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Abstract
The paper that introduces the Felsenthal index is titled: ‘A well-behaved index of a 
priori P-Power for simple n-person games.’ In 2016, Felsenthal introduced his index 
for simple games. His definition does not base on the axiomatic approach. Then, 
Felsenthal regarded some properties and proved that his index satisfies a list of six 
reasonable and compelling postulates. Three of the properties that he regarded refer 
to the weighted games, but this fact does not reduce the definition of his index to 
weighted games. He proves that none of seven well-known efficient power indices 
proposed to date satisfies the list of postulates, indicating for each of them which of 
the six postulates violate. In this paper we extend some of his postulates, originally 
defined for weighted games, to simple games. The main objective of the article is to 
answer three open questions motivated in his article. In particular, we prove that his 
index may not be the unique one fulfilling the six proposed postulates, provide an 
axiomatic characterization for his index and, propose an impossibility result, which 
is obtained by adding a new postulate to a sublist of the postulates he considered. 
We also remark the existence of some alternative compelling postulates which are 
not satisfied for the index.

Keywords Distribution of an asset · Efficient power indices · Decision and 
negotiation · Fair distributions among agents

1 Introduction

Felsenthal and Machover (1998, ch. 6), introduce the notion of P-power index, 
to estimate the expected share in the fixed prize of the members in an n-person 
simple game. By its nature the notion of an a priori P-power index implies the 
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efficiency property, that stipulates that the collective wealth generated by cooperat-
ing is divided among its members without nothing wasted. These study situations 
are ideal for deciding a fair distribution of a divisible asset with a process of nego-
tiation among the players. Felsenthal and Machover (1995 and 1998, ch. 7), as well 
as Felsenthal et  al., (1998), listed six postulates that considered compelling that a 
reasonable P-power index should satisfy.

Many examples of P-power indices exist in the literature, just to mention some 
few of them we refer to the Shapley-Shubik and the relative Banzhaf P-power 
indices (see Shapley and Shubik 1954 and Banzhaf 1965 respectively). Felsenthal 
(2016) argues that: ‘none of the various P-power indices proposed to date for esti-
mating the expected share in the fixed prize of the members in an n-person simple 
game satisfies the list of six reasonable and compelling postulates’. In particular, he 
proves in Felsenthal (2016) that none of seven known P-power indices satisfy the 
six postulates, indicating for each of them which of the six postulates violate. These 
seven indices are: the Shapley-Shubik index (Shapley and Shubik 1954, see also 
Felsenthal and Machover 1996 and Bernardi and Freixas 2018) which is the restric-
tion to simple games of the Shapley value (Shapley 1953) for cooperative games, 
the relative Banzhaf index (Banzhaf 1965), the Deegan-Packel index (Deegan and 
Packel 1978 and Deegan and Packel 1982), the Johnston index (Johnston 1978), the 
Public Good index (Holler 1978 and Holler 1982), the Shift index (Alonso-Meijide 
and Freixas 2010 and Alonso-Meijide et al. 2012) and the Minimum sum-represen-
tation index (Freixas and Kaniovsky 2014). Any efficient power index can be seen as 
a P-power index according to the definition by Felsenthal and Machover of P-power, 
but some efficient power indices can also be seen as I-power indices, which is the 
case of the Shapley-Shubik (Einy and Haimanko 2011) or the Public Good index 
(Holler 1978).

Moreover, Felsenthal leaves in Felsenthal (2016) several open questions, which 
are the main motivation of this work:

• Is the Felsenthal P-power index the unique index satisfying the six reasonable 
and compelling postulates?

• The previous question indirectly motivates the study of an axiomatic characteri-
zation of his index by means of some postulates.

• He also faced the possibility of being reduced to an impossibility theorem for 
P-power indices, since an additional postulate may be suggested which the 
Felsenthal index does not satisfy. In which case we would obtain an impossibility 
theorem for P-power indices.

In the sequel, N = {1, 2,… , n} will denote a fixed but otherwise arbitrary finite set 
of players, called the grand coalition or the assembly and any subset of N is a coali-
tion. The pair (N, v) is a cooperative game in characteristic form if v ∶ 2N → ℝ is 
a function that assigns to every coalition S ⊆ N an attainable payoff v(S) such that 
v(�) = 0.

For every player set N we denote by GN the class of all cooperative games on N. 
The space of cooperative games is a multi-dimensional Euclidean vector space of 
dimension 2n − 1 . For every S ⊆ N the unanimity game uS is defined as
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The set of unanimity games forms a basis of the game space GN , i.e.,

where each scalar is the Harsanyi dividend (Harsanyi 1963) of coalition S in game v:

in which s = |S| and t = |T|.
A cooperative game v (in N, omitted hereafter) is a simple game if: (a) 

v(S) = 0 or 1 for all S, (b) is monotonic, i.e., v(S) ≤ v(T) whenever S ⊂ T  , and (c) 
v(N) = 1 . Let SN be the class of all simple games on N.

