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Overview
Ever since the concept of the Internet was born, it has experienced a massive
increase in the number of users. Similarly, there has been an exponential
increase in the amount of information that they transmit, partly because of
new technologies and services that have emerged, such as cloud and
real-time communication. Customers do now demand a fast and reliable
interaction, without any data loss or undesired delays.

In order to meet these needs and keep up with the constantly-evolving
technologies different non-profit organizations needed to devise a new
technology, and this is when Software-Defined Networking (SDN) was born.
Unlike traditional networks to date, it decouples the control layer from the data
layer, leaving the act of forwarding traffic to the network device and delegating
all network decisions to a controller, thus centralizing all the decisions, which
improves network operability and agility. Despite all the improvements made
with this technology, we still encounter the same problems of traditional
networks regarding traffic routing. Conventional algorithms such as Dijkstra
and Least Loaded (LL) based on the occupancy of the links, allocate traffic
without considering the impact the chosen path could have if future traffic
were to be introduced in the network.

The objective of this project is to create an algorithm capable of routing traffic
taking into account the future impact. To evaluate the proposed mechanism of
Dijkstra, we will first obtain some experimental results using the default link
weights and then base these weights on the occupancy of the links, using the
Open Network Operating System (ONOS) as the SDN controller and the
Multi-Generator (MGEN) tool to generate traffic. After these results, this
research will use Reinforcement Learning (RL), a subcategory of Artificial
Intelligence (AI), to train a RL model in Python using a network of eight
interconnected switches.

After the agent is trained, we have made a comparison between RL, LL, and
SP, in which we have run a series of files containing flows of different rates. In
conclusion, this research will exhibit that, on average, the RL algorithm
consistently beats the other two algorithms by 16%, when it comes to
reducing the data loss, which will improve the efficiency of the network.
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Resumen
Desde el surgimiento de Internet, ha habido un aumento masivo en el
número de usuarios y en la cantidad de información que se transmite. Esto
se debe en parte a nuevas tecnologías como la nube y la comunicación en
tiempo real. Los clientes ahora demandan una interacción rápida y confiable,
sin pérdida de datos ni retrasos indeseados.

Para satisfacer estas necesidades y mantenerse actualizadas, las
organizaciones sin fines de lucro han desarrollado una nueva tecnología: las
redes definidas por software (SDN). A diferencia de las redes tradicionales,
las SDN separan la capa de control de la capa de datos, centralizando todas
las decisiones en un controlador y dejando el reenvío del tráfico al dispositivo
de red. Esto mejora la operatividad y la agilidad de la red. Sin embargo,
persisten problemas relacionados con el enrutamiento del tráfico.

El objetivo de este proyecto es crear un algoritmo capaz de encaminar tráfico
teniendo en cuenta el impacto futuro. Para evaluar el mecanismo propuesto,
primero obtendremos algunos resultados experimentales usando los pesos
de los enlaces por defecto y después basados en la ocupación de los
enlaces, utilizando Open Network Operating System (ONOS) como
controlador de SDN y la herramienta Multi-Generator (MGEN) para generar
tráfico.

Después de obtener estos resultados, se empleará el aprendizaje por
Reinforcement Learning (RL), una subcategoría de la Inteligencia Artificial
(IA), para entrenar un modelo en Python utilizando una red de ocho
conmutadores interconectados.

Después de entrenar el modelo, se realizará una comparación entre RL,
Least Loaded (LL) y Shortest Path (SP), utilizando diferentes flujos de tráfico.
En resumen, esta investigación demostrará que, en promedio, el algoritmo de
RL supera consistentemente a los otros dos algoritmos en un 16% en
términos de reducción de pérdida de datos, lo que mejora la eficiencia de la
red.
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Introduction 1

INTRODUCTION

Everytime we hear about the word “Internet” or it comes to our mind, we usually
tend to forget not only how we, as humankind, have managed to build such a
powerful tool to communicate with hundreds of millions of individuals across the
world, in almost every place of the world we can think of. Ever since the first
node-to-node communication from one computer to another was made back in
1965, by the former ARPAnet, the number of people using the Internet has
experienced an exponential increase, having already reached the staggering
figure of 5.181 million users [1], at the time of writing.

Although at its early stages it was only used for educational and investigation
purposes, many users are using lots of different applications in their everyday
lives, ranging from amusement tools to work-related solutions. Accompanying
this increase, and even more important than that, is the amount of information
transmitted in these communications and how important it is for the parties
involved to deliver this data in a fast and reliable way, without any data loss or
undesired delays.

To meet all these requirements, the network solutions offered by the different
Internet Service Providers (ISP) have had to adapt with cutting-edge and
groundbreaking technologies, Software-Defined Networking (SDN) being one of
the most striking ones. Before SDN was started to be defined circa 2004 by the
Internet Engineering Task Force (IETF), even though many different routing
protocols had been already put in place, at the end of the day all of them shared
the same network architectural model, consisting of having coupled the control
plane with the data plane. On the other hand, SDN decouples these two layers,
leaving the act of forwarding traffic to the network device and delegating all
network decisions to a controller, thus centralizing all the decisions. This
idiosyncrasy improves agility, enhances network operability, and makes the
network more efficient, among many others.

Even though it might seem the ultimate network technology, it also has its
drawbacks when it comes to routing the traffic across the network topology. The
behavior of some of these widely used routing algorithms, such as Dijkstra and
load balancing technique based on links’ occupation, is that they allocate traffic
without considering the impact the chosen path could have if future traffic were
to be introduced in the network. Traditional load balancers usually split traffic
evenly across the different outbound links of the source network device, the
main criteria being the current occupancy of the links.

Taking advantage of the fact that we are working with a technology that
centralizes the decisions, we have made use of Open Network Operating
System (ONOS) as the SDN controller, which has installed a custom routing
application coded in Java to install all the flow rules in the switches based on
the chosen path. First of all, this project will begin by evaluating the behavior of
the Dijkstra algorithm, firstly using the default link weights and then basing
these weights on the occupancy of the links. The analysis has been done in a
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basic network with just a few switches running OpenFlow to communicate with
the controller, using different tools such as iPerf, Multi-Generator (MGEN), and
Grafana. After these results and their subsequent comparison, this research will
use Artificial Intelligence (AI) to implement a routing solution. More precisely,
the controller of the network will make use of Reinforcement Learning (RL) to
make routing decisions. With this solution, the controller will not only take into
account the rate of the incoming traffic but also it will analyze the future impact
of that decision in the event of an increase of data being transmitted. In order to
build and configure the scenario, the RL agent has been trained with the
programming language Python using a network of eight switches,
interconnecting a source and a destination Local Area Networks (LAN), with N
servers sending information from one data center to another.

Once the agent is trained, a comparison between RL, Least Loaded (LL), and
Shortest Path (SP) has been made, in which we have run a series of files
containing flows of varying sizes introduced in the network at different moments
in time. This research will show that, on average, the RL model consistently
beats the other two routing algorithms by a hefty 16%, when it comes to
reducing the data loss. In a real network, this will not only improve the efficiency
of the network but also reduce the economic impact of having to install and
remove many flow rules in the network devices, as the Central Processing Unit
(CPU) load and CPU utilization will be reduced.

The remainder of this research is organized as follows:

● Chapter 1 describes in detail what SDN is, explaining the transition from
traditional networks, in which the control and data layers were not
decoupled, to software-defined networks, the different layers there are,
as well as a thorough explanation of the OpenFlow protocol, which is the
bedrock of the SDN technology.

● Chapter 2 deals with the ONOS controller, analyzing in detail its
architecture. Namely, the system components, the network state, the
different types of devices, as well as the different applications it supports.

● Chapter 3 explains how the custom application in ONOS has been built,
in addition to the implementation of the Dijkstra algorithm and the one
based on the occupancy of the links to show the problems,
aforementioned in this introduction, of using such routing protocols and
techniques. In addition, it makes a thorough analysis of the different
modules of the customer application built in ONOS to govern the routing
decisions and the subsequent installation of the flow rules

● Chapter 4 is about describing in detail what RL is and the analogy with
the scenario we want to solve, including the most important concepts of
this disrupting AI technology. Furthermore, it describes how the RL
model has been trained with the different network traffic, the results
obtained, and the comparison with LL and SP algorithms.

● Finally, the conclusions of this research and the results obtained will be
given, besides all work that could be implemented in the future to
enhance the current research.
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Additionally to the main chapters, there has also been included some
appendices to further explain in detail topics that are not cover in the main
sections, in order not to clutter the explanation making the lecture cumbersome:

● Appendix A explains environment configuration in detail, covering the
installation of Mininet, ONOS, Python, and all the software required to do
the research.

● Appendix B covers the installation and configuration of the monitoring
tools, which are InfluxDB and Grafana.

● Appendix C shows the different monitoring scripts, configuration files,
and other files of interest for Python, Grafana, and MGEN.

● Appendix D contains some of the training results of the RL agent using
different hyperparameters values, to exhibit the difficulties encountered
when training this kind of model.
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CHAPTER 1. SOFTWARE-DEFINED NETWORKING

Software Defined Networks (SDNs) are starting to play a very important role in
today’s society, with many enterprises around the world using this solution as
their preferred technology to run their operations, with expectations to grow
even faster in the near future [2]. But how and why has it achieved such a
tremendous use? The idea of decoupling the control layer from the application
layer had already started in 2004, when, albeit had not been defined yet as
SDN, the IETF began releasing their first publication about this topic named
“Forwarding and Control Element Separation”. It was not until 2008 that the first
protocol intended specifically for SDN networks was defined, called OpenFlow,
which eventually exposed an Application Programming Interface (API) to be
used by the different network devices to communicate with each other and with
the controller. Finally, in 2011, the Open Networking Foundation (ONF) was
created as a non-profit organization with the aim of promoting the use of SDN
and the OpenFlow protocol as well as all related technologies, taking part into
different projects to speed and enhance the use of this technology. Let’s get into
the details to see all components and characteristics that make SDN what it is
nowadays.

As has been aforementioned, this technology separates completely the
application layer from the control layer, giving full programmability and
operability to the controller, making all infrastructure devices somewhat
agnostic, detaching all the network logic from them. The benefits of using SDN
are plentiful and are not only limited to having a centralized management that
can accelerate the different network decisions. It also has a tremendous impact
on cost reduction, when it comes to Capital Expenditures (CAPEX) and
Operational Expenditures (OPEX), as network administrators need to spend
less on new devices and maintaining the existing ones. In relation to (Quality of
Service) QoS, adopting this technology will increase the bandwidth, and reduce
the packet loss and the delay in the network.

When it comes to the content of this chapter, we are going to thoroughly explain
the different layers we can find in SDN from a logical viewpoint. Morevower, if it
is true that there are nowadays different protocols that the network devices can
use to communicate with the controller and vice versa, our switches will use
OpenFlow. We will see the most relevant information about them for this project,
to better understand later in section two their connection with ONOS, the
controller.

As shown in Fig 1.1, the infrastructure layer communicates with the SDN
controller by means of the OpenFlow protocol, whilst the control layer uses an
API to talk with the application layer. Let’s see thoroughly the different layers:
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Fig. 1.1 SDN three-layer architecture

1.1. SDN Layers

1.1.1. Application layer

The application layer is composed of programs, also known as business
applications, that can communicate programmatically to the SDN controller the
intention to introduce or modify the already existing features to amend the
network behavior, not only in terms of traffic forwarding but also security-related.
Thus, having always a global view of the status of the network provided by the
controller, gives these applications the possibility to be always managing the
network. As depicted in Fig 1.1, the way to convey all this information from the
application plane to the control plane is via an API, an interface that receives
the name of NorthBound Interface (NBI). In this layer, we might find multiple
network orchestration services that take care of managing and monitoring the
communication emitted by each device using Link Layer Discovery Protocol
(LLDP) or other softwares behaving as a proxy for Address Resolution Protocol
(ARP) mapping Internet Protocol (IP) addresses with Media Access Control
(MAC) addresses, among many others. As we will see in next chapters, we will
install the AI routing application in this layer.

1.1.2. Control layer

The control layer, also known as control plane, is the backbone of the SDN
layer distribution architecture, and it is where the controller resides. In some
cases, if the network structure is extremely complex or certain Service Level
Agreements (SLA) have to be met, there might be multiple controllers operating
concurrently between them, although it is not the standard as centralization
fades away a bit. The control plane acts as the bridge between the application



6 Reinforcement Learning-Based Routing in SDN Networks

layer and the infrastructure layer, translating the messages and information
received via the NBI and communicating them back to the network devices via
the SouthBound Interface (SBI). This communication flow is not only limited to
this direction, as this layer also conveys information from the SBI to the NBI if
needed for the network to operate adequately. The preferred protocol used by
the SBI to communicate with the devices is OpenFlow, which is considered the
best fit for switches.

1.1.3. Infrastructure layer

This last layer, also known as data plane, is made up by the different network
devices that conform the network. The most common forwarding devices that
can be found are switches and routers, being the first ones the favored option
as the OpenFlow is in constant evolution to enhance the communication with
switches. These devices perform the actions sent by the controller including
forwarding a packet to the specific port or dropping it if the rules are not met.
Apart from this, they periodically send vital information for the control plane
such as the number of active ports or who their neighbors are at that given
moment. Likewise, they also gather information to provide the controller with
statistics, namely but not limited to port load, information about the flows
received, and so on and so forth.

1.2. OpenFlow switch

The OpenFlow protocol is a standard in SDN architecture managed by the ONF,
and is widely supported and used across many different switches, including
Radisys, HP, Cisco, among many others. The precursor of this protocol was
Ethane in 2007, which introduced centralized and reactive flow management,
whereas OpenFlow was initially conceived in 2008 and did not see the light until
2009. Since that moment until nowadays, it has been adopted by many
controllers, such as OpenDaylight, Ryu, and ONOS. The functioning of this
protocol resides in the idea of moving the control and management of the
network out of the device in the infrastructure layer, into the software that runs
inside the controller so it can be centrally, openly, and locally managed. Before
explaining thoroughly the characteristics of this protocol, it is important to
reinforce the fact that the network devices, mostly switches, only operate in the
layer 2 of the Open Systems Interconnection (OSI) model [3]. As they operate in
the link layer, the role of these devices is just to forward Ethernet frames from
one switch to another, based on the forwarding rules they have installed. As we
will see below, the OpenFlow controller is in charge of establishing a
communication, known as OpenFlow channel, with every switch in the network
to forward all the traffic rules as well giving information about its hardware
properties. It is worth knowing that the information exchanged in this channel
will never affect the rest of the network, meaning that other switches would not
receive any packet exposing this information. The Fig 1.2 provides a general
perspective of the communication between OpenFlow switches and the
OpenFlow controller using the SouthBound API.
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Fig. 1.2 Logical representation of the SBI in SDN

One of the most striking advantages of using this protocol is the flexibility it
gives to the different vendors. Even though they might have different interfaces
and scripting languages for their Operating System, OpenFlow creates some
kind of an interface to abstract this communication and create one that is
shareable, so the devices can be managed remotely using a single protocol.
When it comes to the layer of the OSI model in which it operates, it is layered
on top of Transmission Control Protocol (TCP) using the port 6653, which is the
one the controller is listening to, in order to establish a connection and send
packets. In Fig 1.3 we can see how, from top to bottom, the whole OpenFlow
packet is built, with physical bytes, the ethernet frame which is shown in this
picture as “Linux cooked capture”, the IP and TCP headers, and finally the
OpenFlow 1.0 packet data.

Fig. 1.3Wireshark headers of OSI model of an OF packet
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In the next subsections we are going to see how the pipeline of an OpenFlow
switch works. Fig 1.4. depicts at a glance the logical schema of this kind of
device, with a total of five main components. The datapath is composed of the
group and meter tables for common actions and statistics affairs. Falling under
the datapath, we find the pipeline, which is composed of the input and output
ports and the flow tables that govern and store the different flow rules. Last
but not least, there are the different control channels a switch can establish
with the controller.

As we are only interested in explaining in detail the parts we will use and,
hence, adapt to our project, of the list aforementioned ports is the only part that
does not fall under the scope of this project. In broad strokes, there are three
different types of ports: the physical ones correspond to the hardware interface
of the switch; the logical ones do not directly correspond to a hardware
interface, and they are usually used to differentiate them from the ones
assigned to protocols such as Hypertext Transfer Protocol Secure (HTTPS),
Domain Name System (DNS), and so on; finally, the so-called reserved ports
are those only intended to be used for OpenFlow-related actions, like
forwarding a packet to a neighbor or send a packet to the controller.

Fig. 1.4 OpenFlow switch logical representation of the different parts and
processes [4]

1.2.1. OpenFlow Tables

The pipeline is the most important part of an OpenFlow switch. It is the bedrock
of the packet processing, and is composed of a set of flow tables connected
one after the other forming a chain of tables. The switch must have at least one
table up to a total of 256 but this figure might vary to the upside depending on
the version and the capacity of the switch. Although we are not going to cover
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this part, it is worth mentioning that some switches have two pipelines; the
ingress and the egress pipeline, to also perform decisions before the packet is
sent through the output port. Inside of each flow table, we can find what is
known as a flow rule or flow entry. In plain terms, these are the instructions the
switch uses to take the necessary actions based on the incoming traffic. As we
have seen at the beginning of this chapter, in SDN all the decisions will be
made by the controller, so it will be the one sending the flow rules to install,
update or delete to the required switch. The Fig 1.5 depicts the different
components of a pipeline from a logical point of view.

Fig. 1.5 Representation of the different components of an OpenFlow switch
pipeline

Having seen the different components in broad terms, let’s now see in detail
how a flow entry is structured and the various elements we can find inside. First
and foremost we find what is known as the rule matching. Every time the switch
receives a packet, the first operation it performs is to extract all the fields from
the incoming packet, including L2, L3, and L4 labels, being the majority of the
time Ethernet, IPv4, and TCP fields, respectively. All these fields are shown in
Fig 1.6 below.

Fig. 1.6 Fields of a rule of an OpenFlow flow entry
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Once the switch has extracted and processed all these fields, it will be able to
perform the matching across all the different flow entries in the first flow table of
the pipeline. In order for a packet to be matched, all values without exception
must coincide, and the first flow entry that matches the criteria will be chosen.

Upon performing the matching and selecting the flow entry, now it is time for the
switch to perform the action or actions specified in the entry, also known as
instructions. In the following list we will see briefly the different required types:

● The Output action is the most common one and the most important, as it
states the physical, logical, or reserved egress port where the packet will
be sent through. For this case, the most typical situations will include
switching (just sending a packet through an egress port), routing (when
the matching is only based on L3 fields), or Virtual Local Area Network
(VLAN) switching (when the matching is based only on L2 fields), among
others.

● The Drop action is not performed explicitly when it is only defined. For
instance, for the situations in which no actions are set or no flow entry
has been matched, the packet will be automatically dropped. However,
when the action is set, the most common use case is to perform a
firewall action, typically based on L2 and L3 fields.

● For the Group action, the switch processes the incoming packet through
a specified group. This will be seen in detail in section 1.2.3, but a group
can trigger a set of actions affecting different flows.

For the optional actions, these are the useful ones to know about for this
project:

● As for the Meter actions, if the switch version supports meters, the
packet will be processed using a meter. It will be seen in section 1.2.4,
but in rough outlines it is defined what to do in case a packet goes
beyond a defined limit parameter.

● The Set-Queue action is very useful for QoS purposes, as the switch
sends the packet to the specified queue of the selected egress port.

● Finally, for the Goto-Table action, if the flow entry matches, the switch
will move the packet to the next flow table to look up in the processing
pipeline.

Lastly, the third main block are the counters, also known as statistics. These are
updated every time a packet is processed by a specific flow table, regardless of
whether the packet will eventually be subjected to any action or it will be
dropped. Some other scenarios might include packets that are sent straight to
another flow table or even when the port of the switch is down. In all these
cases the counters will also need to be updated.

There are not only counters for tables but also for specific ports, flow entries,
queues, groups, and meters. The required counters collect statistics about the
number of active flow entries in a specific table, how long an entry has been
installed (in seconds), the number of received and transmitted packets through
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a specific port, among many others that, all together, make these statistics
extremely important for QoS purposes.

1.2.2. Group Tables

As we have seen in the previous section, in some cases the action taken by the
switch will be to submit the packet to be processed by a group. In OpenFlow, a
group table is nothing but a list of group entries constituting a more complex
decision than a simple output port and that could not be performed or it would
be very difficult if it were not for these group tables. Unlike flow tables, groups
do not have the ability to send packets to another flow table to perform chaining,
nor do they perform matching. Taking into account this, let’s understand better
what is inside a group entry and the different types there are.

As can be seen in Fig 1.7, a group entry is composed by an identifier, the
specific type, counters for statistics, and the most important part: the bucket.
Each individual action is referred to as a bucket and its behavior will be
determined by the group type defined.

Fig. 1.7 Fields of a group entry in OF

Next, the four different types of groups are explained. From this list, the first two
are mandatory in every version of the switch whilst the last two are optional.

● The ALL group is the most basic of all and, for every incoming packet, it
will duplicate it to be handled independently by every bucket in the entry.
This group type is commonly used for multicasting and broadcasting
purposes, as a normal switch would do in a network.

● The INDIRECT group only contains a single bucket that contains a set of
actions. Even though at first glance might not be very useful, it is really
worth it when many flow entries, though having different matching
criteria, share the same action/s. For these cases, it is better to



12 Reinforcement Learning-Based Routing in SDN Networks

encapsulate all these actions into a single group, which, at the same
time, will reduce the memory usage in the switch.

● The Fast-Failover group is meant to behave as a workaround to
surmount ports and, consequently, link failures. Similar to the ALL group,
this type will have a set of buckets with a list of actions but with the
addition of watchers, that will continually monitor the state of a port or a
group to know if it is up and running. In case the port or group is down,
this bucket will become inoperative and the first lived bucket will be
chosen. The most striking advantage of this type, albeit not available in
all switches, is that having these backup actions in case a port fails will
save many enquiries to the controller.

● Finally, the SELECT group will have a set of buckets with a particular
weight assigned to each of them. This weight can be defined by the user
or simple round robin. The ultimate objective of this type is to serve as
load balancer for SDN.

1.2.3. Meter Tables

The last tables we are going to cover in this chapter about OpenFlow are the
so-called meter tables. This table is composed of a list of meter entries, which
has as components an identifier, meter bands, and counters (see Fig 1.8). The
applicabilities and use cases of a meter entry might be varied and of different
complexity but all of them have in common the need to offer a better service
implementing rate-limiting to improve QoS metrics.

