

MEMORY OPTIMIZATION AND PERFORMANCE
STUDY OF PROTEIN/DNA-LIGAND

INTERACTION SOFTWARE FOR HPC
CLUSTERS

RICARD ZARCO BADIA

Thesis supervisor: VICTOR GUALLAR TASIES (Barcelona Supercomputing Center)

Tutor: DANIEL JIMENEZ GONZALEZ (Department of Computer Architecture)

Degree: Master Degree in Innovation and Research in Informatics

Specialisation: High Performance Computing

Thesis report

Facultat d'Informàtica de Barcelona (FIB)

Universitat Politècnica de Catalunya (UPC) - BarcelonaTech

15/05/2023

Abstract

This master’s thesis aims to improve the memory requirements and efficiency of the
PELE software, developed by BSC, on High-Performance Computing (HPC) systems.
The research focuses on analyzing the behavior of PELE on HPC systems to detect areas
of improvement and optimize its efficiency. The primary objectives of this thesis are
to significantly reduce the memory usage of PELE, replace legacy MPI communication
models, and port the software to an ARM-based architecture.

The first objective of the thesis is to investigate the current memory usage of PELE
and identify the areas where it can be reduced. This study will involve analyzing the
code and profiling the performance of PELE on HPC systems to identify memory leaks
and inefficient data structures. The results will be used to propose modifications to the
software’s code to reduce its memory footprint.

The second objective is to replace the legacy MPI communication models with more efficient
communication models. This study will involve analyzing the communication patterns
of PELE and identifying areas where the current models are not optimal. The proposed
improvements will include implementing new communication models and optimizing the
existing ones to reduce communication overhead and improve the software’s scalability.
Furthermore, we have made a proposal outside of local PELE changes to improve the
global performance of the Adaptive PELE data-flow, which is a common workflow that
uses PELE.

Finally, the thesis aims to port the PELE software to an ARM-based architecture. This
study will involve analyzing the software’s code and identifying any platform-specific
dependencies. The proposed modifications will ensure that the software can run on
ARM-based HPC systems efficiently.

In conclusion, this master’s thesis aims to improve the efficiency of the PELE software on
HPC systems by reducing its memory usage, replacing legacy MPI communication models,
and porting it to an ARM-based architecture. The research will involve analyzing the
software’s code, profiling its performance on HPC systems, and proposing modifications
to optimize its performance. The proposed improvements will make PELE more efficient
and scalable, making it suitable for use in large-scale simulations and scientific research.

i

Contents

1 Introduction 8

2 Computational resources 10
2.1 MareNostrum 4 . 11
2.2 Nord 3 . 12
2.3 Huawei Cluster . 13

3 Profiling and debugging resources 14
3.1 Profiling and tracing tools . 15

3.1.1 HPC Portal . 15
3.1.2 Extrae and Paraver . 16
3.1.3 Massif (Valgrind) . 17
3.1.4 Callgrind (Valgrind) . 18

3.2 Debugging software . 21
3.2.1 GDB . 21
3.2.2 DDT . 21

4 PELE: Preliminary analysis 23
4.1 General PELE behavior observed . 24

4.1.1 Testing environment . 24
4.1.2 Pure MPI execution with 5 ranks 24
4.1.3 Execution using multiple OpenMP threads per MPI rank 27
4.1.4 Conclusions . 28

4.2 MPI execution flow and Adaptive PELE 30
4.2.1 MPI behavior of standalone PELE 30
4.2.2 Adaptive PELE . 31

4.3 Preliminary memory profiling of PELE executions 34
4.3.1 Testing environment and inputs . 34
4.3.2 Results . 35
4.3.3 Conclusions . 37

5 Optimization and parallelization proposals 38
5.1 Improvements on memory usage . 39

5.1.1 Intel MKL vs OpenBLAS . 39

1

Contents

5.1.2 Code changes . 40
5.1.3 Results . 43
5.1.4 Conclusions . 45

5.2 Floating point precision changes . 46
5.2.1 Changes and problems . 46
5.2.2 Results . 49
5.2.3 Conclusions . 52

5.3 MPI design changes . 53
5.3.1 Eliminating unnecessary MPI communications and controllers . . . 53
5.3.2 Mitigating the effects of load imbalance 55
5.3.3 Results . 57
5.3.4 Conclusions . 59

5.4 Relaxing Monte Carlo simulations . 60
5.4.1 Implementation . 60
5.4.2 Results . 61
5.4.3 Conclusions . 62

6 PELE variants analysis on an ARM-based platform 63
6.1 Deployment . 63
6.2 Performance analysis . 65

6.2.1 Memory and time scalability . 65
6.2.2 Single precision floating point . 67
6.2.3 Adaptive PELE . 68

6.3 Conclusions . 71

7 Final conclusions 72

Bibliography 74

A PELE configuration files 76
A.1 PELE’s configuration file for small input 76
A.2 PELE’s configuration file for large input 80
A.3 Base adaptive configuration file for Adaptive PELE execution 83
A.4 Base PELE configuration file for Adaptive PELE execution 84

B Complimentary plots of PELE’s memory analysis 89
B.1 Massif-visualizer memory plots of baseline PELE binaries 89

2

List of Acronyms

AWS Amazon Web Services

BLAS Basic Linear Algebra Subprograms

BSC Barcelona Supercomputing Center

EAPM Electronic and Atomic Protein Modeling (BSC’s research group)

GDB GNU Debugger

GPFS (IBM’s) General Parallel File System

HPC High Performance Computing

IEEE Institute of Electrical and Electronics Engineers

ISO International Organization for Standardization

LAPACK Linear Algebra Package

LSF (IBM’s) Load Sharing Facility

MC Monte Carlo

MKL (Intel’s) Math Kernel Library

NAN Not A Number

PDB Protein Data Bank

PDF Portable Document Format

PELE Protein Energy Landscape Exploration

SLURM (SchedMD’s) Simple Linux Utility for Resource Management

3

List of Figures

3.1 HPC Portal: CPU load of a job’s nodes over time 15
3.2 HPC Portal: memory usage of a job’s nodes over time 16
3.3 Visualization of a typical execution trace using Paraver 17
3.4 Visualization of the memory allocations of an application using massif-

visualizer . 18
3.5 Visualization of an application’s function call graph using Kcahegrind . . . 19
3.6 Listing of applications contributing to the execution time using Kcahegrind 19
3.7 Example of a typical debugging session on DDT 22

4.1 Paraver visualization of PELE’s useful computation and MPI calls 25
4.2 Paraver visualization of PELE’s MPI calls with communication lines 25
4.3 MPI call profile of PELE’s execution provided by Paraver 26
4.4 Zoomed-in view of the region between PELEsteps of the same trace 27
4.5 Paraver trace of a MPI + OpenMP execution of PELE 28
4.6 Flow diagram of a master MPI rank from a PELE execution 31
4.7 Flow diagram of a worker MPI rank from a PELE execution 31
4.8 Flow diagram of an Adaptive PELE execution, using two epochs and 8 MPI

ranks . 32
4.9 Baseline memory consumption metrics of serial PELE executions with

different parameters . 36

5.1 Memory consumption comparative of MKL vs OpenBLAS, small input,
with binding energy . 40

5.2 Massif snapshot of the peak heap memory usage of PELE, without binding
energy . 41

5.3 Massif snapshot of the peak heap memory usage of PELE, with binding
energy . 41

5.4 Memory usage comparison between the original PELE code and our modified
version . 44

5.5 Serial execution times of memory improved PELE against original binary,
large input . 44

5.6 Conceptual diagram of the infinite loop while creating a grid 48

4

List of Figures

5.7 Metrics comparison of single and double precision serial PELE, large input,
no binding energy . 50

5.8 Callgrind traces of single (left) and double (right) precision serial PELE
executions . 51

5.9 Execution times of single precision serial PELE binaries, large input, no
binding energy . 51

5.10 Paraver visualization of useful duration and MPI calls of new PELE, 4
epochs, with barriers . 57

5.11 Paraver visualization of useful duration of new PELE, 4 epochs, no barriers 58
5.12 Execution times of Adaptive PELE and new PELE versions with different

parameters . 59
5.13 Conceptual workflow diagram of the new Relaxed Adaptive PELE imple-

mentation . 61
5.14 Execution times of Adaptive PELE and new PELE version with different

parameters . 62

6.1 Node’s occupation of original and memory-changed PELE through multiple
MPI ranks . 65

6.2 Execution time of original and memory-changed PELE through multiple
MPI ranks . 66

6.3 Execution time of serial PELE with different floating point implementations 67
6.4 Execution times of Adaptive PELE and new PELE versions with different

parameters . 68
6.5 Paraver visualizations of PELE with and without barriers: 8 MPI ranks, 2

pelesteps, 4 epochs . 69
6.6 Execution times of Adaptive PELE and new relaxed Adaptive PELE using

multiple parameters . 69
6.7 Execution times of new relaxed Adaptive PELE on Nord 3 and Huawei,

using multiple parameters . 70

B.1 Massif heap trace of a serial PELE execution, small input, without binding
energy . 89

B.2 Massif total trace of a serial PELE execution, small input, without binding
energy . 90

B.3 Massif heap trace of a serial PELE execution, small input, with binding
energy . 90

B.4 Massif total trace of a serial PELE execution, small input, with binding
energy . 91

B.5 Massif heap trace of a serial PELE execution, large input, without binding
energy . 91

5

List of Figures

B.6 Massif total trace of a serial PELE execution, large input, without binding
energy . 92

B.7 Massif heap trace of a serial PELE execution, large input, with binding energy 92
B.8 Massif total trace of a serial PELE execution, large input, with binding energy 93

6

List of Tables

4.1 PELE’s memory consumption profile of a single Nord3 node 35

5.1 PELE’s memory consumption profile of a single Nord3 node after memory
improvements . 45

7

1 Introduction

In this master thesis, our work revolves around the analysis and proposed improvements for
the PELE software. PELE (Protein Energy Landscape Exploration) is a software package
used for molecular simulations of proteins [1]. It is currently maintained by the Electronic
and Atomic Protein Modeling research group at BSC and Nostrum Biodiscovery. PELE
uses a hybrid methodology that combines Monte Carlo (MC) simulations with molecular
dynamics simulations to explore the conformational energy landscape of proteins. The
software can be used to study a variety of biomolecular processes, such as protein-ligand
binding, protein-protein interactions, and protein folding. In recent years, computational
methods have become increasingly important in understanding the behavior of biomolecules
at the atomic level, and PELE has emerged as a powerful tool in this area.

PELE works by simulating the movement of atoms and molecules in a protein using a
series of algorithms. The software first generates an initial structure of the protein and
then applies Monte Carlo simulations to explore the conformational space of the protein.
One of the key features of PELE is its ability to simulate protein-ligand binding.

The software can automatically dock ligands to a protein and then simulate the binding
process, allowing researchers to study the binding affinity and binding kinetics of different
ligands. PELE also includes a range of tools for analyzing the results of simulations, such
as calculating the energy of specific interactions between the protein and ligand, identifying
key residues involved in binding, and generating conformational ensembles of the protein.

In addition to Monte Carlo simulations, PELE also can use molecular dynamics simulations
to refine the structures obtained from the Monte Carlo simulations. Molecular dynamics
simulations involve solving the equations of motion for each atom in the protein, allowing
the simulation to explore the conformational space in a more detailed and accurate way.
The molecular dynamics simulations are used to optimize the energy of the protein and
ensure that the resulting structures are physically realistic.

There are several other software programs available for molecular simulations that are
commonly used in the field of computational biophysics. Examples include GROMACS,
NAMD, AMBER, and CHARMM, among others. These programs use molecular dynamics
simulations as their primary approach for studying biomolecular systems. These programs
are widely used and have been extensively validated, making them reliable tools for

8

1 Introduction

studying biomolecular systems.

However, PELE stands out from these traditional molecular dynamics simulation programs
due to its unique hybrid approach that combines Monte Carlo simulations with molecular
dynamics simulations. Monte Carlo simulations are used in PELE to explore the confor-
mational space of proteins in a different way compared to molecular dynamics simulations.
Monte Carlo simulations involve randomly selecting new conformations for specific parts
of the protein and calculating their energies, allowing for a more rapid exploration of
conformational space. This approach can be particularly useful for studying large-scale
conformational changes, such as protein folding or large-scale domain movements.

PELE is not the only biochemistry software using Monte Carlo simulations [2]. Other
relevant programs for drug design that also use MC simulations are ProtoMS, BOSS,
MCPRO and Macromodel, alongside others. Each software specializes in some form of
protein or molecular modeling and simulations. PELE in particular is specifically designed
for studying protein-ligand binding, which sets it apart from many other simulation
programs. The software has an automated docking feature that allows for the efficient
placement of ligands in the protein’s active site, followed by the simulation of the binding
process. PELE also provides various options for analyzing the binding energetics, such as
calculating the energy of specific interactions and generating conformational ensembles of
the protein-ligand complex.

Generally, PELE is a software that can be run either serially or using the MPI com-
munication paradigm, the latter being normally intended for executions on HPC (High
Performance Computing) systems. When executions are performed using MPI, it exploits
parallelism by performing simultaneous independent explorations. Since access to HPC
systems is usually limited and/or costly, optimizing the utilization of these resources
becomes critical. In this work, we will explore some performance bottlenecks for this
software and make some improvement proposals for them.

9

2 Computational resources

Running and profiling PELE in a real-world scenario requires, in general, access to HPC
systems. Although PELE can be compiled and executed on a strictly sequential manner
with just one exploration and no parallelism of any kind, the analysis of representative
workloads may become unfeasible on regular workstations. In order to be able to compare
and analyze MPI executions without incurring on memory limitations, we have used three
clusters hosted at BSC:

• MareNostrum 4

• Nord 3

• Huawei Cluster

PELE’s developer group already provides PELE binaries natively compiled for MareNos-
trum 4 and Nord 3, but not for Huawei’s cluster (or any ARM-based system) at the
moment of this work.

The main characteristics of each of the systems are presented in the next section. For
more specific details outside the relevancy of this master thesis, the reader can refer to
their user guides [3].

10

2 Computational resources

2.1 MareNostrum 4

MareNostrum 4 has been BSC’s flagship supercomputer since 2017. It’s main defining
characteristics are the use of Lenovo’s SD530 general purpose compute racks, based on Intel
Xeon Platinum processors from the Skylake generation. It uses the x86-64 instruction set,
which makes it very convenient for the deployment of software. All nodes are interconnected
using an Intel Omni-Path high performance network with a full-fat tree topology.

Each rack is comprised of 72 compute nodes, for a grand total of 3456 nodes when operating
under optimal conditions. Each node has the following characteristics:

• 2 sockets of Intel Xeon Platinum 8160 CPU with 24 cores each @ 2.10GHz. Total of
48 cores per node.

• L1D cache of 32K; L1I cache of 32K; L2 cache of 1024K; L3 cache of 33792K.

• 96 GB of main memory per node, with 1.880 GB/core. RAM configuration: 12
DIMM, 8GB/DIMMM, 2667Mhz clock frequency.

• 100 Gbit/s Intel Omni-Path network adapter.

The job scheduler used in this system is SchedMD’s Slurm, which is widely used on the
HPC ecosystem. The majority of this cluster’s data storage is implemented using IBM’s
GPFS file-system, which is shared between all nodes. This file-system is also shared
between different HPC systems’s at BSC, including Nord 3 and the Huawei cluster.

This is the system that was originally used as the "baseline" for PELE executions and
its performance metrics in this project. Due system incompatibilities with the memory
profiling software that appeared during the early development of this project, this system
was abandoned and replaced with Nord 3 as soon we started with the memory profiling
analysis of PELE.

11

2 Computational resources

2.2 Nord 3

Nord 3 is the second most popular general purpose supercomputer deployed at BSC. At its
core, it’s just a scaled-down version of MareNostrum 3, using exactly the same nodes but
at a lower scale. Excluding its scale, amount of CPU cores per node and available memory,
this system is very similar to MareNostrum 4. This cluster is based on IBM’s iDataPlex
compute racks using Intel SandyBridge processors, so it also uses the x86-64 instruction
set. All nodes are interconnected using Infiniband Mellanox in a full-fat tree topology.

Each rack is comprised of 84 IBM DX360 M4 compute nodes, for a grand total of 756 nodes
when operating under optimal conditions. Each node has the following characteristics:

• 2 sockets of Intel E5-2670 SandyBridge-EP processors with 8 cores each @ 2.6GHz.
Total of 16 cores per node.

• L1D cache of 32K; L1I cache of 32K; L2 cache of 256K; L3 cache of 20480K.

• 32 GB of main memory per node, with 2 GB/core.

• Infiniband Mellanox FDR10 adapter.

The job scheduler used in this system was originally LSF (IBM’s Load Sharing Facility),
but the cluster was updated and it switched its scheduler to Slurm (alongside its operative
system) . This cluster’s data storage is also implemented using the same GPFS file-system.
Its basic software stack is very similar to MareNostrum 4’s, which makes switching between
cluster’s fairly simple. Its only drawback is its reduced scale and lower CPU count per
node, which makes it less desirable than MareNostrum 4 for sufficiently large workloads.
However, it is still very competitive for sequential or embarrassingly parallel tasks that
do not require high amounts of cores as long as these workloads don’t rely heavily on
vectorization instructions.

The majority of the work done in this project has been performed using this cluster.

12

2 Computational resources

2.3 Huawei Cluster

The Huawei cluster is another HPC system hosted by BSC. Although not relevant to
this project’s scope, one of the main characteristics of this cluster is the use of dedicated
Huawei-made accelerators for AI training and inference workloads. The other defining
characteristic of this cluster is the use of ARM-based processors (ARMv8.1 architecture),
concretely Kunpeng 920 CPUs deployed in different node configurations. It uses a Mellanox
high-performance network interconnect.