By monotonicity either the family of winning coalitions 
W = W(v) = {S ⊆ N ∶ v(S) = 1} or the subfamily of minimal winning coali-
tions Wm = W

m(v) = {S ∈ W ∶ T ⊂ S ⇒ T ∉ W} determines the game. In this 
paper we also deal with the set of (minimal) winning coalitions of the least size, 
W

ls(v) = {S ∈ W ∶ |T| < |S| ⇒ T ∉ W} . Analogously, if i ∈ N and v ∈ S
N , 

we consider: Wi(v) = {S ∈ W(v) ∶ i ∈ S} , W
m
i
(v) = {S ∈ W

m(v) ∶ i ∈ S} and 
W

ls
i
(v) = {S ∈ W

ls(v) ∶ i ∈ S}.
We consider two operations of simple games. The join or disjunction of v ∈ S

N 
and w ∈ S

N , is the simple game v ∨ w given by

The meet or conjunction of v ∈ S
N and w ∈ S

N , is the simple game v ∧ w given by

Some special type of players in a simple game are the following. A player who does 
not belong to any minimal winning coalition is a null player. A dictator is a player 
who constitute the sole minimal winning coalition, so that the remaining players are 
nulls. A player who belongs to every winning coalition is a vetoer or a blocker, 
observe in this case that no coalition can win without her. Thus, a dictator is the 
most radical form of being a vetoer. We denote V(w) the set of vetoers of the game 
w, observe that V(w) =

⋂
S∈W(w)

S.

We define some parameters for every simple game: let d be the number of null 
players, � be the number of vetoers, p = |Wls(v)| be the number of winning coali-
tions of the least size, and k = |S| if S ∈ W

ls(v) , be the number of players of the 
winning coalitions of the least size. Note that these parameters satisfy: d ≥ 0 , � ≥ 0 , 
p ≥ 1 , and k ≥ 1.

uS(T) =

{
1 if S ⊆ T ⊆ N

0 otherwise

v =
∑
S≠�

Δv(S)uS

(1)Δv(S) =
∑
T⊆S

(−1)s−tv(T)

(v ∨ w)(S) =

{
1 if either v(S) = 1 or w(S) = 1

0 if v(S) = w(S) = 0

(v ∧ w)(S) =

{
1 if v(S) = w(S) = 1

0 if either v(S) = 0 or w(S) = 0
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Loosely speaking, a power index for SN is a function g which assigns to a simple 
game v ∈ S

N a vector g(v) ∈ ℝ
n ; where each component gi(v) is a measure for the 

ith player in the simple game v according to g. As we deal with a priori P-power 
indices, we regard power indices as measures for estimating the expected payoff that 
a player can expect in an n-person simple game before playing the game, rather than 
the probable final result when the game is actually played. The notion of P-power 
additionally assumes the rational condition of efficiency. Formally,

Efficiency: A power index g ∶ S
N
→ ℝ

n is efficient if for every v ∈ S
N:

Since v(N) represents the collective wealth the players can obtain by themselves, the 
index g should satisfy the condition in (2), which formulates the requirement that 
players cannot be divided more than assembly N is able to generate and none of the 
total amount obtained is wasted.

A simple game is a weighted game if there exist natural integers w1,… ,wn such 
that every coalition S, S ∈ W if and only if the sum of the wi’s, i ∈ S , is at least equal 
to some preset quota q. The number wi is interpreted as the number of votes that the 
player i owns, and q is the least total number of votes necessary to pass a decision. 
Such representation for v is represented by [q;w1,… ,wn] and w(S) stands for 

∑
i∈S

wi . 

For n ≥ 4 there are simple games which are not weighted, see (Muroga et al. 1962) 
and (Carreras and Freixas 1996).

In Sect.  2 we list six postulates which were described by Felsenthal (2016) as 
compelling for a reasonable P-power index. Moreover, we adapt some of his axioms 
defined for weighted games to simple games in Sect. 2.2. In Sect. 3 the Felsenthal 
P-power index for simple games is introduced. In Sect. 4 we show that it is not the 
unique index satisfying the stated postulates in Sect. 2. In Sect. 5, we propose an 
axiomatic characterization of the Felsenthal index. Section 6 presents an impossi-
bility result for power indices in simple games and shows some weaknesses of the 
Felsenthal index. Section 7 points out some possible lines for future research.

2  Postulates for a Reasonable A Priori P‑Power Index According 
to Felsenthal and Machover

We start this section by describing the original postulates by Felsenthal and Macho-
ver (1998) and refer to the Felsenthal paper (Felsenthal 2016) for arguments on the 
compellingness of them. We assume, de facto, the property of efficiency for any 
power index.

(2)
n∑
i=1

gi(v) = v(N)
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2.1  Original Postulates by Felsenthal and Machover

The most of these postulates concern the class of all simple games, but the second 
and the third refer only to weighted simple games.

2.1.1  Null, Ordinary Voter, Vetoer and Dictator

A reasonable P-power index should award no power (0) to a null, and it should 
award the entire power (1) to a dictator. The P-power of a vetoer ought to be 
equal to or larger than that of an ordinary player, –i.e., a player, who belongs to 
some, but not all minimal winning coalitions.