Fig. 1.8 Fields of a meter band in OF

Meters, like groups, are attached directly to a flow entry, meaning that the action
will be to point to a specific group with that identifier. The core of the group entry
is what is known as bands, where each one specifies the maximum rate or the
threshold and the action to take if thereof is reached. As it happened for group
entries, the meter band is not subjected to only one but a list of them can be
defined. By default, the mentioned target or maximum rate is 0, which means
that all the packets will go through without applying a specific action. Let’s see
now the different fields of a meter band:

● The Band Type is an optional field and defines the action taken for this
packet. The most common practice is to drop the packet when it reaches
the target rate, though more complex traffic classification can be applied
by changing the Differentiated Services Code Point (DSCP) value [5].
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● The Rate defines the target rate value for that band or, in other words,
the lowest rate at which the band will apply.

● The Burst adds more granularity to the band, in the sense that apart
from setting a rate it can also be set a length of the packet.

● The Counters serve as the statistics for the bands, with all the values
updated every time a packet is processed by a band.

● Finally, the Type Specific Arguments field specifies extra arguments for
other band types.

1.2.4. OpenFlow Channels

To conclude this chapter, we will define what is an OpenFlow channel and the
different messages exchanged through them. This channel is an interface
connecting the OpenFlow switch with the controller, and is where all the
messages are exchanged, namely configuration, management, events, data,
and so on. There are three types of messages:

● The Controller-to-Switch are the ones initiated by the controller and not
always conveys a response back from the switch. As an example, in
these messages the controller may request all the available features of a
specific switch (Features in Fig 1.9), or send a packet containing the list
of actions to be executed (Packet-out in Fig 1.9), among many others.

● The Asynchronous messages are not requested to be sent by the
controller. Is the switch who decides to send these packets to inform the
controller about the removal of a flow entry (Flow-removed from Fig 1.9),
or to inform about a change on a port.

● Lastly, the Symmetric messages are sent in either direction and without
any request. Some examples can be the message exchanged when a
switch turns on for the first time (Hello in Fig 1.9) or when the switch
wants to inform the controller about a request that went wrong (Error in
Fig 1.9).

Fig. 1.9 Logical representation of the three different OpenFlow channels
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CHAPTER 2. OPEN NETWORK OPERATING SYSTEM

Having already seen the basics of a SDN architecture and the functioning and
behavior of the OpenFlow protocol, now it is time to delve into the controller to
understand the backbone of these types of networks. Every controller needs to
have a proper network programmability and an easy to access but sophisticated
API, through which the application can precisely tell the controller what to do.
Out in the market, if it is true that there are a plethora of controllers, most of
them open source, only a few of them have made a name for themselves and
offer the best possible SDN controller. Namely, NOX [6], POX [7], Floodlight [8],
OpenDaylight [9], ONOS [10], Trema [11], and so on and so forth. For this
project, we have chosen ONOS as our preferred controller given its history and
all its different range of possibilities. Let’s see first a bit of background about this
controller.

2.1. Background

The trajectory of ONOS began in 2012 and its name was coined soon
thereafter, but it was not until 2014 and 2015 that the software actually gained
lots of popularity with AT&T and Linux Foundation joining the project. The
reasons to choose this controller instead of the others aforementioned are
varied but could be abridged in three criteria: firstly, due to its popularity and
large adoption all the information is quite detailed and there are many forums to
solve all kinds of doubts [12]; secondly, it is a controller specifically designed to
be performant, providing all the necessary tools to support many devices in
huge networks all with a great Graphical User Interface (GUI), Command-Line
Interface (CLI) and a complete API; lastly, it is versatile in the sense that it not
only provides and has already installed many different applications to be used,
but it also allows the customers to create their own applications.

When it comes to the versioning, we have installed the version 2.4.0 known as
Uguisu and the software Bazel to build and run ONOS (see Appendix A, section
3 and 4 for more information about the installation). This version was released
in late 2020, so it is already stable enough to be used.

2.2. Architecture

After introducing the ONOS controller and justifying its use for this project, let’s
now describe in detail its architecture. In Fig 2.1, we can see the seven different
tiers that this controller is composed of. If you pay close attention, you will see
that its structure is the same as the one defined for SDN in Fig 1.1, having the
infrastructure, control, and application layers decoupled from one another.
Among the different tiers, let’s define the one that stands out the most and is the
bedrock of the architecture. The Core one contains what ONOS calls
subsystems, and these ones are accessed and controlled through the
NorthBound API, using either the GUI or CLI provided -we will see this
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thoroughly in the next sections of this chapter-. A subsystem is a logical
aggregation of a different set of services, standing out device, host, link,
topology, path, and flow. All of them contain different services composed of
multiple components that are in charge of managing infrastructure devices,
infrastructure links or topologies depending on the subsystem.

Fig. 2.1 ONOS seven-tier architecture

Before taking a look at the different subsystems mentioned above, let’s analyze
in more detail how they are structured. All subsystems belong to one of the
three components defined in the ONOS paradigm, which are the application,
the manager, and the provider (see Fig 2.2 for a visual representation).

● The Application component is the uppermost one and it consumes all
the information sent by the manager component through the NorthBound
API. The list of applications might be endless, from monitoring different
aspects of the network to establishing paths based on different network
data. Moreover, this is where third-party applications will be located,
consuming the API offered by ONOS. For reference, this will be the
component in which our routing application will be located.

● The Manager component is the core one as it gathers the information
sent by providers and presents it to the applications, thus acting as a
bridge. It has four main services:

○ The AdminService, as its name suggests, receives administrative
orders and applies them into the network.

○ The Service is the NorthBound API that applications use to get
information from the network.

○ The ProviderService is the one to keep alive the communication
and exchange messages with the provider.

○ Finally, the ProviderRegistry is responsible for registering and
unregistering in the network the different devices once they are
added, removed or set as inactive.
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● The Provider is the lowest component of ONOS, as protocols and
network elements are already part of the infrastructure layer. Providers
have the responsibility of, on one hand, communicating with the core
subsystems and, on the other hand, communicating with the network
devices via the SBI. It is very important to bear in mind that these three
components shown in Fig 2.2 are from the controller perspective. This
means that the SBI is not using OpenFlow protocol and the provider
component does not make reference to the OpenFlow physical switch.
As we will see in the next subsections, this is always from the controller’s
perspective, and how ONOS maps physical components of the network
to their logic.

Fig. 2.2 Logical representation of the three components in an ONOS subsystem

2.2.1. Application Subsystem

Having seen the architecture of ONOS, now it is time to analyze in detail the
most important subsystems that we will use in the project, starting from the core
one: the application subsystem. It is in charge of delivering and managing the
installation and subsequent initialization of each application in the ONOS
cluster, and, if applicable, delivering these applications to multiple ONOS
instances called clusters. In this project we will only work with one instance but
this proves the power of this controller. As can be seen in Fig 2.3, every
application managed by this subsystem interacts with the northbound API
through the Java programming language or the Representational State Transfer
(REST) interface, having an easy and fast installation. Applications can interact
with the network and tell the controller to create, remove or update network
elements including flows, devices, hosts, links, and so on. Some examples of
different applications are the SDN-IP peering - very useful for treating the
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network as a Border Gateway Protocol (BGP) autonomous system -, video
streaming or IPTV to transmit from one sender to multiple receivers, or a Virtual
Broadband Network Gateway (vBNG) to provide connectivity between a private
host and the Internet. Although there are dozens of applications available, by
default ONOS only has installed the following: hostprovider, drivers,
optical-model, openflow-base, lldprovider, gui2, openflow, and proxyarp. Only
with this set of applications can we perform the basic communication using
Openflow in SDN between two devices in the network.

Fig. 2.3 Interaction of the applications via the NBI and the REST API with the
manager component

To understand in rough outlines how the installation of an application works,
they are built using the Apache Karaf, which is an Open Service Gateway
Initiative (OSGi) container. OSGi significantly reduces complexity of Java
systems and, as it is modularized, the code is easier to develop. The way to
define the package and all the information of our application is by creating an
ONOS Application aRchive file (OAR), which has defined a pom.xml file.

To have a general understanding of what eXtensible Markup Language (XML)
is, let’s explain which software uses XML. First of all, XML is a language that
allows developers to specify information about that application, all following a
human-readable syntax. On the other hand, a custom application created in
ONOS will use Maven, a software intended for managing Java applications.
Therefore, inside the pom.xml file we will define important values such as the
groupId1 to which the application belongs, the artifactId2, the version, and
specific properties of the application such as the name, the title, the Uniform
Resource Locator (URL) if any, etc, as can be seen in Table 2.1.

2 In Maven, an artifact is an element that an application can consume, and is
defined by a groupId, artifactId, version, and packaging.

1 In this case, the group ID is the package of the application. In Java, a package
groups related classes, as a normal folder does in a file directory.
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Table. 2.1 Excerpt of an example pom.xml file for an ONOS application

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">

<modelVersion>4.0.0</modelVersion>

<parent>

<groupId>org.onosproject</groupId>

<artifactId>onos-dependencies</artifactId>

<version>2.4.0</version>

</parent>

<groupId>org.myapp.app</groupId>

<artifactId>myapp</artifactId>

<version>version-number</version>

<packaging>bundle</packaging>

<description>ONOS OSGi bundle archetype</description>

<url>http://onosproject.org</url>

<properties>

<onos.app.name>myapp-name</onos.app.name>

<onos.app.title>myapp-title</onos.app.title>

<onos.app.origin>Sergio Vera-UPC</onos.app.origin>

<onos.app.category>default</onos.app.category>

<onos.app.url>http://onosproject.org</onos.app.url>

</properties>

...

</project>

Finally, and as has been explained in the architecture, thanks that ONOS
applications provide channels and interfaces to run different commands and
perform a set of operations, we can use the REST API to install and activate
them, running the commands onos-app install pox.xml and onos-app activate
<app-name>.

2.2.2. Device Subsystem

Once we have defined what an application subsystem is and how it is integrated
with the controller, we will analyze one of the simplest but more important parts
of the network: the device. As in every software application that is run by a
programming language, it is required to create a mapping or a logical
representation of the physical component we are working with; and in that
regard, ONOS is no different. Fig 2.4 depicts the mapping of the different parts
and aspects of an OF switch to Java classes. As for the “Switch
Representation” in the image, it is not the physical switch but how ONOS
translates it into Java to be able to work with it.
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Fig. 2.4 ONOS representation and adaptation of an OF switch in the context of
the application subsystem

As we can see, ONOS uses three interfaces to define logically what they call a
DeviceElement, which in our project is an OF switch. The term of interface in
programming is an abstraction of an entity from which many objects can inherit
[13].

● The Device interface is the representation of a network infrastructure
device. ONOS supports not only switches but routers, firewalls, fiber
switches, servers, and so on, as supported SDN devices. Each device
has an ID, which is defined as a text and as a Uniform Resource
Identifier (URI). Apart from this, there is extra information that might be
useful for external applications to know, such as the manufacturer,
software and hardware versions, etc.

● The Port interface is the abstraction of a network port. ONOS defines
different types, including copper, fiber, and virtual. In order to relate this
port with its corresponding device, the port has a method that establishes
a linkage with the device. In addition, it stores information like the port
number, the status, and the port speed in Mbps.

● Finally, the MastershipRole interface defines the relationship between
the controller and a particular device. For our project, and all the devices
in the network, this relationship will be of type master, meaning that the
controller instance will be the master to that particular device.
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When it comes to the architecture of the subsystem, the device has defined the
provider, called DeviceProvider, as well as the DeviceEvent, which are like an
internal bridge that ONOS uses to communicate the logical device with the
manager component that contains the listeners, being OpenFlowSwitchListener
and OpenFlowEventListener. The first one listens to OF messages sent by the
physical OpenFlow switch, such as switch and link addition or removal, and
sends this information to the DeviceEvent. On the other hand, the flow event
listener sends the information received to the provider about different open flow
message events, as it is the case for any update regarding the different flow
rules installed or to be installed.

2.2.3. Flow Rule Subsystem

The next subsystem that is very important to comprehend how it works is the
flow rule one, which is responsible for managing the flow rules and installing or
removing them in the corresponding devices. A peculiarity of this subsystem is
that the original flow rules are actually generated first in the controller, and then
the copy of these flow rules is sent to the corresponding devices. They are
installed using the FlowRuleService, as can be seen in Fig 2.5, and they can
only exist in the system in one of the following states:

● PENDING_ADD means that the subsystem has received the request
from the application to install a flow rule via the FlowRuleService but it
has not detected yet any new flow being added to the switch. For this,
the FlowRuleProvider will report any change to the FlowRuleListener.

● ADDED is when the subsystem receives the notification from the
provider that the new flow is already installed in the switch.

● PENDING_REMOVE is the other way around of the PENDING_ADD. In
this case, the service receives a request to remove an already installed
flow entry but the listener has not detected any removal yet.

● The status of the flow is set to REMOVED when the provider notifies the
subsystem about its removal, to soon thereafter remove it definitely from
what ONOS called a store, which manages the inventory of flow rules in
this case.

● Lastly, FAILED points out that something went wrong when adding or
removing a flow rule.
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Fig. 2.5 ONOS representation and adaptation of an OF rule in the context of the
flow rule subsystem

In the above picture we can see the mapping ONOS to represent a flow rule, as
we saw in the previous section for the device. The FlowRule interface
represents the actual flow installed in the device. It is identified by a number
(Flow ID) and is linked to the device through its URI (Device ID). Although we
are only using one application, in case there were flows installed in different
applications, one could get the application ID in which is installed. As we saw in
Fig 1.6 when defining the flow entry, the matching criteria is represented in
ONOS by the TrafficSelector interface and the actions to take by the
TrafficTreatment. The selector sets the input port the packet came from, the
Ethernet destination address, the VLAN ID, among many others. Likewise, the
treatment defines what to do with that packet if it matches the criteria. The list of
options in ONOS is large but it can be dropped, set a VLAN ID, set a new
Ethernet destination address, etc. To see all the possible values to set for the
selector and the treatment please refer to [14] and [15], respectively.

Finally, an external application can obtain all individual flow statistics through
the FlowStatisticService. Thanks to this service, values and counters such as
total bytes sent, total time since this flow was installed, and many others, can be
obtained.
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2.2.4. Topology Subsystem

The way ONOS represents a network is as a directed graph, also known as
digraph, meaning that the edge (link) between devices has a specific direction,
pointing from one vertex (device) to another one. This subsystem is in charge of
listening to any update or change in the network such as a link being
deactivated, and periodically creating a topology graph acting as a picture of the
network at that given moment in time. Apart from this, it is also in charge of
assigning the weights to each link and computing the path given a source and
destination. The logical representation of a network in ONOS is composed of
the following entities: device, port, host, link, edge link, path, and topology. In
section 2.2.2 we have thoroughly analyzed the subsystem for the device and
now we will do the same for the topology. Fig 2.6 depicts the topology
subsystem.

Fig. 2.6 ONOS representation and adaptation of a SDN in the context of the
topology subsystem

As can be seen, the logical representation in ONOS for a device and a link in a
digraph is through the following interfaces:

● The TopologyVertex defines a physical switch, either a source or
destination of a particular link. It just has one value, which is the URI that
identifies that switch.
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● On the other hand, the TopologyEdge defines a physical link. This link is
composed of source and destination connection points. These are an
abstraction of a pair of the element ID, the switch in our case, and its port
number. Besides these values, it is defined the type of the link, namely
direct, indirect, edge, or virtual, and whether it is active or inactive.

As for the architecture of the subsystem, the TopologyProvider is in charge of
recalculating the topology when told so by the controller, and the TopologyEvent
serves as the sender of a topology change. Every time a link is down, or a
switch has been disconnected, the topology will be recalculated and the
provider will notify the controller about these events. Lastly, on the one hand the
TopologyService provides network information, such as the current graph of the
network and the list of clusters, in case there is more than one controller. On the
other hand, the PathService is in charge of computing the path between a
source and a destination. By default, ONOS always returns the list of shortest
paths using Dijkstra, but it also has other routing algorithms like Tarjan [16],
Suurballe [17], KShortest3, and LazyKShortest4.

2.2.5. Group Subsystem

The last subsystem we are going to talk about is the one related to groups. As
we saw in section 1.2.3, groups are ideal when the action to be taken when
flows match the different criteria is shared for different flow rules, among other
purposes. As it is depicted in Fig 2.7, the manager of this subsystem, that
resides in the controller, exposes a service called GroupService, with which
external applications can request the controller to perform different operations
such as adding a group, adding buckets to a specific group, remove a particular
group, and so on and so forth. In this same manager, there are as well the
OpenFlowEventListener and the GroupListener, being the ones in charge of
receiving any event related to groups, including addition, removal, updates,
requests, etc, from real switches in the network by means of the OF protocol.
When it comes to the logical representation in ONOS for a group entry and a
bucket is through the following interfaces:

● The GroupDescription is the representation of a group entry. To begin
with, it has a number that serves as an identifier (Group ID), the switch in
which this entry is installed using the URI, and the application ID in case
there are many applications running at the same time, each using
different flow and group entries. Likewise, ONOS supports the four
different OF groups, separating in this case the all group with another
one called clone, used for duplicating packets independently of the
output decision. The group description can point to multiple group
packets, having a one to many relationship.

4 Is the same algorithm as KShortest but in this case it will only compute the
path until it becomes necessary, if ever.

3 Runs K shortest paths algorithm on a provided directed graph. It will return
paths in ascending order according to the provided EdgeWeight.
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● The GroupBucket interface is the model for an OF bucket and, ONOS,
among other values, defines the type, the weight, and the traffic
treatment. In that regard, the treatment used is the same one defined in
section 2.2.3, with a decision to be taken based on a matching criteria.

Fig. 2.7 ONOS representation and adaptation of an OF group in the context of
the group subsystem
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CHAPTER 3. DESIGN AND IMPLEMENTATION OF A
ROUTING APPLICATION IN ONOS

In the first two chapters we have seen what OpenFlow is, why we have chosen
ONOS as the preferred controller for this project and how it works. In this third
chapter, we will cover the installation of our custom application, the different
classes and components there are, as well as the first steps when it comes to
routing packets with tools such as Grafana, JPerf, and Mininet, among others,
laying on the table the limitations of traditional routing algorithms. Our
application will be in charge of routing the packets that want to enter the
network. Initially, this application will use the same routing algorithm as the
already existing one named fwd. After analyzing the behavior in a simple
topology, we will adapt the link weights so the routing algorithm selects the path
depending on the occupancy of the links. Finally, both results will be compared
and we will propose the use of RL to allocate traffic taking into account the
future impact.

3.1. Creation, installation, and deployment of our custom
application

Before the creation and subsequent installation of our application, first is
needed to install the ONOS controller in our machine with all the necessary
tools and extensions. As this process is very long and cumbersome, it is
explained thoroughly step by step in Appendix A. What we will see in section
3.3 onwards has been built upon the already existing fwd application. This
application is of type reactive, meaning that it only reacts when a packet is sent
to the controller. After this initial installation process of ONOS, we will just need
to load our routing application into the ONOS controller, which will be named
routing-app.

During the process, it will be necessary to specify the groupId and the artifactId
of the application, which basically defines the package and the application
name respectively, as we previously saw in Table 2.1. Accessing the ONOS CLI
using the IP address of our local ONOS instance, running the command onos
192.168.99.1065 in the $ONOS_ROOT directory, ~/onos in our case, will allow
us to show all the activated applications (see Fig 3.1).

Apart from this, to make sure that the application is running we can take a look
at the logs on the terminal running ONOS (see Fig 3.2). Table 3.1 shows the
commands that we will execute in order to generate the necessary “.oar” bundle
to install the application:

5 This IP address might be different depending on the environment where
ONOS is run, since this can be defined by the user in the ONOS configuration.
By default, we have decided to use a localhost address.
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Table. 3.1 Commands to generate the .oar bundle to install the application

$ cd ~
$ cd onos/apps
$ mvn archetype:generate -DarchetypeGroupId=org.onosproject
-DarchetypeArtifactId=onos-bundle-archetype -DarchetypeVersion=2.4.0

- groupId: org.routing.app
- artifactId: routing-app

$ cd routing-app
$ nano pom.xml

- Uncomment the properties tag in order to generate the corresponding
ONOS application and give it a brief description modifying the
description tag. Besides that, add the necessary dependencies to run
(Table C.1 of Appendix C)

Next, there is a list of commands to use depending on what we want to execute.
Since we use Maven, all these commands have to be executed in the
$ONOS_ROOT/apps/routing-app directory, where the pom.xml file is located:

● mvn clean install→ Build the application using Maven
● onos-app 192.168.99.106 install!

target/routing-app-1.0-SNAPSHOT.oar → Install and activate the
application using as a target the .oar file of this application. If we were to
make some changes and we would need to install the application again,
use reinstall! instead.

Fig. 3.1 List of installed and activated ONOS applications
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Fig. 3.2 Logs in the terminal window running ONOS

3.2. Architecture of the routing-app application

Having explained thoroughly how ONOS behaves and which are its main parts,
now we will see in detail all the necessary files to run the environment of this
project, although in this section we will focus mainly on the different Java
classes that are used in the routing-app application. First things first, to give a
general perspective about how the project folders and files are organized, Fig
3.3 depicts a portion of the directory structure for this application. Nonetheless,
although they are present, some folders and files have been omitted just to
simplify the representation, but in subsequent sections we will also see the
network topologies and the different scripts to interpret and visualize the results.

Fig. 3.3 Directory structure of our custom application routing-app
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To begin with, as we saw in section 2.2.1, every custom application in ONOS
has a set of configuration and definition files of which, in our case, we will only
modify the pom.xml. This file is of type XML and is the place where, apart from
defining the different information of our application, it will allow us to specify and
install afterwards different dependencies we might need in our application. To
name but a few, ONOS API artifacts such as the different components for
services, different core serializers, the CLI seen in section 2.3.2, and
non-related ONOS artifacts. To see the file completely please refer to Table C.1
of Appendix C.

Continuing with the structure, as can be seen in Fig 3.3, even though there are
six classes inside the /app folder, in our application only ReactiveForwarding will
be modified in section 3.3 and the remaining of the project, being the main file
and the core logic. The ReactiveForwarding class defines the complete logic
of our application, being in charge of processing the incoming packets, the flow
rule, topology, and group changes, as well as monitoring if any link exceeds. As
its name suggests, reactive forwarding means that our application will only act
upon traffic sent from one host to another, thus configuring the devices
accordingly with the necessary flow rules to properly forward this traffic.

