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Abstract

The single-index model is a non-parametric model that is popular in statistics

for the estimation of risk assessment, thanks to its flexibility. Many studies have

approached the problem of finding the best estimators for the model parame-

ters and smooth function. However, most of the real-world data is asymmetric.

In this thesis, we consider the application of a Box-Cox transformation on the

response variable to improve the performances of the single-index model. In-

deed, the Box-Cox transformation addresses the skewness of the response and

transform it into a normally-distributed variables. We consider also the log

transformation of the response variable. We show through a simulation study

that the parameters of the models fitted with the transformed response have

more similarity with the true parameters, which shows that the model is more

reliable. Finally, we perform a study on a real-world data set from the car in-

surance industry, where we build a single-index model to predict the expected

cost per claim based on a set of variables, that concern the demographic char-

acteristic and the driving style of the customer. We assess the performance of

the model fitted on the original data as well the models that use the log and the

Box-Cox transformation, that obtain better results than the original one.

Keywords single index model, Box-Cox transformation, car insurance
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Chapter 1

Introduction

The proper assessment of the risk profile of customers is of paramount importance in the

insurance market. Companies try to predict the likelihood that a customer will generate

a certain cost in terms of claimed accident damages based on his/her history, his/her de-

mographic characteristics and his/her relevant habits. This applies to various kinds of

insurance industries, as well to banks when assessing the risk of insolvency of potential

customers before conceding or denying a loan. For example, in the case of car insurance,

several driving habits such as the average speed, respect for speed limits, adherence to traf-

fic rules, and other factors like distance traveled and driving experience can significantly

influence the likelihood of causing an accident and its severity. This value will influence

the fee that the customers will pay to be insured. An insurance company runs a profitable

business when the sum of the collected fees is higher than the paid claims. According to a

report from Insurance Europe, the claims paid by insurance companies in Europe in 2020

amounted to a value of 2.8 bn€, daily, which sums up to over 1000 bn€ yearly. The total

premiums paid by customers were about 200 billions higher. A full picture can be seen in

Figure 1.1. The difference between what the customers pay and the claims that companies

has to pay is needed to pay salaries, to keep offices working, and for other relevant spend-

ing and investments that companies have to sustain to operate, and, of course, to have a

profit. However, a company can’t just indiscriminately increase the fees in order to be sure

that the cost of paid claims won’t exceed the available incoming cash flow, as this will have

the side effect that customers will flee the company to subscribe more convenient contracts

with the competitors. Therefore, there is great attention on the research of models that are

able to predict as precisely as possible the likelihood that a customer will cause an accident,

how many accidents customers will cause, and the monetary expenses that these accidents

generate. This is a typical problem that can be performed through the theory and tools of

statistics. In particular, semi-parametric single-index models are a class of regression mod-

els that have received major attention in the context of risk quantification in insurances.

1



Introduction 2

Figure 1.1: Statistics on the insurance market in Europe in 2020 (courtesy of Insurance
Europe)

Differently from fully-parametric linear regression models, they include a non-parametric

smoothing (or link) function that deals with the non-linearity of the model. Single-index

model take this name because they predict the value of the dependent variable based on

the application of the smoothing function to a single index. They have been extensively

employed also in other sectors such as quantitative finance, portfolio management and as-

set pricing, where they are employed, for example, to build profitable stock portfolios that

minimize the expected risk and maximize the expected returns.

In the context of this thesis, we are interested in the design of a single-index model with

multiple predictors, with the final goal of being able to predict the expected cost per claim

that customers are expected to generate. In particular, we consider the work of Bolancé

et al. (2018), that is one of the first works to consider the prediction of cost per claim in-

stead of the total cost per year. Analogously to Bolancé et al., we use a flexible maximum

likelihood method to estimate the linear coefficients and a leave-one-out kernel to estimate

the link function. However, given that skewness or non-normality of the response variable

can cause a loss of the predictive performance of the single-index model, we extend their

work with the application of a two-parameters Box-Cox transformation on the response

variable, so to transform it into a normal-distributed variable. We compare the predictive

performances of the model obtained with the transformed response with the model with

the original response. We compare the model that has been transformed with the Box-Cox

transformation also with a log-transformation of the response variable. Finally, we apply

this methodology on a real-world case study from the car insurance industry, with the aim

to predict the accident severity. To do so, we employ a rich anonymized data set provided
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by a Spanish company, that includes demographic data as well as data about the driving

habits of the customers, that is called telematics data, given that has been collected by the

insurance company through the black-box device that customers agree to have installed in

their cars.

The remainder of this Thesis is organized as follows: Chapter 2 gives a general overview

of the Theory related with the topic, provide some examples and presents the related liter-

ature. Chapter 3 gives the details of the Box-Cox transformation application in the single-

index model. Experimental data and results, with a rich set of plots and graphics, are

presented in Chapter 4. The conclusions and a suggestion for future work are given in

5. Finally, all the implementation details are situated in the Appendix A, where the most

relevant R functions and code lines are reported.



Chapter 2

Theoretical Background and Related
Work

In statistics, a regression model is a basic way to describes the relationship between one or

more explained variables and a response variable. However, it is not always easy to im-

plement to get a model which fit well for all observations, and unveil the right relationship

between them. Single index model is a special model which combine the regression linear

with a smooth function. Hence, it is more flexible to illustrate the relationship between the

dependent variable and independent variables. Besides, the Box-Cox transformation can

be useful in helping to achieve this goal by transforming the data into a more appropriate

form for analysis.

2.1 Single-index model

A general linear regression model takes the form

y = Xβ + ε (2.1)

where y is the vector of observations values, X is the matrix of regressors (or explanatory

variables, covariates, predictors, or independent variables), β is the parameter vector and

ε is the error vector. The model presented in Equation 2.1 written in its extended form is

as follows:

yi = β0 + β1xi1 + β2xi2 + · · ·+ βpxip + εi (2.2)

where index i refers to the observations and 1 . . . p are used to distinguish the covariates

and their parameter coefficients. The semi-parametric single-index model is defined as

follows:

y = f(Xθ) + ε (2.3)

4



2.1. SINGLE-INDEX MODEL 5

where X is the vector of explanatory variables, f is an unknown smooth function (non-

parametric component), θ, the equivalent of β in simple linear regression, is the vector of

parameters, also known as index, and ε is the vector of random variables with zero-mean

conditional on X . So, the regression consists of a non-parametric function of the linear

index θx from which the term index model arises. If we write Equation 2.3 making explicit

all the components of vector x, we can have it in an extended form:

yi = f(θ0 + θ1xi1 + θ2xi2 + · · ·+ θpxip) + ϵi (2.4)

The reader can appreciate by the comparison of Equations 2.1 and 2.3, or their extended

forms, 2.2 and 2.4, respectively, that the only difference lies in the presence of the smooth

function f , which makes non completely parametric the new model. The expected value

of y is given by

E(yi|xi) = f(θ′xi) (2.5)

An advantage of the single index model lies in the fact that it combines both parametric

and non-parametric components, therefore it allows for flexibility in modeling the relation-

ship between the response variable and predictor variables. This comes at the price of an

increased complexity compared to a linear regression model, which can be fitted by means

of a simple method like the least square errors, that consists in determining the values of

the parameters β0 . . . βp that minimize the sum of the squares of the deviations between the

expected values ŷi and the actual values yi. The single index model requires a much more

complex estimation that provides both values for the linear predictor coefficients θ0 . . . θp

and the smooth function f . To this regard, a large variety of methods has been proposed

in the literature, including kernel smoothing, spline smoothing, and penalized likelihood

methods.

Starting from the origin, the single-index model was introduced by Sharpe (1963) and

its early applications are found in the field of quantitative finances, however the possi-

bilities of applying single-index models are broad. We mention, among many, portfolio

optimization [Sharpe 1963, Elton and Gruber 1977], risk analysis and insurance in farm

planning, [Collins and Barry 1986, Miranda and Glauber 1997], risk analysis in car insur-

ance [Bolancé et al. 2018], and signal processing [Pananjady and Foster 2021]. In order

to estimate the coefficient vector θ, Han (1987) and Sherman (1993) introduced estima-

tors based on maximum rank correlation. Ichimura (1993) proposed the semi-parametric

least squares and the weighted semi-parametric least squares estimation. In the same year,

Klein and Spady (1993) introduced a quasi-maximum likelihood estimator for the case in

which the response is a binary variable y ∈ {0, 1}, and Hardle et al. (1993) proposed an

estimator based on the minimization of the residual sum of squares. Later, Horowitz and
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Härdle (1996) proposed a non-iterative estimation method valid for the case of discrete

independent variables. More recently, Delecroix et al. (2003) use the pseudo-maximum

likelihood method to estimate the model with one bandwidth of kernel estimation, and

Strzalkowska-Kominiak and Cao (2013) studied alternatives to the maximum likelihood

estimation, based on a non-parametric estimation of the conditional distribution, for cen-

sored data. Finally, Bolancé et al. (2018) applied the flexible maximum likelihood method

to estimate the parameter θ in single-index models. To estimate the link function f , which

usually is not possible to known in its analytical form, most papers use a kernel density

estimation approach, that is commonly used for analyzing and visualizing data when the

underlying distribution is not known or is difficult to determine. Kernel Density Estima-

tion is based on a bandwidth parameter, that determines the width of the kernel. The

larger is the bandwidth, the more the data points are aggregated in the same kernel point.

Smaller bandwidth make the estimation more precise but also more sensible to variations

between individual points. For a better result, multiple bandwidths can be applied. We

present, hereafter, the theoretical details of some of the discoveries from the papers men-

tioned above, especially for what regards the estimation of the parameters of the single-

index model.

Remind that x1, x2, . . . , xn represent the observed values of a random sequence of p-

vectors, X1, X2, . . . , Xn and ϵ1, . . . , ϵ1 are independent random variables with zero mean

and bounded variance. The function f is the conditional density of Y given X , and θ is a

p-variate unit vector. Hardle et al. proposed a way to estimate the vector θ in which they

minimize the residual sum of squares, so that θ is estimated according to the function:

θ̂ = argminθ

(
n∑

i=1

[Yi − f̂i(θ
′Xi)]

2

)
(2.6)

Beside estimating θ, they find the function of the density distribution of Y by means of

a leave-one-out kernel estimator with one bandwidth. Let u = θX , where X is one of

the observations xi. The leave-one-out kernel density estimator when the pair (Xi, Yi) is

omitted is calculated as:
ˆfi(u|θ) =

∑n
j ̸=i YjKh(u− θ′xj)∑n
j=1Kh(u− θ′xj)

(2.7)

where h is the bandwidth, and K is a fixed kernel function.

Klein and Spady (1993) proposed an estimator of the semi-parametric single-index

model by maximum likelihood estimation of θ, according to Equation 2.8:

Ln(β) =
n∑

i=1

[Yi ln(f̂(θ
′Xi) + (1− Yi) ln(1− f̂i(θ

′Xi))] (2.8)
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where f̂i indicates the leave-one-out kernel estimator of f .

