect CNNs deployed on GPUs by implementing di-
agnostics in the MMM [3]. This methodology has three
stages: i) CNN’s sensitivity to misclassification analysis,
ii) layer-by-layer performance impact and DC analysis,
and iii) selective CNN layer protection.

• We present a strategy to efficiently determine the achiev-
able DC of large matrices implemented on GPU. This
strategy is based on the DC analysis of the grid of thread
blocks in which they are launched on the GPU.

• We apply the proposed methodology and strategy in an
object detection application based on Tiny YOLO-v3.

The rest of the paper is structured as follows: Section II
outlines the necessary background. Section III describes our
methodology for protecting CNNs and proposes a strategy to
evaluate the achievable DC of large matrices. Then, Section IV
evaluates our methodology in Tiny YOLO-v3 and Section V
presents an analysis of the related work. Finally, in Section VI
we draw conclusions and provide future research lines.

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works. http://dx.doi.org/10.1109/ICSRS56243.2022.10067299

The final publication is available at IEEE via: https://doi.org/10.1109/ICSRS56243.2022.10067299

II. BACKGROUND

This section explains basic concepts such as safety certifi-
cation, the object detector Tiny YOLO-v3 and the proposed
CUTLASS MMM to be included in the Tiny YOLO-v3 CNN.
Finally, we outline a solution to provide the MMM with
diagnostic capabilities.

A. Safety Certification

In safety-critical systems, regulatory authorities require
safety certification, which is commonly achieved by adhering
to functional safety standards such as IEC 61508 [4]. These
standards set out the requirements, techniques, and measures
to avoid, mitigate and detect random hardware and systematic
errors according to the safety integrity level (SIL). The SIL
defines a safety integrity range where four is the highest and
one is the lowest level (SIL1... SIL4), with the diagnostics and
safety measures being more demanding at the highest levels.

“Diagnostic Coverage (DC) denotes the effectiveness of
diagnosis techniques to detect dangerous errors, expressed
in coverage percentage with respect to all possible dan-
gerous errors” [6]. The required DC range is imposed by
the SIL and hardware fault tolerance (HFT) (IEC 61508-2
Table 3). IEC 61508 classifies DC in three ranges: i) low
(60% < DC < 90%), ii) medium (90% ≤ DC < 99%) and
iii) high (99% ≤ DC). The implementation of DC techniques
based on software becomes relevant in order to diagnose the
proper operation of the hardware components periodically
(e.g., against permanent errors) or to complement hardware
built-in diagnosis (usually ranked as low/medium DC) [2], [6].

B. Object Detection: Tiny YOLO-v3

You only look once (YOLO) is a multi-scale object detector
whose backbone network is Darknet [7], a CNN coded in C
and CUDA. There are several versions of this object detector
[8]–[10] and all involve the use of three types of layers: i) the
convolutional layers that extract the features from the input
image, ii) max-pooling layers reducing the feature map and iii)
fully connected layers classifying the input. Tiny YOLO-v3 is
the reduced version of YOLO-v3 with a smaller backbone that
splits into a lower number of convolutional layers (13 nested
layers). We depict its architecture at the center of Fig. 2.

The MMM is the most relevant and time consuming func-
tion for the CNN. It entails 67% of the CNN execution
time [5]. Darknet offers several implementation options ac-
cording to the deployment platform. In this paper, we focus
on the CUTLASS library [11].

C. CUTLASS

CUTLASS is the open-source library provided by NVIDIA
to implement high-performance matrix-multiplication in GPU-
based implementations [11]. It is coded in CUDA and C++.
This low-level library decomposes this algebraic operation into
software modules while abstracting the designer using C++
template classes. Its hierarchical decomposition into device,
blocks, warp, and threads eases the understanding of the data
movement. Fig. 1 depicts the memory transfer at each stage
of the matrix multiply–accumulate (C += A × B).

matrix C

Global memory Shared memory Register file SM CUDA Cores

matrix B
matrix A

Thread tileWarp tileThread block tileBlocked GEMM

Fig. 1: CUTLASS GEMM hierarchy [11].

D. Execution Signature

Techniques based on creating an execution signature (ES) or
Frame Check Sequence (FCS) are widely employed to assure
integrity in data transmission. In that way, the effectiveness
of diagnostics such as XOR, one’s and two’s complement,
Fletcher, and cyclic redundancy check (CRC) have been
widely studied [12], [13].

In a recent paper [3], authors provide CUTLASS with
a catalog of diagnostic techniques to compute an array of
ESs computed at different levels of the MMM. Algorithm 1
presents the CUTLASS MMM implementation at thread-
level (t) and denotes the diagnostics as internal (I), medium
(M) and external (E) depending on the loop where they are
implemented. These diagnostics compute an array of ESs that
must be bit-for-bit exact with the ES array of the reference
execution (golden reference ES array). For that, the authors
propose two architectural patterns, one based on redundancy
and the other based on a periodic diagnosis of the components
involving the MMM. This latter pattern compares the array of
ESs against that obtained from predefined input values.

Algorithm 1 MMM loops computed at thread-level
1: for k from 0 to Kt do
2: External loop statements
3: for n from 0 to Nt do
4: Intermediate loop statements
5: for m from 0 to Mt do
6: Internal loop statements (MMM computation)
7: [Internal diagnostic (I)]
8: end for
9: [Medium diagnostic (M)]

10: end for
11: [External diagnostic (E)]
12: end for

III. METHODOLOGY TO SELECTIVELY PROTECT CNNS

In this section, we present a methodology for the selective
DC-level protection of MMM-based CNNs applied in safety-
related applications. The methodology, shown in Fig.2, seeks
to find a trade-off between DC and the performance impact
that diagnostic techniques incur. The layered architecture of
CNNs is the main foundation of the methodology (see Fig.2).
In this layered CNN architecture, the impact of a error is
highly dependant on the layer where the error occurs and
its propagation through the CNN. The proposed methodology
seeks to identify the most misclassification-prone layers to
provide selective CNN protection through three stages.

The final publication is available at IEEE via: https://doi.org/10.1109/ICSRS56243.2022.10067299

CNN (Tiny YOLO-v3 architecture)
Golden inference+
execution time ref.

Intermediate
Output Final Output

Most error-prone
layers

Golden ES

ES with fi

Inference with fi

Diagnostic
coverage

Performance
impact

Execution time
with diagnostics

Output

.

A layer-by-layer selection
 of diagnostic mechanisms

St
ag

e
3:

 S
el

ec
tiv

e
 p

ro
te

ct
io

n

Inputs

Safety requirementsPrevious stages results H MH

L

H H H M H

L

M L M

St
ag

e
1:

 S
en

si
tiv

ity
 to

m
is

cl
as

si
fic

at
io

n
An

al
ys

is
St

ag
e

2:
 D

C
 a

nd
 p

er
fo

rm
an

ce

im
pa

ct
 a

na
ly

si
s

Safe library

St
ep

 1
.1

Fault
InjectionInput

St
ep

 1
.2

St
ep

 2
.2

St
ep

 2
.3

St
ep

 2
.1

x

xxx

Fig. 2: Selective CNN layer protection methodology

In Fig.2, we depict the input and intermediate and final
outputs from each stage. Finally, we propose a strategy to ob-
tain the DC of large matrices in an efficient way, significantly
reducing the fault1 injection campaign effort.