This is a heterogeneous cluster, meaning that its computing nodes are split between three
different types with different characteristics. The basic specifications for each block are
the following:

• General purpose computing, 16 nodes

– 2 sockets of Kunpeng 920 CPU, providing 64 cores each @ 2.6 GHz. Total of
128 cores per node.

– 256 GB of main memory per node, with 2 GB/core.

• AI training, 1 node

– 4 sockets of Kunpeng 920 CPU, providing 48 cores each @ 2.6 GHz. Total of
192 cores per node.

– 1 TB of main memory per node, with 5.2 GB/core.

– 8 Ascend 910A (Huawei accelerators)

• AI inference, 1 node

– 2 sockets of Kunpeng 920 CPU, providing 64 cores each @ 2.6 GHz. Total of
128 cores per node.

– 256 GB of main memory per node, with 2 GB/core.

– 5 Atlas 300C (Huawei accelerators, based on IA Ascend 310 processors)

This cluster also uses the same shared GPFS file-system. Its job scheduler is also Slurm.
All work done with this cluster has been performed using the general purpose computing
nodes since we only require to check PELE’s behavior on an ARM-based system.

13

3 Profiling and debugging resources

The majority of the work done is based on the analysis of PELE’s behavior and metrics.
In order to get an insightful look into what is going on under PELE’s hood, we have used
an array of different tools to inspect PELE’s executions at different levels (general resource
usage, memory usage, MPI communication patterns...).

These tools can be divided into two different categories:

• Profiling software: any tool used to analyze aspects of another software’s normal
execution in order to profile and quantify different metrics. The specific metrics can
be anything: time spent on specific functions, memory usage at differens points of
the execution, amount of CPU instructions executed, number of cache misses, etc.

• Debugging software: any tool used to execute and analyze software in a controlled
manner with the intent of detecting and understanding the causes of unexpected
behaviors. These tools let the user know the exact state of the execution at any
given point in time.

These tools are usually used in conjunction. Profilers are used to get a primary analysis of
the software’s behavior and metrics, which at the same time let us identify potential areas
of improvement. After that, the analyzed software is modified to optimize those areas.

Due to code size and complexity, these modifications are prone to cause unexpected
changes in the way the code runs, either by changing the expected output or by indefinitely
hanging the execution. At that point, debugging tools are used to further inspect the
causes of those behavioral changes. Once the causes are identified and corrected, another
round of profiling can be performed to quantify the benefits and identify new possible
improvements. This cycle can be performed as many times as necessary.

We will describe all tools used in the following sections.

14

3 Profiling and debugging resources

3.1 Profiling and tracing tools

3.1.1 HPC Portal

While not exactly a profiling software, HPC Portal [4] is a service provided and developed
by the support team at BSC. At its core, it is a job monitoring tool used to keep track
of all jobs launched by all users in the Slurm-based clusters hosted by BSC. This tool is
deployed as a web portal and is freely accessible to all BSC-hosted cluster’s users.

The relevant aspect of HPC Portal for our intended purposes is the fact that it also tracks
some historical statistics of the nodes allocated by our job executions. For example, on
figures 3.1 and 3.2 we can see the CPU and memory usage of the nodes, respectively,
involved in the execution of a specific job. This data is also retrievable as a CSV file
containing a time series of these values.

Figure 3.1: HPC Portal: CPU load of a job’s nodes over time

The main drawback of HPC Portal is the limited amount of types of metrics, alongside
the coarseness of the retrieved data. At this moment, the only metrics reported are CPU
load, memory usage and power consumption. These metrics are polled every 30 seconds in
a best-effort manner. Another important limitation is the fact that the data reported is
at node level, not at job level. This means that it’s less useful for sub-node executions
that only use a handful of cores, since we can’t assume that a node’s behavior is the direct
consequence of our monitored job. Other jobs could be coexisting at the same time in a
given node, which could pollute our readings.

On the other hand, the principal benefit of this tool is its non-obtrusiveness and ease of
use. HPC Portal does not require any type of setup or code modifications of any kind.

15

3 Profiling and debugging resources

Figure 3.2: HPC Portal: memory usage of a job’s nodes over time

It’s an external service that is always running and is useful for getting a general idea of
how a job execution performed, as long as the job fully allocates nodes.

3.1.2 Extrae and Paraver

Extrae and Paraver [5] are a subset of the performance analysis tools developed and
maintained by the Tools team at BSC. These two tools work in tandem: Extrae (as the
Spanish name implies) is used at execution time in order to extract metrics and events of
a given job, and then Paraver is used to analyze those metrics in a visual manner. These
tools are designed primarily for analysing and tracing parallel applications.

Extrae is a lightweight instrumentation tool that allows developers to capture detailed
runtime information about an application, such as memory access patterns, MPI commu-
nication, and OpenMP parallelism. This information is stored in a trace file, which can
be later analyzed using Paraver. Extrae supports a wide range of programming models,
including MPI, OpenMP, CUDA, OmpSs, and OpenACC, and can be used on a variety of
computing architectures, including multicore systems, clusters, and supercomputers.

Paraver is a visualization and analysis tool that allows users to explore the trace data
generated by Extrae. It provides a user-friendly graphical interface that enables users to
visualize the behavior of their application over time, identify performance bottlenecks, and
understand the interactions between different parts of the application. Paraver includes a
variety of built-in visualizations, including timelines, histograms, and scatter plots, and
allows users to create custom visualizations using its scripting language. On figure 3.3 we
can see an example of a typical Paraver visualization.

16

3 Profiling and debugging resources

Figure 3.3: Visualization of a typical execution trace using Paraver

In general, a typical Paraver metric visualization (see figure 3.3) displays a timeline, where
each row represents a processing element participating in an execution, and the display
of zones in each row where the metric being measured shows activity. For example, in
figure 3.3 we can see a visualization of an execution with 24 MPI ranks (rows), where each
colored section represents the presence of activity for the measured metric at the given
section in the timeline (in this case, useful duration). Furthermore, Paraver visualizations
can use different color schemes to convey more information, with different interpretations
depending on the type of metric displayed.

The main uses of Extrae and Paraver are to identify performance bottlenecks in parallel
applications, understand the interactions between different parts of the application, and
optimize application performance. By capturing detailed runtime information about
an application, Extrae and Paraver enable developers to pinpoint specific areas of the
code that are causing performance issues and make informed decisions about how to
optimize their application. These tools are widely used in the high-performance computing
community and have been instrumental in improving the performance of many scientific
and engineering applications.

3.1.3 Massif (Valgrind)

Massif [6] is a profiling tool integrated within Valgrind, which is designed for analyzing
the memory usage of programs. It is an open-source, command-line tool that is widely
used in software development for detecting memory leaks, identifying memory hotspots,
and optimizing memory usage.

Massif works by dynamically instrumenting a program during its execution and tracking
the memory usage over time. It can identify the exact amount of memory allocated and
deallocated by a program, as well as the peak memory usage and the allocation stack
trace. Massif is configured to only be a heap memory profiling tool by default, but it can
also be configured to keep track of of the whole memory usage of a process by tracking
memory pages instead.

17

3 Profiling and debugging resources

Massif also provides a command line tool for getting detailed visualizations of historical
memory usage in the form of snapshots, although 3rd party GUI visualizers are more
usable. In this project, we have used KDE’s massif-visualizer. We can see an example of a
visualization on figure 3.4.

Figure 3.4: Visualization of the memory allocations of an application using massif-visualizer

The main uses of Massif include identifying memory leaks, optimizing memory usage, and
identifying memory hotspots. Memory leaks occur when a program fails to free memory
that is no longer needed, resulting in a gradual increase in memory usage over time. Massif
can help identify the source of the memory leak, allowing developers to fix the problem
and prevent it from happening in the future.

Memory hotspots are parts of the code that allocate and deallocate a large amount of
memory frequently. These hotspots can be a bottleneck for performance and can also be a
source of memory leaks. Massif can identify these hotspots and help developers optimize
them to improve performance and prevent memory leaks.

In conclusion, massif is a powerful tool for analyzing the memory usage of programs. There
aren’t many alternatives for it and it has been the tool that has provided the best insight
into the memory consumption patterns of PELE.

3.1.4 Callgrind (Valgrind)

Callgrind [7] is another profiling tool integrated within Valgrind designed for analyzing the
performance of programs. It is an open-source, command-line tool that is for detecting
performance bottlenecks, identifying hotspots, and optimizing code.

Callgrind works by dynamically instrumenting a program during its execution and recording
a call-graph of function calls. It provides detailed information on the time spent in each
function call, as well as the number of times each function is called. Callgrind can also
provide a visualization of the call-graph in the form of a graph or a tree though an

18

3 Profiling and debugging resources

application called Kcachegrind. In figures 3.5 and 3.6 we can see an example of a function
call graph and a listing of different functions alongside their percentage of executed
instructions, respectively.

Figure 3.5: Visualization of an application’s function call graph using Kcahegrind

Figure 3.6: Listing of applications contributing to the execution time using Kcahegrind

The main uses of Callgrind include identifying performance bottlenecks, optimizing code,
and identifying hotspots. Performance bottlenecks (in callgrind’s context) occur when a
program spends a significant amount of time in a particular function call or a sequence
of function calls. Callgrind can help identify these bottlenecks, allowing developers to
optimize the code and improve performance.

Hotspots are parts of the code that are frequently called or take a significant amount of
time to execute. These hotspots can be a bottleneck for performance and can also be a
source of inefficiency.

19

3 Profiling and debugging resources

In conclusion, callgrind is a powerful tool for analyzing the performance and function
call structure of a program’s execution. On of the main issues with callgrind (compared
to extrae and paraver) is that it is mainly a tool designed for single-threaded sequential
programs. However, due to the nature of PELE, optimizations for sequential executions
also translate really well to parallel executions.

20

3 Profiling and debugging resources

3.2 Debugging software

3.2.1 GDB

GDB, or GNU Debugger [8], is a command-line tool used for debugging software programs
written in languages like C, C++, and other programming languages. It is an open-source
tool and is mainly used in software development for debugging complex programs.

GDB works by allowing developers to examine the internal state of a program while it is
running or halted, such as the values of variables and the call stack of functions. Developers
can set breakpoints in the code and step through the program, examining its execution
and state at each step. GDB also provides a range of advanced features such as memory
and thread debugging, remote debugging, and scripting capabilities.

The main uses of GDB include debugging code, diagnosing and fixing errors, and under-
standing the behavior of complex programs. Debugging code involves identifying and
fixing issues in the program, such as segmentation faults, memory leaks, or other types of
errors. GDB allows developers to identify the source of the error and step through the
code to understand how it occurred.

Diagnosing and fixing errors involves finding and correcting problems in the program, such
as incorrect program logic or unexpected behaviors. GDB can help identify the source of
the error and provide insights into the program’s state at the time of the error.

Understanding the behavior of complex programs involves examining how the program
executes and interacts with the system. GDB allows developers to explore the program’s
behavior and execution in detail, helping to identify bottlenecks or areas for optimization.

GDB is probably the most widely used tool (or at least well known) for debugging programs.
Its ability to examine the internal state of a program while it is running, set breakpoints,
and step through code makes it an essential tool for software developers.

3.2.2 DDT

DDT, or the Distributed Debugging Tool [9], is a parallel and distributed application
debugger developed by ARM for use in HPC systems. Unlike GDB, which is a command-
line tool, DDT provides a graphical user interface that allows developers to visualize the
execution of parallel applications and explore their internal state.

DDT is designed specifically for debugging complex parallel applications that run across
multiple nodes or processors in an HPC system. It allows developers to examine the
program’s execution across multiple nodes or processors and provides advanced features
for memory debugging, performance analysis, and message queue monitoring.

21

3 Profiling and debugging resources

One of the key differences between DDT and GDB is the level of parallelism that each tool
can handle. DDT is specifically designed to handle parallel and distributed computing
systems and can debug applications that run across thousands of nodes or processors. In
contrast, GDB is primarily designed for single-threaded applications. Although it can
debug parallel applications by tracking each process individually, it is not designed for it.

Another difference is the level of abstraction provided by each tool. GDB works at the
source code level, allowing developers to examine the execution of the code and its internal
state. In contrast, DDT works at a higher level of abstraction, allowing developers to
visualize the execution of the parallel application across multiple nodes or processors and
to explore its internal state at a higher level. This becomes apparent in figure 3.7, which is
a capture of a typical session. Monitoring and switching between threads and MPI ranks
is a basic functionality of DDT.

Figure 3.7: Example of a typical debugging session on DDT

Finally, DDT provides a range of advanced features that are not available in GDB. For
example, DDT provides a message queue monitor that allows developers to track the
communication between different nodes or processors in a parallel application. DDT also
provides advanced performance analysis tools that allow developers to identify performance
bottlenecks in the parallel application and optimize its performance.

In conclusion, ARM’s DDT is a powerful tool for debugging and optimizing parallel and
distributed computing systems. Its graphical user interface, advanced features for memory
debugging and performance analysis, and its ability to handle parallel applications that
run across multiple nodes or processors differentiate it from GDB, which is primarily
designed for single-threaded applications.

22

4 PELE: Preliminary analysis

In order to gain a basic understanding of PELE, we have prepared and run a basic test
provided by the Electronic and Atomic Protein Modeling research group at BSC [10] (which
will be referred as EAPM from now on), using different compute resource configurations.
After some runs, we have decided to trace and analyze some of the executions using Extrae
and Paraver in order to see its general behavior and try to identify potential improvement
areas.

While we know that memory optimization should be the priority in this study, we would
also like to study the feasibility of changes in the code’s behavior that could enable further
scalability or speedup. We will detail all our observations in the following sections.

23

4 PELE: Preliminary analysis

4.1 General PELE behavior observed

4.1.1 Testing environment

Unless otherwise specified, all runs and traces described in this section have been done
under the following environment:

• PELE binary: production MPI + OpenMP binary provided by EAPM.

• Machine: Marenostrum 4.

• Execution parameters: Please see pele.conf fileA.1 for specific execution configu-
ration. Defines 10 pelesteps.

• Inputs used: 1ZNK_complete.pdb, which is a small input defining a system of
2500 atoms. In future sections it will be referred as "small input".

• Resource configuration: Mainly 5 rank pure MPI executions and hybrid MPI +
OpenMP executions using 5 ranks with 2 threads/rank.

The PELE production binary provided by EAPM is the MPI + OpenMP version with
optimization options enabled. PELE also provides configuration options in order to compile
a serial version or enabling CUDA support for specific functions. It can also be compiled
using MKL [11] and OpenBLAS [12] libraries interchangeably. By default, it uses MKL.

We also compiled another PELE executable ourselves, since we weren’t able to get
debugging information in the traces using the binary specified above. At that moment,
the obtained executable also didn’t provide useful debugging information when tracing it.

4.1.2 Pure MPI execution with 5 ranks

We have noted that the general paradigm of the software is to spawn a master thread and
several worker threads. These worker threads seem to be independent copies of the same
computation with slight variations. Increasing or decreasing the number of available MPI
ranks doesn’t increase or decrease the total execution time, it just spawns more worker
threads of the same nature (weak scaling).

To illustrate the general behavior of this execution, figure 4.1 shows two different visual-
izations of the same execution trace: the visualization at the top represents the general
useful computation done by each rank, and the one on the bottom illustrates the time
that each rank spends on MPI calls.

For clarity purposes, we have displayed green flags in the trace, which indicate the presence
of an “event” in the rank at the point in time where it has been placed. In this context, we

24

4 PELE: Preliminary analysis

Figure 4.1: Paraver visualization of PELE’s useful computation and MPI calls

can understand an event as the presence of an MPI call. In figure 4.2 we can also see the
second visualization of the execution trace with the communication lines displayed, just to
have a clearer view of the directionality of the MPI communications that are taking place.
Finally, in figure 4.3 we can see the full MPI profile of the whole execution in table format.
It can prove useful to see the general MPI utilization of the application.

Figure 4.2: Paraver visualization of PELE’s MPI calls with communication lines

The first observation that we can make from these traces is that the master rank (thread
1.1.1) does almost no useful computation for the duration of the whole execution. In the
useful duration trace, we see that the first rank has barely any presence. Looking at the
second trace and MPI profile table, we can see the actual reason: it spends almost all the
execution on MPI_Recv calls (which are synchronous and blocking).

25

4 PELE: Preliminary analysis

Figure 4.3: MPI call profile of PELE’s execution provided by Paraver

In contrast, the worker threads spend a negligible amount of time on such calls. The
discrepancy between the percentage of time spent outside MPI seen on different worker
threads (as seen on figure 4.3) is not actually a consequence of different communication
patterns and needs, it’s just the product of load unbalance. Different worker threads see
different execution times, which forces the faster threads to wait for the slower ones on
MPI_Finalize calls.

The second observation is that these MPI calls are mostly done at the start and end of
each execution step. These execution steps are defined as "PELEsteps" in this software’s
context. Without counting the initialization phase, there are exactly 10 different regions
in each rank, which are the execution steps described in the "pele.conf" file. To see the
behavior of MPI calls done between steps, we provide figure 4.4, which is an annotated
zoomed-in view of the region between two PELEsteps in the MPI trace shown on figure
4.2.

The general observed behavior between steps is the following:

1. Master rank (MPI rank 0) waits for a worker rank using a MPI_Recv call.

2. Worker rank (MPI rank 2) initiates a MPI_Send against master rank.

3. After some compute time, the master rank enters another MPI_Recv call, expecting
a connection from the same worker rank.

4. Worker rank initiates another MPI_Send against master rank and enters a MPI_Recv
call afterwards, waiting for the master rank.

