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Abstract: We propose an algorithm based on linear prediction that can perform both the lossless
and near-lossless compression of RF signals. The proposed algorithm is coupled with two signal
detection methods to determine the presence of relevant signals and apply varying levels of loss as
needed. The first method uses spectrum sensing techniques, while the second one takes advantage
of the error computed in each iteration of the Levinson–Durbin algorithm. These algorithms have
been integrated as a new pre-processing stage into FAPEC, a data compressor first designed for space
missions. We test the lossless algorithm using two different datasets. The first one was obtained from
OPS-SAT, an ESA CubeSat, while the second one was obtained using a SDRplay RSPdx in Barcelona,
Spain. The results show that our approach achieves compression ratios that are 23% better than gzip
(on average) and very similar to those of FLAC, but at higher speeds. We also assess the performance
of our signal detectors using the second dataset. We show that high ratios can be achieved thanks to
the lossy compression of the segments without any relevant signal.

Keywords: data compression; radio frequency compression; spectral estimation; software-defined
radio (SDR); spectrum sensing

1. Introduction

Radio Frequency (RF) signals are everywhere. Bluetooth, Wi-Fi, mobile telephony and
TV all use RF signals to communicate. The massive adoption of these technologies has
pushed forward the development of new standards, thus increasing the number of assigned
or licensed frequency bands. By exploiting these bands when they are unused, opportunistic
communications aim to use the spectrum in a more efficient way [1,2]. Opportunistic
communications are related to cognitive radio, which is a radio that is aware of its internal
state and environment and can be dynamically configured to use the best channel. In this
sense, it is important to monitor the spectrum for subsequent opportunistic transmissions.
This technique is known as spectrum sensing and nowadays is usually performed with a
Software Defined Radio (SDR) [3].

Apart from communications, SDRs are also used in other fields such as remote sensing.
Earth observation techniques have seen a significant increase in both quality and quantity
in recent times, leading to a significant surge in the amount of data produced. Moreover,
since remote sensing is usually carried out by satellites with limited storage capacity and
bandwidth [4], this growth in data poses significant challenges in terms of data storage
and transmission.

Taking into account the extensive presence of RF signals and the constraints of the
devices that usually perform sensing tasks, data compression appears to be the key that
enables the storage and transfer of this kind of data. For this reason, there are some studies
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addressing this issue [5,6]. However, they are focused on very specific communications
signal types or they do not support lossless (or near-lossless) compression.

This article proposes a new method to compress, either lossless or lossy, generic RF
signals. In Section 3, a brief description of FAPEC is provided, i.e., the entropy coder
used in our algorithm. In Sections 4.1 and 4.2, we propose a lossless and a smart lossy
pre-processing stage for FAPEC, respectively. Then, in Sections 5 and 6, we describe the
parameters and test files used and the performance of the proposed approach is assessed.
Finally, in Section 7, we present our conclusions and state future research lines and possible
improvements for the presented methods.

2. RF Signals Data Format

In this paper, we deal with the compression of RF data, specifically the signals obtained
with a SDR. From communications theory [7], it is known that any pass-band signal s(t)
can be expressed as

s(t) = is(t) · cos(2π f0t)− qs(t) · sin(2π f0t), (1)

where is(t) and qs(t) are the in-phase and quadrature components, respectively, and f0 is
the carrier frequency.

For simplicity, we may work with the equivalent baseband signal

bs(t) = is(t) + jqs(t). (2)

The data to be compressed are the discrete time samples of the signals is(t) and qs(t).
In the dataset used in this work, the samples are 16-bit signed integers and they are

interleaved, forming a sequence x(n), n ∈ {0, . . . , N − 1} such that{
x(2k) = is(kT)
x(2k + 1) = qs(kT)

(3)

with k ∈ N and T the sampling period.

3. The FAPEC Data Compressor

Originally designed for space missions [8], Fully Adaptive Prediction Error Coder
(FAPEC) is a highly efficient and extensible data compressor. The advantages of using
FAPEC include its resilience in handling noisy or outlier data, its high computing perfor-
mance and its versatility.

The structure of FAPEC follows a pattern similar to that of other data compressors,
with a pre-processing stage followed by an entropy coder [9]. In fact, its name comes from
this structure, where the first stage is typically a predictor that estimates the samples and
generates a prediction error. The error sequence is then sent to the entropy coder, rather
than the original samples. It is worth noting that in some pre-processing stages, such as the
one presented in this paper, some side information is also sent to the entropy coder.

FAPEC is equipped with various pre-processing stages, including a basic differential
coder, multi-band prediction and a wavelet transform [10]. In its latest version, FAPEC
22.0, an algorithm for water column and bathymetry data, was also added [11,12].