A. First Stage: CNN’s Sensitivity to Misclassification Analysis.
This section evaluates the behavior of CNN layers against

single-bit errors affecting weights in classification tasks. We
focus on identifying the most misclassification-prone layers by
performing a fault injection campaign in weights. We define
the first two steps as follows (see Fig.2):
Step 1.1 performs the classification with a set of predefined
images to obtain a reference inference value (golden reference)
for each image and measures the execution time required by
each layer.
Step 1.2 executes a fault injection campaign with the same
set of images. Exhaustive fault injection at bit level is hardly
manageable due to the required testing time, even in small
CNNs. For example, Tiny Yolo-v3 weight configuration file
has 9.06e9 bits [8] that would require the same amount of
single-bit error injection executions. According to our GPU-
based implementation, the execution time of a single image
classification is about 45,82 ms. Therefore, performing an
exhaustive single-bit fault injection campaign with a single
Xavier Nx GPU would take approximately 13,163 years.

CNN-based applications such as Tiny YOLO-v3 commonly
rely on floating-point data types. In these data types, the
impact in the classification varies depending on the bit position
affected by the error [14]–[16]. Errors affecting the weights
in the exponent bits have the greatest potential impact on
generating incorrect classifications in multiplication operations
(with respect to mantissa and sign bits) [14]–[16]. So, we
propose to concentrate the fault injection campaign on the
exponent bits of the weights. After defining classification
features such as the confidence level, error margin, and the

1Since the injection consists of flipping bits, they can be considered faults
or errors. Hence, we could use both terms interchangeably in our discussion.
However, we generally refer to them as errors except when talking about
injection since fault injection is the most common term in the domain.

total number of possible errors in the weights, we compute
a statistically representative random sampling size as stated
in [17].

Then, we compare the inference results (with fault injec-
tions) against the golden reference (Step 1.1) using a misclas-
sification criterion, obtaining the most misclassification-prone
layers (final output of this first stage). We propose a semantic
comparison of the detected classes against the golden reference
according to the specific CNN application. E.g., in object
detection applications, such as YOLO, this criterion would be
based on defining acceptance ranges for features such as the
accuracy of the detected classes, box size (height and width),
or location of the box center for each of the detected classes.

B. Second Stage: Layer-by-layer Performance Impact and DC

After the identification of the most misclassification-prone
layers, this stage evaluates the performance impact incurred by
the inclusion of diagnostics in each layer and the maximum
achievable DC. To this end, we rely on the safe MMM library
that provides a diagnostic techniques catalog [3]. This stage
follows the next three steps depicted in Fig. 2:
Step 2.1 evaluates the execution time penalty incurred by
each diagnostic technique included in the safe catalog. To this
end, we apply the diagnostics in all CNN layers and measure
the execution time of each one. This process is repeated
for the different types of protection techniques provided in
the diagnostics catalog. The performance penalty is then
determined as a ratio between the mean execution time of
each CNN layer with the diagnostic techniques divided by
the mean execution time to compute the same layer without
diagnostics (previously measured in Step 1.1).
Step 2.2 computes an array of golden ESs by including the
safe library of diagnostic techniques in the MMM execution of
each layer (without fault injections). This value is then taken as
a golden reference in next steps to determine whether injected
errors are detected by diagnostics (bit identical) or not.
Step 2.3 performs a fault injection campaign and obtains the
DC associated with each layer. However, an exhaustive fault
injection campaign may be unaffordable for large matrices due

The final publication is available at IEEE via: https://doi.org/10.1109/ICSRS56243.2022.10067299

to the required number of iterations to cover all input combi-
nations. That is why, in Subsection III-D we propose a strategy
to compute the DC of large matrices implemented on GPUs,
relying on the CUDA programming model characteristics.

C. Third Stage: Selective DC-level Protection

The performance impact and DC analysis of all CNN
layers, Step 2.1 and Step 2.3, are followed by analyzing the
most appropriate diagnostics layer-by-layer. The SIL of the
safety function and the HFT of the system determine the
minimum DC range to achieve. Thus, the diagnostics with the
lowest performance impact that achieves at least the imposed
DC is selected in a layer-by-layer process.

However, many safety-related applications, especially those
in real-time systems, have stringent timing requirements. In
those cases, the selective DC-level protection of the CNN is the
most reasonable option instead of complete protection of all
CNN layers. The results obtained in the analysis of the CNN’s
sensitivity to missclassification determine the layers less likely
to cause misclassification. We propose to selectively protect
each layer based on these results and taking into account the
percentage of the execution time of each layer according to the
complete CNN. The selective protection depends on CNN’s
propensity to misclassifying, and it is always subject to a
final fault injection campaign to simulate the achieved DC
according to the selection. As a representative example, we
have depicted in Fig. 2 a particular diagnostics selection in
the form of shields including the chosen DC range: i) low
(L), ii) medium (M) and iii) high (H).

Note that a valid solution is always reached since at least
one of the diagnostics provides high DC, so such diagnostic in
all layers would be a valid solution from the DC standpoint.
Hence, the goal is preserving a sufficiently high DC while min-
imizing the performance impact due to diagnostics according
to the maximum affordable by the specific application.

D. DC Analysis in Large Matrices

This subsection decomposes into two parts. First, we ex-
plain the base of our strategy to evaluate the DC of large
matrices and the main factors that affect the effectiveness
of the diagnostics. Then, we describe how to compute the
final DC according to the source of the error in the MMM
implementation.

1) Block Decomposition: Before launching a CUDA kernel,
it is necessary to define built-in variables to decompose the
function to parallelize into a grid of blocks of threads (see
Fig.1 in background). These blocks execute according to the
single instruction multiple thread (SIMT) model. That is, all
active threads process the data in the same way. Since those
threads access shared memory (block dependant memory), we
can consider that all blocks with the same number of active
threads handle the same amount of data independently. This
independence among blocks is the cornerstone of our strategy
to evaluate the achievable DC of large MMMs since we can
compute it from the DC evaluation of smaller blocks.

The following factors shall be considered in this strategy:

F1 Block parity: techniques such as XOR, one’s, and two’s
complement checksums do not detect errors affecting the
same bit position of an even number of data words.

F2 Block dimensions: determines the amount of data com-
puted by each block. A higher amount of data to be pro-
tected may lead to lower diagnostics effectiveness [12].

F3 Error source: errors affecting global memory spread into
several ones instead of those appearing in a register,
which can affect a single arithmetic operation [2].