2.1.2  Monotonicity

The postulate of monotonicity requires that in a representation of a weighted 
game, [q;w1,… ,wn] the powers of any two players must not be in reverse order to 
their weights: wb > wa ⇒ gb(v) ≥ ga(v) . Note that by monotonicity and the previ-
ous property the positivity property for weighted games is deduced, i.e., ga(v) ≥ 0 
for all a ∈ N.

2.1.3  Donation

Consider two representations of weighted games, u and v, with the same players, 
the same quota, the same sum of weights, and with the same weights for all play-
ers except for players a and b. Thus, the weights of the two representations differ 
only in one respect: the weight of player a in v is greater by some amount 𝜖 > 0 
than in u, whereas the weight of voter b in v is smaller by the same amount � than 
b’s weight in u. The donation postulate stipulates that the P-power index g should 
satisfy ga(v) ≥ ga(u) (or, equivalently, gb(v) ≤ gb(u)).

Felsenthal includes, in his list of axioms, a weaker postulate than the donation 
postulate, which he calls the ‘annexation postulate’. The dependency between the 
two postulates makes irrelevant the inclusion of the weaker one, so we do not 
include its definition.

2.1.4  Blocker’s Share

An index of relative voting power satisfies the blocker’s share postulate if when-
ever a is a vetoer (or a blocker) in a simple game v and the least size of a winning 
coalition of v is k, then ga(v) ≥

1

k
 whenever a is a vetoer.
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2.1.5  Added Blocker

Let u be a simple game with player set N. Let a be a new voter, not a member of 
N. We say that the simple game v is obtained from u by adding a as a vetoer if the 
assembly of v is N ∪ {a} ; and the winning coalitions of v are obtained from those 
of u by adding a to each of them. Thus a winning coalition of v is of the form 
S ∪ {a} , where S is a winning coalition of u. Clearly, a is a vetoer in v. The added 
blocker postulate stipulates that gb(v) ⋅ ga(u) = ga(v) ⋅ gb(u).

2.2  Extension of Monotonicity and Donation to Simple Games

The postulates of monotonicity and donation (as well as annexation) were originally 
stated for the subclass of weighted games. Here, we propose two postulates defined 
for all simple games, which become equivalent to the postulates of monotonicity and 
donation for weighted games.

2.2.1  Desirability

Let v be a simple game with assembly N and a and b be two players such that 
v(S ∪ {a}) ≥ v(S ∪ {b}) for all S ⊆ N⧵{a, b} . Then the postulate stipulates that a 
must have at least as power as b, i.e., ga(v) ≥ gb(v) . The intuition under this postu-
late is that the remaining players in N prefer a to b as a coalition partner, because the 
over-all gain they obtain by joining player a is greater than or equal to the gain they 
obtain by joining player b, so it is reasonable to expect that the power of a should be 
at least the same as the power of b. Note that by desirability and the first property in 
section 2.1.1, the positivity property for simple games is deduced, i.e., ga(v) ≥ 0 for 
all a ∈ N.

2.2.2  External Monotonicity

Let a and b in N and u and v two simple games on N such that for all S ⊆ N ⧵ {a, b} 
it holds: v(S) = u(S) , v(S ∪ {a}) ≥ u(S ∪ {a}) , and v(S ∪ {b}) ≤ u(S ∪ {b}) . Then 
player a must not have less voting power in v than in u, i.e., ga(v) ≥ ga(u) (or, equiv-
alently, gb(v) ≤ gb(u) ). In words, the relative situation of a with respect to all the 
other players in v is better than it is in u. Thus, it is reasonable to expect that the 
power index of a in v should be at least the same as in u (and conversely for b).

The next two lemmas justify the generality of these two postulates for simple 
games with respect to their counterparts for weighted games.

Lemma 2.1 Desirability implies Monotonicity.

Proof Let v be a weighted game with a weighted representation [q;w1,… ,wn] 
such that wa > wb then w(S) + wa > w(S) + wb for all S ⊆ N ⧵ {a, b} , which means 
v(S ∪ {a}) ≥ v(S ∪ {b}) for all S ⊆ N ⧵ {a, b} , which implies that a has at least as 
much power as b.   ◻



1 3

On the Felsenthal Power Index  

Lemma 2.2 External monotonicity implies Donation.

Proof If the weighted game v is obtained from the weighted game u represented 
by [q;w1,… ,wn] in which player b donates some (let’s say 𝜖 > 0 ) of her weight to 
player a and the remaining weights, as well as the quota, are kept the same. Then, 
clearly w(S) + wa > w(S) + wa − 𝜖 , and w(S) + wb < w(S) + wb + 𝜖 . The expres-
sions on the left hand side of the two inequalities correspond to weights in game 
v and the expressions on the right hand side correspond to the weights in game u. 
Then for all S ⊆ N ⧵ {a, b} , v(S ∪ {b}) ≤ u(S ∪ {b}) , and v(S) = u(S) and then a’s 
voting power in v should not be smaller than in u.   ◻

Note that if lemma 2.2 does not hold, do we have the paradox of redistribution.