5. After some time, the master rank initiates a MPI_send call against the waiting worker
thread.

6. MPI exchanges have finalized, master thread resumes its original waiting state by
returning to a MPI_Recv state.

26

4 PELE: Preliminary analysis

Figure 4.4: Zoomed-in view of the region between PELEsteps of the same trace

This behavior is not unique to that specific region, we have checked that it is consistent
with other regions and pairs of master-worker threads. The time spent in these regions
and the amount of data transferred are not very significant but contributes to the overall
additional overhead and reduce efficiency along several iterations.

Furthermore, another problem becomes apparent when looking at the traces. All MPI
ranks finish their useful computation at different points in time. When the execution time
difference between ranks is sufficiently large, we can say that an MPI execution shows load
imbalance: not all ranks perform the same amount of computation, creating time gaps
between ranks where the parallelism starts to decrease. As a result, we start to waste
resources because faster ranks have to wait for slower ranks.

4.1.3 Execution using multiple OpenMP threads per MPI rank

During the configuration phase of PELE, we noted that this software has OpenMP
capabilities. In order to test them and see their effectiveness, we recompiled PELE with
MPI and OpenMP support. After that, a Paraver trace was generated using the same
input. In figure 4.5 we can observe the obtained trace. This execution was configured to
use 5 MPI ranks with 2 OpenMP threads each, which in total use 10 CPU cores.

The Paraver visualization on the top shows the useful computation done by each thread.
Every MPI rank has two threads under it. For the main threads of each MPI rank, the

27

4 PELE: Preliminary analysis

Figure 4.5: Paraver trace of a MPI + OpenMP execution of PELE

general behavior is similar to a pure MPI execution, but we can see that their secondary
threads show little CPU usage. In the visualization of the execution trace on the bottom,
we can observe the execution regions where parallel computation is present. Some parts of
the execution appear to have parallelized functions that make use of the extra CPU of
each of the worker MPI ranks. The master MPI rank sees no benefit from using the extra
resources.

The general observation is that using that OpenMP implementation was not worth the
resources. The extra OpenMP threads allocate one core each, and traces show that the
general utilization of those cores is very low. Since those cores are reserved for our job
when allocating the necessary resources to do the execution on compute nodes, those extra
cores are almost wasted.

4.1.4 Conclusions

We have compiled a small list of conclusions and open questions that we derived from this
first analysis. Most of these points were reported and discussed with EAPM’s developers.

• Scaling the execution resources only seems to be useful for increasing the size of the
problem while maintaining a similar execution time. We can’t decrease the total
execution time by providing more resources. In conclusion, this application aims
for weak scaling.

28

4 PELE: Preliminary analysis

• We see very little communication between MPI ranks. Since the amount of data
transferred is almost negligible and the number of communications is very low, the
necessity of these communications come into question. Avoiding communication
altogether would be preferable, since executions seem to be independent. For a
sufficiently large amount of MPI ranks, the master rank could become a bottleneck
because it would have to manage point-to-point communications from all MPI ranks.

• The master rank does no real computation, so all resources spent on it are effectively
wasted. This might be negligible for large executions, but it can be significant for
small-scale runs.

• Do execution steps (PELEsteps) have to be sequential? If not, can they be done
in parallel? Since the current OpenMP parallelization strategy doesn’t seem to be
effective, exploring other options could prove beneficial.

• With OpenMP enabled, why are the parallel sections of the code so small? Is it only
present in some specific functions? Could it be used in other functions?

• There seems to be a bit of load imbalance between threads. What determines the
execution time of each rank? Can we know in advance the amount of computation
to be done in each rank?

• Since the parallelization strategy implemented at this moment is the replication of
whole executions, focusing on improving a sequential version would translate its
benefits to larger executions.

29

4 PELE: Preliminary analysis

4.2 MPI execution flow and Adaptive PELE

In this section, we will analyze and describe the existing MPI implementation, alongside
another software provided by EAPM that make use of PELE (Adaptive PELE) and will
become relevant for this work.

4.2.1 MPI behavior of standalone PELE

When running with MPI, the PELE software assumes a master-slave paradigm. PELE
operates by performing several instances of the same simulation using different random
seeds, which are then distributed across multiple MPI ranks. Each rank executes its
assigned independent simulation and communicates with the master rank (which only
acts as controller) to exchange data and coordinate their actions. The results of each
independent simulation are then reported at the end of the execution.

The current implementation of MPI in the PELE software has been effective in enabling
parallel execution of simulations, since they rely on performing multiple simulations with
randomized parameters using the same input. However, this parallelization strategy doesn’t
provide any execution time speed-up with higher MPI rank counts, it just broadens the
exploration space for a PELE execution.

PELE implements two different types of MPI controllers, which act as the master processes
that synchronize all worker processes. One is called MpiBasicExplorationController, which
just waits for incoming communications from all workers. It is mostly used to keep track
of the state of all ongoing simulations, but in the past it could also be used to update the
coordinates of a worker’s system in order to influence where explorations are taking place.
However, we have been informed by EAPM that this functionality hasn’t been in use for
some time and has been superseded by Adaptive PELE (which will become relevant in
future sections).

The second MPI controller is called MpiRealTimeControlExplorationController, which is
a more complex controller that also enables the user to send commands to worker ranks
through the controller rank. These commands can pause, modify and restart ongoing
simulations in worker MPI ranks. Since we are interested in simplifying communications,
we have decided to work on MpiBasicExplorationController. The general flow
diagram of the master and worker ranks of a PELE execution has been simplified in figures
4.6 and 4.7.

After some examination it was concluded that, when using this MPI controller, there are
only three instances where communications between worker and controller MPI ranks take
place:

30

4 PELE: Preliminary analysis

Figure 4.6: Flow diagram of a master MPI rank from a PELE execution

Figure 4.7: Flow diagram of a worker MPI rank from a PELE execution

• During the initialization phase: all worker ranks must communicate with
the master rank in order to get initialization data. Also, all worker threads also
communicate with rank 1 to get further initialization data.

• After performing a pelestep: all worker ranks communicate its state and progress
to the controller rank. There is no communication during a pelestep.

• Before terminating the execution: all worker ranks communicate to the controller
rank that they have finished their execution. If all worker ranks have reported the
same, the controller does not wait for further communications and ends.

When an execution ends, it produces an output directory containing as many reports,
log files and computed trajectories as worker ranks were used in the simulation. These
trajectories usually use the same format as the input, so they represent the state of the
system at the end of each accepted pelestep and can be used for further simulations. This
will become relevant in future sections.

4.2.2 Adaptive PELE

The basic premise of PELE relies on the use of randomized parameters in order to perform
multiple simulations over (usually) the same input file. Due to the randomized nature
of these simulations, there is no guarantee that an optimal solution (in our case, an
accurate trajectory) can be achieved in a timely manner, since there is no control of which
exploration space is being exploited. Due to this limitation, Adaptive PELE [13] was
developed as a tool to "guide" PELE simulations towards optimal trajectories. Adaptive

31

4 PELE: Preliminary analysis

PELE is a python-based software that wraps multiple PELE executions, each execution
being referred as an epoch. After each epoch, Adaptive PELE uses the produced results
to perform a clustering and then tries to identify areas of the exploration space that have
been undersampled. Finally, it seeds the necessary control files and input files for the next
execution epoch. This process is repeated as many times as the user chooses. Using this
method, PELE executions are progressively "guided" towards more desirable exploration
spaces, which in turn reduces the time needed to reach optimal trajectories. A general
flow diagram of its operation is shown in figure 4.8.

Figure 4.8: Flow diagram of an Adaptive PELE execution, using two epochs and 8 MPI ranks

Adaptive PELE generally needs three input files (we will use representative names):

• Input.pdb: Defines the initial state of a system. This is no different than inputs
used for standalone PELE executions.

• Pele.conf : Same configuration file used for standalone PELE executions, but with
some of its configuration parameters being undefined. Used as a template to generate
a fully configured control file before a PELE execution takes place.

• Adaptive.conf : Configuration file that determines specific parameters for Adaptive
PELE (number of epochs, for example) and also which values to be fed to the
undefined parameters of pele.conf.

These input files are then used to prepare the first epoch of Adaptive PELE. An initial
control file (called controlFile0.conf in our example) is generated, which is then used to
perform the first PELE execution. All resulting trajectories of this PELE execution are
then used to perform the previously explained clustering operation, and then a new control
file (controlFile1.conf) is generated alongside new inputs for the next epoch. The only
difference between the first epoch and all other epochs is that the first one uses the same

32

4 PELE: Preliminary analysis

initial PDB input file provided to Adaptive PELE, while the remaining epochs all have a
specific generated PDB input assigned to each MPI rank.

In this work, we will initially focus in standalone PELE executions. However, the general
idea of Adaptive PELE will become relevant in future optimization proposals of the PELE
code.

33

4 PELE: Preliminary analysis

4.3 Preliminary memory profiling of PELE executions

One of the most important aspects of this project is evaluating the memory usage char-
acteristics of PELE. It has been reported by the developers that PELE executions can
become memory-bound under some circumstances, to the point where executions using all
the available resources of a compute node become unfeasible.

On most HPC systems, the amount of memory that a job can use is determined by the
amount of CPU cores requested. The reason for this is to guarantee that all CPU allocations
in a node have memory to work with. In this context, memory-bound applications might
be starved for memory when trying to compute using all their allocated compute resources.
To compensate for that, the usual direct solution is to just allocate more CPU cores, even
if the application doesn’t make productive use of them.

Although this is a common solution that works, it’s just a short term bypass of the actual
issue. Some HPC clusters also offer limited nodes with more RAM installed, but this
shouldn’t be taken for granted. Since PELE aims to run in modest systems, memory
requirements would have to be minimized in order to guarantee that compute resources
are not wasted. To achieve that, in this section we will study how memory requirements
increase based on the used models and the number of processors used (i.e. the number of
output trajectories found), where the memory hotspots are, and which implementation
changes can be done to alleviate them. Due to incompatibilities with Valgrind and the
PELE binaries generated for MareNostrum 4, all executions described in this section
have been performed on Nord 3.

4.3.1 Testing environment and inputs

In order to have a general idea of how much memory PELE needs for a simple execution,
we performed some runs using two different inputs, which were provided by EAPM.
These inputs are two different PDB files, which define three-dimensional structures of
molecules. Each file describes a list of atoms (alongside their characteristics, including
their coordinates) of a different molecule. From now on, these files will be referred as:

• Small input: molecule comprised of ~2500 atoms.

• Large input: molecule comprised of ~18000 atoms.

Furthermore, it has also been noted by the developers that there is a simulation parameter
that greatly increases memory usage when enabled in an execution. This parameter is
called bindingEnergy, which tells PELE that it must also compute the binding energy1 of

1Just for context, the binding energy of a molecule is the minimal amount of energy required to separate
its constituent atoms.

34

4 PELE: Preliminary analysis

the resulting system obtained in a simulation.

The first step was to perform MPI executions allocating all the available CPU cores of a
single Nord 3 compute node and then check the node’s memory usage. Since each compute
node has 16 CPU cores available, we have decided to perform these executions using up to
16 MPI ranks, with each rank being assigned to a different core. Two executions for each
input and requested amount of MPI ranks were performed: one without the computation
of binding energy and the other with the option enabled.

4.3.2 Results

The memory usage metrics obtained through HPC Portal for the different inputs and
options can be summarized in table 4.1. Each cell represents the maximum percentage of
memory used in a node. For reference, each node has 32GB of available memory. These
computations have been performed using 4, 8 and 16 MPI ranks in order to have a general
idea of how the memory usage increased. The executed PELE binary was provided by
EAPM, which was compiled using MKL as its BLAS/LAPACK backend.

To determine if the memory usage metrics increases with the amount of time spent doing
a simulation, we also experimented with different amounts of "pelesteps" with both inputs.
In this context, a "pelestep" is the coarser iterative step the program performs in order to
perform explorations. If memory consumption increased with the amount of "pelesteps"
performed, that could indicate some sort of memory leaking. The same executions were
repeated multiple times with different values of that particular parameter, but the memory
consumption metrics remained the same.

Without binding energy With binding energy
Small input (4 ranks) 14% 15%
Small input (8 ranks) 17% 19%
Small input (16 ranks) 24% 29%
Large input (4 ranks) 39% 65%
Large input (8 ranks) 77% Out of memory
Large input (16 ranks) Out of memory Out of memory

Table 4.1: PELE’s memory consumption profile of a single Nord3 node

Although the memory consumption metrics shown in table 4.1 are coarse, they already
provide a bit of insight on how PELE’s memory requirements scale. Here we can already
observe two things:

• Memory usage does not scale linearly with the amount of MPI ranks used. An
increase in memory usage is expected, since PELE executes parallel independent
explorations for each MPI rank.

35

4 PELE: Preliminary analysis

• Enabling the computation of the system’s binding energy increases memory usage.
For smaller inputs the increase is not significant, but it can almost double the
memory consumption for large inputs.

Knowing that each MPI rank performs an independent exploration, we decided to do
further profiling using a serial compilation of PELE version 1.8b2 in order to facilitate
the analysis. To obtain a more insightful look of how the memory usage evolves in a
serial execution of PELE, the same executions were repeated and profiled using Valgrind’s
Massif tool. Massif profiling files were obtained for serial executions of the small and large
inputs, with and without the computation of binding energy.

Furthermore, there is an important detail about Massif that must be taken into account.
By default, the obtained memory profiling data only tracks the heap memory used
by the program (dynamically allocated memory). To track the total amount of memory
allocated to our process, Massif provides options that can change its behavior to a lower
level measurement of allocated memory pages. Both options have its benefits and its
drawbacks: direct heap profiling lets us know exactly where dynamic memory allocation
takes place, but at the cost of not seeing the whole picture. On the other hand, memory
page profiling fixes that issue but its readings become a lot more "polluted". Knowing this,
we decided to use both types of profiling in conjunction to leverage its benefits.

After profiling serial PELE executions using different inputs, binding energy parameters
and types of profiling, precise memory consumption metrics were obtained. The results
have been summed up in figure 4.9. These metrics have been obtained from the plots
generated by massif-visualizer, included in appendix B.1.

Heap memory Total memory
0

200

400

600

800

155

751

273

871

M
em

or
y

co
ns

um
pt

io
n

(M
B)

Without binding With binding

(a) Small input

Heap memory Total memory
0

1

2

3

4

5

6

7

2.9
3.6

5.8
6.5

M
em

or
y

co
ns

um
pt

io
n

(G
B)

Without binding With binding

(b) Large input

Figure 4.9: Baseline memory consumption metrics of serial PELE executions with different parameters

In both bar plots, we can see the memory usage metrics of serial executions using the small
and large input. On each plot we have displayed the heap memory and total memory used

36

4 PELE: Preliminary analysis

by the executions (heap memory is included in the total memory measurements), which
are also color-coded to differentiate executions that do not compute binding energy and
executions that have that option enabled. Please note that the scale of the first plot is in
MB and measurements approach 1GB, while the scale for the second plot is in GB and
measurements approach the 7GB mark.

In both plots, we can observe that the difference between heap memory and total memory
for the same execution is always around 600MB, independently of the input used.

4.3.3 Conclusions

The results obtained for the serial PELE executions show a similar behavior to what we
have seen with MPI executions on table 4.1, where using a larger input makes memory
usage scale significantly faster. One interesting fact that we can observe is that for smaller
inputs, dynamically allocated memory (heap) is just a small fraction of the total memory
used for an execution. For larger inputs, it becomes the main contributor to memory
consumption. In general, enabling the computation of binding energy almost doubles the
amount of allocated heap memory.

With this initial study, we can define the values summarized in figure 4.9 as the baseline
from which we will implement improvements in further chapters.

37

5 Optimization and parallelization proposals

In chapter 4, we conducted a preliminary analysis of PELE’s performance and behavior,
identifying several areas where improvements could be made. Specifically, we detected bot-
tlenecks in the program’s parallelization strategy and memory usage, the latter significantly
limiting its effective resource usage. In this chapter, we present several optimizations and
parallelization strategies that can address these issues and enhance the performance of the
PELE program.

The proposed optimizations include the efficient use of the available hardware resources, a
significant reduction in memory usage and change the real precision of the computational
operations from double to single-precision. Additionally, we propose some modifications
on the current parallelization strategy to leverage the capabilities of modern multicore
processors and high-performance computing clusters.

By implementing these optimizations and parallelization strategies, we hope to improve
currently feasible PELE executions and even enable PELE simulations that were originally
resource-inefficient (or even unfeasible) on modest systems.

38

5 Optimization and parallelization proposals

5.1 Improvements on memory usage

5.1.1 Intel MKL vs OpenBLAS

In section 4.3, and more specifically in figure 4.9, we noted that the difference between
the heap memory usage and total memory usage values was particularly significant for
executions that used the small input. Concretely, a gap of 600MB could be observed
between the values obtained for the small input executions.

Since the difference observed was not trivial, we inspected the binaries and libraries used to
check if we could reduce memory consumption with just some changes in the compilation
of PELE’s binary.

In listing 5.1 we can observe the reported disk size of the PELE binary alongside the MKL
libraries that are linked to it. It should be noted that MKL is not the only major library
linked to PELE (there are others like Boost, for example), but is one of the few ones that
are interchangeable with other alternatives like OpenBLAS.

1 > ls -lah PELE -1.8 _serial
2 -rwxr -xr -x 1 bsc72236 bsc72 39M mar 17 2022 PELE -1.8 _serial
3

4 > ldd PELE -1.8 _serial | grep mkl
5 libmkl_intel_lp64 .so .1 => <path_to_libmkl_intel_lp64 .so.1>
6 libmkl_intel_thread .so .1 => <path_to_libmkl_intel_thread .so.1>
7 libmkl_core .so .1 => <path_to_libmkl_core .so.1>
8

9 > ls -lah libmkl_intel_lp64 .so .1 libmkl_intel_thread .so .1 libmkl_core .so .1
10 -rwxr -xr -x 3 bsc99002 bsc99 72M sep 4 2021 libmkl_core .so .1
11 -rwxr -xr -x 3 bsc99002 bsc99 13M sep 4 2021 libmkl_intel_lp64 .so .1
12 -rwxr -xr -x 3 bsc99002 bsc99 62M sep 4 2021 libmkl_intel_thread .so .1

Listing 5.1: Disk sizes reported for PELE’s serial binary and MKL libraries

Just counting linked MKL libraries alone, we can see that they can potentially take 147MB
before any computation is even done. Just for reference, in listing 5.2 we can see that
other available alternatives like OpenBLAS only take up about 18MB.