F4 Fault type: the effectiveness of the diagnostics varies
according to the type of errors (e.g., single bit, burst,
random errors). This paper focuses on single-bit errors.

F5 MMM implementation: the specific software implemen-
tation and the location of diagnostics instrumentation in
end user’s code are crucial in the effectiveness of the
diagnostics [3], [18].

Fig. 3a depicts a MMM with a representative matrix dimen-
sions (e.g., output matrix C = 133 × 200 with a grid of threads
blocks <64, 64, 8>) to explain the DC computation and the
influence of previously enumerated factors. As explained in
the background, the CUTLASS library decomposes the matrix
into blocks to run the MMM in the GPU. We denote as B1

those blocks whose dimensions match the size of the blocks
launched to the GPU, B2 as those with an equal number of
columns but different rows, B3 if the number of rows matches
but columns differ, and finally, B4 if both the number of rows
and columns differ.

matrix A

B1 B1 B1

B1B1B1 B3

B3

B2 B2 B2 B4

matrix B

matrix C

(a) MMM block decomposition

B
R

T2
B

R
T1

Matrix C

B1

B2

B1B1

B1 B1

B2

B1

B2 B4

B3

B3

(b) Block rows

BCT2BCT1

Matrix C

B1

B2

B1B1

B1 B1

B2

B1

B2 B4

B3

B3

B1

(c) Block columns

Fig. 3: MMM decomposition into blocks

2) DC Computation per Error Source: Depending on the
error source (F3), the computation of the DC differs. We
propose two scenarios according to this source:

a) Faults injected at the arithmetic operation level or
at register level: In this scenario, the final DC can be ob-
tained after independently computing the DC associated with
previously defined blocks. As Eq. 1 summarizes, this value
is computed as the ratio between the sum of errors detected
(Ndet) by each block divided by the total number of fault
injections (Nfi)2, being i the type of block previously defined
(from B1-B4):

2In an exhaustive fault injection campaign at bit-level, this value is N
times the number of arithmetic operations. Being N the size of the data type
in which the matrices are stored.

The final publication is available at IEEE via: https://doi.org/10.1109/ICSRS56243.2022.10067299

DC =

4∑
i=1

N blocksBi ×Ndet Bi

Nfi
(1)

In this scenario, the effectiveness of XOR, one’s, and two’s
complement checksums is not affected by the block parity
factor (F1) since the error is not spread across multiple blocks,
and is not affected by the amount of data to be protected (F2).

b) Fault injected at the global memory level: This kind
of errors entails changes in the DC computation since the
error count diverges from the previous scenario. In this case,
the errors injected in the input matrices A and B affect
several blocks. Therefore, a proper DC computation requires
verifying if previous blocks have already counted the detected
errors. To do this, we propose distinguishing between errors
detected from the fault injection in A (DetA) and B (DetB)
matrices. Faults injected in A affect block rows (BRs) and
those injected in B matrix affect block columns (BCs), as
shown in Fig. 3b and Fig. 3c, respectively. In both cases, we
define two types of blocks: i) type 1 (T1) as those block
rows/columns (BRT1/ BCT1) in which at least one block
is B1, and ii) type 2 (T2) as those block rows/columns
(BRT2/ BCT2) in which none is B1. The number of detected
errors can be computed according to Eq. 2 and Eq. 3:

DetA = (B1†detA +B3†detA)×N BRT1 +B2∗detA +B4∗detA (2)

DetB = (B1⊗detB +B2⊗detB)×N BCT1 +B3⊛detA +B4⊛detA (3)

In the above equations, we include the same superscripts for
two blocks to indicate that those errors detected by one do
not have to be accounted for by the other. E.g., B1†detA and
B3†detA denote the number of detected errors in B1 and B3
respectively when performing a fault injection campaign in
matrix A. Since they belong to the same BR, we indicate by
means of the same superscript (†) that they are complementary
and do not have to account the same errors injected in A. For
that, we store the index positions of the errors detected by each
block in an array that the complementary block will check.
Eq. 4 presents the final step to compute the DC. As we are
performing a bit-level fault injection campaign, the number of
injected errors depends on the dimension of the input matrices
and the data size of the data type employed (data size).

DC =
DetA +DetB

Nfi
=

DetA +DetB
(M +N)×K × data size

(4)

In those errors appearing in the global memory for the
previously defined F1 and F5 factors, the other (smaller)
block matrices might detect additional errors with respect to
those detected by B1. As B1 dimensions are multiple of 32
(number of threads per warp) for performance reasons by
design, the amount of data protected according to our MMM
implementation (F5) is multiple of an even number. Therefore,
the effectiveness of some algorithms can be affected by F1
since any number multiplied by an even number leads to an
even result. Those other blocks protecting an odd number of
data can additionally detect those errors not detected by B1.
That occurs if the following conditions are met:

1) Diagnostics in the internal loop (I): the number of it-
erations computed by each thread is odd. That is, Mt,
Nt, and Kt take odd values. Note that, since B3 shares
the B1 row dimensions, and B2 the column dimensions,
these blocks do not detect additional errors since B1
dimensions are multiple of 32.

2) Diagnostics in the intermediate loop (M): The number of
protected data types is odd only if Nt and Kt are odd.

3) Diagnostics in the external loop (E): Kt is odd, indepen-
dently of Mt and Nt.

IV. EVALUATION

In this section, we evaluate our methodology and present
the results for each of the stages. We initially evaluate the
performance impact incurred by the adoption of each of the
diagnostic techniques from the safe MMM library in Tiny
YOLO-v3 layers, as well as their achievable DC. Finally,
according to these results, we discuss the most appropriate
diagnostics to perform selective protection of Tiny YOLO-v3
CNN based on the target SIL.

A. Experimental Set-up

We collect the performance impact and the DC analysis
in an NVIDIA Xavier NX embedded GPU. We replicate the
experimental set-up presented in [3] employing the clang com-
piler with CUDA (both version 10) over the Ubuntu operating
system running a PREEMPT-RT patch to minimize system
interference. With this intention, we also configure one of
the NVIDIA Carmel ARM cores to execute the program with
the highest priority and we program the system to operate at
maximum frequency. Finally, we launch a single MMM stream
to avoid interference and uncertainty in the execution order
(which can affect the proper execution of the ESs array) [19].

We denote the layers from Tiny YOLO-v3 as L1-L13,
where the number refers to the order position in the CNN.
Table I gathers the CNN’s configuration through the parame-
ters M , N and K, being A=M×K, B=K×N and C=M×N .

B. Stage 1: CNN’s Sensitivity to Misclassification Analysis

We perform a statistical fault injection campaign on the
exponent bits of the weights to analyze the sensitivity of the
CNN’s layers to misclassification when they are affected by
single errors. First, we compute a statistically representative
random sampling size (Injections) with a 95% confidence
level and a 1% error margin, taking as reference the number
of potential faults targeting each layer (Faults target). As we
focus on the exponent bits (8 bits) of the weights, the number
of faults targets of each layer is faults = N ×K×8. Table I
summarizes the above mentioned features.