Once we have seen the different classes of our application, it is very important
to understand another class that we will modify and will have a great impact on
our application. It is the one in charge of assigning the weights to each link of
the network based on our criteria. We can find this class under
core/api/src/main/java/org/onosproject/net/topology called CustomLinkWeight,
as shown in Fig 3.4. ONOS offers the possibility to decide the weight of a link
based on different criteria. Be it the geographic distance between link vertices
determined by the latitude and longitude thereof, by the number of hops
between a source and a destination, and by the link metric annotation, which
can be set to a fixed value when defining the network. Finally, the
CustomLinkWeight class gives the creators and managers of the application
complete freedom when it comes to the criteria to determine the link weight.
This is the class that we will modify in our application as we will see in the
coming sections.

By default, the Dijkstra routing algorithm used in fwd application assigns a
weight of one to all the links in the network. Since it has reactive behavior, when
asking the controller this will only tell the switch where to forward the packet.
The next switch will receive this packet and will ask the controller where to send
the packet to get to the destination, and so on and so forth until the packet
reaches the last switch immediately connected to the destination host.
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Fig. 3.4 Directory structure of the topology core folder

3.2.1. Complementary tools

Apart from the architecture strictly related to ONOS core files and its belonging
API, there are also other indispensable files and tools we have used in order to
configure all our environment, to generate traffic, and to see the results. These
tools are grouped in three different types.

3.2.1.1. Monitoring tools

Every time we generate new traffic between hosts, we will need to use tools in
order to monitor the desired parameters, including the storage and the
visualization. On the one hand, we will use InfluxDB as the open-source
time-series database to store all the measurements and its values. On the other
hand, we will use Grafana as the open-source platform for monitoring and
observability. Inside the Grafana folder we will have different dashboards for our
switches, as well as a Python file called collector.py, which is in charge of
permanently requesting data to ONOS and collecting it so as to store it using
InfluxDB. For more information about the installation process of these tools and
the detail of files, please refer to the Appendix B and Appendix C.2.
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3.2.1.2. Network topology tools

To configure all the switches, links, and hosts for our topologies, we will use
Mininet. This tool is very powerful and easy to use, as it creates a realistic
virtual network on a machine (either virtual, native or in the cloud). In summary,
the python scripts under mininet/topologies folder are in charge of defining the
network in Mininet and upload it to ONOS using the API. To see thoroughly the
installation process of this tool, please refer to Appendix A.5 and Appendix A.6,
and to see how the different files are developed, refer to Appendix C.1.

3.2.1.3. Traffic generation tools

The last group of these tools makes reference to the files and the software
required to generate traffic between hosts. In this project we have made use of
ping, which is a software utility that sends Internet Control Message Protocol
(ICMP) packet requests and the receiver sends back packet replies. Likewise,
another tool is iPerf, with its GUI called JPerf, that sends either TCP or User
Datagram Protocol (UDP) packets to a destination device. Lastly, we have
made use of MGEN, a very powerful tool to send TCP and UDP traffic defining
intervals of time, speeds, traffic distribution patterns, and many other options.
The installation of these tools and all its files is detailed in Appendix A.7.3 and
Appendix C.3.

3.3. Results using Dijkstra as implemented in ONOS

Having seen all the configuration of the custom application and the most striking
aspects of its architecture, now it is time to explain thoroughly how the
application behaves and, therefore, the results obtained when using Dijkstra
with the weight of links set to one by default.

3.3.1. Flowcharts of each component of the application

First of all, we will give a clear and detailed explanation about the main parts of
the application as well as how they behave as a whole. As depicted in Fig. 3.5,
the ReactiveForwarding Java class, by default, has four well-differentiated
threads that work in parallel, each of them executing a different set of actions
every time they receive an event. Nevertheless, even though the main threads
are kept intact, in some parts, we have optimized the way flows are installed
once a path by ONOS is found. The purpose of doing this is avoiding every
device of the established path to ask the controller the flow rules it needs to
install in order to route the incoming packet. We will see in the next section why
we have tweaked this behavior. Furthermore, we have added the possibility to
handle device, link, and topology events. Bear in mind that in every diagram of
this section, the new added parts are highlighted in blue, for a better
differentiation.
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Fig. 3.5 UML diagram of the different threads of the ReactiveForwarding Java
class using Dijkstra as implemented in ONOS

3.3.1.1. Packet processing

Before all else, we will begin by explaining what actions are taken by the
ReactivePacketProcessor class -the main thread in Fig 3.5- when the
controller receives a packet. Bear in mind that this class is inside the parent one
called ReactiveForwarding. Fig 3.6 depicts clearly how this class reacts to this
event.
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Fig. 3.6 Flowchart of the processing of the packets using Dijkstra as
implemented in ONOS

Due to the fact that we are not interested in processing control packets or the
ones of type LLDP (first diamond figure in Fig. 3.6), this class will only process
those that are intended to send traffic along the network. To understand why is
checked whether there is any forwarding objective (second diamond figure)
-name given in ONOS to the class in charge of installing the flow rule- pending
to be added or removed, it is essential to recall how the default forwarding
application -named fwd- works. When a device receives a packet and does not
know what to do with it, it asks the controller. Then, the controller finds the
shortest path and installs the flow rule. This is repeated by every device until
this packet reaches the destination. If applicable, the process will be repeated
for the reverse path. To avoid finding a different way back only the packets sent
by the source device will be taken into account.

Having explained this, let’s see what actions are taken when the packet fails to
meet the first two criteria (first two diamond figures). The most straightforward
situation occurs when the destination host is connected to the same device as
the source host. Given that it is not required to find a path, the required flow
rules will be installed directly. On the contrary, if the flow is new -is not pending
to be installed or removed- the topology service of ONOS will get all the
possible shortest paths between that source and destination. By default, the
path administrator service uses the DijkstraGraphSearch, which has a mapping
of the network as a graph and calculates the path with the Dijkstra algorithm.
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Finally, when a path has been found, all flow rules and groups are installed. The
method in charge of installing the bidirectional flow rules is used for each device
that makes up the found path for a specific flow6. A total of four different “device
situations” are dealt with (in the “Install bidirectional flow rules in that device”
box), including when the device is the source, when the device is directly
connected with the destination host, when the device is an intermediate one,
and when the device is the destination. Apart from this, as flows need to be
distinguished when going through a link so as to know precisely the rate of each
of them, a group has been for every flow rule installed in a device using a hash
for the group identifier. This hash is derived from two inputs, being these the
source and destination MAC addresses of the hosts.

To have this control of which packets going through the link belongs to which
flow, the action of every flow rule will have the group identifier to which it points,
instead of having the output number directly. This group will be of indirect type
-the simplest one, as we saw in section 1.2.3- since it reduces considerably the
memory usage and, more importantly, because no extra action has to be taken,
just outputting the packet through the specified port.

3.3.1.2. Topology listener

The class that is covered in this section is a thread that is always running
listening to a plethora of topology events. Even though only two of them are
really important for the purpose and scope of this project, they play an important
role when it comes to managing flow rules and groups when there is any
change in the topology. Fig. 3.7 depicts in detail the following process.

Fig. 3.7 Flowchart of the topology listener using Dijkstra as implemented in
ONOS

6 From now on, in order to see the details of the code in Java, please refer to
the Github repository https://github.com/SergiVera/onos, and select the main
branch. There you will find all the files and classes mentioned in these chapters.

https://github.com/SergiVera/onos
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When the InternalTopologyListener class, which is inside as well of the
ReactiveForwarding Java class, receives a topology event, the method checks
whether it is a device event, meaning that there has been a change in one of
the devices that forms the network, or a link event, received when any of the
links has undergone any modification. Regarding the first event, in case a
device is removed from the topology, all flows installed in this device having
GROUP as the action, as well as all the belonging groups of this flow will be
removed. In relation to the latter event, if a link is removed all flow rules and
groups of the flows going through this link will be removed from all the devices,
as it is taken for granted that the old path will no longer be valid. The main
reason to delete the flow rules manually instead of waiting for the flow timeout
to be consumed, is to accelerate the process of finding a new path, considering
the few seconds it might take to install all the flow rules.

3.3.1.3. Flow rule listener

Similar to the previous section, this thread defines the second out of the three
listeners present in the ReativeForwaring Java class. The
InternalFlowRuleListener class takes different actions based on whether a
flow rule has been added or removed, as depicted in Fig 3.8.

Fig. 3.8 Flowchart of the flow rule listener using Dijkstra as implemented in
ONOS

When the main class receives a flow rule event, it processes the type of the
event. On the one hand, if a flow rule has been added to a device, this
forwarding objective will be removed from the HashMap7 of flows being

7 In Java, a HashMap is the representation of a hash table, which stores a list of
key-value pairs.
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processed and from the list of flows pending to be added. As we have briefly
mentioned in section 3.3.1.2, the application might spend a few seconds to find
a new path and install all the flow rules. This means that when sending a new
flow from a device that is already a source for another flow, our application due
to its functioning will cause ONOS to stop counting the bytes received in an
interface of a device. This count will not be resumed until the new path is
established. Due to the fact that ONOS updates the port statistics every poll
interval of 5 seconds, using the DefaultLoad Java class, it will be necessary to
store the time taken by our application so it can be used as the interval the first
time this rate at the interface is calculated. In this way, a value multiple times
greater than expected is avoided.

On the other hand, if a flow rule has been removed, the group associated with it
will also be deleted. The way to derive the group key -necessary to delete the
group- from the group identifier is by hashing again the source and destination
MAC addresses of the flow that belonged to. As we saw in section 3.3.1.1,
every time a new flow enters the network, the pair of MAC addresses are
hashed. The reason behind is due to how the hash algorithm is implemented.
Since it is not possible to get the input given a digest (output), the only way we
have to get the group key is by hashing again the pair of addresses of the rule
that needs to be removed.

3.3.1.4. Group listener

The last of the three listeners located in the main class of our application is the
simplest of the three, but no less important, and the inner class is given the
name InternalGroupListener. This class only processes one type of group
event, which is the removal of a group. When it is removed, it will also be
removed from the HashMap of pending groups to be removed. Bear in mind
that this data structure in conjunction with the flow rules pending to be added
and to be removed, develop an important role when deciding which flows to
process and which ones not. Fig 3.9 depicts the process followed by this
listener.

Fig. 3.9 Flowchart of the group listener using Dijkstra as implemented in ONOS
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3.3.1.5. CustomLinkWeight Java class

Last but not least, this class that we are going to explain is, undoubtedly, one of
the most important. This class is already in the core folder along with the other
classes in charge of defining the weighting logic -MetricLinkWeight,
HopCountLinkWeigher, and GeoDistanceLinkWeigher, as we saw in section
3.2.- Every time a new path is requested, the default graph path search
algorithm used will be Dijkstra and the class in charge of giving the weight
values of the links to the DijkstraGraphSearch class will be the
CustomLinkWeight. These two classes are set at the initialisation of the
ReactivePacketProcessor inner class, and we will use the topology service.
Dijkstra will request the cost of as many links as needed to find the desired
path, replicating the implementation of the algorithm. It is worth mentioning that
the behavior of the routing algorithm is not being changed when it comes to the
weights assigned in comparison to the default implementation. We are adding
this manually since we have modified the way flow rules are installed, as we
have seen in section 3.3.1.1. This change in the installation process makes us
adapt the CustomLinkWeight class.

The potential of this class is that weights of the different links can be modified to
meet our requirements, so the algorithm will not always find the shortest path.
For now, the behavior of the class is the default one, but in next sections we will
change it. In this case, there are two situations in which the value of the weights
is chosen in a different way, as depicted in Fig 3.10:

Fig. 3.10 Flowchart of the link weight decision in the CustomLinkWeight class
using Dijkstra as implemented in ONOS

To start with, if the link is not valid, meaning that is erroneous or does not exist,
the assigned value will be infinite -the maximum possible value held by the
Java Double class, which is big enough-. Likewise, if the link is valid but the
device does not belong to either vertex of the link, the weight set will be 3.
Lastly, if both criteria are met (diamond figures in Fig 3.10), the assigned weight
will be the lowest possible, being 1.
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3.3.2. Experimental results

Having seen all the components of the application, now we will analyze the
results obtained with a specific network topology to see which paths are chosen
when the Dijkstra algorithm with default weights by ONOS is used. Fig 3.11
depicts the representation of the network using the GUI provided by the
controller’s software. As can be observed, the network has a total of seven
switches, eight bidirectional links, and ten hosts. As far as hosts are
concerned, these are connected to the switches S1 and S7, with five in each
switch. The topology has been generated running a network configuration file in
Python using the Mininet software (for more details about its implementation,
please refer to Appendix C.1.1).

Fig. 3.11 Visualization in ONOS GUI of the topology used for the experimental
results for Dijkstra as implemented in ONOS and the implementation using a

custom routing based on link occupancies

To get the results for this first approach using Dijkstra as implemented by
ONOS, we have used two different traffic generator tools, being the iPerf and
MGEN, respectively. With regards to the visualization of the data, as we saw in
section 3.2.1.1, we have made use of InfluxDB to store the data and Grafana to
visualize it across the different links and devices of the network. All in all, it is
important to mention that the type of flows generated with MGEN and iPerf are
exactly the same, although we have used iPerf as well to depict better the BW
allocated for each flow. When it comes to the BW of the links, we have decided
to work with links of 1 Mbps for all our scenarios from this point onwards, given
the limitations we encountered when generating flows. When working with tools
such as Mininet, the hosts are not able to handle Gbps and thus we had to
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transmit less data. Nevertheless, since what we want is to exhibit the behavior
of the algorithms in a particular scenario, the fact of working with Mbps does not
modify it whatsoever.

Having said that, for this scenario we have generated three different flows of
type UDP of 1 Mbps each, between the hosts h1-h6, h2-h7, and h3-h8, stepped
one after another. The reason to generate UDP traffic instead of TCP is to avoid
the control mechanisms, in terms of congestion, present in this protocol, as well
as traffic sent by the receiver in terms of ACKs to acknowledge the packet has
been received properly, as our main focus is only in analyzing how the routing is
decided when sending packets only from a source to a given destination. If it is
true that MGEN can generate many types of different flows, the sender will start
with a periodic pattern at a fixed packet size and rate. At the same time, the
receiver will listen for UDP messages at ports 5000-5001. To see the
commands to generate the flows, please refer to appendix C.3.1. Table 3.2
exhibits the results obtained when transmitting the three different flows. In this
case, the overall results are stored in a text file for every traffic generated
between a source and a destination. Nevertheless, the output is not parsed and
the QoS parameters that are shown in Table 3.2 are obtained with a parser that
we have created for that purpose (for more information about this file, please
refer to Appendix C.3). As we can see, the obtained results in terms of
throughput8 are cut to one third of the transmission speed, and we also get
extra parameters such as the average latency, the loss rate, and the jitter. When
it comes to the latency, the value is high (between 1 and 2 seconds) because
the packets are waiting in the queue of the switch to be transmitted, due to the
fact that we are trying to transmit a total of 3 Mbps in a path that only has links
that support 1 Mbps.

Table. 3.2 QoS parameters obtained using Dijkstra as implemented in ONOS9

Flow h1-h6 Flow h2-h7 Flow h3-h8

Average
throughput (Mbps) 0.37 0.34 0.37

Average latency
(ms) 1,851 2,153 1,967

Loss rate (%) 0 0 0

Jitter (ms) 2.82 3.94 2.42

9 From this table onwards, the punctuation of all numerical results is done using
the American notation. Dots to separate numbers and partial numbers, and
commas to separate thousands.

8 The throughput, unlike BW, only takes into account the data that has been
transmitted successfully. BW does not care about unsuccessful packets.
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When it comes to the results seen in iPerf, we can observe in Fig 3.12 that, for
the first ten seconds, the Bandwidth (BW)10 of the traffic sent between h1 and
h6 is of 1 Mbps, meaning that the link still has its full capacity. Nonetheless,
when a second flow of data is generated between h2 and h7 (second 10 in Fig
3.12), we observe that the BW is cut in half. Likewise, when a third flow is
generated between h3 and h8, as can be seen in Fig 3.12 (second 20) the BW
is cut to a third part of the original 1 Mbps, happening the same for the other
two flows, giving a BW of 333 Kbps, on average, when the three flows are
being transmitted at the same time. In order to understand why we have
obtained these results, we need to analyze what Grafana has captured in the
different links and devices.

Fig 3.12 BW representation from the perspective of h6 depicted in jPerf using
Dijkstra as implemented in ONOS

When the first packet of the flow h1-h8 arrives at the switch, this asks the
controller as it does not know what to do with it. The controller, as we saw in
section 3.3.1.1, will ask the TopologyService to find the shortest path using
Dijkstra. As it is implemented by default, all the link weights will be one and the
number of shortest possible paths will be S1-S2-S7 and S1-S3-S7 in either
order. In these situations, when having multiple paths with the same total cost,
the topology service will always return the first of the obtained possibilities in the
list. It is important to mention that this is not a bad behavior of Dijkstra but
about how ONOS logic is implemented. As a result, the 100% of the data traffic
will be routed through S3, using the path S1-S3-S7, being this the reason why
we see the BW in iPerf cut in one third. On the contrary, the links S1-S2 and
S1-S4 do not see any traffic going through them, in either direction. To see
these results in Grafana, please refer to section C.2.

One last aspect to remark on is how the flow rules are installed in the different
devices, in percentage terms (Fig 3.13). ONOS, by default, installs in each
device four basic rules: one for BDDP11, ARP, LLDP, and IPv4. On top of these
four rules, the devices that forward the data to one of its neighbors will install
two more rules per flow - one for the outbound flow and another for the inbound
flow. Since there are a total of three flows being transmitted simultaneously,
there will be ten flows in S1, S3, and S7. As you can see, not only the QoS in

11 The BDDP ethertype is defined by ONOS with the hexadecimal 0x8942 and it
uses the same representation as for an LLDP packet.

10 In networking, the bandwidth is the maximum capacity to transmit data in a
given amount of time, typically one second.
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terms of BW is being affected, but the workload these switches need to stand is
far greater than the others, and it is needless to say that is not balanced among
the different devices.

Fig. 3.13 Percentage of flows installed per switch over the total using Dijkstra
as implemented in ONOS

3.4. Results using a custom routing based on link occupancies

Having seen the results provided by default by ONOS, using Dijkstra with the
default link weights set to one, the network results obtained in terms of QoS are
very poor, as packets will always choose the shortest path and if they match,
always get the first one in the list. Given this, we will implement a variation to
the routing algorithm, assigning the weight depending on the occupancy of the
link to then find the shortest path still using Dijkstra. Apart from this, we will also
add a control access mechanism to ban from entering the network those flows
that cause the link occupancy to go beyond the theoretical bandwidth limit. All
together with the objective of improving the QoS.

3.4.1. Flowcharts of each component of the application

As opposed to, now our ReactiveForwarding Java class will have a total of five
well-differentiated threads working in parallel, as shown in Fig 3.14, being the
InternalGroupCheckerThread the new one in charge of managing the access
control to the network. Let’s see in detail how the different threads have
changed in comparison to the previous implementation12 in order to implement
the control mechanism logic along with the change in the weight of links.

12 The threads that are not explained have not suffered any change with respect
to the previous section 3.3.
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Fig. 3.14 UML diagram of the different threads of the ReactiveForwarding Java
class using a custom routing based on link occupancies

3.4.1.1. Packet processing

As depicted in Fig 3.15, apart from not being interested in control packets or the
ones of type LLDP, as well as assessing whether there is any forwarding
objective pending to be added or removed, we will now also check if a packet
belongs to a banned flow, which means that it will not have the right to enter the
network. Since we are now granting or rejecting access to flows, we will need to
assess if the packet we have just received belongs to a flow to be reallocated in
the network. If so, we will inform the class in charge of managing the weights
(CustomLinkWeight) about it. Otherwise, we will find the shortest path with the
current link weight configuration.
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Fig. 3.15 Flowchart of the processing of the packets using a custom routing
based on link occupancies

3.4.1.2. Links exceeding group checker

Once the path has been established, it is of extreme importance to oversee all
the links of the network, especially the ones constructing the paths, to check
whether they exceed its capacity or not. For this reason, in addition to what we
had in section 3.3, a schedule thread that is executed every 5 seconds has
been created. The Fig 3.16 shows this procedure:
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Fig. 3.16 Flowchart of the links exceeding group checker using a custom
routing based on link occupancies

In order to keep track of the different flows that go through a link, it will be
needed to assign the data rates detected at each port -defined in ONOS as
ConnectPoint-. Prior to the assignment of these rates, a simple weighted
moving average of window size equal to 4 will be applied to the obtained value.
The main reason to use this window is to minimize the impact of possible
fluctuations that occur from time to time, which have been detected during the
coding and testing of this project. The formula used for deciding the rate is as
follows:

𝑅𝑎𝑡𝑒 = 𝑖=0

𝑁

∑ 𝑅𝑎𝑡𝑒
𝑖
·(𝑁−1)

2·𝑁·(𝑁+1) ,  𝑤ℎ𝑒𝑟𝑒 𝑁 = 𝑤𝑖𝑛𝑑𝑜𝑤 𝑠𝑖𝑧𝑒 (C. 1)

Once the average weighted rate has been calculated, it is assigned to the group
that they belong to. The structure used to store them is a double HashMap,
more precisely in java notation: HashMap<ConnectPoint, HashMap<GroupId,
Long>>. Then, when updating the values, the rate detected at the source port
-the one directly connected to the host- and at the destination port will be
mirrored along the ports for that path, as depicted in Fig. 3.17. It is important to
point out that this in conjunction with the group identifiers is the only way we
found in ONOS to distinguish flows when they enter the network.
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Fig. 3.17 Data rate mirroring along the established path between h1 and h2

Once each of the rates is calculated, it is time to check whether the detected
rate exceeds the maximum capacity of that link. If so, a double HashMap with
the information of the flows going through this link is drawn up. Firstly, among
the exceeding links, it is tried to reallocate in the network the flow with the
lowest rate. The reason to move the lowest one is to evade the situation where
the link that is causing the problem is the highest one. In that scenario we would
be moving the problem along all possible alternative paths, with all that this
implies in terms of resources and time. The way of achieving these alternative
paths is by modifying the links manually, telling CustomLinkWeight to update
them.