We focus now on the contribution of Bolancé et al. (2018), which is at the basis of the

work contained in this thesis. They applied the flexible maximum likelihood function L̃ to

estimate the parameter θ, as following:

L̃n(θ) =
n∏

i=1

fθ(Yi|θ′Xi) (2.9)

Furthermore, they denote that maximizing L̃ is equivalent to maximizing its logarithm.

They define the function l̃:

l̃n(θ) =
1

n
log(L̃n(θ)) =

1

n

n∑
i=1

logfθ(Yi|θ′Xi) (2.10)

and they state that the ideal estimator θ̃ would be:

θ̃n = argmax
θ

l̃n(θ) = argmax
θ

1

n

n∑
i=1

logfθ(Yi)|θ′Xi) (2.11)

To estimate fθ(Yi|θ′Xi), they use the kernel estimator with two bandwidths with a leave-

one-out procedure, hence the i − th component will be left out when we estimate the es-

timator of set (Yi, Xi). The first bandwidth constructs a preliminary estimator of f , which

estimate θ, and the second for a final estimator of f . The kernel conditional density, fol-

lowing Hall et al. (1999), is calculated as follows:

f−i
θ (Yi)|θ′Xi) =

r̂−i(θ
′Xi, Yi)

ŝ−i(θ′Xi)
(2.12)

in which r̂−i is defined as:

r̂−i

(
θ′Xi, Yi

)
=

1

h1h2

n∑
j=1,i ̸=j

K

(
θ′Xi − θ′Xj

h1

)
K

(
Yi − Yj

h2

)
(2.13)

and ŝ−i is:

ŝ−i(θ
′Xi, Yi) =

1

h1

n∑
j=1,i ̸=j

K

(
θ′Xi − θ′Xj

h1

)
(2.14)

In particular, h1 and h2 are two positive bandwidths. At this point, the leave-one-out

conditional likelihood is:

l̂n(θ) =
1

n

n∑
i=1

logf̂θi(Yi|θ
′Xi) (2.15)

and the final maximum conditional likelihood estimator can be calculated as:

θ̂n = argmax
θ

l̂n(θ) (2.16)
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Alternatives to single-index model are non-parametric regression [Härdle 1990], which

is more general, and the generalised additive model [Hastie 2017]. However, as Bolancé

et al. (2018) point out, both presents considerable drawbacks, such as the curse of dimen-

sionality (when the number of independent variable increases, the estimation becomes

more difficult), and the relationship between covariates and response is not easily explain-

able. Thus, we consider the adoption of the single-index model to be the best option for

our problem.

2.2 The Box-Cox transformation

The Box-Cox transformation is used to cope with anomalies such as non-additivity, non-

normality and heteroscedasticity, by transforming the response so that it takes a normal

distribution. The method was presented for the first time in the article “An analysis of

transformations” by Box and Cox (1964). It presents a family of power transformations

that incorporate and extend the traditional options to help researchers to easily find the

optimal normalizing transformation for each variable.

In general, the data, and in particular the response variable, can be transformed by

the following Box-Cox function with one or two parameters. The one parameter Box-Cox

transformation is given by:

yλ =

{
yλ−1
λ if λ ̸= 0, y > 0

log(y) if λ = 0, y > 0
. (2.17)

while the two parameters Box-Cox transformation is:

yλ =

{
(y+λ2)λ1−1

λ1
if λ1 ̸= 0, y > −λ2

ln(y + λ2) if λ1 = 0, y > −λ2

. (2.18)

where y is the original response, yλ is the transformed response, and λ is the power pa-

rameter. The value of λ can be estimated using maximum likelihood estimation, which

involves selecting the value of lambda that maximizes the likelihood of the transformed

data being normally distributed. When λ = 0, the transformation becomes log transfor-

mation. Hence, the transformations are defined:

T (Y ) =

[
log(y) if y > 0

log(y + λ2) if y > −λ2
. (2.19)

To the best of our knowledge, we did not find any work in the literature that apply the

Box-Cox transformation to improve the performances of the single-index model. In any

case, we present hereafter an overview of some papers that apply the Box-Cox transforma-

tion to deal with skewness of responses and to improve predictive performances of models
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on a wide set of problems. Relevant examples are visualization and image processing, as

in Maciejewski et al. (2012) and Cheddad (2020), improvement in time series forecasting

accuracy, for which we cite Proietti and Lütkepohl (2013), Lee et al. (2013), Terasaka and

Hosoya (2007), financial modelling, as in Pajor (2009), and quality control and operations

management, like in Wu et al. (2014), Sennaroğlu and Şenvar (2015), Bicego and Baldo

(2016). These pieces of work demonstrated the effectiveness of the Box-Cox transforma-

tion on a variety of domains. Furthermore, they are all from recent researches developed

in the last two decades, which shows that that the interest in the application of the tech-

nique remains high among the research community. However, there are also some articles

that show the limits of the Box-Cox transformation and propose solutions to fix them. For

example, Zhang and Yang (2017) mentioned some challenges related to memory and stor-

age capacity, as well as processing time in big data, and proposed ways to handle with

this. Moreover, there are many papers that modify the Box-Cox function to adapt it also

for negative values, for example Hawkins and Weisberg (2017), Weisberg (2001), and John

and Draper (1980). Finally, there are also articles that show that the transformation is not

very useful in specific contexts, because it is not possible to find a value of λ that produces

a normally distributed data. This was the case of Nelson Jr and Granger (1979).



Chapter 3

Application of Box-Cox to the single
index model

From the study of Bolancé et al. (2018), we observe that the skewness of the data has a

significant impact on the accuracy of the results. In fact, the outcomes for the non-normal

distribution data are worse than the ones for normally distributed data. To re-examine,

we generate the data sets in different distributions of 100 samples with size n=100 and

n=500, then run again the algorithm following the method of Bolancé et al. (2018), we get

the results which showed in the table below.

Normal Logistic Lognormal Weibull Champernowne
(α = 1)

Champernowne
(α = 2)

n=100

Bias θ2 -0.0022 -0.1682 0.1697 -2.7905 -2.1894 0.5369
θ3 0.0116 0.1345 0.2367 1.1376 2.4972 -1.9249

MSE θ2 0.0389 1.1306 1.8237 508.3906 198.4770 1810.825
θ3 0.0192 6.6961 5.4549 153.7398 191.0748 3600.027

n=500

Bias θ2 0,0052 0,0099 -0,0153 -1,0060 -3,7711 -0,2375
θ3 0,0013 -0,0001 -0,0115 -1,0420 -2,2358 -0,0639

MSE θ2 0,0050 0,0077 0,0313 10,1076 181,6413 0,7377
θ3 0,0029 0,0045 0,0206 21,6555 42,8694 0,5732

Table 3.1: The simulated results by 100 samples with size = 100 and size = 500

Following the outcomes, the results are improved when the size of the sample are

greater. Especially, the values of bias and mean squared error of estimation with the

data which is in normal distribution shape (normal distribution, and logistic distribution)

is very smaller than the ones whose distribution is asymmetrical (log-normal, Weibull,

Champernowne distribution). Therefore, our research question is whether we can obtain

a better estimation if we transform the response from non-normal distribution to normal

10
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distribution. Hence, to explore this possibility, one of the most popular methods is the

Box-Cox transformation. This method involves applying a power transformation to the

data in order to achieve a normal distribution.

3.1 Description of the application of Box-Cox to single index model

Based on the problem mentioned above, our idea is transform the data from skewed to

symmetric, then we can estimate the link function and the parameters. We apply the Box-

Cox transformation to change the dependent data from its skewness state to the normal

distribution, so that the predictive qualities of the model can be enhanced. First of all,

based on the available data, we find the optimal parameters λ, then use these parameters

to calculate the new values. The distribution of the set of value is expected to be normality.

In general, when u is a variable which depends on v, or u = h(v), so that v = h−1(u)

where h−1 is the inverse function of the function h, the density function of u can be calcu-

lated according to the following relation:

f(u) = f(h−1(u))
dv

du
(3.1)

Let T (Y ) be the Box-Cox transformation function of the dependent variable Y , let g(T (Y ))

be the density function of T (Y ), and let T ′(y) be the derivative of T (Y ). We have:

f(y|θx) = g(T (y)|θx) · T ′(y) (3.2)

From the Equation 3.2, instead of estimating directly f(y|θx), we evaluate g(T (y)|θx). Re-

calling Equation 2.12, we can calculate also the leave-one-out conditional density of T (Yi),

given Xi, g−i
θ (T (Yi)|θ′Xi), as:

ĝ−i
θ (T (Yi)|θ′Xi) =

r̂−i(θXi, T (Yi))

ŝ−i(θXi)
(3.3)

Then, we have that:

f̂−i
θ (T (Yi)|θ′Xi) = ĝ−i

θ (T (Yi)|θ′Xi) · T ′(Yi) =
r̂−i(θXi, T (Yi))

ŝ−i(θXi)
· T ′(Yi) (3.4)

where, according to Equations 2.13 and 2.14, r̂−i is defined as

r̂−i(θ′Xi, T (Yi)) =
1

h1h2

n∑
j=1,i ̸=j

K

(
θ′Xi − θ′Xj

h1

)
K

(
T (Yi)− T (Yj)

h2

)
(3.5)

and ŝ−i is computed as:

ŝ−i(θ′Xi, T (Yi)) =
1

h1

n∑
j=1,i ̸=j

K

(
θ′Xi − θ′Xj

h1

)
(3.6)
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The leave-one-out conditional likelihood function is defined as:

L̂n(θ) =
n∏

i=1

f−i
θ (Yi|θ′Xi) =

n∏
i=1

g−i(T (Yi)|θXi) · T ′(Yi) (3.7)

To estimate the parameters, we find the values of θ that maximize the value of the log

function l̂n, defined as:

l̂n(θ) = log(L̂n(θ)) =

n∑
i=1

log(g−i(T (Yi)|θXi)) +

n∑
i=1

log(T ′(Yi)) (3.8)

Since the transformed response T ′(Yi) is not dependent on θ, the derivative of log(T ′(Y ))

by θ is equal to zero, therefore, the estimator is not depend on T ′(Y ). This is translated

into the following equation:

θ̂n = argmax
θ

l̂n(θ) = argmax
θ

n∑
i=1

log(g−i(T (Yi)|θXi)) (3.9)

which applies when:

∂l̂n(θ)

∂θ
=

∂
∑n

i=1 log(g
−i(T (Yi)|θXi))

∂θ
= 0 (3.10)

3.2 Simulation study

In order to verify our assumption on the properties of the estimator, we ran the data set

with 100 samples of size n=500. Specifically, we used the R programming language and a

variety of statistical packages, including EnvStats, stats, and ggplot2, to perform the

analysis. Hereafter, we define as θ0 the initial parameters, and θ the estimated parameters.