1 > ls -lah libopenblas_sandybridgep -r0 .3.21. so
2 -rwxr -xr -x 1 bsc99204 bsc99 18M dic 15 23:15 libopenblas_sandybridgep -r0 .3.21. so

Listing 5.2: Disk sizes reported for OpenBLAS library

Knowing that using MKL is not mandatory, a serial PELE binary was recompiled and
linked against OpenBLAS to test if there were memory gains. The same executions were
performed again, and we can see that it did in fact improve total memory consumption
with little to no impact on heap memory used. An example of the obtained values for an
execution using the small input with the computation of binding energy can be seen in
figure 5.1.

39

5 Optimization and parallelization proposals

Heap memory Total memory
0

200

400

600

800

273

871

266

613

M
em

or
y

co
ns

um
pt

io
n

(M
B)

MKL OpenBLAS

Figure 5.1: Memory consumption comparative of MKL vs OpenBLAS, small input, with binding energy

Although the memory benefits obtained using OpenBLAS might not be very significant for
large systems and simulations, these are gains that come at practically no cost. If PELE
is to be executed in modest systems and memory becomes a bottleneck, using OpenBLAS
is one easy way to alleviate memory needs. The execution time cost of switching from
MKL to OpenBLAS has also been measured by comparing executions using both libraries.
At most, OpenBLAS only increases execution time by about 2.5% when compared against
MKL.

5.1.2 Code changes

To obtain significant reductions in memory usage, a more detailed study of the executions
and code was necessary. Concretely, we needed to know exactly when dynamic memory
allocations were taking place and how much memory was used in each of them. After
this, we would be able to get a general idea of which parts of the code were the main
contributors to memory usage and where to focus our efforts.

To get this information, we have relied on a combination of Massif and GDB. In section
4.3 we explained that we could get the maximum memory metrics of each PELE execution
thanks to Massif. Massif works by combining multiple snapshots of the execution at
different points in time, with each snapshot containing a stack trace detailing how much
memory has been allocated at every level of the stack.

Since the executions with the large inputs were the ones with more apparent memory
needs, we decided to base our analysis on those. In figure 5.2 and 5.3 we can see the
Massif snapshots obtained at peak memory consumption time, for an execution without
the computation of binding energy and another with the option enabled, respectively. We
have enabled a more detailed view of the stack trace of the functions with most memory
requirements, with each line being the function where the allocation took place. In case

40

5 Optimization and parallelization proposals

of function dependency, each function is a caller of its upper function and a callee of its
downward function.

Figure 5.2: Massif snapshot of the peak heap memory usage of PELE, without binding energy

Figure 5.3: Massif snapshot of the peak heap memory usage of PELE, with binding energy

Inspecting both traces, we can see that the highest contribution to memory usage is located
at the constructor function of the class "SolventState". For the execution without binding
energy, we see that this function is only accessed from a specific execution flow, but that
is not the case for the execution with binding energy enabled, where we can see that the
same function has been called following two different paths.

Furthermore, we can also observe that the increased memory usage from the execution
with binding energy comes from the addition of the memory used in the call to "Bindin-
gEnergyMetricsBuilder::createMetric", which is uses exactly the same amount of memory
as "SolventGenerator::createSolvent". This fact indicates that this increase in memory
when computing binding energy could be due to some sort of data replication.

Once the general location of the memory hotspots had been identified, we compiled a
debug version of PELE and ran it with GDB, placing breakpoints at the start of those
functions. At the same time, we also monitored the node’s available memory to determine
the exact line where the allocation happens. To make sure that the readings obtained

41

5 Optimization and parallelization proposals

1 SolventState :: SolventState (AtomSet * atomSet , AtomsSurfaceUpdater * atomsSurfaceUpdater)
2 {
3 this -> atomSet = atomSet ;
4 unsigned int numAtoms = atomSet -> getNumberOfAllAtoms ();
5 fill_n (back_inserter (hadFreeSasaNeighbors), numAtoms , false);
6
7 hadFreeLowResolutionNeighbors . resize (numAtoms);
8 hadFreeMediumResolutionNeighbors . resize (numAtoms);
9

10 frozenAtomsSurfaceContribution . resize (numAtoms);
11 for(unsigned i = 0; i < numAtoms ; ++i)
12 frozenAtomsSurfaceContribution [i]. resize (numAtoms ,0);
13
14 atomsSurfaceIntegral . resize (numAtoms);
15 updateFrozenAndFreeList ();
16 this -> atomsSurfaceUpdater = atomsSurfaceUpdater ;
17 }

Listing 5.3: Constructor method for SolventState class

were specifically from our testing, we reserved a whole node for the execution. In listing
5.3 we can see the code of the constructor method for the class "SolventState".

We detected that the memory consumption spike happens on lines 10-12 of listing 5.3.
In these lines, we can see what that the program dynamically allocates a matrix called
"frozenAtomsSurfaceContribution" of "numAtoms" x "numAtoms". For reference, "nu-
mAtoms" in this context refers to the amount of atoms that comprises the system defined
in the input file. If we take into account all observations done until now, it becomes
apparent that the minimum memory complexity of PELE is at least O(n2), where
n is the amount of atoms (or input data) of the system. This explains the sharp increase
in memory when using larger inputs.

Knowing this, the main objective should be decreasing the memory complexity of this
"frozenAtomsSurfaceContribution" data structure. To do that, we should first determine
the answer to the following questions:

• When and how is this structure written to or read from?

• Is this structure really needed in its current state?

After inspecting all related code that accesses this structure, we have determined that
modifications to specific matrix positions are only done when initializing the whole
structure, either for the first time or after a whole update of its contents is requested.
More importantly, if we check all the read operations done on this structure, we see that
the code where they are done doesn’t only save one specific element, it accumulates all
values into single variables. To be more exact, all read operations follow a similar pattern
seen in listing 5.4.

These two facts combined answer our second question: this structure is not needed (unless
there are future developments that rely on it), since we don’t strictly need to read arbitrary

42

5 Optimization and parallelization proposals

1 ...
2 for(unsigned i = 0; i < numAtoms ; ++i){
3 Atom * atom = allAtoms [i];
4 double surface = 0.0;
5 if(atom -> isFrozen ()) {
6 for(unsigned j = 0; j < numAtoms ; ++j) {
7 surface += frozenAtomsSurfaceContribution [atom -> vectorId][j];
8 }
9 }

10 }
11 ...

Listing 5.4: Simplified code of read operations performed against "frozenAtomsSurfaceContribution"

positions of the matrix, we only need its values to compute their sum. Knowing this, the
most straightforward approach would be to just discard the whole structure, compute the
sum once and then only save that value. However, we can’t use this solution because not
all values of the structure are always used to compute its sum.

In lines 5-9 of listing 5.4 we can see that only some rows of the structure are used for the
computation, with the condition being if an atom is frozen or not. If the atom is frozen,
the whole row with that atom identifier is added to the sum. If not, it doesn’t participate
to the computation. While this means that we cannot simply save the sum value of all
"frozenAtomsSurfaceContribution" elements, what we can do is to simplify the structure to
a vector. Each position would contain the sum of a whole row, and then its initialization
alongside all read and write operations should be adapted to accommodate the change.
With this solution, the memory complexity for this part of the code should drop
to O(n).

5.1.3 Results

After applying these changes, a new serial binary was compiled (using OpenBLAS) and
executed. Once the obtained outputs were compared against outputs from unmodified
PELE executions and were confirmed to be valid, another memory profiling was performed
using Massif. In figure 5.4 we can see the new memory consumption metrics compared
against the unmodified version of PELE, using both versions the large input and OpenBLAS.
Keep in mind that these values are for serial executions.

As we can see, for the large input we have managed to obtain significant reductions in
memory usage. One important detail to point out is that the execution that computes
binding energy has also benefited from this change, since both execution paths identified
in figure 5.3 end up calling the same class constructor method. Most importantly, these
memory improvements come at no cost: the execution time has not increased.

This can be seen in figure 5.5, where we have compared the execution times of a serial
PELE run of our new version against the unmodified one. We have also used a different

43

5 Optimization and parallelization proposals

Heap memory Total memory
0

1

2

3

4

5

6

2.9
3.3

0.56 0.83M
em

or
y

co
ns

um
pt

io
n

(G
B)

Original code Modified code

(a) Large input, no binding energy

Heap memory Total memory
0

1

2

3

4

5

6 5.8
6.1

1
1.3

M
em

or
y

co
ns

um
pt

io
n

(G
B)

Original code Modified code

(b) Large input, with binding energy

Figure 5.4: Memory usage comparison between the original PELE code and our modified version

number of pelesteps to see how the execution time scales. Both versions use OpenBLAS
and the large input.

0 2 4 6 8

0

200

400

600

800

1 000

1 200

Number of pelesteps

El
ap

se
d

tim
e

(s
ec

on
ds

)

Original code Modified code

Figure 5.5: Serial execution times of memory improved PELE against original binary, large input

This modified version also presents slightly shorter execution times, which is to be expected
since we now read vectors of numAtoms instead of matrices of numAtoms x numAtoms. It
is important to note that our implemented change is not a memory-optimal solution. If the
state of the atoms (frozen or not frozen) were known when frozenAtomsSurfaceContribution
is defined, we could even discard all vector positions of non-frozen atoms, since they are
not relevant for this structure. This would further reduce memory usage, but it would
complicate reading values from the structure since it would dynamically change its number
of elements and how atoms are indexed. Regardless, the results obtained with our current

44

5 Optimization and parallelization proposals

solution were satisfactory enough and we decided to keep it for simplicity’s sake.

With these changes applied, we tried to replicate the executions performed in table 4.1 to
see how the improvements translate to MPI runs. These results can be seen on table 5.1,
which contains the newly obtained memory metrics. Again, the percentages indicate the
amount of used memory on a single Nord3 node of 32GB.

Without binding energy With binding energy
Small input (4 ranks) 13% 14%
Small input (8 ranks) 16% 17%
Small input (16 ranks) 20% 23%
Large input (4 ranks) 16.5% 20%
Large input (8 ranks) 24% 33%
Large input (16 ranks) 36% 57%

Table 5.1: PELE’s memory consumption profile of a single Nord3 node after memory improvements

5.1.4 Conclusions

The improvements made to reduce the memory usage of the PELE software have been
successful in significantly reducing the memory complexity from O(n2) to O(n), while
maintaining performance and without introducing any negative side effects. This has
enabled the possibility of performing parallel simulations that were previously resource-
inefficient or not possible due to memory constraints.

The reduction in memory complexity was achieved by implementing several changes to a
specific data structure. The resulting improvements in memory usage have allowed the
software to handle larger systems with greater resource efficiency. Furthermore, it has
been shown that the use of OpenBLAS over MKL libraries can also reduce the amount of
memory allocation needed.

Overall, the success of these improvements is probably the most beneficial change to PELE
in this work, since it eliminates one of its most limiting issues: over-allocation of compute
resources due to memory constraints.

45

5 Optimization and parallelization proposals

5.2 Floating point precision changes

PELE is a software that exclusively performs double-precision floating point operations to
compute the energy bindings. Although this is not uncommon, there are other applications
(like GROMACS [14]) that allow the use of single-precision, or at least the use of mixed
precision using only double-precision for sensitive variables. The benefits of using single-
precision usually come as an improvement in execution times for codes that are compute
intensive, alongside a decrease in memory consumption since single-precision variables take
up only half the memory of their double-precision counterparts. After the examination of
the inputs and outputs used and produced by PELE, we determined that the values used
by the software should be representable using single-precision floating point variables. For
example, in listing 5.5 we can see that the the range of the input values used is not large
and that their precision is about 10−3.

1 ATOM 1 N MET A1001 12.703 6.654 -0.425 1.00 102.30 N
2 ATOM 2 CA MET A1001 12.126 6.933 -1.750 1.00 106.02 C
3 ATOM 3 C MET A1001 11.810 5.648 -2.563 1.00 100.52 C
4 ATOM 4 O MET A1001 11.019 5.693 -3.521 1.00 93.34 O
5 ATOM 5 CB MET A1001 13.051 7.871 -2.547 1.00 104.69 C
6 ATOM 6 CG MET A1001 12.701 8.052 -4.045 1.00 109.14 C
7 ATOM 7 SD MET A1001 10.958 8.432 -4.422 1.00 114.51 S
8 ...

Listing 5.5: First lines of a PDB input file defining a molecule

For PELE’s usual generated output files, it’s true that their values require a bit more
precision, but it still should be fairly accomplishable using single-precision variables. These
output files generally contain a set of computed metrics of the system at different points
of the simulation, an example can be seen in listing 5.6.

1 #Task Step numberOfAcceptedPeleSteps currentEnergy BindingEnergy sasaLig ligandRMSD
2 1 0 0 -22636.4 122.449 0.185127 0
3 1 2 1 -34859.5 -25.4017 0.183314 2.02767

Listing 5.6: Example report of a PELE simulation

5.2.1 Changes and problems

PELE’s code contains a fair amount of hardcoded numeric values that directly feed into
functions. At compilation time, these numeric values are implicitly treated as double data
types, which at the same time produce a data type mismatch in these functions because
they expect to be fed float parameters. To avoid this problem, all offending numerical
values were explicitly cast to float.

Another important matter to consider when applying these changes is that the former
precision or values of the constants used by PELE might be inadequate when using
single-precision floating point operations. One critical example is the constant that defines

46

5 Optimization and parallelization proposals

1 extern "C" {
2 // LAPACK routines
3 void dsptrd_ (char*, int*, const double * const , double *, double *, double *, int *);
4 void dstevr_ (char*, char*, int*, double *, double *, double *, double *, int*, int*, double *,

int*, double *, double *, int*, int*, double *, int*, int*, int*, int *);
5 void dopmtr_ (char*, char*, char*, int*, int*, const double * const , double *, double *, int

*, double *, int *);
6 void dsyev_ (char*, char*, int*, double *, int*, double *, double *, int*, int *);
7
8 // BLAS routines
9 double dnrm2_ (int *n, const double * const x, int *incx);

10 double ddot_ (int * n, const double * const x, int * incX , const double * const y, int *
incY);

11 void daxpy_ (int * n, double * alpha , const double * const x, int * incx , double * const y
, int * incy);

12 void dscal_ (int * n, double * scalar , double * x, int * incx);
13 void dcopy_ (int *n, const double * const x, int * incx , double * y, int * incy);
14 }

Listing 5.7: Original BLAS and LAPACK routines declared in PELE’s code

the threshold used to determine if two floating point values can be considered equal or
not, or even the definition of the maximum value that can be considered zero. Some of
these constants were too close to the representability limits of single-precision floats, and
in some cases they were not representable. To alleviate the problem, the precision values
of the worst cases were slightly relaxed.

Another unexpected issue was that PELE’s code was using the Fortran versions of
BLAS/LAPACK, as shown in listing 5.7. All Fortran versions are characterized the "_"
suffix in the name, and having all the parameters as pointers. This is relevant, since it was
found out that calling single-precision BLAS/LAPACK functions in this manner could
produce unexpected values that would then silently propagate through the execution. The
correctness of the new function declarations was checked multiple times, but the issue
could only be resolved by switching the Fortran calls to their C-based interfaces provided
by "cblas" and "LAPACKE".

A representative example of the previously defined behavior in PELE is the case of an
infinite loop caused by silent NaN propagation. In PELE, there is a point where a grid-like
structure of three dimensions is created. After that, all the atoms of the simulation are
mapped to different positions of the grid, depending on their three-dimensional coordinates.
To generate this grid, the program needs to ensure that the grid can properly map all
atoms, and for that it needs to know which are the maximum and minimum values of each
dimension. In conclusion, it needs to check the coordinates of all atoms beforehand and
then determine the dimensions of the grid based on those values. This is what can be seen
in listing 5.8.

As soon as the boundaries of the grid are determined, atoms can start to get mapped in
it. However, what ends up happening is that coordinates of some atoms fall outside the
boundaries of the generated grid. PELE detects this condition and decides to regenerate

47

5 Optimization and parallelization proposals

1 void CellList :: computeHighestAndLowestPositions () {
2 Atom ** atoms = complex -> getAtoms ();
3 double * coords = complex -> getCartesianCoordinates ();
4 // ...
5 for(unsigned int i = 0; i < complex -> getNumberOfAtoms (); i++)
6 {
7 // Find boundaries
8 Atom* a = atoms [i];
9 lowestX = min(coords [a->ix], lowestX);

10 lowestY = min(coords [a->iy], lowestY);
11 lowestZ = min(coords [a->iz], lowestZ);
12
13 highestX = max(coords [a->ix], highestX);
14 highestY = max(coords [a->iy], highestY);
15 highestZ = max(coords [a->iz], highestZ);
16 }
17 // ... function continues here , but code is not relevant
18 }

Listing 5.8: Code of function CellList::computeHighestAndLowestPoints

the grid, starting this cycle over. This goes on indefinitely, with the general loop diagram
being shown in figure 5.6.

Figure 5.6: Conceptual diagram of the infinite loop while creating a grid

One contradiction is clear: a grid was being constructed using the coordinates of all atoms
to determine its boundaries, but then those very same atoms ended up being mapped out
of boundaries. This behavior was found to be caused by arithmetic operations using NaN
as one of their operands. By leveraging one of the properties of the IEEE-754 floating
point standard [15] that determines that a floating point NaN cannot be equal to itself,
the precise producers of those values could be determined. These producers, at the same
time, used values obtained through OpenBLAS/LAPACK functions, which later were
found to be incorrect. There have been several cases of unexpected behaviors that had to
be extensively studied with debugging tools, but we have left them out for the sake of
brevity.