As shown in Fig. 3.16, if the link fits in another path the process is
unambiguous; all flow rules and groups associated with this flow are uninstalled,
and the link weights are configured in such a way that when using Dijkstra
again, the chosen path is the desired one. Conversely, if the flow does not have
a possible alternative path, it is removed from the HashMap of exceeding links
as well as all the flows having the same source and destination device, drawing
from the premise that the same alternative paths will be found again albeit being
a different flow. Next, this process is repeated again but this time with the flow
with the second lowest rate, hence repeating this process until all flows going
through the exceeding links have been checked. If, at its conclusion, no
alternative path has been found, the associated flow rules and groups of the
most recent flow -the last that entered the network- will be removed. Lastly, the
latter will be banned from entering the network.
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3.4.1.3. Topology listener

For this section, since now there is a thread that checks the exceeding links,
this listener will have to be updated as well. In addition to all previously seen in
section 3.3.1.2, now when a link is removed it will also be removed from the
HashMap that monitors the exceeding links. On the contrary, when a link is
added to the network, it will be needed to add it in the HashMap to monitor the
exceeding links. The diagram of Fig 3.18 depicts this new implementation:

Fig. 3.18 Flowchart of the topology listener using a custom routing based on
link occupancies

3.4.1.4. Flow rule listener

When it comes to the listener of flow rules, for this implementation when the
flow rules has been added to a device, apart from removing the forwarding
objective from the HashMap of flows being processed and pending to be added,
if this flow rule belongs to a flow pending to be reallocated -meaning that it had
previously exceeded a link and has been moved-, CustomLinkWeight will be
notified so it updates the weights accordingly (we will see it in the next section).
On the other hand, if a flow rule has been removed, in addition to deleting the
group associated with it (as we saw in section 3.3.1.4), it will also be checked if
there is any banned flow. In case it is, in order to let it enter the network again, it
will need to match these two criteria:

● The flow rule removed belonged to a flow whose source and destination
device were the same as theirs.

● The flow rule removed did not belong to the banned flow itself.

Taking this process into account, Fig 3.19 illustrates this new implementation for
this listener:
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Fig. 3.19 Flowchart of the flow rule listener using a custom routing based on link
occupancies

3.4.1.5. CustomLinkWeight Java class

The last class we are going to analyze in this section is the CustomLinkWeight.
Unlike in section 3.3.1.5 that there was not any flow control access nor a
continuous monitoring of the capacity of the links, the weights of the links have
changed noticeably as depicted in Fig 3.20.

To start with, if the link is erroneous or does not exist, the assigned value is
infinite -the maximum possible value held by the java Double class, which is
big enough-. Assuming the link is valid, if there is not any pending flow to be
reallocated, the values are taken based on the current configuration. When
explaining the Packet processing section we saw how the main class talks with
the CustomLinkWeight class to specify the weights (see Fig 3.15). In this case,
the weight of the link is set based on the following criteria: if the occupancy is up
to 50% (included), the weight assigned is one; if the occupancy is greater than
50% and up to 90% (included), the weight assigned is two; finally, for
occupancies greater than 90%, the weight is three. On the contrary, if there are
flows pending to be reallocated, and the requested link by DijkstraGraphSearch
is exceeding its capacity, the value set will be the maximum viable number,
which is 32767. Finally, in the scenario where there are flows to be reallocated
and the requested link is not exceeding its capacity, the assigned weight will be
one. As can be seen, the logic added with respect to the previous
implementation is not that difficult, though it is true that now there are more
parameters to take into account.
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Fig. 3.20 Flowchart of the link weight decision in the CustomLinkWeight class
using a custom routing based on link occupancies

3.4.2. Experimental results

Having seen all the components of the adapted application, now we will analyze
the results obtained with the same network topology as in section 3.3.2, with
exactly the same configuration of switches, links, and hosts. This means that
the flows generated will be the same ones, with the same source and
destination and the same rate. The difference now is that we should observe a
difference when it comes to the MGEN parameters, as we are making decisions
based on the occupancy of the links. As before, we will generate the flows using
two different tools but iPerf will only be for BW depiction reasons.

For the results using MGEN, Table 3.3 exhibits the results obtained when
transmitting the three different flows using the same parser explained in
Appendix C.3. As can be observed, the obtained results in terms of throughput
are, on average, 900 Kbps for each transmission. When it comes to the latency,
in this scenario the value has been dramatically reduced because the packets
now are not waiting in the queue of the switch to be transmitted. We are not
trying to transmit a total of 3 Mbps distributed in three paths of 1 Mbps each.
Furthermore, it is worth-knowing that the residual loss rate we see in each of
these transmissions is due to the fact that now the time taken to find the path
using Dijkstra given these conditions takes some more milliseconds. As we saw
when explaining the packet processing workflow, the incoming packets are not
treated when we are looking for a new path, and MGEN counts them as a loss
as they have not been received.
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Table. 3.3 QoS parameters obtained using a custom routing based on link
occupancies

Flow h1-h6 Flow h2-h7 Flow h3-h8

Average throughput
(Mbps) 0.90 0.90 0.90

Average latency
(ms) 17.68 2.43 18.48

Loss rate (%) 0.07 0.04 0.08

Jitter (ms) 0.07 0.04 0.02

When it comes to the results seen in iPerf, we can observe in Fig 3.21 that, for
the first ten seconds, the BW of the traffic sent between h1 and h6 is of 1 Mbps
(the maximum possible as the links are of 1 Mb). However, and this is the first
striking difference that we observe at first sight, in this case we introduce a
second flow of data between h2 and h7, at second 10 in Fig 3.21 we do not see
any decrease in the BW at all. As a matter of fact, we observe that it
continuously is the same all the time, meaning that the addition into the network
of the next two flows, did not have any impact on the first one. Similarly, if we
take a look at Appendix C.2.2 to see the links in Grafana, we will see that the
BW of the flows is constant throughout the time. Hence, on average, the BW is
of 1 Mbps when the three flows are being transmitted at the same time. So as
to understand why we have obtained this improvement in the results, we need
to analyze what Grafana has captured in the different links and devices.

Fig. 3.21 BW representation from the perspective of h6 depicted in jPerf using a
custom routing based on link occupancies

When the first packet of the flow h1-h8 arrives at the switch, this will do the
same as with the default implementation, which is to ask the controller what to
do with it. The controller will find the shortest possible path taking into account
now the occupancy of the links, which at the beginning is zero, so the chosen
path will be S1-S3-S7. Once the second flow wants to enter the network, the
links S1-S3 and S3-S7 that are fully occupied, will get a weight of three each, so
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now we make sure that this path is not chosen again while the first flow is being
transmitted. Based on the total cost of the remaining paths,
DijkstraGraphPathSearch will now choose the path S1-S2-S7. Finally, when the
third flow wants to enter the network, both paths will now have a total cost of
six, as the occupancies are almost 100%. Therefore, even though the cost of
the remaining path S1-S4-S5-S6-S7 has a cost of four and it implies a total of
three hops instead of two, we avoid losing BW.

One last aspect to emphasize is the installation of the different flow entries
across the devices. Unlike in the default implementation using Dijkstra with
always weights of value one, now we observe that the flows are distributed
better and there are flow rules installed in each device, reducing the workload in
the devices (see Fig 3.22). As an example, the switches carrying the most
installed flows only have 20% of the total installed in the network, in contrast to
the 22% we observed in Fig 3.13.

Fig 3.22 Percentage of flows installed per switch over the total using a custom
routing based on link occupancies

3.5. Comparison results between both implementations

Having seen the results for the Dijkstra algorithm with default weights by ONOS
and for the weights modified based on link occupancies, this section shows the
final comparison, at a glance, between both. For it, we have decided to take
only the results for MGEN, primarily because it provides us far more information
than iPerf, and also because throughput takes into account lost packets, those
that have not been received by the destination host. As can be seen in Table
3.4, after implementing the weight of the links in the network based on the link
occupancy, the results are noticeably better, especially when it comes to
throughput and latency. The flows transmitted between hosts are of 1 Mbps, as
we have done for sections 3.3.2 and 3.4.2.
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Table. 3.4 Comparison of the QoS parameters obtained using Dijkstra as
implemented in ONOS and using a custom routing based on link occupancies

Routing implementation using
default weights

Routing implementation based
on link occupancies

Flow
h1-h6

Flow
h2-h7

Flow
h3-h8

Flow
h1-h6

Flow
h2-h7

Flow
h3-h8

Average
throughput
(Mbps)

0.37 0.34 0.37 0.90 0.90 0.90

Average
latency
(ms)

1,851 2,153 1,967 17.68 2.43 18.48

Loss rate
(%) 0 0 0 0.07 0.04 0.08

Jitter (ms) 2.82 3.94 2.42 0.07 0.04 0.02

With these figures in place, it could be thought that there is nothing left to
implement if the flows are routed in the network based on the available BW in
the links, but there are two reasons so as to improve the performance. Firstly,
taking the routing decisions manually based only on one parameter is prone to
errors if the network topology escalates rapidly, with more and more devices
and links in the network. Secondly, if these decisions are taken arbitrarily,
meaning the weights are decided based on different occupancy thresholds set
by us, we would not be taking into account how this flow allocation could impact
if more flows are going to enter the network in the future. Let’s see a scenario in
which the allocation of flows really matters for upcoming flows.

As can be seen in Fig 3.23, let’s suppose we want to transmit, in this order,
flows from h1 to h6 of rate 300 kbps, from h2 to h7 of rate 300 kbps, from h3 to
h8 of rate 550 kbps, from h4 to h9 of rate 600 kbps, and from h5 to h10 of rate
600 kbps, totalling for 2,35 Mbps, with each possible path having 1 Mbps of
BW. First of all, based on our link occupancies weighting logic, the first flow gets
assigned the path S1-S2-S7, and now this path will have an occupancy of 30%.
The second flow will get assigned the same path S1-S2-S7, leaving the path
with an occupancy of 60%. The third flow will get assigned the shortest empty
path S1-S3-S7, leaving the path with an occupancy of 55%. When the fourth
flow h4-h9 wants to enter the network, based on the current occupancies, the
path S1-S4-S5-S6-S7 will be assigned, leaving the path with an occupancy of
60%. Lastly, the last flow will not be able to enter the network as there is no
possible way to allocate it unless we start moving flows, which will have a great
impact in losses and computational consumption of the switches. Alternatively, if
we had initially allocated the flow h2-h7 in a different path, it would have been
possible to allocate all the flows.
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Fig. 3.23 Representation of the allocation problem using conventional routing
algorithms

Having seen this quandary, it is when the necessity of RL comes into play, with
the objective of taking these routing decisions based on a previously trained
model to give us the best possible path also thinking in future network
conditions. In the next chapter, we are going to see in detail how RL has been
implemented for this project.
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CHAPTER 4. REINFORCEMENT LEARNING

Having seen the experimental results for the routing using Dijkstra as
implemented in ONOS and with the link weights based on link occupancies,
now it is time to find a workaround to substantially improve the parameters we
obtained in the last chapter. Taking this into account, in this fourth chapter we
will see the basics of AI and RL to get familiar with them and see how they
haven been applied to this project. Furthermore, we will see all the processes
from the definition and creation of the RL model to its adaptation to the final
network topology. Finally, we will see a thorough comparison between RL, a LL
approach based on the link occupancies, and SP. Before delving into the details
of this chapter, it is important to succinctly explain why, as we will see, we have
not trained the model in ONOS but in a simulated local environment. When we
initially started working with RL and had a first model prototype, we started
generating flows manually with MGEN to train the model, but it was virtually
impossible given the resources available in our machine and the specifications
thereof. Furthermore, the number of samples we needed to make the model
learn was so high that it could have taken us years to train it.

4.1. Artificial Intelligence and Reinforcement Learning

The use of AI has seen an exponential growth over the last decade, as shown
by this research about the number of patents registered [18]. Nowadays, it is
being used in almost every sector we can imagine, being the telematic sector
one of them. Based on its purpose, AI could be defined as the intelligence
demonstrated by a machine capable of carrying out human tasks, such as
perceiving and inferring information, by means of different techniques.

As the concept of AI is very broad, let’s drill down to see where RL falls into this
hierarchy. As can be seen in Fig 4.1, Machine Learning (ML) is a subcategory of
AI and inside it contains three more subcategories, named Unsupervised
Learning (UL), Supervised Learning (SL), and Reinforcement Learning.

Fig. 4.1 AI and its different subcategories
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Taking into consideration our objective of predicting which path to choose given
an incoming flow based on the network state at that moment in time -this is the
occupancy of the links-, we will need to use a technique that based on training
data makes a prediction to get the most accurate result. This is why we have
decided to use ML instead of the other techniques, which are meant to be used
for other purposes. Analyzing each of the ML techniques, both UL and SL are
very similar with the exception that they learn by trying to find patterns from
unlabelled data (UL) and labeled data13 (SL) to train and test the model. The
main setback of these techniques is the necessity of having a great amount of
data from the very beginning in order to get great results. On the other hand,
and simply put, RL does not need any beginning data as it learns from
mistakes. Given that in our scenario it is impossible to get thousands of
samples about the state of the flows in the network, we have decided to use
RL.

Now that we have seen the reasoning behind the choosing of RL as our ML
technique, let’s explain thoroughly what RL is and the elements that it is
composed of, which we will later translate into our environment in section 4.2.
To begin with, RL can be defined as a ML technique in which the model that
makes decisions, also known as agent, learns by its mistakes and its correct
guesses while getting a positive result, known as reward, or a punishment.
Drawing from this premise, we argue that the agent learns by interacting with
the environment in different situations, known as the states. The decisions that
are made by the agent at different moments in time are called actions and they
will depend on the environment. In summary, the agent starts like a newborn
and it will learn over time using a predefined policy. Even though RL is used
widely in videogames and robotics, its dynamism and flexibility will allow us to
adapt the agent to our network, as it does not need previously collected data for
training purposes. Nevertheless, and as we will see in section 4.3, the
experience the agent needs to achieve great results is staggering, following an
exponential learning curve as the environment gets more and more difficult.
Having explained this, let’s now analyze in detail each of the highlighted terms
aforementioned and some related (some of these terms are depicted in the
agent process in Fig 4.2):

● First of all, the agent is the model that will interact with the environment,
and has defined a series of neuronal layers and mathematical equations
to train the data, being undoubtedly the most difficult part, as we will see
in the next subsections.

● We understand the environment as the place in which the agent will
take all of its actions and obtain the rewards from. It can be a real,
physical world or a simulated environment.

● The state is defined as the snapshot of the current environment the
agent is in. Sometimes it is not possible to represent all the possible
states given the complexity to train the agent, and the granularity of the
states will depend on the definition of the model. The complete list or set

13 In ML, labeled data is the one that has tags associated with it. For instance, if
we want to predict whether the image contains a cat or a dog, the labels would
be “cat” and “dog”.
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of states is known as state space, and the initial state of the
environment is known as the idle state.

● The action is the act of making the conscious decision of which action to
take, while actually executing it is called step. Likewise to the states, the
list or set of actions is known as the action space, and will be the result
based on the current state.

● The reward is the feedback obtained from the environment based on the
action taken. Usually, but it might change, the correct guesses are
rewarded with a positive value while the mistakes are punished with
negative values.

● The policy is the methodology and algorithms used to translate the
current state into an action. This is defined by the agent, and, as we will
see, there are policies for taking actions and for training the model.

● Finally, when it comes to training the agent, an episode is considered all
the interactions from the initial to the final state. This will be seen in more
detail in section 4.3.

Fig. 4.2 RL agent and environment diagram

4.1.1. Epsilon-Greedy algorithm

When it comes to the methodology used for taking actions, it is always complex
to determine which action to take and when. To better understand this intricacy,
let’s imagine an agent that begins from the scratch, and it does not have any
experience and the state of the environment is the idle one. Firstly, based on
the current state, the agent will have to take an action, and it will try to predict
the correct action albeit its lack of experience, getting thus a reward. Next, the
agent will follow the same flow of taking an action and getting a reward, and so
on and so forth. As we can see, and especially at the beginning of the training,
the agent needs to take random actions to see how they affect the environment,
as well as to know all the actions there are at its disposal in order not to get
stuck always in the same state. The decision of when to make a prediction
based on the current experience is by means of the epsilon-greedy algorithm.
Although there are alternative algorithms such as soft epsilon-greedy [19], this
has proved to be the most efficient one for the majority of environments.

As we can see in Fig 4.3, the agent will choose a random option with probability
ε, meaning that it will explore the environment, and choose the option which,
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based on its current experience, seems the best one with probability 1 - ε, which
is known as exploiting the environment. Along with the epsilon value, it is
assigned an exponential epsilon decay, in order to almost always explore at the
beginning and start exploiting the environment with an exponential probability
as the number of training samples increases throughout the episodes, as can
be seen in Fig 4.4.

Fig. 4.3 Epsilon-greedy
diagram

Fig. 4.4 Evolution of epsilon value
throughout the episodes

4.1.2. Q-Learning algorithm

The goal of a RL model when training is to find the action that will yield the best
reward given the actual state. For this, there are different algorithms such as
SARSA [20] (one of the best alternatives right now) and Q-learning, but we
have decided to use the second one mainly because right now is the most used
and the complexity to implement it is less.

The goal of Q-learning is to find the optimal policy by learning the optimal
Q-value for each state-action pair. This algorithm defines a table for each
state-action pair and sets a Q-value, which will be zero at the beginning for all
pairs. After each step (taking the action and getting a reward) the Q-values of
this table will be updated. The agent, when trying to take an action from its
experience, will actually look for the action with the highest Q-value in the table,
which in the end is the most valuable state-action pair. Next, the Table 4.1
represents these previously mentioned pairs:
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Table. 4.1 Q-Table with the Q-value for all the state-action pairs

Action 1 Action 2 … Action N

State 1 Q(S1, A1) Q(S1, A2) … Q(S1, AN)

State 2 Q(S2, A1) Q(S2, A2) … Q(S2, AN)

… … … … ...

State M Q(SM, A1) Q(SM, A2) .. Q(SM, AN)

In order to understand how the agent updates them, we will need first to
understand how the Bellman equation works (shown in 4.1). It tells us that the
value of an action ‘a’ in a state ‘s’, is the immediate reward the agent gets plus
the maximum expected reward we can get in the next state. The importance of
this expected reward is determined by the gamma factor (in section 4.3 we willγ
see value for all these constants).

(4.1)𝑄 𝑠,  𝑎( ) =  𝑟 +  γ · 𝑚𝑎𝑥
𝑎'

𝑄(𝑠',  𝑎')

Once we have calculated the value of the resulting Bellman equation, the
algorithm will calculate the new Q-value, using the following equation:

(4.2)𝑄
𝑛𝑒𝑤

𝑠,  𝑎( ) = (1 − α) · 𝑄
𝑜𝑙𝑑

(𝑠,  𝑎) + α · (  𝑟 +  γ · 𝑚𝑎𝑥
𝑎'

𝑄(𝑠',  𝑎'))

The learning rate, represented with the letter 𝛼, is a value between zero and
one, and determines how quickly the agent discards the previous Q value to
calculate a new one given a state-action pair. In other words, it states how much
of the actual Q value information we keep for future Q values. Therefore, the
higher the learning rate the quicker the agent will adopt the newly computed Q
value.

4.2. Definition of the RL in our environment

Having seen all the theory of what RL is and the most common algorithms used
with this technology, now it is time to see how we have adapted all the terms
and values we have seen in the previous section to the environment we want to
work with. First of all, let’s explain the topology shown in Fig 4.5.



Chapter 4. Reinforcement Learning 57

Fig. 4.5 RL topology used to train the agent

Our environment will have two LANs, being LAN 1 the source and LAN 2 the
destination, with N servers connected to one and the other. The servers from
LAN 1 will send flows of information with varying rates and not following a
pattern between them, when it comes to the distribution in time of the flows,
including its duration. There will be a total of eight switches, and a total of
eleven bidirectional links. They will have a theoretical BW of 2 Mbps, except
the ones with a thinner line in the image (S2-S5, S2-S7, S4-S5, and S4-S7),
which will have a BW of 1 Mbps.

Having explained the topology for the scenario, let’s see how we have defined
the agent. In the field of AI, especially for ML, it is very common to build the
agent we want to train using a Deep Neural Network (DNN). These structures
are formed by a series of layers with different neurons each, that are connected
mimicking the way biological neurons signal to one another. DNNs have an
input layer, an output layer, and a series of multiple hidden layers in between.
Each neuron of the layer is connected to one or multiple neurons of the
neighboring layers and has an associated weight. As you can imagine, the
structure of these networks can be adapted to almost any kind of environment,
no matter how difficult it is to train. Let’s see how we have defined the structure
of the agent in our scenario by explaining thoroughly the Fig 4.6.

As can be seen and as we saw in the previous section, from left to right the first
thing we need to define is our state space so the agent can train with that data.
In our scenario, it will be of size 23 and will have only 1 dimension, resulting
from the sum of the 22 different links of the network (11 bidirectional links) plus
the rate of the incoming flow in the network. In summary, the RL agent will take
into account the capacity of the links and the incoming rate to properly allocate
the flows in the network. Having defined the state space, we find what is known
as the input layer, which is defined as the outer incoming layer in a DNN. To
define them, we have made use of the Keras library in Python, which allows us
to create and train a DNN. If it is true that there are many different kinds of
layers such as Convolutional, Flatten, Dropout, etc, we have decided to use the
one that is regarded as the regular NN layer. The dense layer is defined by a
series of neurons in which each of them is connected to each and every neuron
of the next layer, forming a fully connected network. Furthermore, this layer
uses what is known as an activation function, which determines the output
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value of a neuron that will be communicated to the next layer. In our case, since
we are defining multiple layers, it is recommended to use a Rectified Linear
Unit (ReLU), which converts every negative incoming value to zero and
conserves the positive part of the argument, as shown in Fig 4.7.

Fig. 4.6 DNN representation of the RL agent

Fig. 4.7 Representation of the ReLU activation function
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When it comes to the configuration of the second layer, we will again define 256
neurons and a ReLU activation function. Finally, the output layer will determine
the different outputs of the NN, which in our case will be the different paths
between the LAN 1 and LAN 2. If it is true that there are more paths to go from
S1 to S8, we have decided to just take the five most significant ones, being
S1-S2-S5-S8, S1-S3-S6-S8, S1-S4-S7-S8, S1-S2-S7-S8, and S1-S4-S5-S8.
Therefore, our action space will be of size five. Unlike the first two layers, the
activation function for the output layer is of type linear, meaning that the output
value will not be confined between any range. The reason to use this function at
the output is because we are trying to predict a numerical variable (known as
regression problems) and not a classification or categorical variable [21]. When
it comes to the reward of the actions taken, we will compensate the model with
a one if the allocated flow does not overflow any link, and a zero if it does (all of
this will be seen in detail in section 4.3).