The algorithm is constructed to create the random values for the independent variables x

and for the response y, which is obtained by the application of a set of different smooth

functions, namely lognormal, Weibull, Champernowne, Pareto, and exponential distribu-

tion, to the linear combination θ0x. For θ0 = {θ01θ02, θ03}, we fix the values {1, 1.3, 0.5}.

After that, we fit a single-index model by estimating the parameters theta and the smooth

function f . To verify the efficiency of the method, we calculate the bias and the mean

squared error of the estimated θ and the real θ0.
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Lognormal distribution Weibull distribution
n=500 Orig. Log Box-Cox Orig. Log Box-Cox

Bias V1 θ2 -0.0153 0.0052 0.0018 -1.0061 -0.0250 -0.0043
θ3 -0.0116 0.0013 -0.0016 -1.0420 -0.0105 -0.0145

MSE V1 θ2 0.0206 0.0050 0.0033 10.1076 0.0546 0.0992
θ3 0.0206 0.0029 0.0017 21.6555 0.0232 0.0178

Champernowne (α = 1) Champernowne (α = 2)
n=500 Orig. Log Box-Cox Orig. Log Box-Cox

Bias V1 θ2 -3.7712 0.0160 0.0134 -0.2375 0.0009 0.0022
θ3 -2.2358 0.0052 -0.0009 -0.0639 0.0004 -0.0024

MSE V1 θ2 181.6414 0.0179 0.0156 0.7377 0.0020 0.0023
θ3 42.8694 0.0076 0.0072 0.5732 0.0009 0.0012

Pareto distribution Exponential distribution
n=500 Orig. Log Box-Cox Orig. Log Box-Cox

Bias V1 θ2 -1.6966 0.0054 0.0034 -0.2845 -0.0133 -0.0066
θ3 -1.0196 0.0001 -0.0012 -0.4875 -0.004 0.0029

MSE V1 θ2 60.8870 0.0016 0.0013 5.7300 0.0051 0.0042
θ3 13.8100 0.0006 0.0004 5.9300 0.0033 0.0029

Table 3.2: Bias and MSE of the estimators θ̂ in different distributions

The results are shown in the Table 3.2. The table is composed by six boxes, each of

them representing the results obtained by the different smoothing function (Lognormal,

Weibull, Champernowne with α = 1 and α = 2, Pareto and Exponential). Inside each

box, the columns repreent the results obtained for the original data (Orig.), the data trans-

formed with the logarithm in columns Log(Y) and the data transformed with Box-Cox in

the columns Box-Cox(Y). The rows contains the values of the Bias and the Mean Square

Error (MSA) of the estimators, for the parameters θ2 and θ3. From the results, we can

observe there is a big difference between the results of the non-transformed data and the

transformed data. The values of the bias and the MSE obtained when we use the transfor-

mations are much lower than those we get from the original data, which indicate a much

better fit of the model. Moreover, the Box-Cox transformation gives results that are slightly

better than the ones obtained by the log transformation for most distributions.

After we get the parameters corresponding to each sample, we use the statistical power to

verify the effect of the variance, in particular whether it is different from zero and whether

the estimated parameters are identical to the initial parameters θ0. The first null hypothesis

is: H0: θjk = 0, where k = 1, . . . , d, with d that is the number of the independent variables,

j = 1, 2, . . . , n, with n that is the number of replications or the number of samples, and the
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alternative hypothesis is H1: θjk > 0. In order to find the p-value that we need to answer

the hypothesis test, we calculate the critical Z-value Z =
θ̂j

se(θ̂j)
, where θ̂j is the estimated

parameter of each sample j and se(θ̂j) indicates the estimated standard error. After hav-

ing the p-value for the hypothesis testing for each sample, we determine how many times

we reject the null hypothesis for all samples. In the table, we record the outcomes of es-

timated power, that is the percentage of times in which we reject the null hypothesis or

when p − value ≤ 0.025. According to the results, the proportion of rejection is higher

when we transform the data by log and Box-Cox transformation, with the average p-value

very near to 0. Hence the estimated parameters are significantly different from zero, and

the percentage is higher with the transformed data.

On the other hand, we want to test if the estimated parameters are considered to be the

same as the initial parameters. To do so, we take as as null hypothesis H0: θjk = θ0k and

the alternative hypothesis: θjk ̸= θ0k. We test to verify if the estimated θjk is equal to the

θ0k and to know how many samples get the p− value > 0.025.

The statistic for this test is Z =
θ̂jk − θ0k

se(θ̂jk − θ0k)
We verify that the average p-value of all samples in all distributions are greater than 0.1.

The estimated power in the table is the percentage of samples in which the null hypoth-

esis is not rejected. It shows an improvement of the proportion of acceptance of the null

hypothesis with the transformation. However, the results do not change much in the case

of the exponential distribution. The results are presented in Table 3.3.
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Lognormal distribution

Orig. Log Box-Cox

est. power avg. p-value est. power avg. p-value est. power avg. p-value

θ2=0.0 1.000 0.000 1.000 0.000 1.000 0.000
θ3=0.0 0.920 0.013 1.000 0.000 1.000 0.000

θ2=1.3 0.880 0.249 0.910 0.224 0.880 0.223
θ3=0.5 0.850 0.172 0.830 0.218 0.890 0.211

Weibull distribution

Orig. Log Box-Cox

est. power avg. p-value est. power avg. p-value est. power avg. p-value

θ2=0.0 0.600 0.078 0.990 0.002 1.000 0.000
θ3=0.0 0.460 0.109 0.960 0.003 0.960 0.005

θ2=1.3 0.430 0.120 0.840 0.194 0.840 0.181
θ3=0.5 0.560 0.119 0.820 0.200 0.860 0.201

Champernowne (α = 1) Distribution

Orig. Log Box-Cox

est. power avg. p-value est. power avg. p-value est. power avg. p-value

θ2=0.0 0.620 0.092 1.000 0.000 1.000 0.000
θ3=0.0 0.450 0.112 0.990 0.0003 1.000 0.0002

θ2=1.3 0.490 0.121 0.740 0.173 0.780 0.180
θ3=0.5 0.600 0.127 0.750 0.192 0.790 0.207

Champernowne (α = 2) Distribution

Orig. Log Box-Cox

est. power avg. p-value est. power avg. p-value est. power avg. p-value

θ2=0.0 0.940 0.011 1.000 0.000 1.000 0.000
θ3=0.0 0.910 0.023 1.000 0.000 1.000 0.000

θ2=1.3 0.780 0.200 0.850 0.189 0.800 0.180
θ3=0.5 0.830 0.211 0.830 0.193 0.830 0.206

Pareto Distribution

Orig. Log Box-Cox

est. power avg. p-value est. power avg. p-value est. power avg. p-value

θ2=0.0 0.790 0.038 1.000 0.000 1.000 0.000
θ3=0.0 0.660 0.075 1.000 0.000 1.000 0.000

θ2=1.3 0.780 0.194 0.840 0.227 0.860 0.211
θ3=0.5 0.850 0.193 0.850 0.216 0.900 0.220

Exponential Distribution

Orig. Log Box-Cox

est. power avg. p-value est. power avg. p-value est. power avg. p-value

θ2=0.0 0.880 0.022 1.000 0.000 1.000 0.000
θ3=0.0 0.840 0.032 1.000 0.000 1.000 0.000

θ2=1.3 0.800 0.214 0.850 0.213 0.840 0.210
θ3=0.5 0.820 0.204 0.800 0.186 0.800 0.194

Table 3.3: The power statistics



Chapter 4

Predicting automobile accident costs
through a single-index model with
the Box-Cox transformation

For the experimental chapter of this thesis, we use data from a Spanish car insurance. In

car insurances, car owners pay a yearly fee to a company in order to be insured against

traffic-related accidents. In Europe, mandatory car insurance has to cover for the damages

the customer may cause to properties of others, their health or their lives. The company

gets paid a yearly fee by the customer, that is usually in the range of hundreds to thousands

of euros, in exchange of the legal binding to repay damages in case of accidents, which can

range up to millions of euros. In this case study, we try to build a single index model

that predicts the cost per claim that a customer is likely to generate depending on his/her

demographic data and his/her driving habits. Data is collected from the general profile

of the customer (non-telematics data) and from its driving habits (telematics data), thanks

to a black-box device that companies install on the cars of the customers. The model may

reveal that certain categories of drivers generate higher claim costs compared to other

categories who exhibit more cautious driving habits. By accurately predicting the cost per

claim, insurance companies can better manage their financial risks and optimize pricing

strategies, offering personalized insurance premiums based on individual risk profiles.

4.1 Data set

The data set is from a Spanish insurance company and contains a sample of 489 clients who

hold a car insurance contract and submitted at least one claim in the analyzed period of one

year. The given information for each policyholder is presented in Table 4.1. In the table, a

horizontal line divide the response, which is is expressed in terms of total cost, number of

claims and cost per claim generated by the customers, from the independent variables. The

16
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three ways in which the response is expressed are related, but in this analysis the objective

is to being able to predict the expected cost per claim. The independent variables are

divided in two categories: telematic covariates and non-telematic covariates. The telematic

covariates are collected by the insurance company through a device installed in the cars

of the customers, and are tkm, nightkm, urbankm, and speedkm, whilethe non-telematic

covariates are gender, age, agelic, agecar, and parking.

Parameter Meaning

total cost total cost for all claims in thousand of euros
Nclaims the numbers of claims
cost cost per claim in thousands of euros. To simplify the analy-

sis, we divide the values by 1000
gender the gender of clients
age age of the clients in years
agelic age of driving licence in years
agecar age of the car in years
parking is 1 if car is parked in the garage at night, otherwise the

value is 0
tkm annual kilometers driven in thousands. To simplify the

analysis, we divide the values by 1000.
nightkm kilometers driven at night. However, we transform this

variables to be the percentage of night kilometers on the
total annual kilometers in the analysis.

urbankm percentage of kilometers on urban roads
speedkm percentage of kilometers above the speed limit

Table 4.1: Information contained in the data set used for the case study

The descriptive statistics of the cost per claim and other variables are presented in Table

4.2. The statistics shown are the mean, the standard deviation and the quantiles. We can

see that the maximum cost per claim is 130870,3 euros, but other critical statistics such

as mean, minimum, median, the 25th and 75th percentiles are quite small, all under 2

thousand euros.
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Mean STD Min Q25 Median Q75 Max

cost 1.8097 6.1911 0.0177 0.4172 0.8182 1.8785 130.8703
age 27.0092 3.2457 20.5859 24.4955 26.8199 29.8864 34.0670
agelic 6.4280 2.8333 2.0014 4.3367 5.8645 7.9917 14.6858
agecar 8.9162 4.1620 2.1109 5.7768 7.9425 11.3703 20.4682
parking 0.7628 0.4258 0.0000 1.0000 1.0000 1.0000 1.0000
tkm 8.3564 4.5304 1.2198 5.1743 7.5493 10.6352 35.1049
nightkm 7.5138 6.5030 0.0438 2.9789 5.8408 9.9537 42.8302
urbankm 27.1275 14.1629 3.8099 16.5655 24.4008 35.2445 80.6586
nightkm 7.2033 7.0997 0.1223 2.2857 4.9691 9.4033 48.0024

Table 4.2: Descriptive statistics of the variables of the data

A preliminary exploratory data analysis step, that help us to understand visually the

impact of each factor on the cost per claim, consists in generating a series of plots to verify

the distribution of the outcome.