After applying all previous changes, a working version of PELE using single precision
values was obtained, which was able to finish test executions without further issues.

48

5 Optimization and parallelization proposals

5.2.2 Results

Differences in results accuracy

Once we got a working version of this new serial single-precision PELE binary, two runs
were performed using the large input: one with a single-precision binary and another one
using the previous one. After that, we compared the values of both reports and obtained
trajectories. For example, in listing 5.9 we can see a quick comparison of a few lines of the
output PDB files for both versions. In figure 5.10, we can see an equivalent comparison
with their report files. Please note that the single-precision version used for this execution
only modified constants that were not representable with this new precision.

1 // DOUBLE PRECISION
2 ATOM 1 N MET A1001 12.925 6.590 -0.491 1.00 102.30 N
3 ATOM 2 CA MET A1001 12.407 6.970 -1.801 1.00 106.02 C
4 ATOM 3 C MET A1001 12.031 5.729 -2.634 1.00 100.52 C
5 ATOM 4 O MET A1001 11.483 5.844 -3.732 1.00 93.34 O
6 ATOM 5 CB MET A1001 13.420 7.916 -2.490 1.00 104.69 C
7 ...
8 ***
9 // SINGLE PRECISION

10 ATOM 1 N MET A1001 12.872 6.576 -0.425 1.00 102.30 N
11 ATOM 2 CA MET A1001 12.391 7.024 -1.729 1.00 106.02 C
12 ATOM 3 C MET A1001 11.851 5.845 -2.554 1.00 100.52 C
13 ATOM 4 O MET A1001 11.184 6.042 -3.572 1.00 93.34 O
14 ATOM 5 CB MET A1001 13.533 7.785 -2.442 1.00 104.69 C
15 ...

Listing 5.9: Side by side comparison of output PDB files of double and single precision PELE executions

1 // DOUBLE PRECISION
2 #Task Step # OfAccPeleSteps currentEnergy sasaLig ligandRMSD
3 1 0 0 -22636.4 0.185127 0
4 1 2 1 -35162.1 0.184356 1.99551
5 **
6 // SINGLE PRECISION
7 #Task Step # OfAccPeleSteps currentEnergy sasaLig ligandRMSD
8 1 0 0 -22634.8 0.185127 0
9 1 2 1 -35788.9 0.184496 1.90868

Listing 5.10: Side by side comparison of report files of double and single precision PELE executions

What can be seen in listing 5.9 is that the obtained coordinate values of the atoms (6th
to 8th column) present non-negligible differences between versions. After systematically
comparing all values from both PDB files, we determined that the obtained values for
this particular execution can present a fluctuation of ±0.8 units. A similar issue
can be seen in the currentEnergy column of both reports, where the reported values can
have significant differences between them.

Since the evaluation of the quality of these reported results falls outside of our area of
expertise, we provided these output files to PELE developers. The validity of the results
is still pending to be evaluated by them.

49

5 Optimization and parallelization proposals

Memory usage and execution time benefits

In this section, we will try to determine if these changes have a significant impact on
execution time and memory usage for a PELE execution. Using serial PELE binaries, one
using double-precision and another one using our modified version, we performed 4 runs
for each binary using the large input (without the binding energy option). After tracing
their average execution times and memory usage metrics, we obtained the results seen in
figure 5.7.

Heap memory Total memory
0

200

400

600

800

560

832

486

714

M
em

or
y

co
ns

um
pt

io
n

(M
B)

Double precision Single precision

(a) Memory usage comparison

Elapsed time
0

50

100

150

200

250

300 287 287

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

Double precision Single precision

(b) Average Execution time comparison

Figure 5.7: Metrics comparison of single and double precision serial PELE, large input, no binding energy

For this particular execution, we can see that we have obtained a ~15% decrease in
memory usage when compared with our previous double precision version of PELE.
However, execution time remains the same. This was an unexpected outcome, since
arithmetic operations using single precision operands should be faster than their double
precision counterparts. Inspecting the logs of the execution, there is a bit of profiling
information for one of the algorithms used in the simulation. In listing 5.11 we can see the
values reported for it, for the double and single precision executions.

1 // DOUBLE PRECISION
2 totalNewtonIterations : 3
3 totalInnerLoops : 214
4 totalOuterLoops : 29
5 ************************
6 // SINGLE PRECISION
7 totalNewtonIterations : 3
8 totalInnerLoops : 309
9 totalOuterLoops : 26

Listing 5.11: Side by side comparison of report files of double and single precision PELE executions

It seems that the change to single precision did also increase the amount of iterations
to perform for the truncated Newton algorithm to converge (which is used during the
minimization phase of PELE). To confirm that this section of the execution is actually

50

5 Optimization and parallelization proposals

taking more time, we traced this execution using callgrind. In figure 5.8 we can see the
relevant sections of the trace.

Figure 5.8: Callgrind traces of single (left) and double (right) precision serial PELE executions

The highlighted functions in the callgrind traces are the ones where the iterations of listing
5.11 take place. As we can see, the single precision version takes a higher percentage
of execution time in that function than the double precision version. The amount of
iterations to perform in that function cannot be known beforehand, the end conditions for
their loops are based of the convergence of values under a certain threshold.

As a proof of concept, we created two new single-precision PELE versions: one with
single-precision awareness constants and another with a limited amount of iterations in
the truncated Newton algorithm. The first binary is like the original single-precision
implementation, but adjusting the single-precision requirements of some constants. The
second version has been limited to perform, at most, the same amount of totalInnerLoops
observed in the double precision output of listing 5.11. After performing another round of
executions using these new single-precision versions, we obtained the timings observed in
figure 5.9.

Naive Revised constants Iteration limit
0

50

100

150

200

250

300 287 279
258

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

Figure 5.9: Execution times of single precision serial PELE binaries, large input, no binding energy

51

5 Optimization and parallelization proposals

In the figure, Naive is the baseline single-precision version. Revised constants and Iteration
limit are the single-precision range awareness and limited iteration versions, respectively.
The Revised constants results show that execution time could actually decrease if the values
for constants were revised in a controlled manner. Timings in Iteration limit indicate
that modest execution time improvements could theoretically be achieved if PELE’s single
precision code was adapted to the point of requiring the same amount of truncated Newton
algorithm iterations of its double precision counterpart.

5.2.3 Conclusions

Due to the complexity of the code, the reason for the differences in the amount of iterations
needed to perform in some functions couldn’t be fully determined. The code was later
inspected and we found out that there is a significant amount of hardcoded numerical
threshold values, some of those very close to the limit of single-precision representability.
One option would be to relax the precision needed for those numerical thresholds, but
without knowing a range of acceptable values, it could negatively affect the validity of the
results.

Due to these circumstances, we informed PELE developers about this situation. If it were
reasonable to reduce the precision requirements of all constants, reducing the execution
time of the simulation would be feasible. However, we haven’t been able to determine
new valid values for those constants. Since the correctness of these changes haven’t been
fully validated yet, future sections will still use the double precision version of PELE as
its baseline.

52

5 Optimization and parallelization proposals

5.3 MPI design changes

In this section, we will focus on improving the MPI implementation of the PELE software.
The current implementation of MPI in the PELE software has been effective in enabling
parallel execution of simulations. However, we have identified several areas where per-
formance can be improved. These include the use of unnecessary communications, the
presence of a master rank that doesn’t contribute to the computation, and the presence of
load unbalance.

To address these issues, our proposals include the elimination of unnecessary MPI messages,
the implementation of fully independent worker ranks that do not rely on controllers, and
trying to decrease the impact of load unbalance for executions that follow the Adaptive
PELE workflow. These changes will be performed in incremental steps. We will evaluate
the effectiveness of these proposed improvements through testing and benchmarking on
the Nord 3 system.

Ultimately, the goal of these improvements is to enhance the efficient use of resources of
the PELE software.

5.3.1 Eliminating unnecessary MPI communications and controllers

On section 4.1.2 we observed the presence of MPI communications after each performed
pelestep. These communications were exclusively performed between worker ranks and
the controller rank, and never directly between worker ranks. These communications are
just to report a worker’s status to the controller, but this information is not relevant for
the execution of a simulation.

Since it is known (as explained by EAPM) that the controller currently does not influence
the execution of its worker ranks, all these communications can be omitted. Doing so, all
worker ranks can freely run without having to stop to report to the controller, which will
facilitate future changes. From the controller’s side, the changes are simple because all
communications are managed in the same file and they are very localized. In general, the
code for the controller used for this can be summarized in listing 5.12.

For this specific part of the code, we can see that the controller waits for incoming
communications in a synchronous MPI_Recv call, and once this communication happens,
it executes different code depending on the event received. After that, it starts to wait
again. The only thing that we need to do here is to eliminate all the helper functions that
reply to the worker ranks once the controller receives an incoming communication from
them.

From the worker point of view, we also need to eliminate all MPI calls targeting the

53

5 Optimization and parallelization proposals

1 while (numExplorersFinished < numberOfExplorers){
2 MPI_EVENTS event ;
3 MPI_Status status ;
4 MPI_Recv (& event , 1, MPI_INT , MPI_ANY_SOURCE , EVENT , MPI_COMM_WORLD , & status);
5 int explorerId = status . MPI_SOURCE ;
6 switch (event){
7 case EXPLORER_FINISHED :
8 controllerEventsLogger -> logExplorerFinishedEvent (explorerId);
9 numExplorersFinished ++;

10 break ;
11 case EXPLORER_SENDS_STATE_TO_CONTROLLER :
12 helper . respondToNewExplorerState (explorerId , jumpData , controllerEventsLogger);
13 break ;
14 case EXPLORER_SENDS_PROGRESS_TO_CONTROLLER :
15 helper . respondToNewExplorerProgress (explorerId , jumpData , controllerEventsLogger);
16 break ;
17 case EXPLORER_REQUEST_COORDINATES :
18 helper . sendJumpingCoordinates (explorerId , jumpData ,
19 EXPLORER_SENDS_PROGRESS_TO_CONTROLLER , controllerEventsLogger);
20 break ;
21 default :
22 throw PeleException (
23 " Error : unexpected MPI event received by controller ",
24 " MpiBasicExplorationController :: listenToExplorersEvents ");
25 break ;
26 }
27 }

Listing 5.12: Relevant code used by MPI controller to receive worker communications

controller, with the exception of the initialization and finalization communications. These
changes were harder to implement, since MPI code was scattered throughout multiple
files. Most of the worker MPI calls were tracked down by searching the MPI tags used by
the controller. The remaining worker MPI calls that were not found using the previous
method were discovered using the DDT parallel debugger.

With these changes, we obtained a PELE binary that could perform entire MPI executions
without synchronization calls from its worker ranks, with the exception of its initialization
and finalization calls. Once all the intermediate communications were omitted, we decided
to focus on also eliminating the MPI controller rank and replacing it with another worker.

To achieve this, we eliminated the previous declaration of the MPI controller in the
code and the distinction between MPI ranks when spawning PELE explorations. The
finalization communication from worker ranks was also omitted, since each worker can
produce its output by itself without the need to report it back to the controller. This
produced a binary that could perform an additional simulation using the same amount of
MPI ranks as before.

To be able to ascertain the validity of the results of this new version, some changes were
needed to the distribution of the seeds used for the randomization of the computation
parameters. Originally, the seed used by each MPI rank was computed in the following
manner:

54

5 Optimization and parallelization proposals

LocalSeed = OriginalSeed + MpiRankID − 1

Previously, MPI rank 0 was reserved for the controller MPI rank, with all following MPI
ranks being workers. This is why the computation of the seed not only adds the value
of the MPI rank, but also subtracts one unit to ensure that the original seed specified in
the configuration file is mapped to the first worker rank. With the current version, the
subtraction was omitted since now all MPI ranks are workers. This change enables the
direct comparation of the produced reports and trajectories from both versions. After
some PELE test runs using the original and our new modified version, it was determined
that they produced equivalent results (and also an extra simulation trajectory and report).

5.3.2 Mitigating the effects of load imbalance

On section 4.1.2 we also saw the presence of load imbalance in the Paraver visualizations
of our initial executions. Each pelestep could take an unpredictable amount of time to be
performed, and they need to be executed sequentially. Since migrating pelestep executions
to MPI workers that end their workload early would probably not be trivial and would
require changing the whole execution model, it was determined that tackling this issue
directly from PELE would not be the best choice.

PELE is usually launched using Adaptive PELE, which encapsulates multiple PELE
executions. For each of those PELE executions, Adaptive PELE experiences periods of
time where multiple MPI ranks are just waiting for all workers to end due to load imbalance.
This happens for all epochs of an Adaptive PELE run. Ideally, MPI ranks shouldn’t have
to wait between epochs, but having to perform multiple PELE MPI executions enforces
this waiting time.

However, if we performed all clustering and input generation for each epoch from PELE
itself instead of relying on an external tool, we could theoretically assign workloads to MPI
ranks that have already finished their assigned computation for an epoch. To measure the
potential benefits of such a change, we decided to further modify PELE to implement a
naive proof of concept.

Although it would be ideal to perform the clustering and seeding directly from PELE,
we would need to study and port the existing Adaptive PELE python code to C++ and
integrate it into the PELE software. This is beyond the scope of this work, so we decided
to do the following to do this test:

55

5 Optimization and parallelization proposals

• Generate a pool of control files and inputs. For this, we would use Adaptive
PELE and save all generated intermediate input and control files for a specific
execution.

• Modify PELE code so it can use the previously generated files. PELE
would need to be able to perform multiple epochs by itself. To identify which input
files to use each time, it would use its MPI rank ID and epoch number.

• Ensure that the produced results are coherent. We must confirm that the
produced outputs from this new version of PELE are exactly the same from an
equivalent Adaptive PELE execution.

For the first step, we requested EAPM to provide us with a test case for an Adaptive
PELE execution, the configuration files can be seen in appendix A.3 and A.4. This test
case was adapted and executed using 30 epochs, which provided sufficient input files for
our purposes. These input files are conveniently named using an epoch identifier and MPI
rank ID, which facilitates their use in our new PELE version.

For the second step, PELE was modified to accept a new input parameter to determine the
amount of epochs to perform. Each worker rank performs its initial simulation as usual,
but after finishing, it it now checks the value of this new input parameter (if present).
If there are more epochs to be performed, it continues performing simulations using the
previously provided input files that matches its current epoch and MPI rank. Following
this strategy, we implemented two new versions of PELE: one implementing an MPI
barrier between epochs, and the other omitting this barrier. The first version was meant to
mimic the current Adaptive PELE execution model (without clustering time costs and the
spawning of multiple MPI executions), while the second one represented an ideal version
where each worker wouldn’t need to wait at the end of each epoch.

For this last version, it should be noted that it doesn’t consistently resolve the load
imbalance issues of PELE. While we should be able to eliminate waiting times between
epochs, there is no guarantee that there won’t be load imbalance at the end of the last
epoch (which would be the accumulation of imbalances from all the previous iterations).
However, we can say that this implementation would be, at worst, as fast as the current
implementation of Adaptive PELE. For that to happen, all the simulations with the highest
execution time in each epoch would have to land consistently on the same MPI worker.
Since the probability of this is very low, we should still have better execution times than
Adaptive PELE on average.

Finally, in order to recreate a similar seed assignation algorithm used by Adaptive PELE
and be able to compare the results, we used the following seed generation formula:

56

5 Optimization and parallelization proposals

LocalSeed = BaseSeed + EpochID ∗ (NumMpiRanks + 1) + MpiRankID

For the first epoch (epoch 0), the seed assigned to each worker is just the sum of the
base seed provided by the configuration file and the MPI rank identifier of the worker.
After that, the formula would also take into account the current epoch being executed.
Since our version needs one less MPI rank to perform the same computation as the default
Adaptive PELE (because it assumes that one of the ranks will act as a controller), we
need to increment the number of MPI ranks by one in the algorithm.

With these changes, we were able to reproduce the same exact results as Adaptive PELE
using our new PELE version.

5.3.3 Results

After compiling the last two new PELE versions (with and without MPI barriers), we
generated Extrae traces of both using the intermediate files generated by Adaptive PELE.
Since the original Adaptive PELE execution was done using 8 MPI ranks, we performed
our executions using 7 ranks to account for our missing controller rank. These traces
can be seen in figures 5.10 and 5.11. It is important to note that both executions are
equivalent in terms of the computations being performed.

Figure 5.10: Paraver visualization of useful duration and MPI calls of new PELE, 4 epochs, with barriers

57

5 Optimization and parallelization proposals

In the top visualization of figure 5.10, we can see four clear sections, each one being a
full epoch. Each epoch shows a load imbalance equivalent to what has been seen on
earlier standalone PELE executions, which has been forced by implementing MPI barriers
between epochs as seen on the bottom visualization, where we are displaying all MPI calls
taking place.

Figure 5.11: Paraver visualization of useful duration of new PELE, 4 epochs, no barriers

If we remove such barriers and allow each MPI rank to advance to its next epoch as soon
as possible, we obtain a situation like the one seen in figure 5.11. This visualization has
been scaled to use the same time duration as the previous ones.

We can see that the effects of load imbalance could be mitigated using this strategy,
since we are performing exactly the same execution in less time. Since Adaptive PELE
executions can be configured with different amounts of epochs and pelesteps/epoch, we
decided to quantify the potential benefits of this strategy by comparing execution times
between Adaptive PELE and our proof of concept using multiple configurations.