The last parameter of the agent that we are going to explain is the optimizer.
They help improve the overall performance of a RL model. Every time the
model is trained, it yields accuracy and loss values which are very indicative of
the agent’s performance. In summary, the optimizer has the objective of
minimizing this loss using different mathematical equations. For this project, we
will use the Adam optimizer [22], setting the learning rate (⍺) to 0.00005, as we
will see in the next section.

4.3. Training of the RL model

Having seen what RL is and the adaptation to our environment, in this section
we will show how the model has been trained to properly allocate the incoming
flows in the network. First of all, it is important to mention that given the
complexity to train these models when it comes to the staggering number of
iterations to get decent results [23], we have decided to simulate the
environment using Python instead of generating the flows directly with MGEN in
ONOS.

Before getting into the essence of training, we need to understand first how a
RL agent is trained. In every RL scenario, no matter which one, is needed to
narrow down the environment into some kind of a game, defining not only an
initial state as we saw in section 4.1 but also a final state, considered for the
agent to be as a win. All the actions taken from the initial to the final state are
called episodes, and are of high importance as far as training is concerned.

4.3.1. Training parameters

Having said this, we have generated a JavaScript Object Notation (JSON)
training file containing a total of 1,000 flows distributed randomly in a spatial
time of 40,000 seconds (on average a new flow every 40 seconds) and with a
varying duration. Furthermore, in order for the agent to learn from as many
different situations as possible and to allocate many different flows in one single
link, the flow rate is limited between 80 and 248 Kbps and is multiple of eight,
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thus having a total of 22 different rates. The JSON file will contain all the
necessary information to simulate real flows entering and exiting the network:
the hash, the time the flow enters or leaves the network, whether it is ingress
or egress, the source and destination, the start and end times, and finally the
rate. Doing the adaptation of an episode in this context, we will set that when
the flow exceeds the capacity of a link, the reward will be zero and thus the
episode will end, and the environment will be resetted to the initial state, and we
will begin introducing the flows again in the same order. The final objective is
that the agent learns how to properly allocate the 1,000 flows consecutively. In
Table 4.2 is shown the structure with real values of the JSON file that contains
the flows. The figures 4.8 and 4.9 show us the information of the flows that we
have used to train the model. The average rate during the whole time frame of
40,000 seconds is of roughly 3,000 Kbps, meaning that, on average, the
network will be at 50% of its capacity at all times. This value is obtained by
considering that the three links of the switch S1 with S2, S3, and S4 are of 2
Mbps each, totalling 6 Mbps. We can also observe that the flows are very well
distributed in terms of rate and the quantity of flows for each possible rate is
fairly well distributed as well (Fig 4.9).

Table. 4.2 Excerpt of the JSON file containing the flows to train the RL agent

[

{

"hash": -3075843607397821400,

"time": 0,

"ingress": {

"source": 1,

"destination": 8,

"start": 0,

"end": 327,

"rate": 144

}

},

......

{

"hash": -3075843607397821400,

"time": 327,

"egress": {

"source": 1,

"destination": 8,

"start": 0,

"end": 327,

"rate": 144

}

......

]
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Fig. 4.8 Distribution in time of training flows grouped by rate

Fig. 4.9 Number of training flows grouped by rate

Now that we have a file of flows, we need to define all the parameters
necessary to train a Deep Q-Learning (DQN) agent, and a couple extra related
to the training process. In RL, these parameters are called hyperparameters,
which means that they are used to control the learning process of the agent.
Even though there are some techniques, for instance, to find an appropriate
learning rate for a specific environment, it is extremely difficult to know in
advance which are the right values to use. This is the main setback we have
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faced during the training of the agent, turning the training into a trial-error
exercise in most cases (in Appendix D there are some examples, not all, with
different values to show this complexity). Knowing this difficulty and after trying
many different combinations, we have concluded that the values set in Table 4.3
yield very promising results, as we will see shortly.

Table. 4.3 Hyperparameters used to train the RL model

State Space 23

Action Space 5

Learning Rate 0.00005

Epsilon Decay 0.999

Min Epsilon 0.001

Gamma 0.999

Replay Memory Size 10,000

Batch Size 128

Replay Start Learning Size 1,000

Maximum Number of Steps per Episode 1,000

Maximum Number of Episodes 10,000

● As we saw in section 4.2, the state space and action space will be 23
and 5, respectively.

● When it comes to the learning rate, we have decided to set a very low
value of 0.00005, so as not to learn too quickly without gathering a lot of
training data.

● When it comes to the epsilon-greedy algorithm parameters, we will start
with an epsilon of one, and we will be decaying it at the end of each
episode by a factor of 0.999, following the equation: 0.999N, where N is
the number of the episode. Apart from this, we will never set the epsilon
to zero but leaving it at 0.001, to always, on average, explore the
environment once every thousand iterations to see if there are some
unseen states that the agent can learn from.

● In line with the learning rate, we will set a gamma value very close to 1
(0.999), so the agent can focus much more on future rewards and
continue learning.

● When it comes specifically to the training parameters, we will only store a
maximum of 10,000 training samples. Out of these, we will randomly
get 128 and train them using Q-learning (known as batch size). These
samples will be composed of the current state, the action taken, the
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reward, the next state, and whether the episode has finished or not. We
will store them in a First in, First out (FIFO) mode, with the aim of not
training with erroneous initial exploration samples after many iterations.
Otherwise, if we had stored a million samples, the agent most likely
would have never learnt.

● In order to have a minimum of samples before starting the training, we
will explore the environment 1,000 times (replay start learning size).

● Finally, there will be a total of 10,000 episodes, and 1,000 iterations
(flows in our scenario) per episode.

In Fig 4.10, we can see the complete diagram of the process followed to train
the agent. First of all, we will read all the parameters of the previous Table 4.3
from the DQN_config.json file, and generate the environment setting it to the
initial state. After that, we will create the DQN agent with all its layers using
Keras. From this point until the last episode, we will be reading each flow from
the flows_training.json file in the order they appear, simulating the entrance in
the network of real flows. If the flow is exiting the network (“Is the flow entering
the network?” diamond in the diagram), we will update the network parameters
related to the occupancy of the links. On the other hand, if the flow is entering
the network, we will explore or exploit based on the epsilon value at that
moment, and allocate the flow based on the chosen path (action). If it is
possible to allocate the flow (“Is it possible to allocate the flow?” diamond in the
diagram), we will update the occupancy of the links, give the agent a reward of
one, and set the next state to the current state. Otherwise, if the agent has
made a mistake and there is no option to allocate the flow, it will be given a
reward of zero, and the episode will end.

Regardless of whether the flow can be allocated or not, we will have completed
what is known as an iteration, and we will store the training sample we have
aforementioned. In parallel with these iterations, once we have a total of 1,000
samples the training process will begin. At the end of each episode get 128
samples and get the new Q-parameters using the equation (4.2) seen in
section 4.1. We will decrease the epsilon value by epsilon decay and start a
new episode. To conclude, once we have gone through all episodes, the
training will end and we will save the DQN agent so later we can use it to make
predictions.
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Fig. 4.10 Diagram to train the RL agent
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4.3.2. Training results

Having seen the values set to the different parameters and the process of how
the agent is trained, let’s now see the results obtained. In order to thoroughly
analyze the quality of the results, we have generated a total of three different
graphs. The first one (Fig 4.11) shows us the total reward on average for the
whole episode, which is obtained from summing all the rewards. Therefore, this
chart is telling, from out of the 1,000 possible flows to allocate, how many the
RL agent has routed properly in the network, without causing any link to exceed
its capacity. To avoid very big fluctuations in the representation, we have
smoothed the rewards using moving averages of 50, 100, 150, and 200,
respectively. As can be seen, while the episodes start to increase and thus the
epsilon value decreases, the obtained episode rewards are greater and greater.
Thanks to the epsilon-greedy algorithm, the agent initially explores many
different allocation of flows and can, therefore, learn progressively as the
episodes go by. In the graph we can see that, approximately, at episode 5,100
we get the best reward, with an average in 50 episodes of 960 flows properly
allocated. We manually stopped the training earlier before finishing the
episodes at 10,000 in order to avoid overfitting, something that we can see
appearing as a tail in the blue 50 moving average, dropping the average reward
substantially. In RL, if the agent exploits the environment excessively, it can end
up with an excess of trained data, especially after having almost reached the
maximum reward for an episode many consecutive times. In reference [24] this
behavior is explained in detail.

Fig. 4.11 Total episode reward with moving averages throughout the episodes

When it comes to the different paths taken and the occupancy of the links
during the training process, we observe that the agent is doing very well as a
load balancer. In Fig 4.12 we observe that 65% of the time is taking the path
S1-S3-S6-S8, mainly because all the links have a BW of 2 Mbps. The rest of
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the time, the agent is choosing the other four paths almost the same number of
times.

Fig. 4.12 Total number of times a path is chosen by the RL agent

In Fig 4.13, we can see what we have aforementioned. The flows are distributed
almost as if we were working with a load balancer based on the occupancy of
the links. This is very meaningful for the learning process of the agent, as it has
been able to solve the dichotomy at switches S2 and S4 with two possible links
to choose 1 Mbps each.

Fig. 4.13 Average link occupancy during the whole training period

4.4. Comparison between routing algorithms

Now that we have seen that the agent has learnt how to correctly allocate the
flows, it is time to compare it against other routing algorithms and with different
files of flows to see the quality of the RL model. Before entering into the details
of how we have made the comparison, we will explain the two other algorithms,
and the adaptation of RL for this comparison.

The diagram of Fig 4.14 shows how we have modified the RL training process
seen in section 4.3 to compare it with other algorithms. One of the differences
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now is that we will load the already trained DQN model, instead of creating a
new one. Furthermore, if the flow is entering the network, the agent will not
use the epsilon-greedy algorithm, instead it will always make a prediction
(exploit) to decide which is the best path, rather than randomly select a path
from time to time (explore). As expected, we will not train the agent anymore.

Fig. 4.14 Diagram to adapt RL to the comparison with other routing algorithms

The diagram of Fig 4.15 shows how we have implemented the LL algorithm
based on the occupancy of the links. This time we will not use the RL agent to
make any prediction, rather we will use a conventional routing algorithm. Once
the environment is generated and the state is set to what would be an
equivalent of an initial state in RL (all links empty), we will allocate the flows
using LL. First of all, as we did for RL, if the flow is exiting the network we will
just update the occupancy of the links. On the other hand, if the flow is entering
the network we will assign the weights of the links based on the occupancy
in base one. With this configuration, Dijkstra will return the least-loaded path,
as the total path weight will be greater for those links with some data already
going through them. In case there is more than one possible path (they have
the same average occupancy), we will shuffle them and get a random one. This
process will be repeated for every flow that enters the network.

Finally, the diagram of Fig 4.16 shows the implementation of the last algorithm,
the SP. For this algorithm, the process will be the same as for the LL but we will
adapt the algorithm part to find a path. We will always set the weights of the
links to one and use Dijkstra to find the shortest path. Likewise, in the event of
multiple shortest paths, we will mix them and select an arbitrary one.
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Fig. 4.15 Diagram to use the LL algorithm for the comparison

Fig. 4.16 Diagram to use the SP algorithm for the comparison
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4.4.1. Comparison results

Having seen the adaption of RL and the different implementation diagrams of
LL and SP, now we will see how we have made this comparison and the results
thereof. We have generated a total of 5,000 comparison files with 1,000 flows
each, in the same way we generated the training file. Therefore, there will be a
total of five million of different potential flows to allocate, a number high
enough to avoid any kind of false good or bad result in terms of the figure of
flows properly allocated (to see the tool in charge of creating these comparison
files, please refer to Table C.10 from Appendix C). We have generated a total of
four different graphs to depict the comparison between the algorithms.

In Fig 4.17 we can see the average number of flows properly allocated in the
network for each of the three algorithms, after going through all the 5,000 files.
Just as a reminder, the process followed to get these figures is the same as we
did for the training of the agent. Every flow allocated properly without causing
any link to overflow will count as one; otherwise, when the very first one
exceeds, we will not introduce any more flow from that file and the count will
stop. Therefore, the maximum theoretical average will be 1,000 once again. We
can clearly see that our RL agent has managed to clearly beat the LL algorithm
by a hefty 15.87%, and the SP algorithm by 1,865.38%. Even though we are far
from the maximum average, since the other algorithms also have to allocate the
same flows in the same conditions as RL, the number obtained is accurate and
valid. In order to discard any outlier values that could have made this average to
spike substantially, we have decided to plot a moving average of 50 comparison
files. What we observe in Fig 4.18 is that almost every time the RL values are
above the LL ones, or at most having the same moving average, but never
below. This proves that not only the RL agent is better, on average, but also is
very constant across the different files, yielding very promising results.

Fig. 4.17 Average number of flows
allocated for the comparison of the

algorithms

Fig. 4.18 Moving average of 50
comparison files for the comparison

of the algorithms
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When it comes to the different paths taken and the occupancy of the links
during the comparison process, we observe in Fig 4.19 that the agent is taking
the path S1-S3-S6-S8 39% of the time, mainly because all the links have a
BW of 2 Mbps. The rest of the time, the agent is choosing the other four paths
almost the same number of times, except for the path S1-S4-S7-S8 that is
taken 12% of the time. Similarly, in Fig 4.20 we can see what was initially
introduced in this project. The agent is doing better as a load balancer than the
LL algorithm, due to the fact that the RL agent already learned when training to
allocate the flows thinking of the future impact these decisions might have.

Fig. 4.19 Total number of times a path is chosen by each comparison algorithm

Fig. 4.20 Average link occupancy during the whole comparison period by each
algorithm
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CONCLUSIONS

It is undeniable that the use of the Internet is still growing almost exponentially
across the world, especially when it comes to the use of AI and all its
subcategories, and RL is not an exception. Throughout this project we have
seen what SDN is, how the most used open-source controller (ONOS) is
adapted and how it behaves to work with SDN, and we have also seen that is
possible, training a RL model, that we can consistently beat other traditional
routing algorithms such as LL based on link occupancies and SP.

The main objective of this project was to train a Neural Network model using RL
to make routing decisions when new flows want to enter the network. This way,
the model would not take into account only the rate of the incoming traffic but
also it will analyze how future traffic might be affected by this decision. As we
have seen in the fourth section of this project, we have successfully achieved
our initial goal of automating routing decisions and creating a model that is
better when compared to other routing algorithms.

First of all, we defined the architecture of the RL agent using a DNN and then
later trained it using the Q-learning algorithm. With this training we
accomplished that at least the agent was able to properly allocate one thousand
flows, on average, proving that the agent can learn to assign a path to flows.
Secondly, to actually demonstrate that the trained model adapts to different
combinations of flows, we compared it against two well-known routing
algorithms, such as LL and SP. We proved that RL was routing better traffic by
roughly 16% when compared against its direct competitor, the LL.

I am very honored to have worked on this project, especially because I learnt
lots of different concepts about not only RL but also SDN and ONOS.
Furthermore, I would like to outline what could be the next steps, as I firmly
believe the agent could be improved more:

● Firstly, I would load this already trained RL agent into ONOS, just calling
it from the ReactivePacketProcessor to get a path once the flow wants to
enter the network. As was introduced at the beginning of chapter 4, for
the aforementioned circumstances we had to work with a simulated
environment. Now that the model is ready, it could be used by our
routing-app ONOS application.

● Secondly, I would try to improve the learning process of the agent by
increasing the nodes per NN layer or maybe using a higher batch size to
use more training samples when training. Another option could be to train
the model using more than one training file, and randomly switching the
set of files (preferably just about ten of them) throughout the episodes.

● Thirdly, I would try to compare it to another routing algorithm, to see how
well it behaves against more algorithms.

● Finally, as we have seen in chapter 4, the training of the RL algorithm
has been made always having the same source and destination, which
could limit the implementation of more real scenarios. The next step
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would be to first adapt the model to consider flows from N sources to
only one destination. In this case, we would need to somehow punish the
model if the chosen path is not a feasible one. Other options could
involve increasing the complexity of the NN, adding more nodes per layer
or even adding an additional hidden layer, so the model can work with far
more different combinations and work out more different scenarios.
However, the learning curve would not be lineal and we would need even
more samples to properly train the model. This could be achieved by
spending more time exploring the environment (epsilon-greedy) and
giving more importance to future rewards.
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APPENDIX A. ENVIRONMENT CONFIGURATION

In this appendix, it is explained thoroughly how to install each and every tool
necessary to run ONOS as well as the configuration of some environment
variables. Besides that, it is also explained how to install complementary tools
to make the coding and understanding of the controller easier.

A.1. Installing Maven (3.6.3) and Karaf Runtime (4.2.9)

$ cd ~
$ mkdir Applications
$ cd Downloads
$ wget http://archive.apache.org/dist/karaf/4.2.9/apache-karaf-4.2.9.tar.gz
$ wget
http://archive.apache.org/dist/maven/maven-3/3.6.3/binaries/apache-maven-3.6
.3-bin.tar.gz
$ tar -zxvf apache-karaf-4.2.9.tar.gz -C ../Applications
$ tar -zxvf apache-maven-3.6.3-bin.tar.gz -C ../Applications
$ cd Applications
$ chmod +x apache-karaf-4.2.9
$ chmod +x apache-maven-3.6.3

A.2. Installing Oracle Java 11

$ cd ~
$ sudo apt update
$ sudo apt install openjdk-11-jdk
$ sudo nano .bashrc

- export JAVA_HOME=/usr/lib/jvm/java-1.11.0-openjdk-amd64
$ source .bashrc

A.2.1. Making mvn command global

$ cd ~
$ sudo nano /etc/profile.d/maven.sh

- export JAVA_HOME=/usr/lib/jvm/java-1.11.0-openjdk-amd64
- export M2_HOME=/home/sdn/Applications/apache-maven-3.6.3
- export MAVEN_HOME=/home/sdn/Applications/apache-maven-3.6.3
- export PATH=${M2_HOME}/bin:${PATH}

$ source /etc/profile.d/maven.sh
$ sudo ln -s /home/sdn/Applications/apache-maven-3.6.3
/home/sdn/Applications/maven

http://archive.apache.org/dist/maven/maven-3/3.6.3/binaries/apache-maven-3.6.3-bin.tar.gz
http://archive.apache.org/dist/maven/maven-3/3.6.3/binaries/apache-maven-3.6.3-bin.tar.gz
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Fig. A.1 Maven installation verification

A.3. Installing ONOS Uguisu (2.4.0)

$ cd ~
$ git clone https://gerrit.onosproject.org/onos
$ cd onos
$ git tag

Fig. A.2 List of ONOS versions

$ git checkout -b 2.4.0 2.4.0
$ cd ..
$ sudo nano .bashrc
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- export ONOS_ROOT=~/onos
- .$ONOS_ROOT/tolos/dev/bash_profile

$ source .bashrc

A.4. Building ONOS using Bazel (1.6.1)

$ cd ~
$ wget
https://github.com/bazelbuild/bazelisk/releases/download/v1.6.1/bazelisk-linux-a
md64
$ chmod +x bazelisk-linux-amd64
$ sudo mv bazelisk-linux-amd64 /usr/local/bin/bazel

Fig. A.3 Bazel installation verification

A.4.1. Installing gcc compiler (9.3.0), python2, python3, and pip

In order to build and run ONOS correctly, we will need to install the gcc compiler
python2, and set python3 as the default version.

$ cd ~
$ sudo apt update
$ sudo apt install build-essential
$ sudo apt install manpages-dev
$ sudo apt install python2
$ sudo update-alternatives --install /usr/bin/python python /usr/bin/python2 1
$ sudo update-alternatives --install /usr/bin/python python /usr/bin/python3 2

When introducing the below command, we will be requested to type a selection
number or keep the current choice by pressing the enter keyboard (see Fig. A.
4). In our case, we will choose the number 1 as the first priority.

$ sudo update-alternatives --config python
$ sudo add-apt-repository universe
$ sudo apt update
$ curl https://bootstrap.pypa.io/get-pip.py --output get-pip.py
$ sudo python2 get-pip.py
$ sudo apt install python3-pip
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Fig. A.4 Bazel’s complementary tools verification

After having executed all the above commands, by using the python pip tool, all
the necessary packages will be installed to run both the RL scripts and those of
the monitoring tools. Since future versions after the writing of this project could
have changed or deleted part of their methods, it is advisable to install the exact
versions, especially keras, tensorflow, and networkx. Under the home directory,
run the following commands.

$ cd ~
$ pip3 install h5py==2.10.0 Keras==2.4.3 networkx==2.5.1 numpy==1.19.5
scipy==1.4.1 tensorflow==2.4.1 scikit-learn==0.24.1 pandas==0.25.3
influxdb==5.3.1 mininet==2.3.0dev6

A.4.2. Changing ONOS IP localhost for out private address

By default, ONOS is configured to run in the localhost address (127.0.0.1). In
our case, since the virtual machine has two network adapters, one attached to
Network Address Translator (NAT) and the other attached to Host-only Adapter,
we will need to set the address used by the latter adapter (see Fig. A. 5).
Knowing the private address, we will need to set this address in the
onos-run-karaf file (see Fig. A. 6).
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Fig. A.5 Network interfaces

$ cd ~
$ sudo nano $ONOS_ROOT/tools/package/onos-run-karaf

- IP=${ONOS_IP:-192.168.99.106}

Fig. A.6 Onos-run-karaf configuration file
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$ cd $ONOS_ROOT

To build ONOS we need to run the command bazel build onos in the
$ONOS_ROOT directory. This process could take an important amount of time,
especially the first time since there are thousands of packages and libraries that
need to be installed. There are times that the building could fail, throwing an
error of any missing library or something similar. In that case, execute again the
command quoted above to build ONOS. That said, if the problem persists,
contact with the ONF organization via the discussion group [11].

Apart from this, it is important to mention that if we change some core files
related to the ONOS API we will need to publish these files into the API before
building, running the command onos-publish -l in the $ONOS_ROOT directory.
With the use of this command, we will have the API updated and ready to use
with the latest changes.