Figure 4.1: Dispersion plots of the relationship between cost per claim and independent
variables

Figure 4.1 represents the distribution of the cost depending on the explanatory vari-

ables age, agelic, agecar, tkm, nightkm, urbankm and speedkm. We don’t take into account

the presence of parking, given that it is a binary variable takes only two values, zero and

one. According to the plots in Figure 4.1, the pattern of association between the variables is

not readily apparent. The last plot, at the bottom right, represents just the sorted responses
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in increasing order. We can notice that the shape is quite flat, except from the right tail and,

in particular, the extreme value. The figures show the symptoms of non-normality in the

response and the need for a transformation of the variable. In most of cases, cost per claim

is under €30000, however, the extreme value with a single claim that costed 130000€. Prob-

ably, it is the case of a customer that was involved in a serious accident on the road which

involved a much higher cost than average. We also noticed that this accident with a very

high cost was also the only one generated by this customer.

Figure 4.2: Dispersion plots of the relationship between the log-transformed of cost per
claim and independent variables
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Figure 4.3: Dispersion plots of the relationship between Box-Cox transform of cost per
claim and independent variables

According to the methodology presented in the previous sections, we transform the

cost per claim by both the log transformation and by the Box-Cox transformation that

we defined in Chapter 3. In particular, the application of the two-parameters Box-Cox

transformation with λ1 and λ2 resulted in the optimal values of λ1 = −0.10506 and λ2 =

0.04225. We recall that the value of the cost transformed by log transformation is a special

case of the Box-Cox transformation when the parameter λ1 is equal to zero. In this case,

λ1 ̸= 0, so it makes sense to apply the Box-Cox transformation. After we transform the

cost by the log transformation and by the Box-Cox transformation, we obtain, respectively,

the new sets of plots in Figure 4.2 and in Figure 4.3. From the new plots, we can observe

that the mean of transformed cost per claim seems to remain constant for different values

of the independent factors. With both transformations, the response takes a shape that is

nearer to an increasing line. We can realize that both log and Box-Cox transformations

produce plots that look like similar, however, the range of transformed cost by Box-Cox

transformation is smaller than the one by log transformation. Additionally, by plotting the

histogram for the cost and the transformed cost, we get Figure 4.4. Apparently, the cost

distribution becomes normal with the log and the Box-Cox transformation.

To get a more statistically significant confirmation beyond the visual observations done

so far, we also perform the Shapiro-Wilk normality test with a significance level of 0.05 to

test the normality of the transformed data. If the statistic of the test provides a p-value
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p > 0.05, than the transformed data is not significantly different from normal distribution.

In the case of the log transformation, the result of the test gives p = 0.02712, indeed we

can’t affirm that the log-transformed response is normally distributed. On the other hand,

the result executed on the response transformed by the two-parameter Box-Cox transfor-

mation gives a p-value p = 0.3655, so that we can confirm that it is normally distributed,

as we expected, given that we got λ1 ̸= 0. Thus, the Box-Cox transformation is more

appropriate than a simple log transformation to address non-normality in this data set.

Figure 4.4: The histogram of the distribution of cost per claim. From left to right: without
any transformation, with log transformation and with Box-Cox transformation with the
λ1 = −0.10506 and the λ2 = 0.04225

In order to verify whether the extreme value has an impact on the model estimation, we

try to repeat the procedure after we take the extreme value out from the data set. The new

parameters λ of the Box-Cox transformation on the new dataset change to λ1 = −0.00998

and λ2 = 0.01225. In this case, λ1 is much nearer to zero than in the previous case. How-

ever, according to the descriptive statistics in Table 4.3, the maximum of the original cost,

with and without extreme value, are respectively 130.87(thousand euros) and 17.03(thou-

sand euros), and the mean cost changed just about 0.3 (thousand euros). Similarly, the

analogous statistics computed after the response has been transformed by the log trans-

formation and by the Box-Cox transformation do not show any significant changes. The

maximum values have the small difference about 1 unit, while the mean values appear to
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be stable. This applies not only the mean of the cost, but to all other statistics, that keep

stable with and without the extreme value.

Min. 1st-Qu Median Mean 3rd-Qu Max.

Cost 0.018 0.420 0.820 1.810 1.880 130.870
With extreme value Log -4.030 -0.870 -0.200 -0.140 0.630 4.870

BC -3.270 -0.810 -0.150 -0.120 0.630 3.810
Cost 0.018 0.420 0.810 1.540 1.870 17.030

Without extreme value Log -4.030 -0.880 -0.200 -0.150 0.630 2.830
BC -3.560 -0.850 -0.190 -0.130 0.630 2.790

Table 4.3: Descriptive statistics of cost per claim and transformed cost per claim with and
without extreme value

Analogously to what we did on the dataset that included the extreme value, we also

execute the Shapiro-Wilk normality test to verify the normal distribution of the data sets.

In this case, the p-values obtained for the cost transformed by the log transformation and

by the Box-Cox transformation are, respectively, 0.1814 and 0.3442. Therefore, in this case,

both the responses transformed by log transformation and by Box-cox transformation are

normal distributed.

4.2 Results

Our goal is to analyze the impact of the independent variables on the cost per claim. Since

we have two types of data, non telematics and telematics, we consider three different mod-

els. The first one, includes all variables, the second one includes only non-telematics vari-

ables, and the last model uses only telematics variables. According to the methodology

presented in this thesis, we set “speedkm” as the variable with the constrained coefficient

θ1 = 1, for the model with all variables and the models with only telematic factors, while

the value of the other parameters θi are determined by the model. We do this because

we suppose that high speed is one of the main reasons that lead to sever road accidents.

Hence, high speed will produce claims with higher cost than those caused by people that

drive at lower speed, that can better control their vehicles, and are less likely to gener-

ate impacts with severe damages. For the models with only non-telematic variables, we

constraint the coefficient of the variable “age” to be equal to 1.
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All variables Only non-telematics Only telematics
Orig. Log Box-Cox Orig. Log Box-Cox Orig. Log Box-Cox

speedkm 1.000 1.000 1.000 1.000 1.000 1.000
age -0.294* 0.153* 0.148* 1.000 1.000 1.000
agelic 0.176* 0.097* 0.093** -0.246* -0.246* -0.203*
agecar -0.406* -0.107* -0.080* 0.066* 0.074* 0.079 *
parking -3.024* -0.162 0.240 0.845* -0.655* 0.746*
tkm -0.138* -0.044* -0.144* -0.053** -0.423* -0.218*
nightkm 0.106* 0.117* 0.107* 0.223* 0.089* 0.114*
urbankm 0.005 0.141* 0.104* -0.024* 0.080* 0.127*

Significant at 1% level ∗ and at 5% level ∗∗

Table 4.4: Estimated parameters and their significance for the single index-model for the
data set with the original cost, the log transformation of cost, and the Box-cox transforma-
tion of cost with the λ1 = −0.1050598 and the λ2 = 0.04225

First of all, we analyse the data set that includes also the extreme value. The outcome

of the fitted parameters is shown in Table 4.4. The table presents the estimated coefficients

for the three models that include, respectively, all variables, only non-telematics, and only

telematics variables. Within each model, the estimations are divided by groups, according

the transformation that is applied to the cost per claim, namely, original (not transformed)

response, log-transformed response, and responses transformed with the Box-Cox trans-

formation with λ1 = −0.1050598 and the λ2 = 0.04225. Overall, we can observe that the

estimated parameters by log transformation and Box-Cox transformation are similar, but

for both the results differ significantly from those collected by original data. Considering

telematic variables, there are slight differences between the model that takes into account

all variables and the model that consider only telematics ones. From the data presented in

the table, we can observe that the variable “tkm” gets negative sign in all models. Proba-

bly, this is due to the fact that when people drive more kilometers, they can improve their

driving skills, then make less damage. Meanwhile, the “nightkm” parameter influences

positively and strongly on the cost in all models, so if people drive more in the night time,

the cost per claim gets higher. This might be due, for example, from the fact that peo-

ple drive faster at night because there is less traffic at night, as well as darkness reduces

visibility and tiredness might be higher. The “urbankm” gets negative values in the only

telematics model with original data, but it is positive in other data set. The values show

that the accident in urban area may cost more than in suburban, since there may be more

people involved and other factors around as shops, vehicle, etc in urban area.

On the other hand, there is a big difference in the estimated parameters between the

model with all variables and the model with only non-telematic factors. In the model with

all variables, the parameters of “parking” are not significant, however, their values are sig-

nificant, positive, and high in the model with only non-telematics variables. The positive



4.2. RESULTS 24

correlation might be counter-intuitive, given that cars are usually safer in garage. For this

reason, we have a doubt whether the cars that are parked carefully at night may be of

luxury type, so that value of the costs generated by the claims is higher than the ones that

are parked on the street, which may be cars with less monetary value. The parameters of

“agelic” are positive in the models with all variables, however, they are negatively corre-

lated with cost in the model with just non-telematics predictors. This appears reasonable,

given that the customers who have the license since more years will have more experi-

ence in driving, so they may produce less damage than inexperienced drivers who got the

license since a few years. Similarly, the results in the models with all variables suggests

that older cars generate lower costs per claim. On the contrary, the models with only non-

telematics values gave outcomes with positive value, on the other words, the accidents

tend to cost more as the car get older.

We perform the same procedure also after the removal of data entry with the extreme

value of cost 130870 €. Results of the estimated coefficients are show in Table 4.5. In

general, we can observe that there is a slight change of the estimated coefficients in the

set of data without the extreme value. We notice that all values of coefficients seem stable

in both the models that use only non-telematics and only telematics variables between

the sample with extreme value and without extreme value. Meanwhile, the values of the

parameters of the model that takes into account the whole set of variables, incur a more

noticeable change, even if still modest, if we remove the extreme value.

All variables Only non-telematics Only telematics
Orig. Log Box-Cox Orig. Log Box-Cox Orig. Log Box-Cox

speedkm 1.000 1.000 1.000 1.000 1.000 1.000
age -0.125* 0.112** 0.153* 1.000 1.000 1.000
agelic 0.093** 0.158** 0.099* -0.247* -0.182* -0.185*
agecar -0.292* -0.087* -0.107* 0.066* 0.087* 0.090*
parking -0.258 0.455 -0.157 0.845* 0.661* 0.686*
tkm -0.003* -0.140* -0.045* -0.053** -0.220* -0.207 *
nightkm 0.138* 0.106* 0.118* 0.223* 0.115* 0.120*
urbankm 0.019** 0.103* 0.141* -0.024 0.128* 0.074*

Significant at 1% level ∗ and at 5% level ∗∗

Table 4.5: Estimated parameters and their significance for the single index-model for the
data set without extreme value, with the orginal cost, the log transformation of cost, and
the Box-cox transformation of cost with the λ1 = −0.00998 and the λ2 = 0.01225



Chapter 5

Conclusions

This master thesis concerns the application of the Box-Cox transformation in the context

of single-index models. First, we gave a general overview of the theory related with the

topic, including a report of the relevant literature, in particular the proposed estimation

techniques and we provided details of our application of the Box-Cox transformation for

the single-index model. In details, we employ the transformation on the response variable

when it is normally distributed. For the experimental section, we included both a simula-

tion study and experiments on a real-world data set, concerning the prediction of the cost

per claim in automobile insurance.