3  The Felsenthal Power Index for Simple Games

In this section we introduce the Felsenthal power index for simple games, it consti-
tutes a slight modification of the probabilistic model that defines the Deegan–Packel 
index (Deegan and Packel 1978). They differ in the fact that the Felsenthal index 
uses ‘winning coalitions of the least size’ instead of ‘minimal winning coalitions’. 
See (Deegan and Packel 1978) and (Felsenthal 2016) for more details.

The Felsenthal power index is obtained as follows. Suppose that the simple game 
v has p = |Wls(v)| coalitions whose equal size is k. Then,

Hence, the Felsenthal power index distributes power only among players that belong 
to some winning coalition of the least minimal size.

Example 3.1 (a) Let v be the simple game of four players defined by 
W

m(v) = {{1, 2}, {1, 3}, {2, 3, 4}} , then Wls(v) = {{1, 2}, {1, 3}} , so that p = k = 2 
and � = d = 0 . According to (3) the Felsenthal index is F(v) = (

1

2
,
1

4
,
1

4
, 0) . Note that 

the index assigns 0 to the fourth player, although she is not null.
(b) Let v be the simple game of four players defined by Wm(v) = {{1, 2}, {1, 3, 4}} , 

then Wls(v) = {{1, 2}} , so that k = 2 , p = � = 1 and d = 0 . According to (3) the 
Felsenthal index is F(v) = (

1

2
,
1

2
, 0, 0) . Note that the index assigns the same payoff to 

players 1 and 2 although 1 is a vetoer and 2 is not, and, it assigns 0 to players 3 and 
4, although they are not nulls.

It is worth noting that a close, but slightly different, concept to the Felsenthal 
index was proposed by Riker (see, 1962 p. 32 and 1982) for the more restrictive 
set of weighted simple games, Riker’s idea follows the well-known ‘Size Principle’ 
introduced by himself.

(3)Fi(v) =
1

p
⋅

|Wls
i
(v)|
k
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4  On the Uniqueness of the Felsenthal Power Index

Felsenthal (2016) proves that his index satisfies the five (six if annexation is 
included) postulates in Sect.  2.1. Moreover he posed the question on whether 
his index is the unique P-power index that satisfies these axioms. The following 
result proves that his index is not the unique one that satisfies the list of postu-
lates in section 2.1. The index we define below is as egalitarian as possible, since 
all players not being dictators, blockers or nulls receive the same payoff.

Proposition 4.1 For every weighted game u, let k be the minimum size of a winning 
coalition, � be the number of vetoers in u and d be the number of nulls in u. The fol-
lowing P-power index

satisfies all the postulates in section 2.1.

Proof We first claim that this index is efficient. Indeed, if the game has a dictator the 
remaining players are nulls and the index is clearly efficient, if the game has � veto-
ers and d nulls, then

if the game has not vetoers, then

Null, ordinary voter, vetoer and dictator. If u has a dictator then, the other players 
are nulls and the property is satisfied. If u has vetoers and the rest of players are 
nulls, then k = � and the property is satisfied. If u has vetoers, nulls and players 
non-being vetoers or nulls, then k > 𝜈 > 0 and the property follows from the next 
equivalences:

The last inequality is true because all players in a winning coalition of size k are not 
null.

(4)�i(u) =

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if i is a dictator

0 if i is a null player

1

k
if i is a vetoer

k−�

k(n−�−d)
otherwise

n∑
i=1

�i(v) =
�

k
+

(k − �)(n − � − d)

k(n − � − d)
= 1,

n∑
i=1

�i(v) =
k(n − d)

k(n − d)
= 1.

1 ≥
k − �

(n − � − d)k
⟺ n − � − d ≥ k − � ⟺ n − d ≥ k
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Monotonicity. Assume that u is a weighted game with a weighted representation 
such that wi > wj . If j is null then �j(u) = 0 , so that �i(u) ≥ �j(u) . If j is neither a 
null player nor a vetoer, then i is not null, hence �i(u) ≥ �j(u) . If j is a vetoer, then i 
is a vetoer as well, so that �i(u) = �j(u).

Donation. Let u be a weighted game. Assume that i is the only player whose 
weight increases when converting the game u into v and j is the only player 
who loses the part of the weight gained by i. It is clear that: if i is null in u then 
0 = �i(u) ≤ �i(v) ; if i is neither a vetoer nor a null player in u then i is neither a 
vetoer nor a null player in v, thus �i(u) ≤ �i(v) ; if i is a vetoer in u then i is a vetoer 
or a dictator in v, thus 1

k
= �i(u) ≤ �i(v) ; and if i is a dictator in u then i is also a dic-

tator in v, thus 1 = �i(u) = �i(v).
Blocker’s share. �i(u) =

1

k
 if i is a vetoer in u.