To ensure robustness against data corruption and achieve a high computing perfor-
mance, FAPEC compresses data in chunks, which typically range from 64 kB to 8 MB.
The input sequence is split into several chunks of equal size, and each chunk is processed
independently of the others.

4. FAPEC Tailoring for RF Data

In Section 2, we described the typical format of RF files: the discrete time samples of
the equivalent baseband signal coded as 16-bit signed integers. Now, we shall propose an
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algorithm for this kind of data. Our approach is based on Linear Predictive Coding (LPC),
that is, a linear filter which predicts samples following the model

x̂(n) =
Q

∑
i=1

hix(n− i), (4)

where x̂(n) is the predicted sequence, x(n − i) is the previous samples, hi is the filter
coefficients and Q is the filter order. The prediction error is defined as

e(n) = x(n)− x̂(n). (5)

There are several reasons that justify using a linear predictor to process RF data. The
first one is that a Wide Sense Stationary (WSS) process can always be represented in terms
of the optimal linear prediction error. Thus, the filtering described above can also be
interpreted as an approximation of x(n) by an AR(Q) process. In addition, we may find
papers about IQ data compression that use FLAC to perform the encoding [5]. Finally,
linear prediction is a very general and simple method. Taking into account that our target
is arbitrary RF signals, a generic method is preferred. Additionally, in the case that the
prediction error follows a Gaussian distribution, uncorrelatedness and independence are
equivalent, thus linear prediction is optimum [13].

4.1. General Aspects of the Proposed Algorithm

In the implementation of a linear predictor as a pre-processing stage for FAPEC,
we made some tweaks in order to reduce the computational complexity and improve
the performance. In this section, the modifications and the actual implementation are
described.

First, it is known that the coefficients hi from Equation (4) are the solution to the
Yule–Walker equations [14]:

Rxh = rx (6)

where Rx is the autocorrelation matrix with elements rij = rx(|i− j|), 0 ≤ i, j < Q, rx the
correlation vector with rj = rx(j), 1 ≤ j ≤ Q and h the filter coefficients.

Solving the system with Gauss–Jordan elimination has a complexity of O(Q3). How-
ever, the Toeplitz structure of Rx can be exploited and the system can be solved using the
Levinson–Durbin recursion [13], with a complexity of O(Q2).

Obtaining Equation (6) involves a statistical approach. However, in this paper, the
input sequence x(n) is a finite sequence acquired from an SDR receiver. Consequently,
x(n) must be partitioned into subsequences of length N � Q denoted as xN(n), where
stationarity can be assumed. We should remark that x(n) corresponds to the whole chunk
and it is split into shorter sequences of length N. The autocorrelation lags are given by the
short-term autocorrelation sequence, also known as the autocorrelation method [13]:

rx(i) =
N−1−i

∑
m=0

xN(m)xN(m + i), i ≥ 0. (7)

It is worth noting that, since the character of the input data is unknown, the parameter N is
selected by the user when configuring the compressor.

In order to slightly reduce the computational complexity, we may choose not to use all
the N samples of xN(n). Instead, we set a training length T ≤ N and, as it is assumed that
the sequence is WSS, coefficients computed with T or N samples should be very similar.
Now, the autocorrelation is calculated as follows:

rx(i) =
T−1−i

∑
m=0

xN(m)xN(m + i), i ≥ 0. (8)
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Using this method, the number of samples used to compute rx(i) decreases as i increases,
so i � T must be used to obtain estimates of good quality. There exists another method
to estimate the correlation lags, called the covariance method. This approach uses all T
samples, so the estimates tend to have better quality. However, the autocorrelation method
keeps the Toeplitz structure and the covariance method does not. Further information
about the trade-off between these methods can be found in, for instance, reference [15].

Once the autocorrelation was estimated with the autocorrelation method described
above, we apply the Levinson–Durbin algorithm to solve the system. In order to improve
the performance of the predictor, on each iteration of the recursion, the error is computed,
and if it is less than 10% of the initial error or less than 1% of the previous error, the
algorithm stops with the filter order used in that iteration. This modification allows the
user to select high-filter orders but avoid overfitting and still have a reasonable complexity.

In brief, the proposed algorithm involves splitting the input sequence x(n) into sub-
sequences of length N and computing their autocorrelation using T < N samples. Filter
coefficients are then obtained via a modified Levinson–Durbin algorithm, which stops
when the prediction error reaches a predetermined threshold. Both the coefficients and
the prediction errors are subsequently fed to the entropy coder, with the former being
quantized for optimal coding. It should be noted that decompression involves calculating
x̂(n) using Equation (4) and adding it to the prediction error for the corresponding sample.
Therefore, it is evident that decompression is less complex than compression.