Then, we perform the fault injection campaign for five
images extracted from Berkeley dataset [20]. As a classifi-
cation criterion, we consider that the objects are detected if,
by comparing against the golden result: 1) accuracy differs
less than 15%, 2) width and height of the boxes vary less than
25 pixels, and 3) the central point of the box is less than 50
pixels away. Note that this criterion depends on the specific
application (e.g., resolution of the input image). Applying this
criterion and performing the average across the five images,

The final publication is available at IEEE via: https://doi.org/10.1109/ICSRS56243.2022.10067299

TABLE I. LAYER-BY-LAYER SIZE, TOTAL ERRORS AND STATISTICALLY REPRESENTATIVE FAULT INJECTIONS PER LAYER

Features Tiny Yolo-v3
L1 L2 L3 L4 L5 L6 & L9 L7 L8 L10 L11 L12 L13

M 173056 43264 10816 2704 676 169 169 169 169 169 676 676
N 16 32 64 128 256 512 1024 256 255 128 256 255
K 27 144 288 576 1152 2304 4608 1024 512 256 3456 256
Faults target 3456 36864 147456 589824 2359296 9437184 37748736 2097152 1044480 262144 7077888 522240
Injections 413 3114 6314 8497 9301 9526 9584 9265 8946 7427 9501 8372
Timing (%) 20,30 16,75 8,60 4,71 3,93 6,21 18,40 1,75 1,07 0,71 10,10 1,28

we obtain the results collected in Table II. In this table, we
depict the undetected objects or false negatives (FNs) and the
average of new objects that appear or false positives (FPs) in
percentage terms.

TABLE II. LAYER-BY-LAYER ANALYSIS OF ITS SENSITIVITY TO
MISCLASSIFICATION

Layer position FNs (%) FPs (%)
L1 96,39 0,16
L2 90,64 1,64
L3 93,74 1,19
L4 92,29 0,85
L5 83,37 2,70
L6 96,79 1,45
L7 87,06 1,16
L8 99,59 0,04
L9 59,75 6,50
L10 55,16 6,50
L11 74,34 0,07
L12 55,70 27,63
L13 66,80 27,29

In FNs column, we observe that modifying a single bit in
the exponent of a weight leads to a failure to detect most of
the objects regardless of the layer where the weight is used.
Moreover, we observe that the impact of the initial layers
(from L1-L8) on the classification is higher in contrast with
the final layers (L9-L13). As mentioned in the background,
YOLO is a multi-scale object detector that performs multi-
layer feature extraction. Tiny YOLO-v3 performs this feature
extraction from L13 and L10 layers (see Fig 2). These layers
belong to different branches whose origin is the output from
L8. Errors in the initial layers propagate virtually to all outputs
causing catastrophic errors in the form of very high FNs.
Instead, errors in the final layers have a lower impact due to
the lower propagation of errors, and is more frequent the case
where only the bounding box or object location is affected,
which translates into an FP if impact is large enough, or into
no semantic error if impact is small. Note that L11 errors do
not produce as many FNs and FPs as the rest of the final layers
since the concatenation with L5 and the absence of errors on
the other branch (L9 and L10) mitigate their appearance. In
addition, it should be noted that errors in L10 and L11 produce
a greater number of FPs than those in L9 and L10 because the
scale of the former is larger than that of the latter, detecting
smaller objects with smaller scales.

C. Stage 2: Layer-by-layer Performance and DC Analysis

In this subsection, we evaluate the achievable DC and
performance impact associated with the inclusion of the di-
agnostics catalog in each of the Tiny YOLO-v3 layers.

1) Step 2.1: Performance Impact: The work in [3] em-
phasizes the importance of memory management in GPU
platforms, which usually becomes the main bottleneck in
those highly-parallelized platforms [2]. Hence, the following
memory usage optimization in the implementation of the
diagnostics catalogue is proposed and evaluated by launching a
set of experiments that replicate those carried out in paper [3].
In contrast with them, we include an intermediate allocation
in the shared memory of the ESs between the global memory
and the register for the sake of performance, as seen in Fig. 4.

Device Memory
Memory Block

Registers
d_ES_a_reg
d_ES_b_reg
d_ES_c_reg

Shared Memory

d_ES_a_shared[n_Elem]
d_ES_b_shared[n_Elem]
d_ES_c_shared[n_Elem]

d_table_shared[CRC_nE
lem]

Constant Memory

d_CRC_table[CRC_nElem]

Global Memory

d_ES_a[n_Elem]
d_ES_b[n_Elem]
d_ES_c[n_Elem]

Host Memory

h_ES_a[n_Elem]
h_ES_b[n_Elem]
h_ES_c[n_Elem]

h_CRC_table
[CRC_nElem]

Shared Memory

d_table_shared[CRC_nElem]

Fig. 4: Memory hierarchy

This enhancement is measured as a ratio between the
execution time presented in [3] and those obtained with the
new memory hierarchy. We obtain an enhancement ranging
between 15% and 65% execution time reduction using the
maximum compiler optimization.

We include in Table I in percentual terms the execution time
breakdown across layers for the complete CNN performed
without diagnostics and with maximum compiler optimiza-
tions. These values will be decisive in Stage 3. For instance,
L1 is the most time consuming layer accounting for 20.3% of
the overall execution time of the CNN.

Then, we measure the performance impact incurred by
adopting the diagnostics catalog following Step 2.1 of the
methodology. In this experiment, we measure the layer-by-
layer execution time required to predict single images with a
set of a thousand images extracted from the Berkeley Deep-
Drive dataset [20]. Additionally, we dispensed with the initial
hundred timing measurements to avoid the impact of problems
related to cache cold-starting, and the delays involved with the
initial kernel launches [21].

We perform the first set of experiments disabling the com-
piler optimizations (compiler option -O0) to reduce the safety
challenges that optimizations may entail (e.g., altering the
control flow). We present the performance impact layer-by-
layer of Tiny YOLO-v3 CNN in Fig. 5 (results normalized
with respect to the layer execution without diagnostics). It
should be noted that L6 and L9 are depicted in the same figure
since they have identical dimensions, and hence, identical
execution times.