Added blocker. Let (N ∪ {a}, u) be the simple game obtained after the addition of 
the vetoer in (N, v). Then expression (4) becomes:

Let b and c be two players in N. If both are nulls in v, then both receive zero for the 
index in game u. If both are vetoers in v, then both receive 1∕(k + 1) in u and the 
proportions remain unalterable. If b is a vetoer and c is neither a vetoer nor a null 
player, then the proportion of power between the two players in u remain unalterable 
with respect to the proportion of power in v.   ◻

Observe that the P-power index � applied to Example 3.1-(a) is 
�(v) = (1∕4, 1∕4, 1∕4, 1∕4) since the game has neither vetoers nor nulls. The P-power 
index � for the game defined in Example 3.1-(b) is �(v) = (1∕2, 1∕6, 1∕6, 1∕6) since 
the first player is a vetoer and the game has not null players, so players 2, 3 and 4 
receive the same payoff according to �.

For those weighted games for which F ≠ � the Felsenthal index F is different from 
the P-power index g� , as defined in Corollary 4.2, which also satisfies the axioms in 
section 2.1.

Corollary 4.2 The power index g� = �F + (1 − �)� for � ∈ [0, 1] satisfies all the 
postulates in section 2.1.

�i(u) =

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if i is a dictator

0 if i is a null player

1

k+1
if i is a vetoer

k−�

(k+1)⋅(n−�−d)
otherwise
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We conclude this section by remarking that proposition 4.1 and corollary 4.2 may 
be easily extended to simple games (Felsenthal just considered weighted games) since 
desirability and external monotonicity are satisfied for both F and �.

5  An Axiomatic Characterization of the Felsenthal Index

In this section we propose an axiomatization of the Felsenthal index for sim-
ple games, which is very close to the first axiomatization of the Shapley value 
(Shapley 1953) that guarantees uniqueness in the subdomain of simple games, 
see Dubey (1975). The only difference concerns the transfer postulate so that 
the power is transferred from one game to another in a different way. In order to 
introduce the new transfer axiom we use the following notations for every simple 
game v:

Transfer axiom for coalitions of minimum size: is defined, for every pair of simple 
games v and w such that Wls(v) ∩W

ls(w) = � , i.e., min{kv, kw} < kv∧w.

In words, the transfer of power is distributed proportionally to membership in win-
ning coalitions of the least size.

The other postulate we use that have not been mentioned before is the property 
of symmetry already used by Shapley (1953) in the axiomatization of his value for 
cooperative games.

Symmetry: A P-power index g ∶ S
N
→ ℝ

n is symmetric if for every permuta-
tion � ∶ N → N:

where �v ∈ S
N is such that �v(�S) = v(S).

We remark that symmetry can be replaced by the weaker property of equal 
treatment (i.e., symmetry implies equal treatment, but the converse is not true). 
Two players a, b ∈ N are equi-desirable as coalition partners in v ∈ S

N if for 
every S ⊆ N ⧵ {a, b} : v(S ∪ {a}) = v(S ∪ {b}).

Equal treatment: A P-power index g ∶ S
N
→ ℝ

n satisfies equal treatment 
whenever

kv = |S| if S ∈ W
ls(v),

pv = |Wls(v)|.

𝜓(v ∨ w) =

⎧
⎪⎪⎨⎪⎪⎩

𝜓(v) if kv < kw

𝜓(w) if kw < kv

pv

pv+pw
𝜓(v) +

pw

pv+pw
𝜓(w) if kv = kw

g�(i)(�v) = gi(v)

ga(v) = gb(v)
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for every pair of equi-desirable players a, b ∈ N.
This weaker postulate is enough in the proof of the next result, since symmetry 

is only applied to unanimity games, and for these games the symmetric players 
are either vetoers or nulls, so that equal treatment is enough.

Theorem 5.1 The Felsenthal P-power index is the unique index on SN that satisfies 
efficiency, the null-player property, equal treatment and the ‘transfer for coalitions 
of the least size’.

Proof Uniqueness: In all what follows we assume w.l.o.g. that kv ≤ kw . Recall that 
every simple game has a finite number of minimal winning coalitions, S1, S2,… , Sm 
and can be expressed as uS1 ∨ uS2 ∨⋯ ∨ uSm .

The proof on the uniqueness of � will be by induction on the parameters kv and 
pv.

For kv = n , v = uN in which case �(v) is unique by efficiency and equal treatment.
Suppose �(v) has been shown to be unique for all v such that 

kv = k + 1, k + 2,… , n.
We now show that �(v) is unique when kv = k and pv = 1 . Let S be the unique 

minimal winning coalition with |S| = k . If S is the only minimal winning coalition 
of v, then v = uS and by efficiency, equal treatment and null-player �(v) is unique. 
Otherwise let S1,… , Sm denote all the minimal winning coalitions of v apart from S. 
These coalitions satisfy |Si| > k for 1 ≤ i ≤ m since kv = 1 . It is

say, v� ∨ uS = v.
It follows that kv′ > k , �(v�) is unique by the inductive assumption and �(v) is 

also unique since �(v) = �(uS) by the transfer postulate of coalitions of the least 
size and the vector �(uS) is unique by efficiency, equal treatment and null-player, so 
is �(v).