The algorithm described here can be independently applied to each component. How-
ever, the user has the option to enable coupling between components. In this case, the
coefficients computed for the first component are reused for the others, resulting in further
reduced complexity.

4.2. Smart Lossy

The algorithm proposed in the previous section allows to apply a lossy approach
(specifically, near-lossless with variable bitrate) by quantizing the input samples just before
computing the autocorrelation with Equation (8). Its implementation rounds the quantized
sample instead of truncating it in order to avoid a bias caused by the quantization noise. To
avoid error propagation, it is important to apply quantization to the samples rather than
the prediction errors.

However, for some use cases such as continuous monitoring in remote sensing, it may
be more interesting to adapt the loss level to the features of the data. For instance, if the
received signal only contains noise, a high level of losses can be applied. Due to its adaptive
capacity, we call this method smart lossy.

In order to detect signal features, we propose two different methods: a first one based
on spectrum sensing and a second one that takes advantage of the error magnitude com-
puted during the Levinson–Durbin recursion. In practice, the first technique can be used to
adjust the parameters of the second, which exhibits a much lower computational load.

The spectrum sensing method consists of first estimating the noise power and using
this estimate to implement an energy detector. Then, different levels of losses can be applied
to what is assumed to be signal or noise, respectively. The problem can be stated as follows:

H0 : x(n) = w(n)

H1 : x(n) = s(n) + w(n)
(9)

where w(n) ∼ N (0, σ2
w) and s(n) is an unknown signal.

Estimating the noise power is a well-known problem, and as such, there exist several
techniques that address it [16,17]. Given that we want to be as general as possible regarding
the type of signal, we decided to use the Akaike Information Criterion (AIC) [18], as it does
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not need any knowledge about the signal s(n). The method is as follows: we compute the
averaged periodogram of the signal using Welch’s method [19]:

Px(k/L) =
1
K

K−1

∑
m=0

1
L

∣∣∣∣∣L−1

∑
n=0

xm(n)e
−2π j

L km

∣∣∣∣∣
2

︸ ︷︷ ︸
Periodogram

, (10)

where L is the size of the Fast Fourier Transform (FFT) and K is the number of periods
of length N defined in Section 4.1. For simplicity, we take L = N. In addition, thanks

to the Central Limit Theorem (CLT), Px(k/L) ∼ N
(

σ2
w, σ2

w
K

)
, and using the AIC, we can

find which frequency bins are assumed to represent the signal. The expression of AIC is
given by

AIC(k) = (L− k) · K · log(α(k)) + k(2L− k), (11)

α(k) =
1

L−k ∑L
i=k+1 λi

L−k
√

∏L
i=k+1 λi

, (12)

where λi = Px(i/L) is the power of the ith frequency bin in the averaged periodogram [20].
Knowing the index that minimizes the value of AIC(k)

kmin = argmin
k

AIC(k), (13)

the bins 0 ≤ i < kmin are assumed to represent the signal. Thus, an estimate of the noise
power can be obtained as

σ̂2
w =

1
L− kmin

L

∑
i=kmin

λi. (14)

Once we have an estimate of the noise power, we can proceed with the second step of
the method, namely detecting the signal. There are several approaches that deal with this
problem, such as the matched filter or cyclostationarity detection [21–24]. However, these
methods need some information about the signal. For this reason, we decided to use an
energy detector, as this allows blind detection. The energy detector is given by

T(x) =
D−1

∑
n=0

x(n)2
H1
≷
H0

γ, (15)

where T(x) ∼ χ2
D,σ2

w
and γ is the detection threshold.

For a fixed probability of false alarm PF, the threshold can be computed with

γ = Q−1
χ2

D
(PF) · σ̂2

w, (16)

where Qχ2
D

is the tail distribution function of the chi-squared distribution with D degrees
of freedom.

In our approach, the degrees of freedom and the probability of false alarm are user
parameters. The former is given by the desired probability of detection and allows to
adjust de bias-variance tradeoff, whereas the latter may be used to tune the aggressiveness
of the method. For instance, if we want to be cautious, we can set a higher value for PF,
thus increasing the probability of detecting noise as a signal and performing lossless (or
near-lossless) compression more often.