A.5. Installing Mininet (2.2.2)

$ cd ~
$ sudo apt update
$ sudo apt install mininet
$ sudo mn -c
$ git clone git://github.com/mininet/mininet
$ cd mininet
$ git tag

Fig. A.7 List of Mininet versions

$ git checkout -b 2.2.2 2.2.2
$ cd ..
$ sudo mininet/util/install.sh -a
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A.6. Running Mininet and ONOS

$ sudo nano $ONOS_ROOT/tools/dev/bash_profile
- export

ONOS_APPS=${ONOS_APPS:-drivers,openflow,lldpprovider,gui2,proxy
arp,fwd}

Fig. A.8 ONOS_APPS variable in bash_profile file

$ cd ~
$ source .bashrc

Once we have set which applications we want to be activated by default on
start, we need to run the controller in the $ONOS_ROOT directory. To do so, we
will run the command bazel run onos-local to run it without any extra
configuration or bazel run onos-local clean debug if we want to do some kind
of debugging using the IntelliJ IDEA (this option is strongly recommended so as
not to stop and restart the controller to debug).

Eventually, when the controller is up and running, we will need to load our
custom Mininet topology. Because we have specified all the attributes of the
controller (see custom-routing.py on Appendix D), we will only need to run sudo
python custom-routing.py under the $ONOS_ROOT/utils/mininet/topologies
directory.

A.7. Installing additional tools

As complementary tools, we have decided to install the widely known
Wireshark software to analyze packets, the Integrated Development
Environment (IDE) IntelliJ IDEA to code better and the Jperf application, which
is the GUI of the iPerf command.
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A.7.1. Installing Wireshark

$ cd ~
$ sudo apt update
$ sudo apt upgrade
$ sudo apt install wireshark
$ sudo dpkg-reconfigure wireshark-common #Select <Yes> when asking
whether non-superusers should be able to capture packets
$ sudo chmod +x /usr/bin/dumpcap

A.7.2. Installing IntelliJ IDEA (2019.3.4) and Bazel project
configuration

Firstly, it will be necessary to download the IDE to work more efficiently and
comfortably. In my case, I have decided to use IntelliJ, which has a free edition
called Community Edition. Since the onos project is built using Bazel, we will
need to install the corresponding plugin. Even though there are IDE versions
from 2020 onwards, the latest one handling with the use of Bazel is 2019.3.4.
Next, there are the necessary commands to install IntelliJ. Once the script is
executed, it will ask you whether to import settings or create a launcher script. It
is strongly recommended to leave everything by default to avoid any future
problem.

$ cd ~
$ cd Downloads
$ wget https://download.jetbrains.com/idea/ideaIU-2019.3.4.tar.gz
$ tar -zxvf ideaIU-2019.3.4.tar.gz -C ../
$ cd ..
$ sudo mv idea-IU-193.6911.18/ intelliJ
$ cd intellIJ/bin
$ sudo ./idea.sh

Secondly, we will install the Bazel plugin using the Marketplace, which can be
found on settings under the plugins section. After the installation, in the
“welcome” window we will see a new option called Import Bazel Project. The
following numerical list explains the steps to follow with their corresponding
images to understand the process better.

1. Select the Bazel workspace. This will depend on where the onos project
was initially downloaded. In our case, the workspace is /home/sdn/onos
(see Fig. A. 9).

2. Next, select the project view. In order not to import everything wasting
time and memory, we will use the one provided by onos. The following
commands will generate a temporary project file:

● $ cd $ONOS_ROOT/tools/dev/bin
● $ ./onos-gen-bazel-project > /tmp/onos_bazelproject

3. Back to the project view, select the copy external option, and type the
path /tmp/onos_bazelproject (see Fig. A. 10).
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4. Next, it will be shown a summary including all the information of the
previous steps (see Fig. A. 11). Press finish.

5. Let the IDE sync all files of the project automatically. If this does not
happen, just go to Bazel → Sync → Sync Project with BUILD Files (make
sure Expand Sync to Working Set is selected). Syncing the files for the
first time it could take up to 10 minutes (depending on the computer). If
the synchronisation gives an error, repeat the aforementioned steps but
this time deleting previously some cache folders and files, namely ~/.m2/,
$ONOS_ROOT/.ijwb/, and $ONOS_ROOT/bazel-* (where * stands for
any file starting with bazel-).

6. Specify the bazel binary path, previously established in section A. 4. Go
to File → Settings → Bazel Settings and select the configuration file (see
Fig. A. 12).

7. In order to import the recommended IntelliJ settings, import the .jar file
provided by onos. Go to File → Import Settings and select the file (see
Fig. A. 13). To make the changes take effect, the IDE needs to be
restarted.

8. Configure the Apache 2 license copyright header file to include at the
beginning of every new file. Go to File → Settings → Editor → Copyright
→ Copyright Profiles and create a new one called ONOS (see Fig. A.
14). The copyright text can be found at
$ONOS_ROOT/tools/dev/header.txt.

9. Mark onos directory as Sources Root thus all packages are interpreted
correctly by the IDE (see Fig. A. 15). Once done, a white dot will appear
in the apps folder.

10.Once it has finished, the IDE will not detect the files inside the
routing-app folder as .java since it was built with maven (see Fig. A. 16).
To solve this problem, it will be necessary to configure the application
directory as a Maven project. To do so, right click on the pom.xml file and
select add as Maven project (see Fig. A. 17). Now, IntelliJ will detect the
files as .java and will find declarations to go (see Fig. A. 18).

11. To avoid maven dependencies in the pom.xml file from being detected as
not OSGi ready, go to File → Project Structure → Modules →
routing-app and delete the already-existing OSGi framework (see Fig. A.
19).

12.Since the application is built with Maven, in order to include external
dependencies in the routing-app-1.0-SNAPSHOT.oar file under
$ONOS_ROOT/apps/routing-app/target, including commons-net,
jgrapht-core, jheaps, and json, it will be required to create a custom
app.xml and features.xml file under $ONOS_ROOT/apps/routing-app.
The first one is in charge of converting .jar dependencies into .oar,
whereas the latter loads the bundles at run-time so can be used by the
application.

13.Finally -this step is not always necessary as it depends on whether the
IDE was previously used for other projects- it will be required to define a
project Software Development Kit (SDK). For this purpose, go to File →
Project Structure → Project and add a new Java Development Kit (JDK),
which, by default, is located at /usr/lib/jvm/ (see Fig. A. 20 and Fig. A.
21).
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Executing all the steps aforesaid will make the IDE ready to work with the
routing-app application inside the ONOS project. Bear in mind that if all files are
synchronized again with Bazel, IntelliJ will not be able to find declarations and
imports. Notwithstanding, recall that the custom application is built and installed
using maven so doing the synchronization only once at the beginning will be
enough.

Fig. A.9 Bazel workspace



86 Reinforcement Learning-Based Routing in SDN Networks

Fig. A.10 Copy external option to select the project view

Fig. A.11 Bazel project view summary



Apendix A. Environment Configuration 87

Fig. A.12 Bazel binary path

Fig. A.13 IntelliJ settings for ONOS project
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Fig. A.14 ONOS copyright profile for Apache2 license

Fig. A.15 Mark onos directory as Sources Root
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Fig. A.16 Project view errors in IntelliJ

Fig. A.17 Add routing-app directory as a Maven project
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Fig. A.18 Proper project view in IntelliJ

Fig. A.19 Delete the OSGi framework under routing-app module
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Fig. A.20 Set up a new project SDK

Fig. A.21 Select the Home Directory for JDK
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Finally, in order to debug ONOS it will be necessary to create a new debug
configuration. To do so, click on Add Configuration… in the top right-hand
corner, press the plus sign, select Remote and leave the host and the port as
default, since we will debug ONOS on our machine (see Fig. A. 22). Take into
account that in order to debug ONOS, the controller has to be launched with the
debug option (refer to section A. 6).

Fig. A.22 IntelliJ debug configuration

A.7.3. Installing Jperf

$ cd ~
$ cd Downloads
$ wget
https://storage.googleapis.com/google-code-archive-downloads/v2/code.google.
com/xjperf/jperf-2.0.2.zip
$ sudo unzip jperf-2.0.2.zip
$ mv jperf-2.0.2 /home/sdn/onos/utils/mininet/topologies/jperf
$ cd /home/sdn/onos/utils/mininet/topologies/jperf
$ sudo chmod +x jperf.sh
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APPENDIX B. INSTALLATION AND CONFIGURATION
OF MONITORING TOOLS

In this appendix, it is explained thoroughly how to install each and every tool
necessary to monitor the desired parameters. InfluxDB will be used to store all
the measurements and its values whilst Grafana is used for monitoring and
observability.

B.1. Installing InfluxDB

$ cd ~
$ echo "deb https://repos.influxdata.com/ubuntu focal stable" | sudo tee
/etc/apt/sources.list.d/influxdb.list
$ sudo curl -sL https://repos.influxdata.com/influxdb.key | sudo apt-key add -
$ sudo apt update
$ sudo apt install influxdb
$ sudo systemctl enable --now influxdb
$ sudo systemctl status influxdb

Fig. B.1 InfluxDB service up and running

B.1.1. Configuration process

Commands to create the database in InfluxDB to store the data:

$ influx
> CREATE DATABASE onos
> USE onos
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B.2. Installing Grafana

$ cd ~
$ sudo apt-get install -y adduser libfontconfig1
$ wget https://dl.grafana.com/oss/release/grafana_7.3.6_amd64.deb
$ sudo dpkg -i grafana_7.3.6_amd64.deb
$ sudo systemctl enable --now grafana-server
$ sudo systemctl status grafana-server

Fig. B.2 Grafana service up and running

B.2.1. Configuration process

Having installed InfluxDB and Grafana, now we are ready to configure the
communication between both.

First of all, we will proceed to go to the Grafana URL, which is
localhost:3000/login. By default, Grafana credentials are username: admin
and password: admin (see Fig. B. 3) and when logging in we will have the
possibility to introduce a new password or just keep the default (it is
recommended to use a different password).

https://dl.grafana.com/oss/release/grafana_7.3.6_amd64.deb
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Fig. B.3 Default login screen in Grafana

Secondly, we will need to use InfluxDB as the data source. To do so, we will go
to Configuration → Data Sources → Add data source (see Fig. B. 4). We will
have to select InfluxDB under the Time series databases section (see Fig. B. 5).

Fig. B.4 Add data source in Grafana
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Fig. B.5 Add InfluxDB as data source in Grafana

Finally, we will have to set the URL that points to InfluxDB service, which is
http://localhost:8086 (see Fig. B. 6), and specify which is the database where
the measurements will be stored, previously created in subsection B.1.1 as
onos (see Fig. B. 7).

Fig. B.6 InfluxDB configuration in Grafana (I)
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Fig. B.7 InfluxDB configuration in Grafana (II)
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APPENDIX C. NETWORK TOPOLOGIES, MONITORING
SCRIPTS, AND OTHER FILES OF INTEREST

Table. C.1 pom.xml file of our custom routing-app application

<?xml version="1.0" encoding="UTF-8"?>

<!--

~ Copyright 2020 Open Networking Foundation

~

~ Licensed under the Apache License, Version 2.0 (the "License");

~ you may not use this file except in compliance with the License.

~ You may obtain a copy of the License at

~

~ http://www.apache.org/licenses/LICENSE-2.0

~

~ Unless required by applicable law or agreed to in writing, software

~ distributed under the License is distributed on an "AS IS" BASIS,

~ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

~ See the License for the specific language governing permissions and

~ limitations under the License.

-->

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">

<modelVersion>4.0.0</modelVersion>

<parent>

<groupId>org.onosproject</groupId>

<artifactId>onos-dependencies</artifactId>

<version>2.4.0</version>

</parent>

<groupId>org.routing.app</groupId>

<artifactId>routing-app</artifactId>

<version>1.0-SNAPSHOT</version>

<packaging>bundle</packaging>

<description>ONOS OSGi bundle archetype</description>

<url>http://onosproject.org</url>

<properties>

<onos.app.name>org.routing.app</onos.app.name>

<onos.app.title>Custom Routing Application</onos.app.title>

<onos.app.origin>Sergio Vera-UPC</onos.app.origin>

<onos.app.category>default</onos.app.category>

<onos.app.url>http://onosproject.org</onos.app.url>

<onos.app.readme>ONOS OSGi bundle archetype.</onos.app.readme>

<maven.test.skip>true</maven.test.skip>

</properties>

<dependencies>

<dependency>

<groupId>org.onosproject</groupId>

<artifactId>onos-api</artifactId>

<version>${onos.version}</version>

<scope>provided</scope>

</dependency>

<dependency>

<groupId>org.onosproject</groupId>

<artifactId>onlab-osgi</artifactId>

<version>${onos.version}</version>

<scope>provided</scope>

</dependency>

<dependency>

<groupId>org.onosproject</groupId>

<artifactId>onlab-misc</artifactId>

<version>${onos.version}</version>

<scope>provided</scope>

</dependency>

<dependency>
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<groupId>org.onosproject</groupId>

<artifactId>onos-api</artifactId>

<version>${onos.version}</version>

<scope>test</scope>

<classifier>tests</classifier>

</dependency>

<dependency>

<groupId>org.onosproject</groupId>

<artifactId>onos-cli</artifactId>

<version>${onos.version}</version>

<scope>provided</scope>

</dependency>

<dependency>

<groupId>org.onosproject</groupId>

<artifactId>onos-core-serializers</artifactId>

<version>${onos.version}</version>

<scope>provided</scope>

</dependency>

<dependency>

<groupId>org.osgi</groupId>

<artifactId>org.osgi.service.component</artifactId>

<version>1.4.0</version>

<scope>provided</scope>

</dependency>

<dependency>

<groupId>org.apache.karaf.shell</groupId>

<artifactId>org.apache.karaf.shell.console</artifactId>

<version>4.2.9</version>

<scope>provided</scope>

</dependency>

<dependency>

<groupId>org.onosproject</groupId>

<artifactId>onos-app-iptopology-api</artifactId>

<version>1.6.0</version>

<scope>provided</scope>

</dependency>

<dependency>

<groupId>com.fasterxml.jackson.core</groupId>

<artifactId>jackson-databind</artifactId>

<version>2.12.0</version>

<scope>provided</scope>

</dependency>

<dependency>

<groupId>org.jgrapht</groupId>

<artifactId>jgrapht-core</artifactId>

<version>1.5.1</version>

<scope>provided</scope>

</dependency>

<dependency>

<groupId>org.apache.commons</groupId>

<artifactId>commons-math3</artifactId>

<version>3.6.1</version>

<scope>provided</scope>

</dependency>

<dependency>

<groupId>commons-net</groupId>

<artifactId>commons-net</artifactId>

<version>3.6</version>

<scope>provided</scope>

</dependency>

<dependency>

<groupId>org.jheaps</groupId>

<artifactId>jheaps</artifactId>

<version>0.14</version>

<scope>provided</scope>

</dependency>

<dependency>

<groupId>org.json</groupId>

<artifactId>json</artifactId>

<version>20201115</version>

<scope>provided</scope>

</dependency>

<dependency>
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<groupId>com.googlecode.json-simple</groupId>

<artifactId>json-simple</artifactId>

<version>1.1.1</version>

<scope>provided</scope>

</dependency>

<dependency>

<groupId>com.google.code.gson</groupId>

<artifactId>gson</artifactId>

<version>2.8.6</version>

<scope>provided</scope>

</dependency>

</dependencies>

<repositories>

<repository>

<id>maven-snapshots</id>

<url>http://oss.sonatype.org/content/repositories/snapshots</url>

<layout>default</layout>

<releases>

<enabled>false</enabled>

</releases>

<snapshots>

<enabled>true</enabled>

</snapshots>

</repository>

</repositories>

<build>

<plugins>

<plugin>

<groupId>org.onosproject</groupId>

<artifactId>onos-maven-plugin</artifactId>

</plugin>

<plugin>

<groupId>org.apache.maven.plugins</groupId>

<artifactId>maven-checkstyle-plugin</artifactId>

<configuration>

<skip>true</skip>

</configuration>

</plugin>

</plugins>

</build>

</project>

C.1. Network topologies

The switches and hosts of each topology used for this project have been
implemented by Mininet. If it is true that Mininet can be configured via CLI, it
has a powerful API that can be employed to pre-configure the network. The
command used to run the scripts in is sudo python file_name, and each script
has three big blocks.

The first of them, shown in table D. 6, is the method in charge of uploading the
network configuration to ONOS, so then it can be downloaded and read by the
application. To do so, it uses the API with the base URL -in our case-
http://192.168.99.106:8181/onos/v1, and having an endpoint
network/configuration. Taking a look at the swagger, which is already
implemented in the onos project, the JSON format needed to be sent in the
body when doing a POST request contains the following fields (see also Fig. D.
3):

http://192.168.99.106:8181/onos/v1
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Table. C.2 JSON structure for the network configuration

1.  {
2. "devices": {
3. "of:0000000000000004": {
4. "basic": {
5. "latitude": "42.38",
6. "name": "S4",
7. "longitude": "-5.82"
8. },
9. "classifiers": [
10. {
11. "ethernet-type": "LLDP",
12. "target-queue": 0
13. },
14. {
15. "ethernet-type": "BDDP",
16. "target-queue": 0
17. }
18. ]
19. }
20.
21. },
22. "ports": {},
23. "apps": {
24. "org.onosproject.provider.lldp": {
25. "suppression": {
26. "deviceTypes": [
27. "ROADM",
28. "OTN",
29. "FIBER_SWITCH",
30. "OPTICAL_AMPLIFIER",
31. "OLS",
32. "TERMINAL_DEVICE"
33. ],
34. "annotation": "{\"no-lldp\":null}"
35. }
36. }
37. },
38. "regions": {},
39. "hosts": {
40. "00:00:00:00:00:0A/None": {
41. "basic": {
42. "latitude": "41.63",
43. "longitude": "-8"
44. }
45. },
46. "links": {
47. "of:0000000000000001/5-of:0000000000000004/3": {
48. "basic": {
49. "bidirectional": true,
50. "bandwidth": 1,
51. "durable": true
52. }
53. }
54. }
55. "layouts": {}
56. }

As can be seen, many parameters can be set when initializing ONOS, which
opens a great window to exchange information between the program in charge
of setting the topologies and the controller. In our case, these are the ones that
have been specified:

● Devices → Set the latitude and longitude along with the name of the
switch. The value of these parameters will be reflected in the GUI when
running ONOS. The coordinates become really powerful when plotting
real networks, as is the case of GÉANT.

● Hosts → As for devices, the hosts generated in Mininet will also be
placed in the specified position.
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● Links→ Because the bandwidth of the links in ONOS cannot be set, the
only way of telling it using Mininet is utilizing this POST service. The keys
inside the links are the string representation in the only format supported
by the controller. The method addLink (line 103 from table C.3) receives
the source, the source URI, the destination, the destination URI, and the
bandwidth (in Mbps). Based on these parameters, the information from
the Mininet API, and knowing that the ID of the device always follows the
same format, all the information for each link -in both directions- can be
configured.

Fig. C.1 Request to upload the full network configuration

Table. C.3 Python method to upload the network configuration to ONOS

1. #!/usr/bin/python
2.  
3. from mininet.topo import Topo
4. from mininet.cli import CLI
5. from mininet.link import TCLink
6. from mininet.log import setLogLevel
7. from mininet.net import Mininet
8. from mininet.node import RemoteController, Host
9. from mininet.util import quietRun
10. from os import listdir, environ
11. from requests import put
12. import re, socket, fcntl, array, struct, sys, requests, json, os
13.  
14. URL = "http://192.168.99.106:8181/onos/v1/"
15. links = []
16. switches = []
17. hosts = []
18. name_switches = {}
19.  
20. def netcfg(net):
21. # Download the current network configuration
22. r_get = requests.get(url=URL+'network/configuration', auth=('onos', 'rocks'))
23.  
24. if r_get.status_code == 200:
25. r_json = r_get.json()
26.  
27. for h in net.hosts:
28. for host in hosts:
29. if h.MAC() == host['uri']:
30. r_json['hosts'][h.MAC()+'/None'] = {
31. "basic": {
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32. "latitude":
host['latitude'],

33. "longitude":
host['longitude']

34. }
35. }
36. s_keys = r_json['devices'].keys()
37.  
38. for switch in switches:
39. for s_key in s_keys:
40. if switch['uri'] == s_key:
41. r_json['devices'][s_key] = {
42. "basic": {
43. "name":

name_switches[s_key],
44. "latitude":

switch['latitude'],
45. "longitude":

switch['longitude']
46. }
47. }
48.  
49. for net_link in net.links:
50. for link in links:
51. intf1 = str(net_link.intf1)
52. intf2 = str(net_link.intf2)
53. src = intf1.split('-')[0]
54. src_intf = intf1.split('-')[1]
55. dst = intf2.split('-')[0]
56. dst_intf = intf2.split('-')[1]
57.  
58. if src == link['src'] and dst == link['dst']:
59. # One way link
60.

r_json['links'][link['src_uri']+'/'+src_intf.split('eth')[1]+'-'+link['dst_uri']+'/'+dst_intf.split('
eth')[1]] = {

61. "basic": {
62. "bandwidth":

link['bandwidth'],
63. "durable": True,
64. "bidirectional": True
65. }
66. }
67. # Way back link
68.

r_json['links'][link['dst_uri']+'/'+dst_intf.split('eth')[1]+'-'+link['src_uri']+'/'+src_intf.split('
eth')[1]] = {

69. "basic": {
70. "bandwidth":

link['bandwidth'],
71. "durable": True,
72. "bidirectional": True
73. }
74. }
75.  
76. # Upload the new network configuration
77. r_post = requests.post(url=URL+'network/configuration', headers={'Content-type':

'application/json', 'Accept': 'application/json'}, data=json.dumps(r_json), auth=('onos', 'rocks'))
78.  
79. if r_post.status_code != 200:
80. print r_post.content
81.  
82. # Helper for hosts' location
83. def addHost(uri, latitude, longitude):
84. hosts.append({
85. "uri": uri,
86. "latitude": latitude,
87. "longitude": longitude
88. })
89.  
90.  
91. # Helper for devices' location
92. def addSwitch(uri, latitude, longitude, name):
93. switches.append({
94. "uri": uri,
95. "latitude": latitude,
96. "longitude": longitude
97. })
98.  
99. name_switches[uri] = name
100.  
101. # Helper for bandwidth management
102. def addLink(src, src_uri, dst, dst_uri, bandwidth):
103. links.append({
104. "src": src,
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105. "src_uri": src_uri,
106. "dst": dst,
107. "dst_uri": dst_uri,
108. "bandwidth": bandwidth
109. })
110.  
111. def ping(net):
112. i = 1
113. while i < len(net.hosts):
114. net.hosts[i-1].cmd('ping -c4 %s' %net.hosts[i].IP())
115. i+=2
116.  
117. if len(net.hosts)%2 != 0:
118. net.hosts[0].cmd('ping -c4 %s' %net.hosts[len(net.hosts)-1].IP())

The second main block, shown in table C.4, is the main method of the script,
which creates the Mininet topology by passing the class containing the hosts
and devices (LongTopo), the IP address and the port of the controller as well as
some other additional parameters. Then, a ping is done involving all hosts in
such a way that they are already discovered and can be accessed if needed,
apart from showing the full topology in the GUI from the very first moment. This
ping, sending just four packets, is done using the default forwarding application
(fwd), since the routing-app application is not yet installed and there is no need
to use a more complex one. Finally, the network configuration aforementioned is
uploaded.