Three sets of Adaptive PELE intermediate files were generated, each using a different
amount of pelesteps/epoch. The rest of the parameters were the same ones defined in
configuration files A.3 and A.4, using an input PDB file defining a system of approximately
2600 atoms. The executions would be performed using 9 MPI ranks for Adaptive PELE,
and 8 MPI ranks for our version. These intermediate files would later be used to feed our
PELE executions and obtain multiple execution times. Figure 6.4 shows the execution
time for 4, 8 and 16 epochs, and 2, 4 and 8 pelestep per epoch, for the original Adaptive
PELE flow, the PELE barrier (precomputed epoch information and MPI barrier to wait
for the end of each epoch) and the PELE no barrier (precomputed epoch information but
no MPI barrier).

We can observe that Adaptive PELE executions are always slower than the proof-of-concept
versions of the barrier and non-barrier PELE versions. Execution time improvements are
more appreciable for higher epoch counts, which should be expected. While it is true that
Adaptive PELE should be slightly slower due to the fact that it actually needs to perform
a clustering operation in-between epochs to obtain new input files, the associated cost to
this operation is very small: for this execution, each clustering took 0.25 seconds at most.

58

5 Optimization and parallelization proposals

2 4 8

10

20

30

40

Number of pelesteps/epoch

El
ap

se
d

tim
e

(m
in

ut
es

)
Adaptive PELE: 4 epochs
Adaptive PELE: 8 epochs
Adaptive PELE: 16 epochs
PELE barrier: 4 epochs
PELE barrier: 8 epochs
PELE barrier: 16 epochs
PELE no barrier: 4 epochs
PELE no barrier: 8 epochs
PELE no barrier: 16 epochs

Figure 5.12: Execution times of Adaptive PELE and new PELE versions with different parameters

It is also important to note that the benefits of this new version are not only a slight
improvement in execution time, but also in the amount of needed resources, since we need
one less MPI rank. This benefit can be negligible for PELE executions using high MPI
rank counts, but it can become significant for small-scale runs.

5.3.4 Conclusions

A new version of PELE could be created, which completely removes the need for MPI
controller ranks and eliminates all unnecessary MPI communications between pelesteps.
This effectively lets us perform an extra concurrent simulation using the same amount
of resources needed for the original PELE version. Furthermore, we adapted PELE to
be able to execute multiple epochs using intermediate input files generated by Adaptive
PELE.

After some testing, this new version has shown that there would be potential benefits in
execution time if MPI ranks were able to successively execute epochs without waiting for
all other ranks, mitigating the effects of PELE’s MPI load imbalance.

59

5 Optimization and parallelization proposals

5.4 Relaxing Monte Carlo simulations

In section 5.3 we tested Adaptive PELE and introduced the idea of enabling worker MPI
ranks to start executions without having to wait for all MPI workers still working in
the same epoch. We tested a new standalone PELE version that simulated the current
workflow of Adaptive PELE using previously generated input and configuration files, and
finally an ideal version that showed that reductions in execution time were possible if all
workers were able to perform epochs without interruption.

These proofs of concept, however, relied on having a pool of input and configuration files
already available, since the clustering and intermediate file generation operations were not
being performed. In this section, we present a final PELE version that actually performs
these operations while also trying to mitigate the effects of load imbalance seen between
execution epochs.

5.4.1 Implementation

Adaptive PELE is basically a python wrapper that launches multiple MPI executions
of PELE, and once each execution finishes, it performs clustering and file spawning
operations using all the results that each MPI rank provided at the end of its epoch. For
the implementation of our new version of PELE, we have reversed the whole paradigm: we
will have an MPI PELE version that is only executed once, but it will internally perform
multiple epochs. Each MPI rank will invoke a modified version of the Adaptive PELE
python wrapper to perform its related clustering and spawning operations at the end of
each epoch.

The main benefit of this approach is that it lets us control when and how the clustering
operations for each MPI rank are performed. Each MPI worker rank performs a clustering
operation with a global pool of available trajectories at that specific moment, which
generates the initial PDB input file to be used for the PELE execution of its current
epoch. After that, the same MPI worker generates its needed PELE configuration file for
its current epoch and performs a simulation. The results of this simulation are then added
to the global pool, which will be used by other MPI ranks to perform their clustering
operations. The general execution flow has been described in figure 5.13.

It is important to note that the first PELE epoch is used to generate the initial pool of
input files. MPI ranks must wait for all their peers to finish the initial PELE simulation,
and then one of the MPI ranks will perform a clustering step using all the obtained results,
in a similar manner to what the original Adaptive PELE operated. After that initial
clustering, all ranks can start to continue their execution independently.

60

5 Optimization and parallelization proposals

Figure 5.13: Conceptual workflow diagram of the new Relaxed Adaptive PELE implementation

To perform the clustering operations, the original Adaptive PELE python software had to
be modified in order to disable the execution of PELE simulations. Furthermore, data
transfer operations (like adding or getting data from the general file pool) had to be done
under exclusivity to avoid operating with incomplete files that might be modified by other
MPI ranks.

5.4.2 Results

After implementing this latest PELE version, we performed the same study done on
section 5.3.3, using the same initial input files. This time, we will just compare the
original Adaptive PELE against our new version. The obtained execution times have been
summarized in figure 5.14.

In general, we can see lower execution times using this new version. However, it must also
be noted that a direct comparison is difficult to achieve in this case, since both executions
end up generating different intermediate trajectory files because the clustering operations
performed do not use the same set of files. One important observation revealed by these

61

5 Optimization and parallelization proposals

2 4 8

10

20

30

40

Number of pelesteps/epoch

El
ap

se
d

tim
e

(m
in

ut
es

)
Adaptive PELE: 4 epochs
Adaptive PELE: 8 epochs
Adaptive PELE: 16 epochs
Relaxed PELE : 4 epochs
Relaxed PELE: 8 epochs
Relaxed PELE: 16 epochs

Figure 5.14: Execution times of Adaptive PELE and new PELE version with different parameters

results is that to perform the same number of pelesteps, it is faster to perform less epochs
with more pelesteps performed on each one.

For example, if we compare the times needed to perform 32 pelesteps in total (2 pelesteps *
16 epochs, 4 pelesteps * 8 epochs and 8 pelesteps * 4 epochs), we will notice that execution
time increases if we increment the number of epochs performed. This is true for both the
original Adaptive PELE implementation and our relaxed version. However, we cannot
evaluate which alternative produces qualitatively better results. This analysis should be
performed by EAPM.

5.4.3 Conclusions

In conclusion, we have implemented a relaxed version of the Adaptive PELE workflow,
which eliminates the need for a python wrapper and allows MPI ranks to perform epochs
independently without having to wait for all other MPI ranks to finish their respective
epochs. Furthermore, we have shown that this modification can be seamlessly integrated
into the existing PELE software.

Our results show that our relaxed version of the Adaptive PELE workflow provides modest
improvements in execution time compared to the original implementation. However, a
qualitative analysis of the results obtained from this new version should be performed in
order to compare the full benefits of this implementation against the current Adaptive
PELE workflow.

62

6 PELE variants analysis on an ARM-based platform

In this chapter, we will discuss the deployment of the PELE software on an ARM-based
HPC system. The motivation for this work stems from the fact that the developers of
PELE have never tested its performance on an ARM-based platform before. Moreover,
there is growing interest in deploying scientific software on cloud-based platforms, such as
Amazon Web Services (AWS), which offers instances that are based on ARM processors [16].
Therefore, we decided to evaluate the performance of PELE on the Huawei cluster, which
is an ARM-based HPC system hosted by BSC, in otder to determine its feasibility for
deployment on such platforms.

In this chapter, we discuss the steps we took to deploy PELE on an ARM-based HPC
system, and evaluate its performance on this platform using a baseline unmodified version
and our PELE versions with the implemented optimization proposals we proposed in
previous chapters. Finally, we also compare its performance against a x86-based system
(Nord 3) to identify any significant differences.

6.1 Deployment

The Huawei cluster is mainly a research system, so it doesn’t have too many dependency
libraries already available for user applications. With the exception of the compiler,
MPI implementation and python interpreter, the majority of the dependencies had to be
installed. The general software stack used for PELE on ARM was the following:

• GCC 11.2: C/C++ compiler. The Intel compiler wasn’t available.

• OpenMPI 4.1.3: MPI implementation. Intel MPI wasn’t available.

• OpenBLAS 0.3.21: Linear algebra libraries. Intel MKL wasn’t available, but
there are other substitute libraries for ARM systems, like the ARM Performance
Libraries [17]. However, OpenBLAS was chosen in order to be consistent with the
experimentation results of Nord 3.

• Boost 1.64.0: General purpose libraries for C++.

• Python 3.8.12: Python interpreter. Needed for Adaptive PELE (which was also
installed and modified).

63

6 PELE variants analysis on an ARM-based platform

Once all dependencies were compiled and installed, test runs were performed without
further issue. After validating that the software worked, we proceeded to compile all the
modified PELE versions explained in the previous chapter.

64

6 PELE variants analysis on an ARM-based platform

6.2 Performance analysis

6.2.1 Memory and time scalability

A similar memory scalability study to the one that was performed in Nord 3 has been
repeated for this system. However, since each Huawei node has up to 128 cores, we have
decided to perform the study until node saturation (assigning 1 MPI rank to each core).
Please keep in mind that a Nord 3 node has 16 CPU cores and 32GB of memory, while
a general purpose Huawei node has 128 CPU cores and 256GB of memory (notice that
the memory/core relation is the same). The study has been done only for the large input
described on section 4.3 and it computes 2 pelesteps. Figure 6.1 shows percentage of node
memory usage for the original PELE and the improved PELE proposal, for Nord 3 and
Huawei nodes.

0 4 8 16 32 64 1280
10
20
30
40
50
60
70
80
90

100

MPI ranks

N
od

e
m

em
or

y
us

ag
e

(%
)

Nord 3 original PELE no binding
Nord 3 original PELE with binding
Nord 3 modified PELE no binding
Nord 3 modified PELE with binding
Huawei original PELE no binding
Huawei original PELE with binding
Huawei modified PELE no binding
Huawei modified PELE with binding

Figure 6.1: Node’s occupation of original and memory-changed PELE through multiple MPI ranks

Missing data points are because the execution couldn’t be performed using on node due
to memory constraints (or in the case of Nord 3, because a node only has 16 CPU cores).
On Huawei, we can see that the behavior is similar to Nord3: the original PELE version
is not able to perform an execution using the whole node. Without computing binding
energy, the original version of PELE is only able to perform an execution of up to 64 MPI
ranks in a single node, effectively wasting half the node’s CPU resources. Enabling the
computation of binding energy makes things even worse, limiting the run to 32 MPI ranks
and only using about 25% of the node’s CPU cores.

When using the modified PELE binary with memory optimizations, the situation changes:
single-node runs using 128 MPI ranks can now be performed without issues. If we are not
computing binding energy, we only use about 30% of the node’s total memory, and only
50% if we enable the computation of binding energy.

65

6 PELE variants analysis on an ARM-based platform

Therefore, the memory requirement to execute PELE with large PELE simulations are
not a limitation for the data sets analyzed. This has been done with no additional cost
on computational time. Figure 6.2 shows the execution time results for Huawei for the
original PELE and the improved version.

4 8 16 32 64 1280

5

10

15

20

25

30

MPI ranks

Ex
ec

ut
io

n
tim

e
(m

in
ut

es
)

Huawei original PELE no binding
Huawei original PELE with binding
Huawei modified PELE no binding
Huawei modified PELE with binding

Figure 6.2: Execution time of original and memory-changed PELE through multiple MPI ranks

We can observe that runs with binding energy enabled also take more time than their
counterparts without binding energy computation. Another interesting fact is that our
modified PELE version also takes less time than the original version in all cases. However,
execution time increases for all cases as long as we keep increasing the amount of MPI
ranks. Since these times have been obtained with PELE versions that still rely on the
master-slave paradigm, we decided to also time our new version with independent workers
that do not use a master rank and do not require communications after each pelestep.

However, the differences in execution times were negligible. These time increases could
come from multiple sources. Our suspected potential reasons are the following:

• Resource conflicts: the runs are performed in a single node. More MPI ranks
must share the same set of resources.

• Increased cost of initialization: all MPI worker ranks still need to initialize
its initial state using communication against the first rank. More MPI ranks may
increase communication congestion.

• Computationally costly simulations: all MPI ranks perform randomized simula-
tions, so there is the possibility that by increasing the amount of MPI ranks, we are
introducing simulations that are more costly than the others.

Further analysis would be needed to either confirm or reject these hypotheses.

66

6 PELE variants analysis on an ARM-based platform

6.2.2 Single precision floating point

In this section, we test how our single-precision floating point versions of PELE performs
on the Huawei cluster. For that, we have replicated the same executions performed on
section 5.2.2, where we used the Nord 3 system.

Here we have decided to perform the same execution, where we will compare the original
double-precision PELE version, our naive single-precision implementation, and a single-
precision version with some of its internal constants being tuned to be aware of the
single-precision range. These runs have been performed using the large input and without
the computation of binding energy. We have also done the same runs with different
amounts of pelesteps. All runs have been performed using serial binaries. The results can
be seen in figure 6.3.

2 4 80

5

10

15

20

25

30

35

Number of pelesteps

Ex
ec

ut
io

n
tim

e
(m

in
ut

es
)

Nord3 double precision
Nord3 naive single precision
Nord3 modified constant single precision
Huawei double precision
Huawei naive single precision
Huawei modified constant single precision

Figure 6.3: Execution time of serial PELE with different floating point implementations

Here we can see that the execution times of Huawei’s runs are in general slower than the
executions performed on Nord3. One interesting observation of these results is that the
single-precision version of PELE with modified constants doesn’t always provide better
execution times than the naive single-precision implementation. For example, Huawei’s
execution time for 8 pelesteps using the naive single-precision implementation is faster
than its modified constants counterpart.

We observe the same situation seen on Nord 3 (concretely, in listing 5.11). The number of
iterations performed in the truncated Newton algorithm used by PELE can change from
version to version, so the amount of computation performed for each run is not the same.
This behavior, alongside the validity of the obtained simulation reports and trajectories,
should be analyzed by PELE developers in the future.

67

6 PELE variants analysis on an ARM-based platform

6.2.3 Adaptive PELE

Finally, we have tested Adaptive PELE and all our standalone PELE versions that
implement a similar workflow. We have repeated the executions performed in section
5.3.3 and 5.4.2, using the same input PDB files and control files (with the exception of
the relaxed adaptive PELE implementation, which requires modified control files). The
executions have been performed using 8 MPI ranks, with the exception of the original
Adaptive PELE, which has been performed using 9 MPI ranks to compensate for the loss
of a worker rank. For these executions, we obtained the following results:

2 4 8

10

20

30

40

50

Number of pelesteps/epoch

El
ap

se
d

tim
e

(m
in

ut
es

)

Adaptive PELE: 4 epochs
Adaptive PELE: 8 epochs
Adaptive PELE: 16 epochs
PELE barrier: 4 epochs
PELE barrier: 8 epochs
PELE barrier: 16 epochs
PELE no barrier: 4 epochs
PELE no barrier: 8 epochs
PELE no barrier: 16 epochs

Figure 6.4: Execution times of Adaptive PELE and new PELE versions with different parameters

We can see that the relationship between the original Adaptive PELE and our versions
with and without barriers is similar to what we saw in section 5.3.3, with the difference
that in Huawei we are getting slower execution times. We can also see that the difference
in execution times between the original Adaptive PELE and our barrier and non-barrier
versions is very small, especially with the executions that perform 4 and 8 epochs.

To check why that is the case, we have obtained traces of the barrier and non-barrier
executions performed with 2 pelesteps and 4 epochs, which can be seen in figure 6.5. The
visualization at the top is for the version with barriers, and the visualization at the bottom
is for the ideal version without barriers.

In the top execution trace, we can see 4 clear sections, each being an execution epoch. In
this case, we can see that the similarities in execution times are because a certain MPI
rank (second row in the top visualization) is always the last one to finish its computation
on all epochs. Being that the case, the execution doesn’t benefit from not having barriers,
since all ranks will still end up still waiting at the end. This has been an example of the

68

6 PELE variants analysis on an ARM-based platform

Figure 6.5: Paraver visualizations of PELE with and without barriers: 8 MPI ranks, 2 pelesteps, 4 epochs

worst case scenario, where an ideal implementation would still not see an improvement in
execution time.

We have also compared the execution times of the original Adaptive PELE against our
new relaxed implementation (see section 5.4). The results have been summarized in figure
6.6, and the execution parameters are the same ones used for the executions seen in figure
6.4.

2 4 8

10

20

30

40

50

Number of pelesteps/epoch

El
ap

se
d

tim
e

(m
in

ut
es

)

Adaptive PELE: 4 epochs
Adaptive PELE: 8 epochs
Adaptive PELE: 16 epochs
Relaxed PELE: 4 epochs
Relaxed PELE: 8 epochs
Relaxed PELE: 16 epochs

Figure 6.6: Execution times of Adaptive PELE and new relaxed Adaptive PELE using multiple parameters

In the figure, we can see that our new version is providing results with notably lower
execution times in all cases. However, there is an important detail to take into account:

69

6 PELE variants analysis on an ARM-based platform

despite performing the same amount of epochs and pelesteps, both versions are not
performing the exact same computation. Our new relaxed Adaptive PELE starts using
the same input and configuration, but as its execution progresses, each MPI rank performs
clustering operations with all obtained trajectories available at the time, independently of
the execution state of its MPI worker peers.

Finally, we have also compared these execution time results against execution times
obtained on Nord 3. In figure 6.7 we can see the obtained results.