Suppose now that �(v) has been shown to be unique for all v such that either:

or

We now show that �(v) is unique when kv = k and pv = j + 1.
Indeed, consider the minimal winning coalitions S1,… , Sj+1 be the minimal win-

ning coalitions of v with k players each. And let T1,… , Tm be the remaining min-
imal winning coalitions of v. By the conditions on kv and pv it holds |Ti| > k for 
1 ≤ i ≤ m . Consider

say, v�� ∨ uSj+1 = v.

(uS1 ∨ uS1 ∨⋯ ∨ uSm) ∨ uS = v

kv = k + 1,… , n

(5)kv = k and pv = 1,… , j

(uT1 ∨⋯ ∨ uTm ∨ uS1 ∨⋯ ∨ uSj) ∨ uSj+1 = v
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Game v′′ satisfies (5). Therefore �(v��) is unique by the inductive assumption. As 
kv�� = k and kuSj+1 = k , by the transfer property on winning coalitions of the least 
size, we have

which proves that �(v) is unique.
From the two results we get that �(v) is unique for any feasible pair kv and pv , i.e., 

for all simple game in SN.
Existence: Clearly the Felsenthal index � on the class of simple games satisfies 

the four axioms.
From the uniqueness and the existence it follows that the Felsenthal index is the 

unique index on the class of simple games satisfying the four axioms.
From the proof of uniqueness a recursive construction of F is deduced. Indeed, 

from (6) we have puSj+1 = 1 and pv�� = j . Thus, Eq. (6) is equivalent to

So that � = F .   ◻

6  An Impossibility Result on the Existence of Power Indices

We state in this section a direct impossibility result on P-power indices, its difficulty 
lies solely in showing that all the axioms used are essential to achieve the aforemen-
tioned incompatibility.

Theorem  6.1 There is not a power index that satisfies efficiency, the null-player 
property, symmetry, transfer and the added blocker.

The proof of theorem 6.1 is obvious from Dubey’s axiomatization (Dubey 1975) 
of the Shapley value, since this index is the unique one which satisfies the four first 
axioms, but the index fails to satisfy the added blocker axiom, see (Felsenthal et al. 
1998).

More interestingly is to investigate the independence of these five axioms. The 
following examples show that the five axioms in theorem 6.1 are essential to achieve 
the impossibility result.

Proposition 6.2 The axioms used in theorem 6.1 are independent.

Proof Efficiency: Consider the power index �1 defined by

(6)�(v) = �(v�� ∨ uSj+1) =
1

pv�� + puSj+1

(
pv���(v��) + puSj+1

�(uSj+1)
)

�(v) =
1

j + 1

j+1∑
i=1

�(uSi)
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This power index is not efficient for every simple game without vetoers or with two 
or more vetoers. The transfer property is satisfied for �1 because for any pair of sim-
ple games v and w with respective set of veto players V(v) and V(w), it holds that: 
V(v ∧ w) = V(v) ∪ V(w) and V(v ∨ w) = V(v) ∩ V(w) . The property of the added 
blocker is satisfied since �1

j
(v) = �1

j
(w) for all j ∈ N where N is the player set where 

v is defined, and, w is obtained from v with the addition of a blocker. The properties 
of: null-player and symmetry are trivially satisfied for �1.

The null-player property: Consider the egalitarian power index �2 given by

It satisfies efficiency, symmetry, transfer and the added blocker, but it does not sat-
isfy the null-player property.

Symmetry: Consider a selector � ∶ 2N → N with �(S) ∈ S for all S ≠ ∅ . The value 
�3 is the selector allocation corresponding to � defined by

where Δv(S) is defined in (1). In particular, we choose the selector 
�(S) = min{i ∈ N ∶ i ∈ S} so that Eq. (7) becomes

where S(i) = {j ∈ N ∶ j > i}.
The power index �3(v) does not satisfy the symmetry property because of the 

effect of the selector � . Furthermore, the index is efficient because from (8) it 
follows:

The null-player property is satisfied because, if i is a null-player in v, it 
holds v(S(i) ∪ {i}) − v(S(i)) = 0 , i.e., i’s marginal contributions are zero. As 
(v ∧ w)(S) = min{v(S),w(S)} and (v ∨ w)(S) = max{v(S),w(S)} , the transfer prop-
erty easily follows. Finally, the added blocker property is also satisfied because 
w(S ∪ {0}) = v(S) for all S ⊆ N , where v is defined on N and w is defined on 
N ∪ {0} , so that 0 is the added blocker in v. Thus, from w(S ∪ {0}) = v(S) for all 
S ⊆ N , it follows �3

i
(v) = �3

i
(w) for all i ∈ N.

Transfer: The Felsenthal power index satisfies efficiency, the null-player property, 
symmetry, as well as the added blocker. But it does not satisfy transfer.