Table. C.4 Python main method for every topology script

1. def main():
2. net = Mininet(topo=LongTopo(), controller=None, autoSetMacs=True, link=TCLink)
3. net.addController('co', controller=RemoteController, ip='192.168.99.106', port=6633)
4. net.start()
5.  
6. print "********************************************************"
7. print "Carrying out a PING between hosts. This might take a while"
8. print "********************************************************"
9.  
10. # Make a ping between hosts to make them visible to the onos controller
11. ping(net)
12.  
13. # Uninstall forwarding app (org.onosproject.fwd) after the ping
14. r_delete = requests.delete(url=URL+'applications/org.onosproject.fwd/active', auth=('onos',

'rocks'))
15.  
16. # Load the network configuration
17. netcfg(net)
18.  
19. CLI(net)
20. net.stop()
21.  
22.  
23. if __name__ == '__main__':
24. # Clean cache of previous topologies
25. os.system('sudo mn -c')
26. setLogLevel('info')
27. main()

When it comes to configuring the network, the Mininet API previously mentioned
has some methods that allow us to add hosts, switches, and links. As can be
seen in tables C.3 and C.4, alongside the creation of all network components,
the necessary information to upload the network configuration is prepared. The
methods in charge of this are addHost, addSwitch, and addLink. Lastly,
because links in Mininet are bidirectional, when uploading the configuration to
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ONOS it will be necessary to tell the existence of two links (one in each
direction), as shown below each self.addLink method.

C.1.1. Topology of sections 3.3. and 3.4

Table. C.5 Mininet topology for using Dijkstra as implemented in ONOS and
using a custom routing based on link occupancies

#!/usr/bin/python

from mininet.topo import Topo

from mininet.cli import CLI

from mininet.link import TCLink

from mininet.log import setLogLevel

from mininet.net import Mininet

from mininet.node import RemoteController, Host

from mininet.util import quietRun

from os import listdir, environ

from requests import put

import re, socket, fcntl, array, struct, sys, requests, json, os

URL = "http://192.168.99.106:8181/onos/v1/"

links = []

switches = []

hosts = []

name_switches = {}

def netcfg(net):

# Download the current network configuration

r_get = requests.get(url=URL+'network/configuration', auth=('onos', 'rocks'))

if r_get.status_code == 200:

r_json = r_get.json()

for h in net.hosts:

for host in hosts:

if h.MAC() == host['uri']:

r_json['hosts'][h.MAC()+'/None'] = {

"basic": {

"latitude": host['latitude'],

"longitude": host['longitude']

}

}

s_keys = r_json['devices'].keys()

for switch in switches:

for s_key in s_keys:

if switch['uri'] == s_key:

r_json['devices'][s_key] = {

"basic": {

"name": name_switches[s_key],

"latitude": switch['latitude'],

"longitude": switch['longitude']

}

}

for net_link in net.links:

for link in links:

intf1 = str(net_link.intf1)

intf2 = str(net_link.intf2)

src = intf1.split('-')[0]

src_intf = intf1.split('-')[1]

dst = intf2.split('-')[0]

dst_intf = intf2.split('-')[1]

if src == link['src'] and dst == link['dst']:
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# One way link

r_json['links'][link['src_uri']+'/'+src_intf.split('eth')[1]+'-'+link['dst_uri']+'/'+dst_intf.split('eth')[

1]] = {

"basic": {

"bandwidth": link['bandwidth'],

"durable": True,

"bidirectional": True

}

}

# Way back link

r_json['links'][link['dst_uri']+'/'+dst_intf.split('eth')[1]+'-'+link['src_uri']+'/'+src_intf.split('eth')[

1]] = {

"basic": {

"bandwidth": link['bandwidth'],

"durable": True,

"bidirectional": True

}

}

# Upload the new network configuration

r_post = requests.post(url=URL+'network/configuration', headers={'Content-type':

'application/json', 'Accept': 'application/json'}, data=json.dumps(r_json), auth=('onos', 'rocks'))

if r_post.status_code != 200:

print(r_post.content)

# Helper for hosts' location

def addHost(uri, latitude, longitude):

hosts.append({

"uri": uri,

"latitude": latitude,

"longitude": longitude

})

# Helper for devices' location

def addSwitch(uri, latitude, longitude, name):

switches.append({

"uri": uri,

"latitude": latitude,

"longitude": longitude

})

name_switches[uri] = name

# Helper for bandwidth management

def addLink(src, src_uri, dst, dst_uri, bandwidth):

links.append({

"src": src,

"src_uri": src_uri,

"dst": dst,

"dst_uri": dst_uri,

"bandwidth": bandwidth

})

def ping(net):

i = 1

while i < len(net.hosts):

net.hosts[i-1].cmd('ping -c4 %s' %net.hosts[i].IP())

i+=2

if len(net.hosts)%2 != 0:

net.hosts[0].cmd('ping -c4 %s' %net.hosts[len(net.hosts)-1].IP())

class LongTopo(Topo):

def __init__(self, *args, **kwargs):

Topo.__init__(self, *args, **kwargs)

# Add hosts and switches
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h1 = self.addHost('h1')

addHost('00:00:00:00:00:01', '41.58', '-8')

h2 = self.addHost('h2')

addHost('00:00:00:00:00:02', '39.58', '-8')

h3 = self.addHost('h3')

addHost('00:00:00:00:00:03', '37.58', '-8')

h4 = self.addHost('h4')

addHost('00:00:00:00:00:04', '41.5', '1.7')

h5 = self.addHost('h5')

addHost('00:00:00:00:00:05', '39.58', '2.8')

h6 = self.addHost('h6')

addHost('00:00:00:00:00:06', '39.1', '1.3')

h7 = self.addHost('h7')

addHost('00:00:00:00:00:07', '39.1', '1.3')

h8 = self.addHost('h8')

addHost('00:00:00:00:00:08', '39.1', '1.3')

h9 = self.addHost('h9')

addHost('00:00:00:00:00:09', '39.1', '1.3')

h10 = self.addHost('h10')

addHost('00:00:00:00:00:0a', '39.1', '1.3')

s1 = self.addSwitch('s1', protocols='OpenFlow13')

addSwitch('of:0000000000000001', '39.58', '-5.82', 'S1')

s2 = self.addSwitch('s2', protocols='OpenFlow13')

addSwitch('of:0000000000000002', '39.93', '-3.44', 'S2')

s3 = self.addSwitch('s3', protocols='OpenFlow13')

addSwitch('of:0000000000000003', '39.23', '-3.44', 'S3')

s4 = self.addSwitch('s4', protocols='OpenFlow13')

addSwitch('of:0000000000000004', '42.38', '-5.82', 'S4')

s5 = self.addSwitch('s5', protocols='OpenFlow13')

addSwitch('of:0000000000000005', '42.38', '-3.44', 'S5')

s6 = self.addSwitch('s6', protocols='OpenFlow13')

addSwitch('of:0000000000000006', '42.38', '-1', 'S6')

s7 = self.addSwitch('s7', protocols='OpenFlow13')

addSwitch('of:0000000000000007', '39.58', '-1', 'S7')

# Add links

self.addLink(h1, s1)

self.addLink(h2, s1)

self.addLink(h3, s1)

self.addLink(h4, s1)

self.addLink(h5, s1)

self.addLink(s1, s2, cls=TCLink, bw=100)

addLink('s1', 'of:0000000000000001', 's2', 'of:0000000000000002', 1)

addLink('s2', 'of:0000000000000002', 's1', 'of:0000000000000001', 1)

self.addLink(s1, s3, cls=TCLink, bw=100)

addLink('s1', 'of:0000000000000001', 's3', 'of:0000000000000003', 1)

addLink('s3', 'of:0000000000000003', 's1', 'of:0000000000000001', 1)

self.addLink(s2, s7, cls=TCLink, bw=100)

addLink('s2', 'of:0000000000000002', 's7', 'of:0000000000000007', 1)

addLink('s7', 'of:0000000000000007', 's2', 'of:0000000000000002', 1)

self.addLink(s3, s7, cls=TCLink, bw=100)

addLink('s3', 'of:0000000000000003', 's7', 'of:0000000000000007', 1)

addLink('s7', 'of:0000000000000007', 's3', 'of:0000000000000003', 1)

self.addLink(s1, s4, cls=TCLink, bw=100)

addLink('s1', 'of:0000000000000001', 's4', 'of:0000000000000004', 1)

addLink('s4', 'of:0000000000000004', 's1', 'of:0000000000000001', 1)

self.addLink(s4, s5, cls=TCLink, bw=100)

addLink('s4', 'of:0000000000000004', 's5', 'of:0000000000000005', 1)

addLink('s5', 'of:0000000000000005', 's4', 'of:0000000000000004', 1)

self.addLink(s5, s6, cls=TCLink, bw=100)

addLink('s5', 'of:0000000000000005', 's6', 'of:0000000000000006', 1)

addLink('s6', 'of:0000000000000006', 's5', 'of:0000000000000005', 1)

self.addLink(s6, s7, cls=TCLink, bw=100)

addLink('s6', 'of:0000000000000006', 's7', 'of:0000000000000007', 1)

addLink('s7', 'of:0000000000000007', 's6', 'of:0000000000000006', 1)

self.addLink(s7, h6)

self.addLink(s7, h7)

self.addLink(s7, h8)

self.addLink(s7, h9)

self.addLink(s7, h10)
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topos = { 'mytopo': ( lambda: LongTopo() ) }

def main():

net = Mininet(topo=LongTopo(), controller=None, autoSetMacs=True, link=TCLink)

net.addController('co', controller=RemoteController, ip='192.168.99.106', port=6633)

net.start()

# Make a ping between hosts to make them visible to the onos controller

ping(net)

# Uninstall forwarding app (org.onosproject.fwd) after the ping

r_delete = requests.delete(url=URL+'applications/org.onosproject.fwd/active', auth=('onos',

'rocks'))

# Load the network configuration

netcfg(net)

CLI(net)

net.stop()

if __name__ == '__main__':

# Clean cache of previous topologies

os.system('sudo mn -c')

setLogLevel('info')

main()

C.1.2. Reinforcement Learning topology

Table. C.6 Mininet topology for the RL scenario

#!/usr/bin/python

from mininet.topo import Topo

from mininet.cli import CLI

from mininet.link import TCLink

from mininet.log import setLogLevel

from mininet.net import Mininet

from mininet.node import RemoteController, Host

from mininet.util import quietRun

from os import listdir, environ

from requests import put

import re, socket, fcntl, array, struct, sys, requests, json, os

URL = "http://192.168.99.106:8181/onos/v1/"

links = []

switches = []

hosts = []

name_switches = {}

def netcfg(net):

# Download the current network configuration

r_get = requests.get(url=URL+'network/configuration', auth=('onos', 'rocks'))

if r_get.status_code == 200:

r_json = r_get.json()

for h in net.hosts:

for host in hosts:

if h.MAC() == host['uri']:

r_json['hosts'][h.MAC()+'/None'] = {

"basic": {

"latitude": host['latitude'],

"longitude": host['longitude']

}

}
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s_keys = r_json['devices'].keys()

for switch in switches:

for s_key in s_keys:

if switch['uri'] == s_key:

r_json['devices'][s_key] = {

"basic": {

"name": name_switches[s_key],

"latitude": switch['latitude'],

"longitude": switch['longitude']

}

}

for net_link in net.links:

for link in links:

intf1 = str(net_link.intf1)

intf2 = str(net_link.intf2)

src = intf1.split('-')[0]

src_intf = intf1.split('-')[1]

dst = intf2.split('-')[0]

dst_intf = intf2.split('-')[1]

if src == link['src'] and dst == link['dst']:

# One way link

r_json['links'][link['src_uri']+'/'+src_intf.split('eth')[1]+'-'+link['dst_uri']+'/'+dst_intf.split('eth')[

1]] = {

"basic": {

"bandwidth": link['bandwidth'],

"durable": True,

"bidirectional": True

}

}

# Way back link

r_json['links'][link['dst_uri']+'/'+dst_intf.split('eth')[1]+'-'+link['src_uri']+'/'+src_intf.split('eth')[

1]] = {

"basic": {

"bandwidth": link['bandwidth'],

"durable": True,

"bidirectional": True

}

}

# Upload the new network configuration

r_post = requests.post(url=URL+'network/configuration', headers={'Content-type':

'application/json', 'Accept': 'application/json'}, data=json.dumps(r_json), auth=('onos', 'rocks'))

if r_post.status_code != 200:

print(r_post.content)

# Helper for hosts' location

def addHost(uri, latitude, longitude):

hosts.append({

"uri": uri,

"latitude": latitude,

"longitude": longitude

})

# Helper for devices' location

def addSwitch(uri, latitude, longitude, name):

switches.append({

"uri": uri,

"latitude": latitude,

"longitude": longitude

})

name_switches[uri] = name

# Helper for bandwidth management

def addLink(src, src_uri, dst, dst_uri, bandwidth):
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links.append({

"src": src,

"src_uri": src_uri,

"dst": dst,

"dst_uri": dst_uri,

"bandwidth": bandwidth

})

def ping(net):

i = 1

while i < len(net.hosts):

net.hosts[i-1].cmd('ping -c4 %s' %net.hosts[i].IP())

i+=2

if len(net.hosts)%2 != 0:

net.hosts[0].cmd('ping -c4 %s' %net.hosts[len(net.hosts)-1].IP())

class LongTopo(Topo):

def __init__(self, *args, **kwargs):

Topo.__init__(self, *args, **kwargs)

# Add hosts and switches

h1 = self.addHost('h1')

addHost('00:00:00:00:00:01', '41.58', '-8')

h2 = self.addHost('h2')

addHost('00:00:00:00:00:02', '39.58', '-8')

h3 = self.addHost('h3')

addHost('00:00:00:00:00:03', '37.58', '-8')

h4 = self.addHost('h4')

addHost('00:00:00:00:00:04', '41.5', '1.7')

h5 = self.addHost('h5')

addHost('00:00:00:00:00:05', '39.58', '2.8')

h6 = self.addHost('h6')

addHost('00:00:00:00:00:06', '39.1', '1.3')

h7 = self.addHost('h7')

addHost('00:00:00:00:00:07', '39.1', '1.3')

h8 = self.addHost('h8')

addHost('00:00:00:00:00:08', '39.1', '1.3')

h9 = self.addHost('h9')

addHost('00:00:00:00:00:09', '39.1', '1.3')

h10 = self.addHost('h10')

addHost('00:00:00:00:00:0a', '39.1', '1.3')

s1 = self.addSwitch('s1', protocols='OpenFlow13')

addSwitch('of:0000000000000001', 'S1')

s2 = self.addSwitch('s2', protocols='OpenFlow13')

addSwitch('of:0000000000000002', 'S2')

s3 = self.addSwitch('s3', protocols='OpenFlow13')

addSwitch('of:0000000000000003', 'S3')

s4 = self.addSwitch('s4', protocols='OpenFlow13')

addSwitch('of:0000000000000004', 'S4')

s5 = self.addSwitch('s5', protocols='OpenFlow13')

addSwitch('of:0000000000000005', 'S5')

s6 = self.addSwitch('s6', protocols='OpenFlow13')

addSwitch('of:0000000000000006', 'S6')

s7 = self.addSwitch('s7', protocols='OpenFlow13')

addSwitch('of:0000000000000007', 'S7')

s8 = self.addSwitch('s8', protocols='OpenFlow13')

addSwitch('of:0000000000000008', 'S8')

# Add links

self.addLink(h1, s1)

self.addLink(h2, s1)

self.addLink(h3, s1)

self.addLink(h4, s1)

self.addLink(h5, s1)

self.addLink(s1, s2, cls=TCLink, bw=2000)

addLink('s1', 'of:0000000000000001', 's2', 'of:0000000000000002', 1)

addLink('s2', 'of:0000000000000002', 's1', 'of:0000000000000001', 1)

self.addLink(s1, s3, cls=TCLink, bw=2000)

addLink('s1', 'of:0000000000000001', 's3', 'of:0000000000000003', 1)
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addLink('s3', 'of:0000000000000003', 's1', 'of:0000000000000001', 1)

self.addLink(s1, s4, cls=TCLink, bw=2000)

addLink('s1', 'of:0000000000000001', 's4', 'of:0000000000000004', 1)

addLink('s4', 'of:0000000000000004', 's1', 'of:0000000000000001', 1)

self.addLink(s2, s5, cls=TCLink, bw=1000)

addLink('s2', 'of:0000000000000002', 's5', 'of:0000000000000005', 1)

addLink('s5', 'of:0000000000000005', 's2', 'of:0000000000000002', 1)

self.addLink(s2, s7, cls=TCLink, bw=1000)

addLink('s2', 'of:0000000000000002', 's7', 'of:0000000000000007', 1)

addLink('s7', 'of:0000000000000007', 's2', 'of:0000000000000002', 1)

self.addLink(s3, s6, cls=TCLink, bw=2000)

addLink('s3', 'of:0000000000000003', 's6', 'of:0000000000000006', 1)

addLink('s6', 'of:0000000000000006', 's3', 'of:0000000000000003', 1)

self.addLink(s4, s5, cls=TCLink, bw=1000)

addLink('s4', 'of:0000000000000004', 's5', 'of:0000000000000005', 1)

addLink('s5', 'of:0000000000000005', 's4', 'of:0000000000000004', 1)

self.addLink(s4, s7, cls=TCLink, bw=1000)

addLink('s4', 'of:0000000000000004', 's7', 'of:0000000000000007', 1)

addLink('s7', 'of:0000000000000007', 's4', 'of:0000000000000004', 1)

self.addLink(s8, h6)

self.addLink(s8, h7)

self.addLink(s8, h8)

self.addLink(s8, h9)

self.addLink(s8, h10)

topos = { 'mytopo': ( lambda: LongTopo() ) }

def main():

net = Mininet(topo=LongTopo(), controller=None, autoSetMacs=True, link=TCLink)

net.addController('co', controller=RemoteController, ip='192.168.99.106', port=6633)

net.start()

# Make a ping between hosts to make them visible to the onos controller

ping(net)

# Uninstall forwarding app (org.onosproject.fwd) after the ping

r_delete = requests.delete(url=URL+'applications/org.onosproject.fwd/active', auth=('onos',

'rocks'))

# Load the network configuration

netcfg(net)

CLI(net)

net.stop()

if __name__ == '__main__':

# Clean cache of previous topologies

os.system('sudo mn -c')

setLogLevel('info')

main()
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C.2. Grafana

With regards to the visualization of the data, the script in charge of processing it
is shown in table C.7. Once the database is created, the measurements along
with their values will be added automatically by the collector.py script. The three
that have been created to monitor the network are flow_active_entries,
link_occupations, and port_load. As can be seen in the figures C.2, C.3, and
C.4, every measurement in InlfuxDB can have different tags (static values) and
fields (dynamic values), of which will be adapted according to what needs to be
represented. Together with every entry in the database, a timestamp is
associated at which the measure was taken, which will allow us to present the
data in Grafana according to time.

Fig. C.2 Fields from flow_active_entries measurement

Fig. C.3 Fields from link_occupations measurement
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Fig. C.4 Fields from port_load measurement

Initially, the script drops all points from every measurement from the onos
database, so any pre-existing data is removed every time the script is initialized
to capture data, and also downloads the current network configuration (see Fig
C.5). Then, owing to that every 5 seconds the points from each measurement
are updated, two scheduled threads are created having as a target the methods
load_statistics and flow_active_entries, respectively.

On the one hand, the first method uses the statistics available for every port
(see Fig C.6) to calculate the rate detected as well as the link occupation. The
same as in the main Java class of the application, a weighted simple moving
average of size 4 is used to smooth possible outliers when calculating the data
rates. On the other hand, the second method uses the statistics available for all
flow active entries (see Fig C.7) in each device to show the percentage
distribution of flows. This will allow us to monitor the load, in terms of the
number of installed flow rules, of each device in the network.