The final publication is available at IEEE via: https://doi.org/10.1109/ICSRS56243.2022.10067299

L1

1.00

1.05

1.10

1.15

1.20

1.25

P
er

fo
rm

an
ce

 Im
pa

ct

L4

1.00

1.05

1.10

1.15

P
er

fo
rm

an
ce

 Im
pa

ct

L7

1.00

1.05

1.10

1.15

1.20

P
er

fo
rm

an
ce

 Im
pa

ct

L11

X
O

R
 (

E
)

X
O

R
 (

M
)

X
O

R
 (

I)
O

N
E

S
 (

E
)

O
N

E
S

 (
M

)
O

N
E

S
 (

I)
T

W
O

S
 (

E
)

T
W

O
S

 (
M

)
T

W
O

S
 (

I)
F

LE
T

 (
E

)
F

LE
T

 (
M

)
F

LE
T

 (
I)

C
R

C
 (

E
)

C
R

C
 (

M
)

C
R

C
 (

I)
X

O
R

_F
LE

T
X

O
R

_C
R

C
O

N
E

S
_F

LE
T

O
N

E
S

_C
R

C
T

W
O

S
_F

LE
T

T
W

O
S

_C
R

C
F

LE
T

_C
R

C

1.00

1.10

1.20

Checksum(s) algorithms

P
er

fo
rm

an
ce

 Im
pa

ct

L2

1.00

1.05

1.10

1.15

1.20

1.25

L5

1.00

1.05

1.10

1.15

1.20

L8

1.00

1.05

1.10

1.15

1.20

1.25

L12

X
O

R
 (

E
)

X
O

R
 (

M
)

X
O

R
 (

I)
O

N
E

S
 (

E
)

O
N

E
S

 (
M

)
O

N
E

S
 (

I)
T

W
O

S
 (

E
)

T
W

O
S

 (
M

)
T

W
O

S
 (

I)
F

LE
T

 (
E

)
F

LE
T

 (
M

)
F

LE
T

 (
I)

C
R

C
 (

E
)

C
R

C
 (

M
)

C
R

C
 (

I)
X

O
R

_F
LE

T
X

O
R

_C
R

C
O

N
E

S
_F

LE
T

O
N

E
S

_C
R

C
T

W
O

S
_F

LE
T

T
W

O
S

_C
R

C
F

LE
T

_C
R

C

1.00

1.05

1.10

1.15

1.20

Checksum(s) algorithms

L3

1.00

1.10

1.20

1.30

L6 & L9

1.00

1.05

1.10

1.15

1.20

L10

1.00

1.05

1.10

1.15

1.20

L13

X
O

R
 (

E
)

X
O

R
 (

M
)

X
O

R
 (

I)
O

N
E

S
 (

E
)

O
N

E
S

 (
M

)
O

N
E

S
 (

I)
T

W
O

S
 (

E
)

T
W

O
S

 (
M

)
T

W
O

S
 (

I)
F

LE
T

 (
E

)
F

LE
T

 (
M

)
F

LE
T

 (
I)

C
R

C
 (

E
)

C
R

C
 (

M
)

C
R

C
 (

I)
X

O
R

_F
LE

T
X

O
R

_C
R

C
O

N
E

S
_F

LE
T

O
N

E
S

_C
R

C
T

W
O

S
_F

LE
T

T
W

O
S

_C
R

C
F

LE
T

_C
R

C

1.00

1.05

1.10

1.15

1.20

Checksum(s) algorithms

Fig. 5: Layer-by-layer performance impact without compiler optimizations (-O0)

From these results, we observe that the layer incurring
the highest performance impact is L3 (varying from 1.01
to 1.37), with the lowest performance impact values in L4
(from 1.002 to 1.18). Hence, relative performance impact is
quite insensitive to layer dimensions. Overall, the performance
impact incurred by the DC catalog is affordable without
compiler optimization.

However, safety-related applications in real-time systems
usually have stringent timing constraints to meet. For those
applications, the no compiler optimizations may not be an
option. Thus, this has lead us to perform a second set of
experiments configuring the maximum compiler optimization
(compiler option -O3). Fig. 6 presents the obtained results
layer-by-layer. These results evidence that diagnostics based
on Fletcher and CRC in the most internal loop have sig-
nificantly higher performance impact than the rest. In fact,
this penalty difference has motivated us to break the per-
formance impact axis (y-axis) in every graph depicted in
Fig. 6. Comparing against performance impact experiments
without optimization, we notice a significant impact increase.
We observe the minimum performance impact in layer L1
(ranging from 1,02 to 82,5, hence increasing execution time
by more than 82x in the worst case) and the maximum in
L7 (from 1,04 to 171,5). This increase is associated with the
high optimization of the MMM on GPUs. Including a new
data (array of ESs) in the computation exacerbates one of the
main problems associated with GPU platforms, the bottleneck
created for data access. This bottleneck is the main reason for
the high-performance impact of the CRC implementation since
this diagnostic is based on memory access. Moreover, Fletcher
diagnostic has a similar performance to CRC. However, a
key reason for this timing penalty lies in using the modulo
operator, which is highly inefficient in GPU implementations.

2) Step 2.2- Step 2.3: Diagnostic Coverage: As explained
in subsection III-D, we build on the DC evaluation of the

single blocks to calculate the global DC. All the experiments
are configured with a grid of blocks of <64, 64, 8> for B1
blocks (see Figure 3a), except those related to L1 and L2
that employ <64, 16, 8> and <64, 32, 8> respectively. We
use a specific grid for these matrices for performance reasons
since, with the initial grid configuration, the execution would
use non-active threads. As explained before, B2, B3 and B4
blocks have fewer rows, columns or both since they are at
the boundaries of the kernel. Therefore, according to the layer
dimensions summarized in Table I, we present in Table III
the individual grid of thread blocks dimensions into which
layers are decomposed. Additionally, we include the number
of T1 block columns/rows according to each layer and the
selected grid of threads blocks employed. Note that the default
block size, <64, 64, 8>, has been chosen as it is among those
chosen by CUDA to maximize performance in NVIDIA GPUs,
and it is small enough to allow decomposing most layers’
computations into blocks of this size.

By dividing grids of thread blocks into individual blocks,
we obtain that block dimensions repeat many times inside a
given layer and across layers. Hence, we only need to perform
fault injection once per unique block, and results are reused for
all instances of any given block across layers. In Table IV, we
summarize the resulting unique blocks, the number of injected
errors in input matrices A (InjectionsA) and B (InjectionsB)
and the layers in which they are used. For some blocks, errors
detected in B2 and/or B3 may have been already detected in
B1 or B4. In those cases, we carefully avoid counting error
detections twice. The specific blocks where this effect can
happen are marked with an asterisk in the “Block” column.

The evaluation of the errors detected in the single blocks
(see Table III) continues by applying the strategy described in
Subsection III-D to compute the achievable DC of each CNN
layer according to the diagnostic techniques (the complete
catalog can be identified in the y-axis of Fig. 5 and Fig. 6).