This method has been implemented in the C programming language and has been
released under the BSD license. Thus, it can be integrated into FAPEC or other third-party
software. The source code is available at [25].
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The second method, which we call the prediction evaluation method, aims at a simple
and fast implementation by reusing quantities already computed in the prediction stage.
It relies on the Levinson–Durbin algorithm, from which we take the autocorrelation rx(i),
the training length T, the estimated error ε, the filter order Q, and the LPC coefficients hi.
From these values, noise power σ̂2

w can be estimated as

σ̂2
w =

ε

T
, (17)

which can be understood as the LPC modeling error. The signal power σ̂2
s can be estimated as

σ̂2
s =

1
T

Q

∑
i=1

hirx(i), (18)

which can be seen as the LPC modeling success. Thus, for a given sub-sequence of N
samples where these quantities are determined, we estimate the Signal-to-Noise Ratio
(SNR) as

SNR =
σ̂2

s
σ̂2

w
. (19)

Finally, we define the smart lossy quantization step as

δ =

√
σ̂2

s + σ̂2
w

κ
(20)

where κ is the target dynamic range. That is, κ = 2β, where β is the target bits that we want
to keep from the digital RF data. Then, depending on the SNR (above or below a given
threshold), we can assign different values to κ (κs and κw, respectively). This will make
lossy compression more or less aggressive (that is, removing more or less bits), setting lower
or higher κ values, respectively. Note that δ depends on the total estimated power, meaning
that this approach adapts to the actual signal features. Thus, loud signals with a high
SNR can still be significantly quantized depending on the κ setting, whereas faint signals
also with high SNR may even be left lossless. Note that, in certain types of RF signals
such as Global Navigation Satellite System (GNSS), the noise estimation may actually
correspond to most of the signal power, whereas the signal estimation may correspond to
higher-power parasitic signals. In these cases, the user may configure κw � κs, meaning
that the sub-sequences with high SNR (meaning parasitic signals or interferences) are
aggressively compressed, whereas those with low SNR (meaning a “clean” GNSS or spread
spectrum signal) can be left with very small losses. Nevertheless, spread spectrum signals
exhibit an inherent gain related to the spreading factor, and thus higher loss levels can
be used.

Contrary to the near-lossless case (where the quantization is applied to the input
samples), in this prediction evaluation method we apply the quantization δ to the prediction
errors, which leads to slightly better results in terms of ratio and reconstructed quality.
This approach means that we must reconstruct each lossy sample during compression
before proceeding to the next sample, meaning some computing overhead but avoiding
error propagation.

5. Test Setup

The signals used in the following tests come from two different datasets: the first
one was obtained with OPS-SAT, a CubeSat by the European Space Agency (ESA) [26].
This consists of seven signals centered at 433.0 MHz, three at 1575.42 MHz and three at
1602.56 MHz. All signals were sampled at 3 MHz. The second one has been captured
with a SDRplay RSPdx in Barcelona, Spain, and it consists of three Amplitude Modulation
(AM) signals in the medium-wave broadcast band (526.5–1606.5 kHz) and three Automatic
Packet Reporting System (APRS) signals [27] in the 2-meter band (144.8 MHz). In this case,
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the signals were sampled at 15.625 kHz. Both datasets are public and can be downloaded
from [28].

To evaluate the lossless data compression performance of our algorithm, we con-
ducted tests in comparison with gzip, Zstd and FLAC using their default settings. Gzip
is a commonly used generic compressor that uses a combination of LZ77 [29] and Huff-
man [30] encoding techniques. Zstd is also a general purpose compressor designed to
give a compression ratio comparable to that of gzip, but much faster. Besides LZ77 and
Huffman, it also takes advantage of Finite State Entropy [31]. In the case of FLAC, the
format specification sets a maximum sample rate of 655.350 kHz, smaller than the 3 MHz
of the OPS-SAT signals. For this reason, we modified the sampling rate in the header to
44.1 kHz. Observe that we have not decimated the signal and that the FLAC performance
does not depend on this parameter. Finally, FAPEC has been configured with a period and
a training length of N = T = 8192 samples and a maximum filter order of Q = 16. Channel
coupling has also been enabled. In order to show that the value of the training period T
has a minor impact on the algorithm, we also performed lossless compression tests for
T ∈ {256, 512, 1024, 2048, 4096}.

Regarding the smart lossy algorithm, its performance is only assessed with the second
dataset. The reason is that we are interested in the quality of the signal after demodulation,
and thus, we must know the modulation used, and this is not the case for the first dataset.
For the spectrum sensing method, we computed the FFT with N = L = 2048 points and
computed the detection threshold for a probability of false alarm PF = 0.05 with D = 4096
degrees of freedom. The prediction evaluation method has been configured with an SNR
threshold of −5 dB and a target of 0 bits for the noise. The two extreme values for the signal
target bits are considered: 16 bits (lossless) and 1 bit (κs = 2). Observe that this target is not
strictly the number of bits used to represent the signal (see Equation (20) and its explanation).