�1
i
(v) =

⎧
⎪⎨⎪⎩

1 if i is a veto player

0 otherwise

�2
i
(v) =

v(N)

n

(7)𝜓3
i
(v) =

∑
S⊆N ∶ i=𝛼(S)

Δv(S)

(8)�3
i
(v) = v(S(i) ∪ {i}) − v(S(i)),

∑
i∈N

�3
i
(v) =

∑
i∈N

v(S(i) ∪ {i}) − v(S(i)) = v(N) = 1.
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Added blocker: The Shapley-Shubik index is the unique power index on the 
class of simple games that satisfies efficiency, the null-player property, symmetry 
and transfer. Nevertheless, it does not satisfy the added blocker, see Felsenthal and 
Machover (1998, Example 7.9.16, p. 272), who qualified the violation of the postu-
late as ‘flagrant’.   ◻

As is well known the property of symmetry in the characterization of the Shapley 
value by Dubey (1975) can be replaced by the weaker property of equal-treatment, so 
this replacement is also valid in theorem 6.1.

Equal treatment. Let v be a simple game with assembly N and a and b be two play-
ers such that v(S ∪ {a}) = v(S ∪ {b}) for all S ⊆ N⧵{a, b} . Then the equal treatment 
postulate stipulates that ga(v) = gb(v).

Note that: efficiency, null-player property, equal treatment and added blocker are 
properties demanded by Felsenthal in his list of postulates. But he demands much more 
to the index. Thus, the addition of the transfer postulate to his list of postulates reduces 
to an impossibility result, which answers one of his questions. Of course, it would be 
compelling to replace transfer in theorem 6.1 for a weaker postulate which kept the 
impossibility result stated.

With this section we have concluded the three aims of this article. Let’s, however, 
show in what follows two weaknesses of the Felsenthal power index. Felsenthal and 
Machover propose the natural postulate vanishing only for nulls (Postulate 3, page 222 
in Felsenthal and Machover 1998).

Vanishing only for nulls. Let v be a simple game with assembly N. The vanishing 
only for nulls postulate stipulates that ga(v) = 0 if and only if a is null in v.

As a matter of example, we remark that this postulates is satisfied by all the seven 
alternative power indices he studied in Felsenthal (2016). However, as shown in Exam-
ple 3.1-(a) player 4 is not null in v but F4(v) = 0 or in Example 3.1-(b) were players 
3 and 4 are not null in v but F3(v) = F4(v) = 0 . Hence the F-index does not vanish 
only for nulls. Another postulate, which is verified for the Shapley-Shubik, Banzhaf 
and Johnston indices is the strict desirability.

Strict desirability. Let v be a simple game with assembly N and a and b be two play-
ers such that v(S ∪ {a}) ≥ v(S ∪ {b}) for all S ⊆ N⧵{a, b} and there exists a coalition 
T ⊆ N⧵{a, b} such that v(T ∪ {a}) > v(T ∪ {b}) . Then the strict desirability postulate 
stipulates that ga(v) > gb(v).

However, this postulates is not verified by the Felsenthal index (3), as shown Exam-
ple 3.1-(b) for which player 1 is strictly more desirable than player 2, but Fa(v) > Fb(v).

We also want to remark that the Felsenthal index does not satisfy the common 
internal properties that a P-power index should satisfy, see (Freixas and Gambarelli 
1997), which are: efficiency, symmetry, null player property and desirability in its 
strict version. These properties are verified for several power indices as the Shap-
ley-Shubik, relative Banzhaf, or Johnston among others. The Felsenthal index does 
not satisfy desirability in its strict version. Moreover, desirability in its strict version 
together with the null player property implies vanishing only for nulls, which is also 
not verified for the Felsenthal index. Bertini et. al. (2013) contains some more pos-
tulates likely to be studied for the Felsenthal index.
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7  Conclusion

This paper was about the Felsenthal index for simple games. We studied some of the 
questions that were posed in the Felsenthal paper. After extending some properties 
stated by Felsenthal for weighted games to simple games, we have proved that his 
index is not the only one that satisfies a list of compelling postulates that Felsenthal 
and Machover (1998) proposed. We have shown an axiomatic characterization of 
the index, possibly the first of its kind. We have added the transfer postulate to some 
other standard postulates and have proven that the index is uniquely characterized. 
Finally, we have illustrated some other compelling postulates that the Felsenthal 
index fails to satisfy.

It would be nice to extend the index to a value for cooperative games since there 
are many contexts in which only the coalitions with the least size among those who 
have a value distinct of zero count to be measured. It would also be interesting to 
weaken the transfer postulate in theorem 6.1 in order to find a non-obvious incom-
patibility result. Another challenging problem would be to study whether there is a 
P-power index that satisfies: efficiency (postulate de facto), desirability in its strict 
version, symmetry, blocker’s share and added blocker. As far as we know, there is 
not any recognized power index that satisfies all of them. If someone is able to prove 
that a power index satisfying all of them does not exist, then it would be interesting 
to study the independence of the axioms.