In details, we extend the single-index model for the risk assessment in car insurance

from Bolancé et al. (2018), that employ the flexible maximum conditional likelihood for the

estimation of the index parameters and the leave-one-out-kernel method for the smooth

function. We noticed that when response data belong to a normal distribution, the model

provides better results than non-normalized data. For this reason, in this thesis we study

the application of the Box-Cox transformation on the response variable.

In particular, we apply the two-parameters Box-Cox transformation on the response

variable. The two parameters, named λ1 and λ2 are determined in order to maximize the

likelihood of the transformed data being normally distributed. We remind that the log

transformation, which is widely used in statistics, is a special case of the Box-Cox trans-

formation with λ = 0. For this reason, we also apply the log transformation and use it for

comparison with the Box-Cox transformation. To test our approach, we perform a simula-

tion study on synthetic data and a statistical analysis on a real-world data set.

Regarding the simulation study, we generate responses with different distributions and

we show that, for all studied distributions, both the log and the Box-Cox transformation

improve by a large measure the predictive accuracy of the single-index model compared

25
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to the model fitted on the original response as expected. However, the Box-Cox transfor-

mation provides slightly better results than log transformation.

The thesis is completed by a real-world example on car insurance data, which is a con-

crete application of single-index models, given that they can be used to predict variables

such as the expected cost, number of claims or cost per claims the customers are likely to

generate, based on a set of data about demographic characteristics and driving style. In our

study, we focused on the prediction of the impact of different telematic and non-telematic

variables on the cost per claim. We consider the model estimated on the original response

and the transformed response by the log and the Box-Cox transformation. In our case, the

resulting values for the Box-Cox parameters are λ1 = −0.10506 and λ2 = 0.04225, which

are different from zero. We fitted distinct models that contain all variables, only telematic

ones and only non-telematic ones. Finally, given the presence of an extreme value, a data

entry with a very high claim cost, we repeated the whole procedure after the removal of

the extreme value from de data set. In this case, the difference between the application

of the Box-Cox transformation and the log transformation is less significant, given that

λ1 = −0.00998 and λ2 = 0.01225. In total, we considered a 18 different models on the data

set, obtained as 3 variable selections (all, telematic, non-telematic) × 3 transformations

(none, log, Box-Cox) × 2 dataset versions (with and without extreme value).

The models fitted on the response transformed by the Box-Cox method gives slightly

different results from the ones obtained from the log transformation, and remarkably dif-

ferent from the models with original data. In comparison with the model that leaves out

the extreme value, the parameter values do not change much. Thus, it seems that the

extreme value does not influence the estimators of the models. However, the Box-Cox

transformation is capable to transform into a normal shape the response variable both in

presence and absence of the extreme value, while the log transformation fails in doing so

in presence of the extreme value. Thus, the application of our two-parameters Box-Cox

transformation is a more reliable methodology than a simple log transformation and, un-

surprisingly, than the usage of the original response.

Future work that we plan to realize concerns further studies on the application of

the Box-Cox to other real-world data sets that are relevant for the single-index model,

as well as the generation of new simulated data sets. Additionally, we plan to combine the

methodology with different estimation techniques for the single-index parameters and the

smooth function.
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Appendix A

R code

In this section we present the code of our application. For sake of simplicity, we present

just the case of 100 samples with size n=500.

A.1 Prerequisite and Data

First of all, we load the needed libraries

setwd("path/to/folder")
library(RGCCA)
library(EnvStats)
library(mvtnorm)

Then, we declare and define the set of variables needed in our study. First, we generate the

independent variable X , and divide it in 100 samples. In each sample, X is a 500×3 matrix,

in other words, X is combined by three explanatory variables. The initial parameters θ are

assigned with the values (1, 1.3, 0.5). Depending on the distribution, we have the values

of the dependent variable (Y ) given by the values of X and θ. There are 500 values Y in

each sample.

# NUMBER OF REPLICAS
nrep<-100
# Sample size
n<-500
# Number of explanatory variables
k=3
x3<-matrix(0,n,(nrep*k))
sig0<-diag(k)

set.seed(123)

30
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for (i in 1:nrep){x3[,(k*(i-1)+1):(k*i)]<- rmvnorm(n, mean =
rep(0, k), sigma = sig0)}↪→

# Index
index<-matrix(0,n,nrep)
dep_norm0<-matrix(0,n,nrep)
b0<-as.matrix(c(1,1.3,0.5))
for (j in 1:nrep){
for (i in 1:n){
index[i,j]<-x3[i,(k*(j-1)+1):(k*j)]%*%b0
dep_norm0[i,j]<-rnorm(1, mean = index[i,j], sd =

abs(index[i,j]))↪→

}
}
dep_norm0<-exp(dep_norm0) #to generate index values following

the lognormal distribution.↪→

# non-parametric index estimation
b_ini<-matrix(1,nrep,k)

After having the values of the dependent variable Y , we start to estimate the parameter

λ, that we need to transform the variable Y . In this context, we want to use Box-Cox

transformation with two parameters, therefore, we estimate the two parameters λ1 and λ2

and store them as a 100× 2 matrix (line 12).

# Box-Cox
l12<-matrix(0,nrep,2)
dlambda=0.01
for (j in 1:nrep){
Y<-dep_norm0[,j]
lambda2=seq((-min(Y)+0.01),(-min(Y)+0.01+3),dlambda)
lambda1=rep(0,length(lambda2))
liklambda=rep(0,length(lambda2))
for(i in 1:length(lambda2)){
boxcox.fit=boxcox((Y+lambda2[i]), lambda =c(-4, 1),

objective.name = "Log-Likelihood", optimize = TRUE)↪→

lambda1[i]=boxcox.fit$lambda;
liklambda[i]=boxcox.fit$objective

}
l12[j,1]=lambda1[which.max(liklambda)]
l12[j,2]=lambda2[which.max(liklambda)]

}

A.2 Single index function

This section shows the algorithm of the single index with the aim to estimate the param-

eters θ of the function. We will get various values of θ, h1, and h2 as the bandwidths of
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the kernel functions, then we also store those data to do the inference analysis in the next

part.

singleindex<-function(nn,t2=b_ini[,2:k], type, c1=5e-324,
MM=nrep){↪→

dim1<-ncol(t2)
tediffh<-array(0, dim=c(MM,dim1))
dd<-array(0, dim=c(MM,3))
mh<-array(0, dim=c(MM,2))
it<-array(0, dim=c(MM,1))
l<-1
while(l<=MM){
datosX<-x3[,(k*(l-1)+1):(k*l)]
Xv<-datosX
Y1<-dep_norm0[,l]
Y1<-(((Y1+l12[l,2])**l12[l,1])-1)/l12[l,1]
# kernel function, its derivatives and its integral;

Gaussian↪→

Ke<-function(x){return(dnorm(x))}
dKe<-function(x){

r<--dnorm(x)*x
return(r)}

ddKe<-function(x){
r<-dnorm(x)*(x-1)*(x+1)
return(r)}

pKe<-function(x){return(pnorm(x))}

likelih<-function(argumn,h1,h2){
Likelihood<-rep(1,times=nn)
for(k in 1:nn){

help1<-c(Ke(c(sum(c(1,argumn)*Xv[k,])
-colSums(c(1,argumn)*t(Xv)))/h1)*Ke((Y1[k]-Y1)/h2))↪→

help2<-c(Ke(c(sum(c(1,argumn)*Xv[k,])
-colSums(c(1,argumn)*t(Xv)))/h1))↪→

term1<-sum(help1[-k])/(h2*sum(help2[-k]))
if(sum(help1[-k])==0){term1<-0}
logDensity<-log(max(term1,c1))
Likelihood[k]<-logDensity

}
return(-sum(Likelihood))

}

# likelihhod function needed to optimize in (h1,h2)
likeliarg<-function(hh,ar){
return(likelih(argumn=ar,h1=hh[1],h2=hh[2]))
}



A.2. SINGLE INDEX FUNCTION 33

#likelihood function needed to optimize in (h,
sd(X*theta),h*sd(Z)).↪→

likelihnew<-function(ar,hh){ return(likelih(argumn=ar,
h1=hh*sd(ColSums(c(1,ar)*t(Xv)))↪→

, h2=hh*sdkm(Y1=Y1)))}
# standard deviation of Z
sdkm<-function(Y1=Y1){

return(sqrt((sum(Y1ˆ2)/nn)-(sum(Y1)/nn)ˆ2))
}
########################################################
# choosing start parameters for optimization
h1A<-1
h2A<-1
teA<-rep(1,times=dim1)
te<-rep(0,times=dim1)
b<-c(1,teA)
sdX<-sd(colSums(b%*%t(Xv)))
h1start<-sdX*nnˆ(-2/13)
sdY1<-sdkm(Y1=Y1)
sdY2<-IQR(Y1)/1.349
sdY<-min(sdY1,sdY2)
h2start<-sdY*nnˆ(-4/13)
count<-0
iter<-count
# we optimize first in the parameter theta then in

bandwidths↪→

# the optimization goes until the distances between
consecutive steps <0.001 or 200 steps were reached.↪→

while((count<200)&((sum(abs(teA-te)/dim1)>0.0001)|
(abs(h1A-h1start)>0.001)|(abs(h2A-h2start)>0.001))){
h1A<-h1start
h2A<-h2start
te<-teA

teA<-optim(par=c(te),fn=likelih,h1=h1start,h2=h2start)↪→

$par if(likelih(argumn=teA,h1=h1A,h2=h2A) >
likelih(argumn=te,↪→

h1=h1A,h2=h2A)){
teA<-te

}
# minimize -loglikelihood in (h1,h2)
b<-c(1,teA)
sdX<-sd(colSums(b%*%t(Xv)))
lowX<-0.01*sdX*nnˆ(-2/13)
upX<-10*sdX*nnˆ(-2/13)
sdY1<-sdkm(Y1=Y1)
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sdY2<-IQR(Y1)/1.349
sdY<-min(sdY1,sdY2)
lowY<-0.01*sdY*nnˆ(-4/13)
upY<-10*sdY*nnˆ(-4/13)

ha<-optim(par=c(h1start,h2start),fn=likeliarg,↪→

lower=c(lowX,lowY),upper=c(upX,upY),
method="L-BFGS-B",ar=teA)
h1start<-ha$par[1]
h2start<-ha$par[2]
print("count="); print(count)
count<-count+1
d1<-sum(abs(teA-te)/dim1)
d2<-abs(h1A-h1start)
d3<-abs(h1A-h1start)