2 4 8

10

20

30

40

50

Number of pelesteps/epoch

El
ap

se
d

tim
e

(m
in

ut
es

)

Nord 3 Relaxed PELE: 4 epochs
Nord3 Relaxed PELE: 8 epochs
Nord3 Relaxed PELE: 16 epochs
Huawei Relaxed PELE: 4 epochs
Huawei Relaxed PELE: 8 epochs
Huawei Relaxed PELE: 16 epochs

Figure 6.7: Execution times of new relaxed Adaptive PELE on Nord 3 and Huawei, using multiple
parameters

Here we can see that if we compare executions using the same parameters, execution times
are significantly slower when using Huawei. This was expected, since serial executions
seen in figure 6.3 already showed that Nord3 executions are faster.

70

6 PELE variants analysis on an ARM-based platform

6.3 Conclusions

In conclusion, we have successfully deployed all developed versions of the PELE software
on the Huawei cluster and tested their performance on this platform. Our results show
that the Huawei cluster provides slower execution times compared to the Nord3 cluster,
which was used as a reference for this study. However, we have demonstrated that PELE
can be successfully deployed on an ARM-based HPC system, which is of great interest for
future cloud-based deployments of the software.

Overall, our work provides valuable insights into the performance of the PELE software
on ARM-based HPC systems and highlights potential areas for future research and
development. We hope that our findings will contribute to the ongoing efforts to optimize
the performance of PELE and enable its deployment on a wider range of computing
platforms, including those based on ARM processors.

71

7 Final conclusions

This work has made significant contributions to the ongoing development of the PELE
software, with a particular focus on identifying and addressing areas for improvement.
Our analysis of the software enabled us to identify several key areas where optimization
and parallelization strategies could be applied, and we have successfully implemented a
number of proposals in these areas.

One of the achievements of this work has been the successful deployment of PELE on
an ARM platform, specifically the Huawei cluster at the Barcelona Supercomputing
Center. This demonstrates the software’s versatility and adaptability, and opens up new
possibilities for running simulations on a wider range of computing platforms.

The most important area of improvement has been the reduction of PELE’s memory usage
through the detection and correction of inefficient data structures. This optimization
has enabled the execution of larger simulations that were previously not possible due to
memory constraints, and also effectively removes the need of over-allocation of compute
resources to meet memory requirements for feasible simulations.

We were also able to produce a version of PELE that uses single-precision floating point
operations, which further reduces memory usage. However, this version didn’t present
benefits in execution time due to an increase in iterations needed for the convergence
of some of PELE’s algorithms. While this version needs further validation by PELE
developers to ensure the accuracy and reliability of its results, it represents an important
step forward in making the software even more efficient and flexible.

In addition to these improvements, we have also made significant changes to the MPI design
of PELE. By moving away from the master-slave paradigm and enabling independent
simulations between MPI ranks, we have enhanced the software’s parallelization capabilities.
These changes have also enabled the implementation of a proof of concept for reducing
the effects of MPI load imbalance, which mimics a similar execution model of Adaptive
PELE. This potentially opens up new avenues for optimizing PELE’s performance on
parallel computing systems. Finally, we have presented a proposal for a relaxed variant of
Adaptive PELE, which has been implemented and tested.

Overall, this work has demonstrated the importance of ongoing research and development
efforts to enhance the performance and capabilities of molecular dynamics simulation

72

7 Final conclusions

software such as PELE. By identifying and addressing key areas for improvement, we have
made strides towards making the software even more efficient and effective, and opened
up new possibilities for running simulations on a wider range of computing platforms.

73

Bibliography

[1] Kenneth W. Borrelli, Andreas Vitalis, Raul Alcantara, and Victor Guallar. PELE:
protein energy landscape exploration. a novel monte carlo based technique. Journal
of Chemical Theory and Computation, 1(6):1304–1311, October 2005.

[2] Joan F. Gilabert, Daniel Lecina, Jorge Estrada, and Victor Guallar. Monte carlo
techniques for drug design: The success case of PELE. In Biomolecular Simulations
in Structure-Based Drug Discovery, pages 87–103. Wiley-VCH Verlag GmbH & Co.
KGaA, December 2018.

[3] User guides for hpc systems hosted at bsc. https://www.bsc.es/supportkc/.

[4] General guide for bsc’s hpc portal. https://www.bsc.es/supportkc/
docs-utilities/hpc_portal.

[5] Main page from bsc’s performance analysis tools. https://tools.bsc.es.

[6] Massif manual for memory profiling. https://valgrind.org/docs/manual/
ms-manual.html.

[7] Callgrind manual for software calls profiling. https://valgrind.org/docs/manual/
cl-manual.html.

[8] Gdb’s documentation page. http://gnu.ist.utl.pt/software/gdb/
documentation/.

[9] Ddt’s documentation page. https://developer.arm.com/documentation/101136/
22-1-3/DDT.

[10] Bsc’s web page for electronic and atomic protein modeling research group.
https://www.bsc.es/discover-bsc/organisation/scientific-structure/
electronic-and-atomic-protein-modeling-eapm.

[11] Intel’s reference page for oneapi’s mkl. https://www.intel.com/content/www/us/
en/developer/tools/oneapi/onemkl-documentation.html.

[12] Openblas reference page. https://www.openblas.net/.

74

https://www.bsc.es/supportkc/
https://www.bsc.es/supportkc/docs-utilities/hpc_portal
https://www.bsc.es/supportkc/docs-utilities/hpc_portal
https://tools.bsc.es
https://valgrind.org/docs/manual/ms-manual.html
https://valgrind.org/docs/manual/ms-manual.html
https://valgrind.org/docs/manual/cl-manual.html
https://valgrind.org/docs/manual/cl-manual.html
http://gnu.ist.utl.pt/software/gdb/documentation/
http://gnu.ist.utl.pt/software/gdb/documentation/
https://developer.arm.com/documentation/101136/22-1-3/DDT
https://developer.arm.com/documentation/101136/22-1-3/DDT
https://www.bsc.es/discover-bsc/organisation/scientific-structure/electronic-and-atomic-protein-modeling-eapm
https://www.bsc.es/discover-bsc/organisation/scientific-structure/electronic-and-atomic-protein-modeling-eapm
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl-documentation.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl-documentation.html
https://www.openblas.net/

Bibliography

[13] Daniel Lecina, Joan F. Gilabert, and Victor Guallar. Adaptive simulations, towards
interactive protein-ligand modeling. Scientific Reports, 7(1), August 2017.

[14] Gromacs reference manual about single and mixed precision. https:
//manual.gromacs.org/current/reference-manual/definitions.html#
mixed-or-double-precision.

[15] Ieee standard for binary floating-point arithmetic. ANSI/IEEE Std 754-1985, pages
1–20, 1985.

[16] Amazon’s reference page detailing aws ec2 instances for cloud computing. https:
//aws.amazon.com/es/ec2/instance-types/.

[17] Arm’s reference page for the arm performance libraries. https://developer.arm.
com/Tools%20and%20Software/Arm%20Performance%20Libraries.

75

https://manual.gromacs.org/current/reference-manual/definitions.html#mixed-or-double-precision
https://manual.gromacs.org/current/reference-manual/definitions.html#mixed-or-double-precision
https://manual.gromacs.org/current/reference-manual/definitions.html#mixed-or-double-precision
https://aws.amazon.com/es/ec2/instance-types/
https://aws.amazon.com/es/ec2/instance-types/
https://developer.arm.com/Tools%20and%20Software/Arm%20Performance%20Libraries
https://developer.arm.com/Tools%20and%20Software/Arm%20Performance%20Libraries

A PELE configuration files

A.1 PELE’s configuration file for small input
1 {
2 " licenseDirectoryPath " : "/ gpfs/ projects / bsc72 /PELE ++/ license /",
3 " simulationLogPath " : "out/ logFile .txt",
4 " Initialization " : {
5 " allowMissingTerminals " :true ,
6 " ForceField " : " OPLS2005 ",
7 " Complex ": { " files " : [{" path" : "1 ZNK_complete .pdb" }] },
8 " Solvent " : { " ionicStrength " : 0.15 , " solventType " : " VDGBNP ", " useDebyeLength " :

true }
9 },

10 " verboseMode " : false ,
11 " commands " : [
12 {
13 " commandType " : " peleSimulation ",
14 " RandomGenerator " : { "seed" : 1995 },
15 " selectionToPerturb " : { " chains " : { " names " : ["L"] } },
16 " PELE_Output " : {
17 " savingFrequencyForAcceptedSteps " : 1,
18 " savingMode " : " savingTrajectory ",
19 " reportPath " : "out/ reports / report ",
20 " trajectoryPath " : "out/ trajectories / trajectory .pdb"
21 },
22 " PELE_Parameters " : {
23 " anmFrequency " : 2,
24 " sideChainPredictionFrequency " : 2,
25 " waterPerturbationFrequency ": 1,
26 " minimizationFrequency " : 1,
27 " sideChainPredictionRegionRadius " : 4,
28 " perturbationCOMConstraintConstant " : 5,
29 " activateProximityDetection ": true ,
30 " temperature ": 1000 ,
31 " numberOfPeleSteps ": 10
32 },
33 " constraints ":[
34 { "type ": " constrainAtomToPosition ", " springConstant ": 2.5 , "

equilibriumDistance ": 0.0 , " constrainThisAtom ": "A:1: _CA_" },
35 { "type ": " constrainAtomToPosition ", " springConstant ": 0.5 , "

equilibriumDistance ": 0.0 , " constrainThisAtom ": "A:10: _CA_" },
36 { "type ": " constrainAtomToPosition ", " springConstant ": 0.5 , "

equilibriumDistance ": 0.0 , " constrainThisAtom ": "A:20: _CA_" },
37 { "type ": " constrainAtomToPosition ", " springConstant ": 0.5 , "

equilibriumDistance ": 0.0 , " constrainThisAtom ": "A:30: _CA_" },
38 { "type ": " constrainAtomToPosition ", " springConstant ": 0.5 , "

equilibriumDistance ": 0.0 , " constrainThisAtom ": "A:40: _CA_" },
39 { "type ": " constrainAtomToPosition ", " springConstant ": 0.5 , "

equilibriumDistance ": 0.0 , " constrainThisAtom ": "A:50: _CA_" },
40 { "type ": " constrainAtomToPosition ", " springConstant ": 0.5 , "

76

A PELE configuration files

equilibriumDistance ": 0.0 , " constrainThisAtom ": "A:60: _CA_" },
41 { "type ": " constrainAtomToPosition ", " springConstant ": 0.5 , "

equilibriumDistance ": 0.0 , " constrainThisAtom ": "A:70: _CA_" },
42 { "type ": " constrainAtomToPosition ", " springConstant ": 0.5 , "

equilibriumDistance ": 0.0 , " constrainThisAtom ": "A:80: _CA_" },
43 { "type ": " constrainAtomToPosition ", " springConstant ": 0.5 , "

equilibriumDistance ": 0.0 , " constrainThisAtom ": "A:90: _CA_" },
44 { "type ": " constrainAtomToPosition ", " springConstant ": 0.5 , "

equilibriumDistance ": 0.0 , " constrainThisAtom ": "A :100: _CA_" },
45 { "type ": " constrainAtomToPosition ", " springConstant ": 0.5 , "

equilibriumDistance ": 0.0 , " constrainThisAtom ": "A :110: _CA_" },
46 { "type ": " constrainAtomToPosition ", " springConstant ": 0.5 , "

equilibriumDistance ": 0.0 , " constrainThisAtom ": "A :120: _CA_" },
47 { "type ": " constrainAtomToPosition ", " springConstant ": 0.5 , "

equilibriumDistance ": 0.0 , " constrainThisAtom ": "A :130: _CA_" },
48 { "type ": " constrainAtomToPosition ", " springConstant ": 0.5 , "

equilibriumDistance ": 0.0 , " constrainThisAtom ": "A :140: _CA_" },
49 { "type ": " constrainAtomToPosition ", " springConstant ": 0.5 , "

equilibriumDistance ": 0.0 , " constrainThisAtom ": "A :150: _CA_" },
50 { "type ": " constrainAtomToPosition ", " springConstant ": 2.5 , "

equilibriumDistance ": 0.0 , " constrainThisAtom ": "A :157: _CA_" }
51],
52 " Perturbation ": {
53 "Box" : {
54 " radius " : 6,
55 " fixedCenter ": [48.65 , 24.8 , 41.06] ,
56 "type" : " sphericalBox "
57 },
58 " perturbationType ":" naive ",
59 " translationDirection ": " steered ",
60 " rotationAngles ": " nonCoupled ",
61 " parameters ": {
62 " numberOfStericTrials ": 100 ,
63 " steeringUpdateFrequency ": 1,
64 " overlapFactor ": 0.65
65 }
66 },
67 " WaterPerturbation ":
68 {
69 "Box" :
70 {
71 " radius " : 6,
72 " fixedCenter ": [51 , 23, 44] ,
73 "type" : " sphericalBox "
74 },
75 " watersToPerturb ": { " links ": { "ids ": ["W:1"] } },
76 " parameters ":
77 {
78 " temperature ": 5000 ,
79 " overlapFactor ": 0.78 ,
80 " numberOfStericTrials ": 100000
81 }
82 },
83 "ANM" : {
84 " algorithm ": " CARTESIANS ", " nodes ": { " atoms ": { " names ": ["_CA_"]} },
85 " linksToOmit " : { " links " : { "ids" : ["W:1"] }},
86 " ANMMinimizer " : {
87 " algorithm " : " TruncatedNewton ",
88 " parameters " : {

77

A PELE configuration files

89 " MaximumMinimizationIterations " : 1,
90 " MaximumNewtonIterations " : 25,
91 " MinimumRMS " : 0.25 ,
92 " alphaUpdated " : false ,
93 " nonBondingListUpdatedEachMinStep " : false
94 }
95 },
96 " options " : {
97 " directionGeneration " : " random ",
98 " modesMixingOption " : " mixMainModeWithOthersModes ",
99 " pickingCase " : " RANDOM_MODE "

100 },
101 " parameters " : {
102 " displacementFactor " : 0.75 ,
103 " eigenUpdateFrequency " : 1000000 ,
104 " mainModeWeightForMixModes " : 0.75 ,
105 " modesChangeFrequency " : 3,
106 " numberOfModes ": 6,
107 " relaxationSpringConstant " : 0.5
108 }
109 },
110 " SideChainPrediction " : {
111 " algorithm " : " zhexin ",
112 " parameters " : { " discardHighEnergySolutions " : false , " resolution ": 30, "

randomize " : false , " numberOfIterations ": 1 }
113 },
114 " Minimizer " : {
115 " algorithm " : " TruncatedNewton ",
116 " parameters " : { " MinimumRMS " : 0.1 , " alphaUpdated " : false , "

nonBondingListUpdatedEachMinStep " : true }
117 },
118

119 " PeleTasks " : [
120 {
121 " metrics " : [
122 { "type ": " bindingEnergy ",
123 " boundPartSelection ": { " chains ": { " names ": ["L"] } }
124 },
125 { "type ": "sasa",
126 "tag ": " sasaLig ",
127 " selection ": { " chains ": { " names ": ["L"] } }
128 },
129 {
130 "type ":" com_distance ",
131 "tag ":" Lig - Phe38_distance ",
132 " selection_group_1 ":{
133 " atoms ": { "ids ":["A:38: O "]}
134 },
135 " selection_group_2 ":{
136 " atoms ": { "ids ":["L:1: H20 "]}
137 }
138 },
139 {
140 "type" : " com_distance ",
141 "tag" : " binding_site_distance ",
142 " selection_group_1 " :
143 {
144 " links " : { "ids" : ["A:101" , "A:38" , "A:103" , "A:40" , "A

:105" , "A:45" , "A:120" , "A:116" , "A:54" , "A:90" , "A:56" , "A:92"] }

78

A PELE configuration files

145 },
146 " selection_group_2 " :
147 {
148 " links " : { "ids" : ["L:1"] }
149 }
150 },
151 { "tag" : "rand", "type" : " random " },
152 { "tag" : " rand1 ", "type" : " random " },
153 { "tag" : " rand2 ", "type" : " random " },
154 { "tag" : " rand3 ", "type" : " random " }
155],
156 " parametersChanges " : [
157 { " ifAnyIsTrue ": ["rand >= 0.5"],
158 " doThesechanges ": { " Perturbation :: parameters ": { "

rotationScalingFactor ": 0.05 } },
159 " otherwise ": { " Perturbation :: parameters ": { "

rotationScalingFactor ": 0.25 } }
160 },
161 {
162 " ifAnyIsTrue ": [" rand1 >= 0.5"],
163 " doThesechanges ": { " Perturbation :: parameters ": { "

translationRange ": 1.5 } },
164 " otherwise ": { " Perturbation :: parameters ": { "

translationRange ": 0.75 } }
165 },
166 {
167 " ifAnyIsTrue ": [" rand2 >= 0.5"],
168 " doThesechanges ": { " Perturbation :: parameters ": { "

steeringUpdateFrequency ": 0 } },
169 " otherwise ": { " Perturbation :: parameters ": { "

steeringUpdateFrequency ": 1 } }
170 },
171 {
172 " ifAnyIsTrue ": [" rand3 <= 0.4"],
173 " doThesechanges ": { " WaterPerturbation :: parameters ": { "

translationRange ": 2.0 } },
174 " otherwise ": { " WaterPerturbation :: parameters ": { "

translationRange ": 4.0} }
175 },
176 {
177 " ifAnyIsTrue ": [" rand3 >= 0.85"],
178 " doThesechanges ": { " WaterPerturbation :: parameters ": { "

translationRange ": 5.0 } }
179 }
180]
181 }
182]
183 }
184]
185 }

Listing A.1: Contents of pele.conf file for small input

79

A PELE configuration files

A.2 PELE’s configuration file for large input
1 {
2 " licenseDirectoryPath " : "/ gpfs/ projects / bsc72 /PELE ++/ license /",
3 " simulationLogPath " : " output / logFile .txt",
4 " Initialization " : {
5 " allowMissingTerminals ": true ,
6 " ForceField " : " OPLS2005 ",
7 " MultipleComplex ": [
8 { " files " : [{ "path" : " system_in_processed .pdb" }] }],
9 " Solvent " : {