Acknowledgements This research is part of the I+D+i project PID2019-104987GB-I00 supported by 
MCIN/AEI/10.13039/501100011033/. We thank José María Alonso-Meijide for his comments and sug-
gestions, which helped us to improve the manuscript. We greatly appreciate the comments of two referees 
that have contributed to improve this work.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. 
This research was partially supported by funds from: the Spanish Ministry of Science and Innovation 
Grant No. PID2019-I04987GB-I00.

Declarations 

Conflict of interest The two authors declare that do not have conflict of interest.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen 
ses/ by/4. 0/.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


 J. Freixas, D. Samaniego 

1 3

References

Alonso-Meijide JM, Freixas J (2010) A new index based on minimal winning coalitions without any sur-
plus. Decis Support Syst 49:70–76

Alonso-Meijide JM, Freixas J, Molinero X (2012) Computing several power indices by generating func-
tions. Appl Math Comput 219:3395–3402

Banzhaf JF (1965) Weighted voting doesn’t work: a mathematical analysis. Rutgers Law Rev 19:317–343
Bernardi G, Freixas J (2018) The Shapley value analyzed under the Felsenthal and Machover bargaining 

model. Public Choice 176:557–565
Bertini C, Freixas J, Gambarelli G, Stach I (2013) Comparing power indices. In: Open Problems in the 

Theory of Cooperative Games, eds. V. Fragnelli, G. Gambarelli, Special Issue of International 
Game Theory Review, 15(2):1340004-1-19

Carreras F, Freixas J (1996) Complete simple games. Math Soc Sci 32:139–155
Deegan J, Packel EW (1978) A new index of power for simple n-person games. Internat J Game Theory 

7:113–123
Deegan J, Packel EW (1982) To the (minimal winning) victors go the (equally divided) spoils: a new 

index of power for simple n-person games. In: Brams SJ, Lucas WF, Straffin PD (eds.) Political and 
related models. New York: Springer, pp. 239-255

Dubey P (1975) On the uniqueness of the Shapley value. Internat J Game Theory 4:131–139
Einy E, Haimanko O (2011) On the uniqueness of the Shapley value. Characterization of the Shapley-

Shubik power index without the efficiency axiom 73:615–621
Felsenthal DS (2016) A well-behaved index of a priori P-Power for simple n-person games. Homo Oecon 

J Behav Inst Econ 33(4):367–381
Felsenthal DS, Machover M (1995) Postulates and paradoxes of relative voting power –A critical 

appraisal. Theor Decis 38:196–229
Felsenthal DS, Machover M (1996) Alternatives forms of the Shapley value and the Shapley-Shubik 

index. Public Choice 87:315–318
Felsenthal DS, Machover M (1998) The measurement of voting power: theory and practice, problems and 

paradoxes. Edward Elgar, Cheltenham UK
Felsenthal DS, Machover M, Zwicker WS (1998) The bicameral postulates and indices of a priori voting 

power. Theor Decis 44:83–116
Freixas J, Gambarelli G (1997) Common internal properties among power indices. Control Cybern 

26:591–604
Freixas J, Kaniovsky S (2014) The minimum sum representation as an index of voting power. Eur J Oper 

Res 233:739–748
Harsanyi JC (1963) A simplified bargaining model for the n-person cooperative game. Int Econ Rev 

4(2):194–220
Holler MJ (1978) A priori power and government formation. Munich Soc Sci Rev 4:25–41
Holler MJ (1982) Forming coalitions and measuring voting power. Polit Stud 30:262–271
Johnston RJ (1978) On the measurement of power: some reactions to Laver. Environ Plan A 10:907–914
Muroga S, Toda I, Kondo M (1962) Majority decision functions of up to six variables. Math Comput 

16:459–472
Riker WH (1962) The theory of political coalitions. Yale University Press, New Haven, USA
Riker WH (1982) Theory of political coalitions. J Stud 30:262–271
Shapley LS (1953) A value for n-person games. In: Luce R, Tucker A (Eds.), Contributions to the theory 

of games (vol. II). Princeton, NJ: Princeton University Press
Shapley LS, Shubik M (1954) A method for evaluating the distribution of power in a committee system. 

Am Polit Sci Rev 48:787–792

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.


	On the Felsenthal Power Index
	Abstract
	1 Introduction
	2 Postulates for a Reasonable A Priori P-Power Index According to Felsenthal and Machover
	2.1 Original Postulates by Felsenthal and Machover
	2.1.1 Null, Ordinary Voter, Vetoer and Dictator
	2.1.2 Monotonicity
	2.1.3 Donation
	2.1.4 Blocker’s Share
	2.1.5 Added Blocker

	2.2 Extension of Monotonicity and Donation to Simple Games
	2.2.1 Desirability
	2.2.2 External Monotonicity


	3 The Felsenthal Power Index for Simple Games
	4 On the Uniqueness of the Felsenthal Power Index
	5 An Axiomatic Characterization of the Felsenthal Index
	6 An Impossibility Result on the Existence of Power Indices
	7 Conclusion
	Acknowledgements 
	References