In order to perform a fair comparison, all tests were forced to operate in single thread
mode and were executed on the same Mac mini (M1, 2020) running macOS 13.1.

6. Test Results
6.1. Lossless and Near-Lossless Compression

This section presents the compression ratio and throughput obtained in the tests. The
compression ratio is calculated as the ratio of the size of the original file to the compressed
file, while the compression throughput represents the amount of raw data that can be
compressed per second.

As can be seen in Figure 1, FAPEC and FLAC exhibit very similar compression ratios.
When compared to gzip and Zstd, FAPEC yields ratios of at least 12% better and 23.4%
on average. In this situation, one could consider using a well-known algorithm such as
FLAC. However, compression throughput must also be taken into account. In Figure 2,
we show that FAPEC is two times faster than FLAC and almost six times faster than gzip.
Regarding Zstd, it is much faster than FAPEC, but as previously shown, it produces lower
compression ratios.

In Figure 1, we also show the near-lossless compression ratios for the second and
fourth levels of losses. In the first case, the two Least Significant Bits (LSB) are removed
and the ratio increases by 28%. In the second case, the three LSB are removed and the ratio
increases by 49%. Ratios are remarkably better for GNSS files from the first dataset, given
the typically small amplitude of the signals contained therein.

To conclude, the lossless compression results in Figure 3 show that, for a fixed sequence
length (N = 8192), the value of T does not significantly affect the performance of FAPEC.
For instance, when T = 256, the average compression ratio is 1.765 instead of 1.789, whereas
the throughput increases from 142.74 MB/s to 153.02 MB/s. Given this modest decrease in
computational efficiency, the rest of the tests are performed with T = N.
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Figure 1. Lossless and near-lossless (levels 2 and 4) compression ratios of the RF signals.
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6.2. Smart Lossy

We conclude the results section by showing the performance of the detector on an
APRS signal (D2-APRS-1). In Figure 4, we show that both methods allow the detection
of the presence of a signal and the application of different levels of losses. If we set the
method to be very aggressive and remove the segments not detected as relevant signals,
the compression ratio for this file increases from 2.04 to 32.51 without any errors after
demodulation. If we wanted to even further increase the compression ratio, we could also
apply lossy compression to the signal segments. For instance, setting κs = 1 results in a
ratio of 104.62, and the signal is still demodulated without any errors.
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Figure 4. Normalized power, detected bands and estimated SNR of an APRS signal (D2-APRS-1).

7. Conclusions and Future Work

In this paper, a pre-processing stage for lossless data compression of RF signals has
been proposed. In addition, we also proposed two methods to detect the presence of
relevant signals, thus allowing the application of different loss levels to noise and signal.
In the first method, noise power is estimated with spectrum sensing methods and then
an energy detector is implemented using the former estimate of the noise power. On the
other hand, the second method relies on the error already computed in each iteration of the
Levinson–Durbin algorithm. Hence, the complexity is much lower.

We tested the mentioned algorithms with the FAPEC entropy coder on two different
datasets: the first one was obtained with OPS-SAT, a CubeSat by the ESA, and the second
one was obtained with a SDRplay RSPdx in Barcelona, Spain. When comparing FAPEC
with other compressors such as Zstd and gzip, we obtain, on average, the best compression
ratios on RF signals. On the other hand, the audio coding format FLAC and FAPEC
exhibit very similar compression ratios. Regarding the compression throughput, Zstd is
the fastest algorithm, but the compression ratios are clearly worse. Finally, we showed
the performance of the aforementioned detectors using an APRS signal and also how this
allows to increase the compression ratios by more than an order of magnitude.

We can outline some future lines of research that could potentially stem from this work.
For instance, the proposed lossy algorithm performs variable bitrate encoding, but constant
bitrate encoding could also be implemented. Regarding smart lossy, other detection methods
could be considered. In particular, if it is assumed that noise is Gaussian and the desired
signal is not, normality tests could be used as the detector. Observe that we already make
this assumption to estimate the noise power. Besides that, more sophisticated algorithms
such as neural networks could be employed, at the cost of increasing the complexity and
reducing the interpretability. In addition, we intend to perform tests with several GNSS
signals and lossy configurations in order to determine the maximum loss levels that would
still allow for reliable decoding. Finally, it is known that different modulations require
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different levels of SNR to be successfully demodulated. For instance, modulations with a
large number of symbols require a higher SNR. For this reason, studying the Bit Error Rate
(BER) for different modulations and levels of losses could also be insightful.
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