The final publication is available at IEEE via: https://doi.org/10.1109/ICSRS56243.2022.10067299

L1

70
80

70
80

1

3
5

1

3
5

P
er

fo
rm

an
ce

 Im
pa

ct

L4

96
110

96
110

1

3
5

1

3
5

P
er

fo
rm

an
ce

 Im
pa

ct

L7

140
160

140
160

1

3

10

1

3

10

P
er

fo
rm

an
ce

 Im
pa

ct

L11

70
80

70
80

X
O

R
 (

E
)

X
O

R
 (

M
)

X
O

R
 (

I)
O

N
E

S
 (

E
)

O
N

E
S

 (
M

)
O

N
E

S
 (

I)
T

W
O

S
 (

E
)

T
W

O
S

 (
M

)
T

W
O

S
 (

I)
F

LE
T

 (
E

)
F

LE
T

 (
M

)
F

LE
T

 (
I)

C
R

C
 (

E
)

C
R

C
 (

M
)

C
R

C
 (

I)
X

O
R

_F
LE

T
X

O
R

_C
R

C
O

N
E

S
_F

LE
T

O
N

E
S

_C
R

C
T

W
O

S
_F

LE
T

T
W

O
S

_C
R

C
F

LE
T

_C
R

C

1

3
5

1

3
5

Checksum(s) algorithms

P
er

fo
rm

an
ce

 Im
pa

ct
L2

95
110

95
110

1

3
5

1

3
5

L5

100
130

100
130

1

3

10

1

3

10

L8

110
130

110
130

1

3

10

1

3

10

L12

130
150

130
150

X
O

R
 (

E
)

X
O

R
 (

M
)

X
O

R
 (

I)
O

N
E

S
 (

E
)

O
N

E
S

 (
M

)
O

N
E

S
 (

I)
T

W
O

S
 (

E
)

T
W

O
S

 (
M

)
T

W
O

S
 (

I)
F

LE
T

 (
E

)
F

LE
T

 (
M

)
F

LE
T

 (
I)

C
R

C
 (

E
)

C
R

C
 (

M
)

C
R

C
 (

I)
X

O
R

_F
LE

T
X

O
R

_C
R

C
O

N
E

S
_F

LE
T

O
N

E
S

_C
R

C
T

W
O

S
_F

LE
T

T
W

O
S

_C
R

C
F

LE
T

_C
R

C

1

3

10

1

3

10

Checksum(s) algorithms

L3

96
110

96
110

1

3
5

1

3
5

L6 & L9

140
160

140
160

1

3

10

1

3

10

L10

95
105

95
105

1

3

10

1

3

10

L13

70
90

70
90

X
O

R
 (

E
)

X
O

R
 (

M
)

X
O

R
 (

I)
O

N
E

S
 (

E
)

O
N

E
S

 (
M

)
O

N
E

S
 (

I)
T

W
O

S
 (

E
)

T
W

O
S

 (
M

)
T

W
O

S
 (

I)
F

LE
T

 (
E

)
F

LE
T

 (
M

)
F

LE
T

 (
I)

C
R

C
 (

E
)

C
R

C
 (

M
)

C
R

C
 (

I)
X

O
R

_F
LE

T
X

O
R

_C
R

C
O

N
E

S
_F

LE
T

O
N

E
S

_C
R

C
T

W
O

S
_F

LE
T

T
W

O
S

_C
R

C
F

LE
T

_C
R

C

1

3

5

1

3

5

Checksum(s) algorithms

Fig. 6: Layer-by-layer performance impact with compiler optimization -O3

TABLE III. SINGLE GRID OF THREAD BLOCKS DIMENSIONS
INVOLVED IN THE DC COMPUTATION OF EACH LAYER

Layer Block M N K N BRT1 N BCT1

L1 B1 64 16 27 2704 1
L2 B1 64 32 144 676 1
L3 B1 64 64 288 169 1

L4 B1 64 64 576 42 1B3 16 64 576

L5 B1 64 64 1152 10 4B3 36 64 1152

L6 & L9 B1 64 64 2304 2 8B3 41 64 2304

L7 B1 64 64 4068 2 16B3 41 64 4068

L8 B1 64 64 1024 2 4B3 41 64 1024

L10

B1 64 64 512

2 3B2 64 63 512
B3 41 64 512
B4 41 63 512

L11 B1 64 64 512 2 2B3 41 64 256

L12 B1 64 64 3456 10 4B3 36 64 3456

L13

B1 64 64 256

10 3B2 64 63 256
B3 36 64 256
B4 36 63 256

We present in Table V the achievable DC of each layer. As
a representative example, we evaluate the DC of L10, which
includes by all types of blocks (B1, B2, B3 and B4), using
XOR (E) diagnostic. First, we evaluate the errors detected
according to the source of the error (matrix A or matrix B)

TABLE IV. SINGLE BLOCK DIMENSIONS EMPLOYED IN THE DC
COMPUTATION OF EACH LAYER

Layers Block M N K InjectionsA InjectionsB
All except L1-2 B1 64 64 8 16384 16384
L1 B1 64 16 27 55296 13824
L2 B1 64 32 8 16384 8192
L10 B2∗ 64 63 8 16384 16128
L13 B2∗ 64 63 8 16384 16128
L6-L9 & L11 B3∗ 41 64 8 10496 16384
L10 B3∗ 41 64 8 10496 16384
L5 & L12 B3∗ 36 64 8 9216 16384
L13 B3∗ 36 64 8 9216 16384
L4 B3 16 64 8 4096 16384
L10 B4 41 63 8 10496 16128
L13 B4 36 63 8 9216 16128

as mentioned in Eq. 2 and Eq. 3. In this particular layer
the complementary blocks do not detected additional errors.
These are the expected results since the conditions stated in
Subsection III-D2 are not satisfied (Kt is even in the external
loops of the complementary blocks).

DetA = (2048 + 0)× 2 + 0 + 512 = 4608

DetB = (2048 + 0)× 3 + 0 + 2048 = 8192

We have reduced 64 times the K dimension in L10 matrix,
i.e. K = 512 for all L10 grids of thread blocks and we used
blocks with K = 8. Therefore, the errors detected by A and
B must be multiplied by this number to obtain the final DC:

DC =
(4608 + 8192)× 64

(169 + 255)× 512
= 11.79

The final publication is available at IEEE via: https://doi.org/10.1109/ICSRS56243.2022.10067299