}
# get values (c(h1start,h2start,teA))
tediffh[l,]<-c(teA)
mh[l,]<-c(h1start,h2start)
print("l="); print(l)
dd[l,]<-as.matrix(c(d1,d2,d3))
it[l]<-count
l<-l+1

}
##################### printing

results########################↪→

print(iter)
mtheta<-as.matrix(tediffh)
mh<-as.matrix(mh)
result<-cbind(mtheta,mh,it,l12)
colnames(result)<-c("theta2","theta3", "h1",

"h2","niter","l1","l2")↪→

write.csv(result,file =
"result_lognormal_500_bc.txt",row.names = F)↪→

bias1<-colSums(tediffh)/MM-b0[2:k]
print("bias of theta:")
print(bias1)
sthe<-var(tediffh)
print("covariance of theta:")
print(sthe)
print("MSE")
mse1<-diag(sthe)+bias1ˆ2
print(mse1)

}
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A.3 Execution

We present hereafter an example of execution with sample size 500. The code is encapsu-

lated into functions, so the only user-defined command needed to start the application is

the following:

tiempo.ini<-Sys.time()
singleindex(nn=500,type=1)
tiempo.fin<-Sys.time()
tiempo<-tiempo.fin-tiempo.ini
tiempo

A.4 Inference power analysis

This section combines the code for inference power analysis. We need to use the pa-

rameters θ, bandwidths, and the Box-Cox parameters λ that we estimated before. For

each set of dependent variables, we need to do four hypothesis testing: θ2 = 0, θ3 = 0,

theta2 = θ02 = 1.3, and theta3 = θ03 = 0.5. The code below is for the set of data in which

the original dependent variable is generated following the log normal distribution with

the application of Box-Cox transformation.

library(RGCCA)
library(mvtnorm)
# NUMBER OF REPLICAS
nrep<-100
# Sample size
n<-500
# Number of explanatory variables
k=3
x3<-matrix(0,n,(nrep*k))
sig0<-diag(k)
set.seed(123)
for (i in 1:nrep){x3[,(k*(i-1)+1):(k*i)]<-rmvnorm(n, mean =

rep(0, k), sigma = sig0)}↪→

# Index
index<-matrix(0,n,nrep)
dep_norm0<-matrix(0,n,nrep)
b0<-as.matrix(c(1,1.3,0.5))
for (j in 1:nrep){

for (i in 1:n){
index[i,j]<-x3[i,(k*(j-1)+1):(k*j)]%*%b0
dep_norm0[i,j]<-rnorm(1, mean = index[i,j],
sd = abs(index[i,j]))
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}
}
#Generating index values following the lognormal distribution

dep_norm0<-exp(dep_norm0)

# INFERENCE ANALYSIS
tiempo.ini<-Sys.time()
nn<-n
Ke<-function(x){return(dnorm(x))}
dKe<-function(x){

r<--dnorm(x)*x
return(r)}

ddKe<-function(x){
r<-dnorm(x)*(x-1)*(x+1)
return(r)}

pKe<-function(x){return(pnorm(x))}
c1=5e-324
condens<-function(argumn,h1,h2){

argumn<-argumn[-1]
cdens<-rep(0,times=nn)
for(k in 1:nn){

# to define conditional density and survival function we need
following help functions↪→

help1<-c(Ke(c(sum(c(1,argumn)*Xv[k,])-colSums(c(1,argumn)

*t(Xv)))/h1)*Ke((Y1[k]-Y1)/h2))

help2<-c(Ke(c(sum(c(1,argumn)*Xv[k,])-colSums(c(1,argumn)

*t(Xv)))/h1))

dens<-sum(help1[-k])/(h2*(sum(help2[-k]+c1)))
cdens[k]<-(max(c1,dens))

}
return(cdens)

}
ere<-function(argumn,h1,h2){

argumn<-argumn[-1]
ss<-rep(0,times=nn)
for(k in 1:nn){

help3<-c(Ke(c(sum(c(1,argumn)*Xv[k,])-colSums(c(1,argumn)*
t(Xv)))/h1)*Ke((Y1[k]-Y1)/h2))
ss[k]<-sum(help3[-k])/((nn-1)*h1*h2)

}
return(ss)

}
ese<-function(argumn,h1,h2){
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argumn<-argumn[-1]
ss<-rep(0,times=nn)
for(k in 1:nn){

help3<-c(Ke(c(sum(c(1,argumn)*Xv[k,])-colSums(c(1,argumn)

*t(Xv)))/h1))
ss[k]<-sum(help3[-k])/((nn-1)*h1)

}
return(ss)

}
argumn<-b0
nn<-n
h<-2
i<-1
ddere<-function(argumn,h1,h2,i){

argumn<-argumn[-1]
ss<-array(0,dim=c(length(argumn),length(argumn),nn))
for(h in 1:nn){

help5<-t(t(Xv[i,]-Xv[h,]))%*%(Xv[i,]-Xv[h,]) * Ke((Y1[i] -
Y1[h])/h2) * ddKe(c(sum(c(1,argumn)*Xv[i,]) -
sum(c(1,argumn) * Xv[h,]))/h1)

↪→

↪→

ss[,,h]<-help5[2:k,2:k]
}
rr<-apply(ss[,,-i],1:2,sum)/((nn-1)*(h1**3)*h2)
return(rr)

}

ddese<-function(argumn,h1,h2,i){
argumn<-argumn[-1]
ss<-array(0,dim=c(length(argumn),length(argumn),nn))
for(h in 1:nn){

help5<-t(t(Xv[i,]-Xv[h,]))%*%(Xv[i,]-Xv[h,]) *
ddKe(c(sum(c(1,argumn)*Xv[i,]) -

sum(c(1,argumn)*Xv[h,]))/h1)↪→

ss[,,h]<-help5[2:k,2:k]
}
rr<-apply(ss[,,-i],1:2,sum)/((nn-1)*(h1**3))
return(rr)

}
dere<-function(argumn,h1,h2,i){

argumn<-argumn[-1]
ss<-matrix(0,nn,length(argumn))
for(h in 1:nn){

help6<-(Xv[i,]-Xv[h,])*Ke((Y1[i]-Y1[h])/h2) * dKe(c(
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sum(c(1,argumn)*Xv[i,]) - sum(c(1,argumn)*Xv[h,])) / h1)
ss[h,]<-help6[2:k]

}
rr<-colSums(ss[-i,])/((nn-1)*(h1**2)*h2)
return(rr)

}

dese<-function(argumn,h1,h2,i){
argumn<-argumn[-1]
ss<-matrix(0,nn,length(argumn))
for(h in 1:nn){

help7<-(Xv[i,]-Xv[h,])*dKe(c(sum(c(1,argumn)*Xv[i,])
- sum(c(1,argumn)*Xv[h,]))/h1)
ss[h,]<-help7[2:k]

}
rr<-colSums(ss[-i,])/((nn-1)*(h1**2))
return(rr)

}
result<-read.table("result_lognormal_500_bc.txt",header =

TRUE,sep = ",")↪→

l12<-result[,6:7]
kk<-k
dimX<-kk
z1<-matrix(0,nrep,1)
STE<-matrix(0,nrep,1)

c1=5e-324
# Power analyisis. H0 false
# H0: Theta2=0

fderiv<-matrix(0,nn,dimX-1)
sderiv<-array(0,dim=c((dimX-1),(dimX-1),nn))
for (i in 1:nrep){

theta<-cbind(1,result[i,1:(kk-1)])
h1<-result[i,kk]
h2<-result[i,kk+1]
theta<-t(as.matrix(theta))
datosX<-x3[,(kk*(i-1)+1):(kk*i)]

Xv<-datosX

Y1<-dep_norm0[,i]
Y1<-(((Y1+l12[i,2])**l12[i,1])-1)/l12[i,1]

si<-ese(theta,h1,h2)
ri<-ere(theta,h1,h2)
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for(m in 1:nn){

fderiv[m,]<-(dere(theta,h1,h2,m)*si[m]-ri[m]

*dese(theta,h1,h2,m))/((si[m]**2)+c1)

sderiv[,,m]<-(ddere(theta,h1,h2,m)/(ri[m]+c1))
-((t(t(dere(theta,h1,h2,m)))%*%dere(theta,h1,h2,m))
/((ri[m]**2)+c1))-(ddese(theta,h1,h2,m)/(si[m]+c1))

+((t(t(dese(theta,h1,h2,m)))%*%dese(theta,h1,h2,m))↪→

/((si[m]**2)+c1))
}
fderiv<-fderiv/condens(theta,h1,h2)
Sigma1<-(1/nn)*t(fderiv)%*%fderiv
Itheta=apply(sderiv,1:2,sum)/nn
Sigma2=solve(Itheta)
Sigma<-Sigma2%*%Sigma1%*%Sigma2/n

STE[i]<-sqrt(diag(Sigma))[1]
z1[i]<-(theta[2])/STE[i]
print(i)

}

pvalue<-1-pnorm(abs(z1))
ind<-(as.matrix(pvalue<=0.025))
p1<-mean(as.numeric(ind[,1]))
print("p-value")
p1
mean(pvalue)
# H0: Theta3=0
fderiv<-matrix(0,nn,dimX-1)
sderiv<-array(0,dim=c((dimX-1),(dimX-1),nn))
for (i in 1:nrep){

theta<-cbind(1,result[i,1:(kk-1)])
h1<-result[i,kk]
h2<-result[i,kk+1]
theta<-t(as.matrix(theta))
datosX<-x3[,(kk*(i-1)+1):(kk*i)]
Xv<-datosX
Y1<-dep_norm0[,i]
Y1<-(((Y1+l12[i,2])**l12[i,1])-1)/l12[i,1]

si<-ese(theta,h1,h2)
ri<-ere(theta,h1,h2)

for(m in 1:nn){

fderiv[m,]<-(dere(theta,h1,h2,m)*si[m]-ri[m]
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*dese(theta,h1,h2,m))/((si[m]**2)+c1)

sderiv[,,m]<-(ddere(theta,h1,h2,m)/(ri[m]+c1))
-((t(t(dere(theta,h1,h2,m)))%*%dere(theta,h1,h2,m))
/((ri[m]**2)+c1))-(ddese(theta,h1,h2,m)/(si[m]+c1))
+((t(t(dese(theta,h1,h2,m)))%*%dese(theta,h1,h2,m))
/((si[m]**2)+c1))

}
fderiv<-fderiv/condens(theta,h1,h2)
Sigma1<-(1/nn)*t(fderiv)%*%fderiv
Itheta=apply(sderiv,1:2,sum)/nn
Sigma2=solve(Itheta)
Sigma<-Sigma2%*%Sigma1%*%Sigma2/n
STE[i]<-sqrt(diag(Sigma))[2]
z1[i]<-(theta[3])/STE[i]
print(i)