114 Reinforcement Learning-Based Routing in SDN Networks

Fig. C.5 Request to get the entire network configuration



Appendix C. Network topologies, monitoring scripts, and other files of interest 115

Fig. C.6 Request to get the statistics of a specified device and port
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Fig. C.7 Request to get the sum of active flow entries in a device

Table. C.7 Python script to monitor the network in Grafana (collector.py)

#!/usr/bin/python

from __future__ import division

from influxdb import InfluxDBClient

from mininet.net import Mininet

from threading import Thread

import json, requests, time

client = InfluxDBClient(host='localhost', port=8086)

URL = "http://192.168.99.106:8181/onos/v1/"

POLL_INTERVAL = 5

WINDOW_SIZE = 4

loads = []

active_entries = []

network_configuration = []

devices = {}

links = {}

previous_port_statistics = {}

current_port_statistics = {}

weightedAverageConnectPointRate = {}
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def configuration():

client.switch_database('onos')

client.query('DROP SERIES FROM /.*/')

r_get = requests.get(url=URL+'network/configuration', auth=('onos', 'rocks'))

if r_get.status_code == 200:

network_configuration = r_get.json()

for device in network_configuration['devices'].keys():

devices[device] = network_configuration['devices'][device]['basic']['name']

for link in network_configuration['links'].keys():

links[link] = network_configuration['links'][link]['basic']['bandwidth']

def flow_active_entries():

while True:

start = time.time()

r_get = requests.get(url=URL+'statistics/flows/activeentries', auth=('onos', 'rocks'))

if r_get.status_code == 200:

r_json = r_get.json()

active_entries = r_json['statistics']

json_body = []

total_entries = sum(map(lambda x: int(x['activeEntries']), active_entries))

for active_entry in active_entries:

json_body.append({

"measurement": "flow_active_entries",

"tags": {

"device": devices[active_entry['device']]

},

"fields": {

"value": active_entry['activeEntries'],

"percentage":

(active_entry['activeEntries']/total_entries)*100

}

})

res = client.write_points(json_body)

time.sleep(POLL_INTERVAL)

def load_statistics():

while True:

start = time.time()

json_body = []

for link in links.keys():

r_get_dst =

requests.get(url=URL+'statistics/ports/'+link.split("-")[1].split("/")[0]+'/'+link.split("-")[1].split("/")

[1], auth=('onos', 'rocks'))

if r_get_dst.status_code == 200:

r_json_dst = r_get_dst.json()

previous_port_statistics[link.split("-")[1]] =

current_port_statistics[link.split("-")[1]]

current_port_statistics[link.split("-")[1]] =

r_json_dst['statistics'][0]['ports'][0]

dst_rate = calculateAverageWeightedRate(link.split("-")[1],

float((current_port_statistics[link.split("-")[1]]['bytesReceived']-previous_port_statistics[link.split("-"

)[1]]['bytesReceived'])/(POLL_INTERVAL)))

dst_occupancy = float(((dst_rate*8)/(1000000))/(links[link]))

json_body.append({

"measurement": "port_load",

"tags": {

"device": link.split("-")[0].split("/")[0],

"port": link.split("-")[0].split("/")[1]

},

"fields": {

"rate": (dst_rate*8)/(1000000)

}

})

json_body.append({

"measurement": "link_occupations",
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"tags": {

"link": link

},

"fields": {

"percentage": dst_occupancy*100

}

})

res = client.write_points(json_body)

time.sleep(POLL_INTERVAL)

def calculateAverageWeightedRate(connectPoint, rate):

cpRates = weightedAverageConnectPointRate[connectPoint]

sum = 0

i = 0

cpRates.append(rate)

if len(cpRates) > WINDOW_SIZE:

cpRates.pop(0)

weightedAverageConnectPointRate[connectPoint] = cpRates

for rate in cpRates:

i += 1

sum = sum+(rate*i)

return sum/((i*(i+1))/2)

def initialise_port_statistics():

for link in links.keys():

r_get_src =

requests.get(url=URL+'statistics/ports/'+link.split("-")[0].split("/")[0]+'/'+link.split("-")[0].split("/")

[1], auth=('onos', 'rocks'))

r_get_dst =

requests.get(url=URL+'statistics/ports/'+link.split("-")[1].split("/")[0]+'/'+link.split("-")[1].split("/")

[1], auth=('onos', 'rocks'))

if r_get_src.status_code == 200 and r_get_dst.status_code == 200:

r_json_src = r_get_src.json()

r_json_dst = r_get_dst.json()

previous_port_statistics[link.split("-")[0]] =

r_json_src['statistics'][0]['ports'][0]

previous_port_statistics[link.split("-")[1]] =

r_json_dst['statistics'][0]['ports'][0]

current_port_statistics[link.split("-")[0]] =

r_json_src['statistics'][0]['ports'][0]

current_port_statistics[link.split("-")[1]] =

r_json_dst['statistics'][0]['ports'][0]

weightedAverageConnectPointRate[link.split("-")[0]] = []

weightedAverageConnectPointRate[link.split("-")[1]] = []

if __name__ == '__main__':

configuration()

initialise_port_statistics()

thread1 = Thread(target=load_statistics)

thread1.start()

thread2 = Thread(target=flow_active_entries)

thread2.start()
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C.2.1. Results of section 3.3.2

Next are shown the occupancy of the links for the switch S1:

Fig. C.8 Occupancy of the link S1-S2 depicted in Grafana using Dijkstra as
implemented in ONOS

Fig. C.9 Occupancy of the link S1-S3 depicted in Grafana using Dijkstra as
implemented in ONOS
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Fig. C.10 Occupancy of the link S1-S4 depicted in Grafana using Dijkstra as
implemented in ONOS

C.2.2. Results of section 3.4.2

Next are shown the occupancy of the links for the switch S1:

Fig. C.11 Occupancy of the link S1-S2 depicted in Grafana using a custom
routing based on link occupancies
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Fig. C.12 Occupancy of the link S1-S3 depicted in Grafana using a custom
routing based on link occupancies

Fig. C.13 Occupancy of the link S1-S4 depicted in Grafana using a custom
routing based on link occupancies

C.3. MGEN

In this last point, it is explained in detail the script used to generate the results
obtained from the log files generated with every flow. These log files contain the
detailed information of the flows received. The following excerpt shows, namely,
the timestamp at which the packet was received, the sequence number of the
packet, the source and destination IP addresses, the timestamp at which the
packet was sent, and the size. Apart from the receiving event (RECV), others
that are important to mention are the start (START) and stop (STOP), which
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denotes the initialisation and stopping of processing transmission and reception
events.

15:44:50.454321 RECV proto>UDP flow>1 seq>1679 src>::ffff:10.0.0.1/5001
dst>10.0.0.7/5001 sent>15:44:50.454160 size>1000
gps>INVALID,999.000000,999.000000,4294966297

With all of this information, a custom tool executed via a python script has been
created (see Table C.9), containing most of the parameters -but not limited to-
that can be extracted from this log file, which are the throughput, the latency
-maximum, minimum, and average-, the loss rate, and the jitter. This tool
generates a JSON file, which has the following form:

Table. C.8 Excerpt of the JSON file containing the results of MGEN

1. {
2. "h1h6": {
3. "throughput": "0.9032Mbps",
4. "latency": {
5. "min": "0.014ms",
6. "max": "466.149ms",
7. "avg": "17.683ms"
8. },
9. "loss rate": "0.07%",
10. "jitter": "0.07486ms"
11. },
12. "h2h7": {
13. "throughput": "0.9032Mbps",
14. "latency": {
15. "min": "0.012ms",
16. "max": "159.154ms",
17. "avg": "2.436ms"
18. },
19. "loss rate": "0.04%",
20. "jitter": "0.04712ms"
21. },
22. "h3h8": {
23. "throughput": "0.9032Mbps",
24. "latency": {
25. "min": "0.016ms",
26. "max": "459.851ms",
27. "avg": "18.483ms"
28. },
29. "loss rate": "0.08%",
30. "jitter": "0.02296ms"
31. }
32.  
33. }

The formulae used to compute each parameter are:

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 𝑀𝑏𝑝𝑠[ ] =  𝑖=0

𝑁=𝑝𝑎𝑐𝑘𝑒𝑡𝑠

∑ 𝑏𝑦𝑡𝑒𝑠
𝑝𝑎𝑐𝑘𝑒𝑡

𝑖

𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑡𝑖𝑚𝑒

(D. 1)

𝐿𝑎𝑡𝑒𝑛𝑐𝑦
𝑖
 𝑚𝑠[ ] =  𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑡𝑖𝑚𝑒

𝑖
− 𝑠𝑒𝑛𝑡 𝑡𝑖𝑚𝑒

𝑖
(D. 2)

𝐿𝑜𝑠𝑠 𝑟𝑎𝑡𝑒 %[ ] =  𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑠𝑒𝑛𝑡−𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑
𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑠𝑒𝑛𝑡( )·100 (D. 3)

𝐽𝑖𝑡𝑡𝑒𝑟 𝑚𝑠[ ] = 𝐽𝑖𝑡𝑡𝑒𝑟 +
𝑙𝑎𝑡𝑒𝑛𝑐𝑦

𝑖−1
−𝑙𝑎𝑡𝑒𝑛𝑐𝑦

𝑖| |−𝐽𝑖𝑡𝑡𝑒𝑟

16
(D. 4)
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Table. C.9 Python script to generate the results from MGEN log files (parser.py)

#!/usr/bin/env python

# coding: utf-8

from __future__ import division

from collections import OrderedDict

import re, sys, os, csv, datetime, json, shutil

import numpy as np

log_paths = []

for root, dirs, files in os.walk("/home/sdn/onos/utils/mininet/topologies/mgen/log/"+sys.argv[1]):

for filename in sorted(files):

log_paths.append(root+'/'+filename)

results = OrderedDict()

for path in log_paths:

content = []

with open(path, "r") as file:

for line in file:

if (line.split(" ")[1] != "START" and line.split(" ")[1] != "LISTEN"):

content.append(line)

content.pop(len(content)-1)

'''

Calculate the throughputin Mbps

'''

throughput = []

bytes = 0

start_time = datetime.datetime.strptime(content[0].split(" ")[0], '%H:%M:%S.%f')

end_time = datetime.datetime.strptime(content[len(content)-1].split(" ")[0], '%H:%M:%S.%f')

for line in content:

bytes += int(line.split("size>")[1].split(" ")[0])

throughput.append(round((bytes*8)/(round((end_time-start_time).total_seconds())*1000000), 5))

'''

Calculate the latency in milliseconds (min, max, & avg)

As of now, only is taken into account the one way latency (from sender to receiver) since UDP is used

'''

values = []

latency = OrderedDict()

for line in content:

received_time = datetime.datetime.strptime(line.split(" ")[0], '%H:%M:%S.%f')

sent_time = datetime.datetime.strptime(line.split("sent>")[1].split(" ")[0], '%H:%M:%S.%f')

mmmmvalues.append((received_time-sent_time).total_seconds()*1000)

latency['min'] = round(np.min(values, axis=0), 3)

latency['max'] = round(np.max(values, axis=0), 3)

latency['avg'] = round(np.average(values, axis=0), 3)

'''

Calculate the loss rate in percentage

'''

packets_sent = content[len(content)-1].split("seq>")[1].split(" ")[0]

packets_received = len(content)

loss_rate = round(((int(packets_sent)-packets_received)/int(packets_sent))*100, 2)

'''

Calculate the jitter in miliseconds based on RFC 1889 (specifically sections 6.3.1 and A.8)

As RTP timestamp, it is taken the sent time

'''

total_jitter = 0

segment_jitter = 0

aux = 0

for index, line in enumerate(content):
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aux+=1

received_time_j = datetime.datetime.strptime(line.split(" ")[0], '%H:%M:%S.%f')

sent_time_j = datetime.datetime.strptime(line.split("sent>")[1].split(" ")[0], '%H:%M:%S.%f')

difference_j = (received_time_j-sent_time_j).total_seconds()*1000

difference_i = 0

if index-1 == -1:

received_time_i = 0

sent_time_i = 0

else:

received_time_i = datetime.datetime.strptime(content[index-1].split(" ")[0], '%H:%M:%S.%f')

sent_time_i = datetime.datetime.strptime(content[index-1].split("sent>")[1].split(" ")[0],

'%H:%M:%S.%f')

difference_i = (received_time_i-sent_time_i).total_seconds()*1000

difference = difference_j-difference_i

total_jitter += (abs(difference)-total_jitter)/16

segment_jitter += (abs(difference)-segment_jitter)/16

if aux == 1000:

aux = 0

segment_jitter = 0

'''

Create the directory if it does not exist and save all the information into a json file

'''

results_content = OrderedDict()

results_content["throughput"] = str(throughput[0])+'Mbps'

results_content["latency"] = OrderedDict([('min', str(latency['min'])+'ms'),

('max', str(latency['max'])+'ms'),

('avg', str(latency['avg'])+'ms')])

results_content["loss rate"] = str(loss_rate)+'%'

results_content["jitter"] = str(round(total_jitter, 5))+'ms'

results[path.split("/")[len(path.split("/"))-1].split(".")[0]] = results_content

if os.path.isdir("/home/sdn/onos/utils/mininet/topologies/mgen/results/"+sys.argv[1]):

mmmmshutil.rmtree("/home/sdn/onos/utils/mininet/topologies/mgen/results/"+sys.argv[1])

os.makedirs("/home/sdn/onos/utils/mininet/topologies/mgen/results/"+sys.argv[1])

with open('/home/sdn/onos/utils/mininet/topologies/mgen/results/'+sys.argv[1]+'/results.json', 'w') as f:

json.dump(results, f, indent=4)

C.3.1. How to generate MGEN flows

When it comes to the generation of MGEN flows, both files (ending with the
.mgn file extension) needed to generate the flow are shown, being in this case,
as an example, a host with IP address 10.0.0.6 transmitting 125 packets/second
of size 1000 bytes (1 Mbps) for 120 seconds:

- sender.mgn:
0.0 ON 1 UDP SRC 5001 DST 10.0.0.6/5001 PERIODIC [125 1000]
120.0 OFF 1

- receiver.mgn:
0.0 LISTEN UDP 5000-5001

With regard to Mininet, the following commands show how to generate these
flows inside Mininet. The parameters in brackets are the ones to modify
according to the network environment, including the name in Mininet of the
receiver host, the name of the file that will contain the log, and the name of the
file to store the information, respectively (the same but the other way round for
the sender case):
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- receiver → [receiver_host] mgen input [receiver.mgn] output
[mgenlog.txt]

- sender→ [sender_host] mgen input [sender.mgn]

Table. C.10 Python file to generate the JSON files for the comparison

import argparse, json, copy

from collections import OrderedDict

from tqdm import tqdm

import numpy as np

from Helper import Helper

from Graph import Graph

def generateFlowsAndSortThemChronologically(number, beginningNumber, maximumNumber):

flows = []

startTimes = []

endTimes = []

count = 0

flowCount = MAX_STEPS_TRAINING

transmissionTime = flowCount * 40 * 0.043

possibleValues = []

for i in range(0, flowCount * 40 + 1):

possibleValues.append(i)

print("number: ", number)

for count in tqdm(range(1, flowCount + 1), ascii=True, unit="flow"):

flow = OrderedDict()

flow["source"] = SOURCE

flow["destination"] = DESTINATION

start = int(np.random.choice(possibleValues))

end = int(np.random.choice(possibleValues))

if count == 1:

flow["start"] = 0

start = 0

else:

while start in startTimes or start in endTimes:

start = np.random.randint(1, flowCount * 40)

flow["start"] = start

# Ensuring that the total transmission time (end - start) is not greater than a 5% of

the total simulation time,

# We provide a more realistic and dynamic simulation. We just want to avoid the

situation in which tens of flows

# Are accumulated at the beginning

endVisitedValues = copy.deepcopy(possibleValues)

while end <= start or end - start > transmissionTime:

end = int(np.random.choice(endVisitedValues))

endVisitedValues.remove(end)

if len(endVisitedValues) == 0:

print("inside if")

start = int(np.random.choice(possibleValues))

while start in startTimes or start in endTimes:
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start = np.random.randint(1, flowCount * 40)

endVisitedValues = copy.deepcopy(possibleValues)

flow["start"] = start

startTimes.append(start)

possibleValues.remove(start)

flow["end"] = end

endTimes.append(end)

possibleValues.remove(end)

rate = 0

multiple = False

while not multiple:

rate = np.random.randint(80, 251)

if rate % 8 == 0:

multiple = True

flow["rate"] = rate

flows.append(flow)

count += 1

if len(flows) == flowCount:

break

sortedFlowsByStartTime = sorted(flows, key=lambda flow: flow["start"])

sortedFlowsByEndTime = sorted(flows, key=lambda flow: flow["end"])

sortedFlows = []

i, j = 0, 0

# The hash is obtained with the following keys: source, destination, and time (either

start or end, depending on the case)

while i < len(sortedFlowsByStartTime) and j < len(sortedFlowsByEndTime):

if sortedFlowsByStartTime[i]["start"] < sortedFlowsByEndTime[j]["end"]:

sortedFlows.append(OrderedDict())

sortedFlows[len(sortedFlows) - 1]["hash"] =

hash((sortedFlowsByStartTime[i]["source"],

sortedFlowsByStartTime[i]["destination"],

sortedFlowsByStartTime[i]["start"],

sortedFlowsByStartTime[i]["end"]))

sortedFlows[len(sortedFlows) - 1]["time"] = sortedFlowsByStartTime[i]["start"]

sortedFlows[len(sortedFlows) - 1]["ingress"] = sortedFlowsByStartTime[i]

i += 1

else:

sortedFlows.append(OrderedDict())

sortedFlows[len(sortedFlows) - 1]["hash"] =

hash((sortedFlowsByEndTime[j]["source"],

sortedFlowsByEndTime[j]["destination"],

sortedFlowsByEndTime[j]["start"],

sortedFlowsByEndTime[j]["end"]))

sortedFlows[len(sortedFlows) - 1]["time"] = sortedFlowsByEndTime[j]["end"]

sortedFlows[len(sortedFlows) - 1]["egress"] = sortedFlowsByEndTime[j]

j += 1
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if i == len(sortedFlowsByStartTime):

while j < len(sortedFlowsByEndTime):

sortedFlows.append(OrderedDict())

sortedFlows[len(sortedFlows) - 1]["hash"] =

hash((sortedFlowsByEndTime[j]["source"],

sortedFlowsByEndTime[j]["destination"],

sortedFlowsByEndTime[j]["start"],

sortedFlowsByEndTime[j]["end"]))

sortedFlows[len(sortedFlows) - 1]["time"] = sortedFlowsByEndTime[j]["end"]

sortedFlows[len(sortedFlows) - 1]["egress"] = sortedFlowsByEndTime[j]

j += 1

elif j == len(sortedFlowsByEndTime):

while i < len(sortedFlowsByStartTime):

sortedFlows.append(OrderedDict())

sortedFlows[len(sortedFlows) - 1]["hash"] =

hash((sortedFlowsByStartTime[i]["source"],

sortedFlowsByStartTime[i]["destination"],

sortedFlowsByStartTime[i]["start"],

sortedFlowsByStartTime[i]["end"]))

sortedFlows[len(sortedFlows) - 1]["time"] = sortedFlowsByStartTime[i]["start"]

sortedFlows[len(sortedFlows) - 1]["ingress"] = sortedFlowsByStartTime[i]

i += 1

hashes = []

for flow in sortedFlows:

if "ingress" in flow:

hashes.append(flow["hash"])

if len(hashes) > len(set(hashes)):

exit()

maximumRate = 0

flowsStacked = OrderedDict()

for flow in sortedFlows:

if "ingress" in flow:

maximumRate += flow["ingress"]["rate"]

if flow["ingress"]["rate"] not in flowsStacked:

flowsStacked[flow["ingress"]["rate"]] = 0

else:

flowsStacked[flow["ingress"]["rate"]] += 1

elif "egress" in flow:

maximumRate -= flow["egress"]["rate"]

if maximumRate > 5900:

print("exceeds")

generateFlowsAndSortThemChronologically(number, beginningNumber, maximumNumber)

print("outside exceeds")

fileNumber = str(number + beginningNumber + 1)

with open("generated-flows/flows_comparison " + fileNumber + ".json", "w") as file:

file.write(json.dumps(sortedFlows))

graph = Graph()
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graph.plotFlowsInformation(sortedFlows, "flows-generator", fileNumber)

number += 1

if number >= maximumNumber:

exit()

else:

generateFlowsAndSortThemChronologically(number, beginningNumber, maximumNumber)

if __name__ == "__main__":

with open("DQN_config.json", "r") as DQN_config:

DQN_config = json.load(DQN_config)

# Constant variables read from the Config.json file

SOURCE = DQN_config['SOURCE']

DESTINATION = DQN_config['DESTINATION']

ACTION_COUNT = DQN_config['ACTION_COUNT']

ACTIONS = [[0, 1, 4, 7], [0, 2, 5, 7], [0, 3, 6, 7], [0, 1, 6, 7], [0, 3, 4, 7]]

ADAM_LEARNING_RATE = DQN_config['ADAM_LEARNING_RATE']

BATCH_SIZE = DQN_config['BATCH_SIZE']

EPSILON_DECAY = DQN_config['EPSILON_DECAY']

GAMMA = DQN_config['GAMMA']

MAX_STEPS_TRAINING = DQN_config['MAX_STEPS_TRAINING']

MAX_STEPS_COMPARISON = DQN_config['MAX_STEPS_COMPARISON']

MAX_EPISODES_TRAINING = DQN_config['MAX_EPISODES_TRAINING']

MAX_EPISODES_COMPARISON = DQN_config['MAX_EPISODES_COMPARISON']

MIN_EPSILON = DQN_config['MIN_EPSILON']

REPLAY_MEMORY_SIZE = DQN_config['REPLAY_MEMORY_SIZE']

REPLAY_START_LEARNING_SIZE = DQN_config['REPLAY_START_LEARNING_SIZE']

parser = argparse.ArgumentParser()

parser.add_argument("--number", help="Number of files to generate: [integer]")

parser.add_argument("--beginning", help="Beginning number for the files to generate:

[integer]")

args = vars(parser.parse_args())

Helper.createGeneratedFlowsDirectoryDirectory()

generateFlowsAndSortThemChronologically(0, int(args["beginning"]), int(args["number"]))
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APPENDIX D. REINFORCEMENT LEARNING TRAINING
WITH DIFFERENT HYPERPARAMETERS

In this appendix we will show the average reward obtained when training with
different hyperparameters to the ones shown in section 4.3, just to show the
complexity of fine-tuning the RL agent. In order not to be naming every time the
values used, we will just mention the ones that are different in comparison to
the ones selected for the training.

Fig. D.1 Total episode reward with batch size of 64 and replay memory size of
5,000
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Fig. D.2 Total episode reward with replay memory size of 5,000

Fig. D.3 Total episode reward with batch size of 256, replay memory size of
5,000, and epsilon decay of 0.9975
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Fig. D.4 Total episode reward with batch size of 64 and replay memory size of
1,000,000

Fig. D.5 Total episode reward with batch size of 64, epsilon decay of 0.995,
replay memory size of 1,000,000, and replay start learning size of 50,000
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Fig. D.6 Total episode reward with batch size of 64, epsilon decay of 0.9975,
replay memory size of 1,000,000, and replay start learning size of 50,000

Fig. D.7 Total episode reward with learning rate of 0.0001, batch size of 32,
epsilon decay of 0.995, and replay memory size of 1,000,000
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Fig. D.8 Total episode reward with learning rate of 0.0001, batch size of 32,
gamma of 0.99, epsilon decay of 0.995, and replay memory size of 200,000

Fig. D.9 Total episode reward with batch size of 64, epsilon decay of 0.995,
replay start learning size of 50,000, and replay memory size of 1,000,000