TABLE V. ACHIEVABLE DC LAYER-BY-LAYER ACCORDING TO THE DIAGNOSTIC TECHNIQUES CATALOG

Diagnostics Tiny Yolo-v3 layers
L1 L2 L3 L4 L5 L6&9 L7 L8 L10 L11 L12 L13

XOR (E) 12,50 12,50 12,50 12,43 12,12 12,04 12,24 11,76 11,79 11,45 12,12 12,14
XOR (M) 99,99 99,93 99,41 95,48 72,53 24,82 14,17 39,76 39,86 56,90 72,53 72,61
XOR (I) 99,99 99,93 99,41 95,48 72,53 24,82 14,17 39,76 39,86 56,90 72,53 72,61
One’s (E) 12,50 12,50 12,50 12,43 12,12 12,04 12,24 11,76 11,79 11,45 12,12 12,14
One’s (M) 99,99 99,94 99,56 96,61 79,40 43,61 35,62 54,82 54,72 67,68 79,40 79,38
One’s (I) 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00
Two’s (E) 12,50 12,50 12,50 12,43 12,12 12,04 12,24 11,76 11,79 11,45 12,12 12,14
Two’s (M) 99,99 99,94 99,55 96,54 78,97 42,44 34,28 53,88 53,79 67,00 78,97 78,95
Two’s (I) 100,00 99,99 99,95 99,61 97,64 93,54 92,62 94,82 94,83 96,30 97,64 97,64
Fletcher (E) 12,50 12,50 12,50 12,43 12,12 12,04 12,24 11,76 11,79 11,45 12,12 12,14
Fletcher (M) 99,99 99,94 99,56 96,61 79,40 43,61 35,62 54,82 54,72 67,68 79,40 79,38
Fletcher (I) 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00
CRC (E) 12,50 12,50 12,50 12,43 12,12 12,04 12,24 11,76 11,79 11,45 12,12 12,14
CRC (M) 99,99 99,94 99,56 96,61 79,40 43,61 35,62 54,82 54,72 67,68 79,40 79,38
CRC (I) 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00
XOR Fletcher 99,99 99,99 99,89 99,15 94,85 85,90 83,91 88,71 88,68 91,92 94,85 94,84
One’s Fletcher 99,99 99,99 99,94 99,58 97,42 92,95 91,95 94,35 94,34 95,96 97,42 97,42
Two’s Fletcher 99,99 99,99 99,94 99,58 97,42 92,95 91,95 94,35 94,34 95,96 97,42 97,42

TABLE VI. TRADE-OFF OF PERFORMANCE IMPACT VS DC

Layer DC ranges (%)
99≤ DC 90 ≤ DC < 99 60 < DC < 90

L1 XOR (M) XOR (M) XOR (M)
L2 XOR (M) XOR (M) XOR (M)
L3 XOR (M) XOR (M) XOR (M)
L4 One’s (I) XOR (M) XOR (M)
L5 One’s (I) Two’s (I) XOR (M)
L6 One’s (I) Two’s (I) Two’s (I)
L7 One’s (I) Two’s (I) Two’s (I)
L8 One’s (I) Two’s (I) Two’s (M)
L9 One’s (I) Two’s (I) Two’s (I)
L10 One’s (I) Two’s (I) Two’s (I)
L11 One’s (I) Two’s (I) Two’s (M)
L12 One’s (I) Two’s (I) XOR (M)
L13 One’s (I) Two’s (I) XOR (M)
PI 3,80 3,33 2,61

The complete set of results is shown in Table V. From these
results, we observe the significant influence of the matrices
dimensions in the achievable DC. The higher the ratio M

N ,
the higher the achievable DC is. This can be appreciated by
comparing L1 and L7, whose respective ratios are 64

16 = 4 for
L1, and 64

64 = 1 and 41
64 = 0, 64 for L7, and whose DC in

XOR (M) decreases from 99,99% to 14,17%, respectively.

D. Stage 3: Selective protection

In this section, we perform a selective layer-by-layer pro-
tection of Tiny YOLO-v3. Instead of selecting the same
diagnostic for all layers, we select the diagnostic with the
lowest performance impact in each layer for each of the DC
ranges established by IEC 61508. Those diagnostics are shown
in Table VI. Additionally, we include the lowest performance
impact ratio (PI) incurred in each range to protect with the
combination of these diagnostics.

We observe that the lowest performance impact on achieving
high, medium, and low DC ranges is 3,8, 3,33, and 2,61,
respectively. Note that, while such performance impact is
high, it could be reduced if diagnostics are just executed

once periodically as described in [3]. That work shows that
the safety architectural pattern where hardware is diagnosed
periodically with predefined data so that output is known can
be tuned as needed to trade off between performance impact
and diagnostics frequency. For instance, if the process safety
time (PST) is one hundred times the execution of a single
classification task and the individual performance impact for
the high DC range is 3,8, as shown above, the periodic
diagnosis can be executed once in each PST period incurring
in a performance impact of just 5%. In other words, we could
execute the diagnosis once every 76 CNN executions.

In this paper, we stick to a simple approach based on
selecting for each layer the diagnostic with lowest performance
cost that achieves the target DC individually for that layer.
However, this approach may not be an option in performance
terms even for those systems based on the periodic diagnostic
pattern if the PST is not big enough. Then, the safety designer
has to selectively protect each layer based on its propensity
to misclassifying and the percentage of the execution time of
each one according to the complete CNN. Highlight that this
approach is subject to performing fault injection campaigns to
verify whether the proposed selection of diagnostics achieves
the application’s target DC range.

V. RELATED WORK

To the best of our knowledge, this is the first work per-
forming an exhaustive layer-by-layer analysis of the achievable
DC with a variety of diagnostics and presenting a strategy
to effectively compute the achievable DC of large matrices.
Several works focus on analyzing the DNN and CNN re-
liability. Some of them focus on the identification of DNN
reliability challenges, and summarize analytic and mitigation
techniques [22], [23]. In our case, we additionally apply
our method in a particular CNN application based on object
detection. Other research is based on studying the CNN
reliability [14]–[16], [22], [24]–[26], yet without providing
systematic solutions such as the one in our work, where we
provide a way to select per-layer diagnostics.

The final publication is available at IEEE via: https://doi.org/10.1109/ICSRS56243.2022.10067299

Other papers focus on protecting the MMM, aiming at a safe
CNN implementation. We identify three technical approaches:
those based on full or partial redundancy at the software or
hardware level of the CNN [16], [24], those based on adopting
algorithm-based fault detection or fault tolerance [27]–[29],
and the recent approach lying on the adoption of a catalog
of widely used diagnostics techniques to compute an array
of ES [3]. We build on the latter, which is complementary
to the others and provides the system with fault detection
capabilities to detect random errors (permanent and transient).
In our contribution, we perform a complete performance
impact and achievable DC analysis, building on an efficient
block decomposition for fault injection, of a CNN based on
MMM, layer by layer, complementing [3].

VI. CONCLUSIONS AND FUTURE WORK

This paper provides a three-stage methodology to selectively
protect with the required DC CNNs implemented on GPUs
focusing on its most expensive computation part, the MMM.
We apply this methodology to the Tiny YOLO-v3 object
detector as an application example. The first stage consists
of the sensitivity analysis of each CNN’s layer to identify
the most misclassification-prone layers. For this CNN, we
observe a higher tendency to misclassify (from 83,4 to 99,6%)
in the initial layers (L1-L8). However, the final layers also
present lower but still high misclassification rates (from 55,2
to 74,34%). In the second stage, we analyze the achievable
DC and the incurred performance impact per layer for the
catalog of diagnostics provided in [3]. For the DC analysis,
we offer a strategy that computes the entire MMM DC based
on analyzing the blocks in which MMM is decomposed before
launching it to the GPU with an exhaustive fault injection
campaign at the bit-level of these smaller blocks. Finally,
we selectively protect each layer according to the three DC
ranges providing the most appropriate diagnostics that achieve
the minimum required DC in each range on an NVIDIA
Xavier Nx GPU. For the given example, we observe that
the lowest performance impact to achieve high, medium,
and low DC ranges is 3,8, 3,33, and 2,61, respectively. As
explained, this impact might be affordable in the context of the
safety architectural pattern where diagnostics are performed
periodically, in accordance with the timing constraint imposed
by the PST, by trading-off between diagnostics frequency and
performance impact.