10 " ionicStrength " : 0.15 , " solventType " : " VDGBNP ", " useDebyeLength " : true }
11 },
12 " verboseMode ": false ,
13 " commands " : [
14 {
15 " commandType " : " peleSimulation ",
16 " RandomGenerator " : { "seed" : 1234567 },
17 " selectionToPerturb " : { " chains " : { " names " : ["L"] } },
18 " PELE_Output " : {
19 " savingFrequencyForAcceptedSteps " : 1,
20 " savingMode " : " savingTrajectory ",
21 " reportPath ": " output / report ",
22 " trajectoryPath ": " output / trajectory .pdb"
23

24 },
25 " PELE_Parameters " : {
26 " anmFrequency " : 0,
27 " sideChainPredictionFrequency " : 2,
28 " minimizationFrequency " : 1,
29 " waterPerturbationFrequency ": 1,
30 " perturbationCOMConstraintConstant " : 0,
31 " sideChainPredictionRegionRadius " : 6,
32 " activateProximityDetection ": true ,
33 " temperature ": 1500 ,
34 " numberOfPeleSteps ": 2
35 },
36 " constraints ":[
37 { "type ": " constrainAtomToPosition ", " springConstant ": 5.0 , " equilibriumDistance ": 0.0 , "

constrainThisAtom ": "A :1006: _CA_" },
38 ... // Excluded constraints for simplicity ’s sake
39 { "type ": " constrainAtomToPosition ", " springConstant ": 5.0 , " equilibriumDistance ": 0.0 , "

constrainThisAtom ": "D :1267: _CA_" }
40],
41 " Perturbation ": {
42 "Box ": {
43 "type ": " sphericalBox ",
44 " radius ": 10,
45 " fixedCenter ": [-4.562 , -44.69 , -24.847]
46 },
47 " perturbationType ":" naive ",
48 " translationDirection ": " steered ",
49 " rotationAngles ": " nonCoupled ",
50 " parameters ": {
51 " numberOfStericTrials ": 500 ,
52 " steeringUpdateFrequency ": 0,
53 " overlapFactor ": 0.65
54 }
55 },
56 "ANM" : {

80

A PELE configuration files

57 " algorithm ": " CARTESIANS ", " nodes ": { " atoms ": { " names ": ["_CA_"]} },
58 " ANMMinimizer " : {
59 " algorithm " : " TruncatedNewton ",
60 " parameters " : {
61 " MaximumMinimizationIterations " : 1,
62 " MaximumNewtonIterations " : 25,
63 " MinimumRMS " : 0.2 ,
64 " alphaUpdated " : false ,
65 " nonBondingListUpdatedEachMinStep " : false
66 }
67 },
68 " options " : {
69 " directionGeneration " : " random ",
70 " modesMixingOption " : " mixMainModeWithOthersModes ",
71 " pickingCase " : " RANDOM_MODE "
72 },
73 " parameters " : {
74 " displacementFactor " : 0.75 ,
75 " eigenUpdateFrequency " : 1000000 ,
76 " mainModeWeightForMixModes " : 0.75 ,
77 " modesChangeFrequency " : 4,
78 " numberOfModes ": 6,
79 " relaxationSpringConstant " : 0.5
80 }
81 },
82 " SideChainPrediction " : {
83 " algorithm " : " zhexin ",
84 " parameters " : { " discardHighEnergySolutions " : false , " resolution ": 30, "

randomize " : false , " numberOfIterations ": 1 }
85 },
86 " Minimizer " : {
87 " algorithm " : " TruncatedNewton ",
88 " parameters " : { " MinimumRMS " : 0.2 , " alphaUpdated " : false , "

nonBondingListUpdatedEachMinStep " : true }
89 },
90 " PeleTasks " : [
91 {
92 " metrics " : [
93 { "type ": "sasa",
94 "tag ": " sasaLig ",
95 " selection ": { " chains ": { " names ": ["L"] } }
96 },
97 {
98 "type ": "rmsd",
99 " Native ": {

100 "path ":
101 " system_in_processed .pdb" },
102 " selection ": { " chains ": { " names ": ["L"] } },
103 " includeHydrogens ": false ,
104 " doSuperposition ": false ,
105 "tag" : " ligandRMSD "
106 },
107 { "tag" : "rand", "type" : " random " },
108 { "tag" : " rand4 ", "type" : " random " },
109 { "tag" : " rand3 ", "type" : " random " },
110 { "tag" : " rand2 ", "type" : " random " },
111 { "tag" : " rand1 ", "type" : " random " }
112]
113 ,

81

A PELE configuration files

114 " parametersChanges " : [
115 { " ifAnyIsTrue ": ["rand >= .5"],
116 " doThesechanges ": { " Perturbation :: parameters ": { "

rotationScalingFactor ": 0.05 } },
117 " otherwise ": { " Perturbation :: parameters ": { "

rotationScalingFactor ": 0.15 } }
118 },
119 {
120 " ifAnyIsTrue ": [" rand1 >= 0.40"],
121 " doThesechanges ": { " Perturbation :: parameters ": { "

translationRange ": 2.0 } },
122 " otherwise ": { " Perturbation :: parameters ": { " translationRange ":

2.0 } }
123 },
124 {
125 " ifAnyIsTrue ": [" rand3 >= 0.10"],
126 " doThesechanges ": { " Perturbation :: parameters ": { "

steeringUpdateFrequency ": 1, " numberOfTrials " : 10 } },
127 " otherwise ": { " Perturbation :: parameters ": { "

steeringUpdateFrequency ": 0, " numberOfTrials " : 25 } }
128 },
129 {
130 " ifAnyIsTrue ": [" sasaLig <= 0.15"],
131 " doThesechanges ": { "Pele :: parameters ": { "

perturbationCOMConstraintConstant " : 0.25 }, " Perturbation :: parameters ": { "
translationRange ": 1.0 }},

132 " otherwise ": { "Pele :: parameters ": { "
perturbationCOMConstraintConstant " : 1.0 } }

133 },
134 {
135 " ifAnyIsTrue ": [" sasaLig >= 0.75"],
136 " doThesechanges ": { "Pele :: parameters ": { "

perturbationCOMConstraintConstant " : 10.0 }, " Perturbation :: parameters ": { "
steeringUpdateFrequency ": 1, " numberOfTrials " : 4 }},

137 " otherwise ": { }
138 }
139]
140 }
141]
142 }
143]
144 }

Listing A.2: Contents of pele.conf file for large input

82

A PELE configuration files

A.3 Base adaptive configuration file for Adaptive PELE execution
1 {
2 " generalParams ": {
3 " restart ": true ,
4 " outputPath ": " output ",
5 " initialStructures ": [
6 " complex_2 .pdb"
7]
8 },
9 " spawning ": {

10 "type ": " inverselyProportional ",
11 " params ": {
12 " reportFilename ": " report "
13 }
14 },
15 " simulation ": {
16 "type ": "pele",
17 " params ": {
18 " iterations ": 4,
19 " peleSteps ": 2,
20 " processors ": 8,
21 "seed ": 24083 ,
22 " executable ": "/ gpfs/ projects / bsc99 / bsc99204 /TFM/ pele_compilation / nord3 /

bin_mpi_prod_newfrozen_newmpi_fix /PELE -1.8" ,
23 "data ": "/ gpfs/ projects / bsc72 /PELE ++/ nord4 /V1 .8 _pre/Data",
24 " documents ": "/ gpfs/ projects / bsc72 /PELE ++/ nord4 /V1 .8 _pre/ Documents ",
25 " useSrun ": false ,
26 " controlFile ": "pele.conf"
27 }
28 },
29 " clustering ": {
30 "type ": "rmsd",
31 " params ": {
32 " ligandResname ": "LIG",
33 " alternativeStructure ": true
34 },
35 " thresholdCalculator ": {
36 "type ": " heaviside ",
37 " params ": {
38 " values ": [
39 1.75 ,
40 2.5 ,
41 4,
42 6
43],
44 " conditions ": [
45 1,
46 0.6 ,
47 0.4 ,
48 0.0
49]
50 }
51 }
52 }
53 }

Listing A.3: Provided adaptive.conf for Adaptive PELE executions

83

A PELE configuration files

A.4 Base PELE configuration file for Adaptive PELE execution
1 {
2 " licenseDirectoryPath ": "/ gpfs/ projects / bsc72 /PELE ++/ license /",
3 " Initialization ": {
4 " allowMissingTerminals ": true ,
5 " ForceField ": " OPLS2005 ",
6 " Solvent ": {
7 " ionicStrength ": 0.15 ,
8 " solventType ": " VDGBNP ",
9 " useDebyeLength ": true

10 },
11 " MultipleComplex ": [
12 $COMPLEXES
13]
14 },
15 " commands ": [
16 {
17 " commandType ": " peleSimulation ",
18 " randomGenerator ": {
19 "seed ": $SEED
20 },
21 " selectionToPerturb ": {
22 " chains ": {
23 " names ": [
24 "L"
25]
26 }
27 },
28 " PELE_Output ": {
29 " savingFrequencyForAcceptedSteps ": 1,
30 " savingMode ": " savingTrajectory ",
31 " reportPath ": " $OUTPUT_PATH / report ",
32 " trajectoryPath ": " $OUTPUT_PATH / trajectory .xtc"
33 },
34 " PELE_Parameters ": {
35 " anmFrequency ": 0,
36 " sideChainPredictionFrequency ": 2,
37 " minimizationFrequency ": 1,
38 " PerturbationCOMConstraintConstant ": 1.0 ,
39 " sideChainPredictionRegionRadius ": 6.0 ,
40 " activateProximityDetection ": true ,
41 " temperature ": 1500.0 ,
42 " numberOfPeleSteps ": 2
43 },
44 " Perturbation ": {
45 "Box ": {
46 "type ": " sphericalBox ",
47 " radius ": 5.0 ,
48 " fixedCenter ": [
49 26.72313008770274 ,
50 6.051754793307583 ,
51 4.722083771208937
52]
53 },
54 " perturbationType ": " naive ",
55 " translationDirection ": " steered ",
56 " rotationAngles ": " nonCoupled ",
57 " parameters ": {
58 " overlapFactor ": 0.65 ,

84

A PELE configuration files

59 " influenceRange ": 3.0
60 }
61 },
62 "ANM ": {
63 " algorithm ": " CARTESIANS ",
64 " nodes ": {
65 " atoms ": {
66 " names ": [
67 "_CA_"
68]
69 }
70 },
71 " ANMMinimizer ": {
72 " algorithm ": " TruncatedNewton ",
73 " parameters ": {
74 " MinimumRMS ": 0.2 ,
75 " alphaUpdated ": false ,
76 " nonBondingListUpdatedEachMinStep ": false ,
77 " MaximumMinimizationIterations ": 1,
78 " MaximumNewtonIterations ": 25
79 }
80 },
81 " options ": {
82 " directionGeneration ": " random ",
83 " modesMixingOption ": " mixMainModeWithOthersModes ",
84 " pickingCase ": " RANDOM_MODE "
85 },
86 " parameters ": {
87 " displacementFactor ": 0.75 ,
88 " eigenUpdateFrequency ": 1000000 ,
89 " mainModeWeightForMixModes ": 0.75 ,
90 " modesChangeFrequency ": 4,
91 " numberOfModes ": 6,
92 " relaxationSpringConstant ": 0.5
93 }
94 },
95 " SideChainPrediction ": {
96 " algorithm ": " zhexin ",
97 " parameters ": {
98 " discardHighEnergySolutions ": false ,
99 " resolution ": 10,

100 " randomize ": false ,
101 " numberOfIterations ": 1
102 }
103 },
104 " Minimizer ": {
105 " algorithm ": " TruncatedNewton ",
106 " parameters ": {
107 " MinimumRMS ": 1.0 ,
108 " alphaUpdated ": false ,
109 " nonBondingListUpdatedEachMinStep ": true ,
110 " energyDifference ": 1.0 ,
111 " MaximumMinimizationIterations ": 1
112 }
113 },
114 " PeleTasks ": [
115 {
116 " metrics ": [
117 {

85

A PELE configuration files

118 " boundPartSelection ": {
119 " chains ": {
120 " names ": [
121 "L"
122]
123 }
124 },
125 "type ": " bindingEnergy ",
126 "tag ": " bindingEnergy "
127 },
128 {
129 " selection ": {
130 " chains ": {
131 " names ": [
132 "L"
133]
134 }
135 },
136 "type ": "sasa",
137 "tag ": " ligandSASA "
138 },
139 {
140 " Native ": {
141 "path ": "/ home/ bsc99 / bsc99204 / projects / bsc99204 /TFM/ adaptive_pele

/ ricard_examples / adaptive_run / complex_2 .pdb"
142 },
143 " includeHydrogens ": false ,
144 " doSuperposition ": false ,
145 " selection ": {
146 " chains ": {
147 " names ": [
148 "L"
149]
150 }
151 },
152 "type ": "rmsd",
153 "tag ": " ligandRMSD "
154 },
155 {
156 "type ": " random ",
157 "tag ": " rand1 "
158 },
159 {
160 "type ": " random ",
161 "tag ": " rand2 "
162 },
163 {
164 "type ": " random ",
165 "tag ": " rand3 "
166 },
167 {
168 "type ": " random ",
169 "tag ": " rand4 "
170 },
171 {
172 "type ": " random ",
173 "tag ": " rand5 "
174 }
175],

86

A PELE configuration files

176 " parametersChanges ": [
177 {
178 " ifAnyIsTrue ": [
179 " rand1 >= 0.0" ,
180 " rand1 <= 0.5"
181],
182 " doThesechanges ": {
183 " Perturbation :: parameters ": {
184 " rotationScalingFactor ": 0.05
185 }
186 }
187 },
188 {
189 " ifAnyIsTrue ": [
190 " rand1 >= 0.5" ,
191 " rand1 <= 1.0"
192],
193 " doThesechanges ": {
194 " Perturbation :: parameters ": {
195 " rotationScalingFactor ": 0.2
196 }
197 }
198 },
199 {
200 " ifAnyIsTrue ": [
201 " rand2 >= 0.0" ,
202 " rand2 <= 0.5"
203],
204 " doThesechanges ": {
205 " Perturbation :: parameters ": {
206 " translationRange ": 0.5
207 }
208 }
209 },
210 {
211 " ifAnyIsTrue ": [
212 " rand2 >= 0.5" ,
213 " rand2 <= 1.0"
214],
215 " doThesechanges ": {
216 " Perturbation :: parameters ": {
217 " translationRange ": 1.0
218 }
219 }
220 },
221 {
222 " ifAnyIsTrue ": [
223 " rand3 >= 0.0" ,
224 " rand3 <= 0.5"
225],
226 " doThesechanges ": {
227 " Perturbation :: parameters ": {
228 " steeringUpdateFrequency ": 0
229 }
230 }
231 },
232 {
233 " ifAnyIsTrue ": [
234 " rand3 >= 0.5" ,

87

A PELE configuration files

235 " rand3 <= 1.0"
236],
237 " doThesechanges ": {
238 " Perturbation :: parameters ": {
239 " steeringUpdateFrequency ": 1
240 }
241 }
242 },
243 {
244 " ifAnyIsTrue ": [
245 " rand3 >= 0.0" ,
246 " rand3 <= 0.5"
247],
248 " doThesechanges ": {
249 " Perturbation :: parameters ": {
250 " numberOfTrials ": 30
251 }
252 }
253 },
254 {
255 " ifAnyIsTrue ": [
256 " rand3 >= 0.5" ,
257 " rand3 <= 1.0"
258],
259 " doThesechanges ": {
260 " Perturbation :: parameters ": {
261 " numberOfTrials ": 10
262 }
263 }
264 }
265]
266 }
267],
268 " constraints ": [
269 {
270 "type ": " constrainAtomToPosition ",
271 " springConstant ": 5,
272 " equilibriumDistance ": 0.0 ,
273 " constrainThisAtom ": "A:1: _CA_"
274 },
275 ... // Remaining constraint omitted for brevity
276]
277 }
278],
279 " verboseMode ": true ,
280 " simulationLogPath ": " $OUTPUT_PATH / logFile .txt"
281 }

Listing A.4: Provided pele.conf for Adaptive PELE executions

88

B Complimentary plots of PELE’s memory analysis

B.1 Massif-visualizer memory plots of baseline PELE binaries

In figures B.1 and B.2 we can observe memory profile graphs (obtained from massif-
visualizer) of a serial execution of a unmodified PELE binary using the small input without
the computation of binding energy. They account for heap memory and total memory
used by the process, respectively. In figures B.3 and B.4 we observe equivalent graphs, but
this time from executions that also compute binding energy. All measurements have been
performed on the Nord 3 system.

Figure B.1: Massif heap trace of a serial PELE execution, small input, without binding energy

An equivalent set of plots have been obtained for the executions that used the large input,
which can be seen in figures B.5 - B.8.

89

B Complimentary plots of PELE’s memory analysis

Figure B.2: Massif total trace of a serial PELE execution, small input, without binding energy

Figure B.3: Massif heap trace of a serial PELE execution, small input, with binding energy

90

B Complimentary plots of PELE’s memory analysis

Figure B.4: Massif total trace of a serial PELE execution, small input, with binding energy

Figure B.5: Massif heap trace of a serial PELE execution, large input, without binding energy

91

B Complimentary plots of PELE’s memory analysis

Figure B.6: Massif total trace of a serial PELE execution, large input, without binding energy

Figure B.7: Massif heap trace of a serial PELE execution, large input, with binding energy

92

B Complimentary plots of PELE’s memory analysis

Figure B.8: Massif total trace of a serial PELE execution, large input, with binding energy

93