}
hist(z1)
pvalue<-1-pnorm(abs(z1))
ind<-(as.matrix(pvalue<=0.025))
p1<-mean(as.numeric(ind[,1]))
print("p-value")
p1
mean(pvalue)
tiempo.fin<-Sys.time()
tiempo<-tiempo.fin-tiempo.ini
tiempo

# Conficence analyisis. H0 true
# H0: Theta2=1.3
fderiv<-matrix(0,nn,dimX-1)
sderiv<-array(0,dim=c((dimX-1),(dimX-1),nn))
for (i in 1:nrep){

theta<-cbind(1,result[i,1:(kk-1)])
h1<-result[i,kk]
h2<-result[i,kk+1]
theta<-t(as.matrix(theta))
datosX<-x3[,(kk*(i-1)+1):(kk*i)]

Xv<-datosX

Y1<-dep_norm0[,i]
Y1<-(((Y1+l12[i,2])**l12[i,1])-1)/l12[i,1]

si<-ese(theta,h1,h2)
ri<-ere(theta,h1,h2)
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for(m in 1:nn){
fderiv[m,]<-(dere(theta,h1,h2,m)*si[m]-ri[m]

*dese(theta,h1,h2,m))/((si[m]**2)+c1)

sderiv[,,m]<-(ddere(theta,h1,h2,m)/(ri[m]+c1))
-((t(t(dere(theta,h1,h2,m)))%*%dere(theta,h1,h2,m))
/((ri[m]**2)+c1))-

(ddese(theta,h1,h2,m)/(si[m]+c1))
+((t(t(dese(theta,h1,h2,m)))%*%dese(theta,h1,h2,m))↪→

/((si[m]**2)+c1))
}
fderiv<-fderiv/condens(theta,h1,h2)
Sigma1<-(1/nn)*t(fderiv)%*%fderiv
Itheta=apply(sderiv,1:2,sum)/nn
Sigma2=solve(Itheta)
Sigma<-Sigma2%*%Sigma1%*%Sigma2/n
STE[i]<-sqrt(diag(Sigma))[1]
z1[i]<-(theta[2]-1.3)/STE[i]
print(i)

}
hist(z1)
pvalue<-1-pnorm(abs(z1))
ind<-(as.matrix(pvalue>0.025))
p1<-mean(as.numeric(ind[,1]))
print("1-p-value")
p1
mean(pvalue)
tiempo.fin<-Sys.time()
tiempo<-tiempo.fin-tiempo.ini
tiempo

tiempo.ini<-Sys.time()
# H0: Theta3=0.5
fderiv<-matrix(0,nn,dimX-1)
sderiv<-array(0,dim=c((dimX-1),(dimX-1),nn))
for (i in 1:nrep){

theta<-cbind(1,result[i,1:(kk-1)])
h1<-result[i,kk]
h2<-result[i,kk+1]
theta<-t(as.matrix(theta))
datosX<-x3[,(kk*(i-1)+1):(kk*i)]

Xv<-datosX

Y1<-dep_norm0[,i]
Y1<-(((Y1+l12[i,2])**l12[i,1])-1)/l12[i,1]
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si<-ese(theta,h1,h2)
ri<-ere(theta,h1,h2)

for(m in 1:nn){

fderiv[m,]<-(dere(theta,h1,h2,m)*si[m]-ri[m]

*dese(theta,h1,h2,m))/((si[m]**2)+c1)

sderiv[,,m]<-(ddere(theta,h1,h2,m)/(ri[m]+c1))
-((t(t(dere(theta,h1,h2,m)))%*%dere(theta,h1,h2,m))/
((ri[m]**2)+c1))-(ddese(theta,h1,h2,m)/(si[m]+c1))
+((t(t(dese(theta,h1,h2,m)))%*%dese(theta,h1,h2,m))
/((si[m]**2)+c1))

}
fderiv<-fderiv/condens(theta,h1,h2)
Sigma1<-(1/nn)*t(fderiv)%*%fderiv
Itheta=apply(sderiv,1:2,sum)/nn
Sigma2=solve(Itheta
Sigma<-Sigma2%*%Sigma1%*%Sigma2/n
STE[i]<-sqrt(diag(Sigma))[2]
z1[i]<-(theta[3]-0.5)/STE[i]
print(i)

}

pvalue<-1-pnorm(abs(z1))
ind<-(as.matrix(pvalue>0.025))
p1<-mean(as.numeric(ind[,1]))
print("1-p-value")
p1
mean(pvalue)
tiempo.fin<-Sys.time()
tiempo<-tiempo.fin-tiempo.ini
tiempo

A.5 The analysis of car accident cost

Finally, we analyse the real data on the automobile insurance sector. We have three vari-

able groups (all, telematic, non-telematic) and three transformations (non, log, Box-Cox

transformation) and two data set versions (with and without extreme value).

library(RGCCA)
library(e1071)
library(MultiSkew)
library(robustbase)
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library(EnvStats)
ComputeModel <- function(data_file, transform = "none",

remove_extreme = FALSE, selected_variables = "all")↪→

{data<-read.table(data_file,header=TRUE,sep=",")
# Parameters
if(remove_extreme){

data<-data[-488,]
}
n<-nrow(data)
cost<-data$cost

# Explanatory variables
mix1<-data$Nclaims
mix2<-data$age
mix3<-data$gender
mix4<-data$agelic
mix5<-data$agecar
mix6<-data$parking
mix7<-data$tkm/1000
mix8<-data$nightkm
mix8<-(mix8/data$tkm)*100
mix9<-data$urbankm
mix10<-data$speedkm

# Dependent variable
cost<-cost/1000
# Transformations
Log_cost<-log(cost)

data2<-data.frame(as.matrix(cbind(cost, Log_cost, mix2,
mix4,↪→

mix5, mix6, mix7, mix8, mix9, mix10)))

# Descriptive statistics
Means<-colMeans(data2)
Variances<-diag(var(data2))
Desviacion<-sqrt(Variances)
Q<-apply(data2,2,quantile)
# Los concatenamos por filas
Estadisticos<-rbind(Means,Desviacion,Q)
Estadisticos<-t(Estadisticos)
colnames(Estadisticos)<-c('Means', 'STD', 'Min', 'Q25',
'Median', 'Q75', 'Max')
knitr::kable(Estadisticos,digits=8, caption="Estad??sticos

Descriptivos")↪→

# Scatterplots
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# layout(matrix(c(1,2,3,4,5,6,7,0), 2, 4, byrow = TRUE))
# plot(mix2,Log_cost,pch=19, cex=.3, xlab="Age",

ylab="log(cost)")↪→

# plot(mix4,Log_cost,pch=19, cex=.3, xlab="Age of driving
licence", ylab="log(cost)")↪→

# plot(mix5,Log_cost,pch=19, cex=.3, xlab="Age of car",
ylab="log(cost)")↪→

# plot(mix7,Log_cost,pch=19, cex=.3, xlab="Annual
kilometers", ylab="log(cost)")↪→

# plot(mix8,Log_cost,pch=19, cex=.3, xlab="Percentage of
night kilometers", ylab="log(cost)")↪→

# plot(mix9,Log_cost,pch=19, cex=.3, xlab="Percentage of
kilometers on urban roads", ylab="log(cost)")↪→

# plot(mix10,Log_cost,pch=19, cex=.3, xlab="Percentage of
kilometers with speeding ", ylab="log(cost)")↪→

# Covariates in the trhree estimated models: TO SELECT ONE
VECTOR↪→

if(selected_variables == "all")
{

dataX<-as.matrix(cbind(mix10, mix2, mix4, mix5, mix6,
mix7, mix8, mix9)) #All variables↪→

}else if(selected_variables == "telematics")
{
dataX<-as.matrix(cbind(mix10,mix7,mix8,mix9)) #Only

telematics↪→

}else if(selected_variables == "no_telematics")
{
dataX<-as.matrix(cbind(mix2,mix4,mix5,mix6)) #Only no

telematics↪→

}

dimX<-ncol(dataX)
nn<-nrow(dataX)

Y<-cost
l12<-matrix(0,1,2)
dlambda=0.01
lambda2=seq((-min(Y)+0.01),(-min(Y)+0.01+3),dlambda)
lambda1=rep(0,length(lambda2))
liklambda=rep(0,length(lambda2))
for(i in 1:length(lambda2)){
boxcox.fit=boxcox((Y+lambda2[i]), lambda =c(-4, 1),

objective.name = "Log-Likelihood", optimize = TRUE)↪→

lambda1[i]=boxcox.fit$lambda;
liklambda[i]=boxcox.fit$objective

}
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l12[1]=lambda1[which.max(liklambda)]
l12[2]=lambda2[which.max(liklambda)]
l12
# Initial parameters
ini<-lm(Y˜dataX)
summary(ini)

ini<-as.matrix(ini$coefficients)
ini<-ini[-1]
ini<-as.matrix(ini/ini[1])
ini<-t(ini)

# kernel function, its derivatives and its integral;
Gaussian↪→

Ke<-function(x){return(dnorm(x))}
dKe<-function(x){

r<--dnorm(x)*x
return(r)}

ddKe<-function(x){
r<-dnorm(x)*(x-1)*(x+1)
return(r)}

pKe<-function(x){return(pnorm(x))}

# R rounds all numbers smaller than c1 to 0.
# That's why I introduce c1 so that the likelihood is well

defined.↪→

c1=5e-324

# nn=sample size
singleindex<-function(nn,t2=ini[-1], c1=5e-324){

dim1<-length(t2)
one<-1
# save results for estimated parameters
# when two selected bandwidths
tediffh<-array(0, dim=c(dim1,1))
Xv<-dataX

#define theta, while theta1=1 (always! Model restriction)
thetav<-c(one,t2)
print(thetav)

# generate data
score1<-colSums(thetav*t(Xv))
if(transform == "boxcox")
{

Y1<-(((Y+l12[2])**l12[1])-1)/l12[1]
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print(paste("Boxcox parameters, lambda_1 = ", l12[1], ",
lambda_2 = ", l12[2], sep=""))↪→

}
else if (transform == "log")
{

Y1<-Log_cost
} else if (transform == "none")
{

Y1<-Y
}

# likelihood function. It returns -loglikelihood and hence
we have minimization problem↪→

#Theta=argumn
#h1 is associated with Theta'*x and h2 with y.
likelih<-function(argumn,h1,h2){

Likelihood<-rep(1,times=nn)

for(k in 1:nn){

# to define conditional density and survival function
we need following help functions↪→

help1<-c(Ke(c(sum(c(one,argumn) * Xv[k,])
- colSums(c(one,argumn) * t(Xv)))/h1) *

Ke((Y1[k]-Y1)/h2))↪→

help2<-c(Ke(c(sum(c(one,argumn) * Xv[k,])
- colSums(c(one,argumn) * t(Xv)))/h1))

term1<-sum(help1[-k])/(h2*sum(help2[-k]))

if(sum(help1[-k])==0){term1<-0}

logDensity<-log(max(term1,c1))