In future work, we propose to analyze the behavior of
greater CNNs, such as YOLO-v3, to identify whether larger
CNNs reduce the propensity to misclassification in some
layers. Additionally, for those applications demanding a higher
performance impact, we propose the implementation of the
MMM and the diagnostics techniques catalog into the tensor
cores included in GPUs, which accelerate MMMs.

ACKNOWLEDGEMENT

Ikerlan authors have received funding from Elkartek grant
project KK-2021/00123 of the Basque government. BSC au-
thors have been partially supported by the Spanish Ministry
of Science and Innovation under grant PID2019-107255GB-
C21/AEI/10.13039/501100011033

REFERENCES

[1] L. Jiao et al., “A Survey of Deep Learning-Based Object Detection,”
IEEE Access, vol. 7, pp. 128 837–128 868, 2019.

[2] J. Perez-Cerrolaza et al., “GPU devices for safety-critical systems: A
survey,” ACM Comput. Surv., 2022.

[3] J. Fernández et al., “On the safe deployment of matrix multiplication
in massively parallel safety-related systems,” Applied Sciences, vol. 12,
no. 8, 2022.

[4] “IEC 61508(-1/7): Functional safety of electrical / electronic / pro-
grammable electronic safety-related systems,” 2010.

[5] H. Tabani et al., “A Cross-Layer Review of Deep Learning Frameworks
to Ease Their Optimization and Reuse,” in ISORC, 2020, pp. 144–145.

[6] J. Perez Cerrolaza et al., “Multi-core Devices for Safety-critical Systems:
A Survey,” ACM Comput. Surv., vol. 53, no. 4, 2020.

[7] J. Redmon, “Darknet: Open source neural networks in C,” 2013–2016.
[Online]. Available: http://pjreddie.com/darknet/

[8] P. Adarsh et al., “YOLO v3-Tiny: Object detection and recognition using
one stage improved model,” in ICACCS, 2020, pp. 687–694.

[9] J. Redmon and A. Farhadi, “YOLOv3: An incremental improvement,”
2018.

[10] A. Bochkovskiy et al., “YOLO v4: Optimal speed and accuracy of object
detection,” arXiv preprint arXiv:2004.10934, 2020.

[11] NVIDIA, “CUTLASS: CUDA Templates for Linear Algebra Subrou-
tines,” https://github.com/NVIDIA/cutlass, 2020, [Online; Dec-2021].

[12] T. C. Maxino and P. J. Koopman, “The Effectiveness of Checksums for
Embedded Control Networks,” IEEE TDSC, vol. 6, pp. 59–72, 2009.

[13] P. Koopman et al., “Selection of cyclic redundancy code and checksum
algorithms to ensure critical data integrity,” Carnegie Mellon University,
Report, 2015.

[14] A. Bosio et al., “A Reliability Analysis of a Deep Neural Network,” in
IEEE LLATS, 2019, Conference Proceedings, pp. 1–6.

[15] A. Ruospo et al., “Evaluating Convolutional Neural Networks Reliability
depending on their Data Representation,” in DSD, 2020, pp. 672–679.

[16] F. dos Santos et al., “Kernel and Layer Vulnerability Factor to Eval-
uate Object Detection Reliability in GPUs,” IET Computers & Digital
Techniques, vol. 13, 2018.

[17] R. Leveugle et al., “Statistical fault injection: Quantified error and
confidence,” in DATE, 2009, Conference Proceedings, pp. 502–506.

[18] J. Fernández et al., “Towards Safety Compliance of Matrix-Matrix
Multiplication for Machine Learning-based Autonomous Systems,” JSA,
2021.

[19] I. S. Olmedo et al., “Dissecting the CUDA scheduling hierarchy: a
Performance and Predictability Perspective,” in RTAS, 2020.

[20] F. Yu et al., “BDD100K: A Diverse Driving Dataset for Heterogeneous
Multitask Learning,” in The IEEE CVPR, June 2020.

[21] A. J. Calderón et al., “GMAI: Understanding and Exploiting the
Internals of GPU Resource Allocation in Critical Systems,” ACM Trans.
Embed. Comput. Syst., vol. 19, no. 5, p. Article 34, 2020.

[22] M. A. Hanif et al., “Robust Machine Learning Systems: Reliability and
Security for Deep Neural Networks,” in IEEE IOLTS, 2018, Conference
Proceedings, pp. 257–260.

[23] M. Hanif and M. Shafique, “Dependable Deep Learning: Towards Cost-
Efficient Resilience of Deep Neural Network Accelerators against Soft
Errors and Permanent Faults,” in IEEE IOLTS, 2020, Book, pp. 1–4.

[24] Y. Ibrahim et al., “Soft error resilience of deep residual networks for
object recognition,” IEEE Access, vol. 8, pp. 19 490–19 503, 2020.

[25] A. Mahmoud et al., “Optimizing Selective Protection for CNN Re-
silience,” in IEEE 32nd ISSRE. IEEE Computer Society, 2021,
Conference Proceedings, pp. 127–138.

[26] M. A. Neggaz et al., “Are CNNs Reliable Enough for Critical Applica-
tions? An Exploratory Study,” IEEE Design & Test, vol. 37, no. 2, pp.
76–83, 2020.

[27] K. Zhao et al., “FT-CNN: Algorithm-Based Fault Tolerance for Convo-
lutional Neural Networks,” IEEE TPDS, vol. 32, pp. 1677–1689, 2020.

[28] S. K. S. Hari et al., “Making Convolutions Resilient via Algorithm-
Based Error Detection Techniques,” IEEE TDSC, pp. 1–1, 2021.

[29] J. Kosaian and K. V. Rashmi, “Arithmetic-intensity-guided fault toler-
ance for neural network inference on GPUs,” p. Article 79, 2021.

http://pjreddie.com/darknet/
https://github.com/NVIDIA/cutlass

	Introduction
	Background
	Safety Certification
	Object Detection: Tiny YOLO-v3
	CUTLASS
	Execution Signature

	Methodology to selectively protect CNNs
	First Stage: CNN's Sensitivity to Misclassification Analysis.
	Second Stage: Layer-by-layer Performance Impact and DC
	Third Stage: Selective DC-level Protection
	DC Analysis in Large Matrices
	Block Decomposition
	DC Computation per Error Source

	Evaluation
	Experimental Set-up
	Stage 1: CNN's Sensitivity to Misclassification Analysis
	Stage 2: Layer-by-layer Performance and DC Analysis
	Step 2.1: Performance Impact
	Step 2.2- Step 2.3: Diagnostic Coverage

	Stage 3: Selective protection

	Related Work
	Conclusions and Future Work
	References