Likelihood[k]<-logDensity
}
return(-sum(Likelihood))

}

# likelihhod function needed to optimize in (h1,h2)

likeliarg<-function(hh,ar){
return(likelih(argumn=ar,h1=hh[1],h2=hh[2]))

}
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# likelihood function needed to optimize in (h
sd(X*theta),h*sd(Z))↪→

likelihnew<-function(ar,hh){
return(likelih(argumn=ar,

h1=hh*sd(colSums(c(one,ar)*t(Xv))),
h2=hh*sdkm(Y1=Y1)))

↪→

↪→

}
# standard deviation of Z
sdkm<-function(Y1=Y1){

return(sqrt((sum(Y1ˆ2)/nn)-(sum(Y1)/nn)ˆ2))
}

########################################################
# choosing start parameters for optimization
h1start<-nnˆ(-2/13)
h2start<-nnˆ(-4/13)

h1A<-1
h2A<-1
teA<-rep(0,times=dim1)
te<-rep(1,times=dim1)
count<-0
while((count<50) & ((sum(abs(teA-te)/dim1)>0.000001) |

(abs(h1A-h1start)>0.001) |↪→

(abs(h2A-h2start)>0.1))){
h1A<-h1start
h2A<-h2start
te<-teA

teA<-optim(par=c(te),
fn=likelih,h1=h1start,h2=h2start)$par↪→

# this next line is "just in case". It checks if the new
found↪→

# parameter is smaller than the previous one (recall
that we seach for minimum)↪→

if(likelih(argumn=teA, h1=h1A,h2=h2A) >
likelih(argumn=te, h1=h1A, h2=h2A)){↪→

teA<-te
}

# minimize -loglikelihood in (h1,h2)

sdX1<-sd(colSums(ini%*%t(Xv)))
sdX2<-IQR(colSums(ini%*%t(Xv)))/1.349
sdX<-min(sdX1,sdX2)
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lowX<-0.1*sdX*nnˆ(-2/13)
upX<-4*sdX*nnˆ(-2/13)
sdY1<-sdkm(Y1=Y1)
sdY2<-IQR(Y1)/1.349
sdY<-min(sdY1,sdY2)
lowY<-0.1*sdY*nnˆ(-4/13)
upY<-4*sdY*nnˆ(-4/13)

ha<-optim(par=c(h1start,h2start),
fn=likeliarg,lower=c(lowX,upX), upper=c(lowY,upY),
method="L-BFGS-B",ar=teA)

↪→

↪→

h1start<-ha$par[1]
h2start<-ha$par[2]
print("count="); print(count)
count<-count+1

}
tediffh<-c(teA)
##################### printing results

########################↪→

print("Smoothing parameters estimated index parameters")
result<-c(h1start,h2start,tediffh)
return(result)

}

tiempo.ini<-Sys.time()
par<-singleindex(nn=nn)
tiempo.fin<-Sys.time()
tiempo<-tiempo.fin-tiempo.ini
tiempo
# Printing the estimated parameter
par
# Likelihood function
likeli<-function(Xv,Y1,argumn,h1,h2){

argumn<-argumn[-1]
Likelihood<-rep(1,times=nn)

for(k in 1:nn){
# to define conditional density and survival function we

need following help functions↪→

help1<-c(Ke(c(sum(c(1,argumn) * Xv[k,]) -
colSums(c(1,argumn) * t(Xv)))/h1) *
Ke((Y1[k]-Y1)/h2))

↪→

↪→

help2<-c(Ke(c(sum(c(1,argumn) * Xv[k,]) -
colSums(c(1,argumn) * t(Xv)))/h1))↪→
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term1<-sum(help1[-k])/(h2*sum(help2[-k]))

if(sum(help1[-k])==0){term1<-0}
logDensity<-log(max(term1,c1))
Likelihood[k]<-logDensity

}
return(sum(Likelihood))

}

# Optimal parameters
theta<-c(1,par[2:dimX+1])
theta<-as.matrix(theta)

h1<-par[1]
h2<-par[2]
h1
h2

# Log-likelihood optimal value
logLik<-likeli(dataX,Y,theta,h1,h2)

# Conditioned density
condens<-function(argumn,h1,h2){

argumn<-argumn[-1]
cdens<-rep(0,times=nn)
for(k in 1:nn){

# to define conditional density and survival function we
need following help functions↪→

help1<-c(Ke(c(sum(c(1,argumn) * Xv[k,]) -
colSums(c(1,argumn)*t(Xv)))/h1) * Ke((Y1[k]-Y1)/h2))↪→

help2<-c(Ke(c(sum(c(1,argumn) * Xv[k,]) -
colSums(c(1,argumn) * t(Xv)))/h1))↪→

dens<-sum(help1[-k])/(h2*(sum(help2[-k]+c1)))
cdens[k]<-(max(c1,dens))

}
return(cdens)

}

# Functions to estimate variance-covariance matrix
ere<-function(argumn,h1,h2){

argumn<-argumn[-1]
ss<-rep(0,times=nn)
for(k in 1:nn){

help3<-c(Ke(c(sum(c(1,argumn) * Xv[k,])
- colSums(c(1,argumn) * t(Xv)))/h1) * Ke((Y1[k]-Y1)/h2))
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ss[k]<-sum(help3[-k])/((nn-1)*h1*h2)
}
return(ss)

}

ese<-function(argumn,h1,h2){
argumn<-argumn[-1]
ss<-rep(0,times=nn)
for(k in 1:nn){

help3<-c(Ke(c(sum(c(1,argumn)*Xv[k,])
-colSums(c(1,argumn)*t(Xv)))/h1))
ss[k]<-sum(help3[-k])/((nn-1)*h1)

}
return(ss)

}

nn<-n
ddere<-function(argumn,h1,h2,i){

argumn<-argumn[-1]
ss<-array(0,dim=c(length(argumn),length(argumn),nn))
for(h in 1:nn){

help5<-t(t(Xv[i,]-Xv[h,])) %*% (Xv[i,]-Xv[h,]) *
Ke((Y1[i]-Y1[h])/h2) *
ddKe(c(sum(c(1,argumn)*Xv[i,]) - sum(c(1,argumn) *
Xv[h,]))/h1)

↪→

↪→

↪→

ss[,,h]<-help5[2:dimX,2:dimX]
}
rr<-apply(ss[,,-i],1:2,sum)/((nn-1)*(h1**3)*h2)
return(rr)

}

ddese<-function(argumn,h1,h2,i){
argumn<-argumn[-1]
ss<-array(0,dim=c(length(argumn),length(argumn),nn))
for(h in 1:nn){

help5 <- t(t(Xv[i,]-Xv[h,])) %*% (Xv[i,]-Xv[h,]) *
ddKe(c(sum(c(1,argumn)*Xv[i,]) -
sum(c(1,argumn)*Xv[h,]))/h1)

↪→

↪→

ss[,,h]<-help5[2:dimX,2:dimX]
}
rr<-apply(ss[,,-i],1:2,sum)/((nn-1)*(h1**3))
return(rr)

}
dere<-function(argumn,h1,h2,i){

argumn<-argumn[-1]
ss<-matrix(0,nn,length(argumn))
for(h in 1:nn){
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help6 < -(Xv[i,]-Xv[h,]) * Ke((Y1[i]-Y1[h])/h2) *
dKe(c(sum(c(1,argumn) * Xv[i,]) -
sum(c(1,argumn)*Xv[h,]))/h1)

↪→

↪→

ss[h,]<-help6[2:dimX]
}
rr<-colSums(ss[-i,])/((nn-1)*(h1**2)*h2)
return(rr)

}

dese<-function(argumn,h1,h2,i){
argumn<-argumn[-1]
ss<-matrix(0,nn,length(argumn))
for(h in 1:nn){

help7<-(Xv[i,]-Xv[h,]) * dKe(c(sum(c(1,argumn)*Xv[i,]) -
sum(c(1,argumn)*Xv[h,]))/h1)↪→

ss[h,]<-help7[2:dimX]
}
rr<-colSums(ss[-i,])/((nn-1)*(h1**2))
return(rr)

}

# Ploting index
index<-dataX%*%theta
par(mfrow=c(1,1))
plot(density(index))
Xv<-dataX
Y1<- (((Y+l12[2])**l12[1])-1)/l12[1]

# Calculating variance-covariance matrix
fderiv<-matrix(0,nn,dimX-1)
sderiv<-array(0,dim=c((dimX-1),(dimX-1),nn))

si<-ese(theta,h1,h2)
ri<-ere(theta,h1,h2)

for(m in 1:nn){
fderiv[m,]<-(dere(theta,h1,h2,m) * si[m]-ri[m] *

dese(theta,h1,h2,m)) / ((si[m]**2)+c1)↪→

sderiv[,,m]<-(ddere(theta,h1,h2,m) / (ri[m]+c1)) -
((t(t(dere(theta,h1,h2,m))) %*% dere(theta,h1,h2,m)) /
((ri[m]**2)+c1)) -

↪→

↪→

(ddese(theta,h1,h2,m) / (si[m]+c1)) +
((t(t(dese(theta,h1,h2,m))) %*% dese(theta,h1,h2,m))
/ ((si[m]**2)+c1))

↪→

↪→
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}

fderiv<-fderiv/condens(theta,h1,h2)
Sigma1<-(1/nn)*t(fderiv)%*%fderiv
Itheta=apply(sderiv,1:2,sum)/nn
Sigma2=solve(Itheta)

# Variance-covariance matrix of parameters
Sigma<-Sigma2%*%Sigma1%*%t(Sigma2)/n

# Standard errors
STE<-sqrt(diag(Sigma))

# Z statistic for normal asymptotic inference on index
parameters↪→

z<-theta[-1]/STE
STE
z
# P-values
pval<-1-pnorm(abs(z))
pval
# RESULTS
print("Estimation Results")
Results<-cbind(theta,c(0,STE),c(0,z),c(0,pval))
# Results<-t(Results)
colnames(Results)<-c('Coefficients','STE','Z','p-value')
print(knitr::kable(Results,digits=6, caption="Estimation

Results"))↪→

}

In order to execute the code above, we just have to call the function ComputeModel specif-

ing the value for the four parameters function: data file, that contains the path of the

.csv file with the data, transform that can be set to “none”, “log”, or “boxcox”, depend-

ing on the desired response transformation, remove extreme that if set to TRUE takes

away the extreme value discussed in Chapter 4, and selected variables that can be

set to “all”, “telematics”, or “no telematics”. The following snippet of code executes all the

combinations discussed in this work.

remove_extreme_types = c(FALSE,TRUE)
transform_types = c("none","log","boxcox")
selected_variables_types =

c("all","telematics","no_telematics")↪→
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for(rr in remove_extreme_types)
{

for (tt in transform_types)
{

for (sv in selected_variables_types)
{

print(paste("remove_extreme: ",rr,", transform_type:
",tt,", selected_variables_type: ",sv, sep=""))↪→

ComputeModel("data_cost.csv", tt, rr, sv)
}

}
}
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