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Abstract: Over the years, a number of methods have been proposed for the generation of uniform and globally optimal Pareto 

frontiers in multi-objective optimization problems. This has been the case irrespective of the problem definition. The most commonly 

applied methods are the normal constraint method and the normal boundary intersection method. The former suffers from the 

deficiency of an uneven Pareto set distribution in the case of vertical (or horizontal) sections in the Pareto frontier, whereas the latter 

suffers from a sparsely populated Pareto frontier when the optimization problem is numerically demanding (ill-conditioned). The 

method proposed in this paper, coupled with a simple Pareto filter, addresses these two deficiencies to generate a uniform, globally 

optimal, well-populated Pareto frontier for any feasible bi-objective optimization problem. A number of examples are provided to 

demonstrate the performance of the algorithm. 
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1. Introduction  

Often, engineers are faced with the challenge of 

designing industrial applications to meet a defined set 

of system requirements, while at the same time 

keeping the physical size and cost of the system to a 

minimum. This is inherently a bi-objective 

optimization problem, where the set of system 

requirements are referred to as constraints and the 

minimization of the physical size of the system and its 

cost are the objectives of the problem. 

The bi-objective optimization problem is a specific 

case in generic multi-objective optimization in which 

any number of objectives can be defined. 

Multi-objective optimization originally grew out of 

three areas: economic equilibrium and welfare 

theories, game theory and pure mathematics [1]. As a 
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consequence, many terms and fundamental ideas 

originate from these fields. 

The optimization problem generally requires the 

minimization of an objective function subject to 

constraints, some of which are an inherent part of the 

original problem, while others may be introduced by 

way of the multi-objective problem formulation [2]. 

The design of a system with more than one objective 

is, in the literature, referred to as a multiple criteria 

decision making problem [3]. This type of decision 

and planning problem involves multiple conflicting 

objectives that need to be considered simultaneously. 

Solving the multi-objective optimization problem 

does not lead to a single global solution. Owing to the 

competing nature of the objectives, it might be 

possible to obtain an infinite number of solutions 

where each unique solution assigns different priorities 

to the problem objectives. The solutions are known as 

Pareto points and constitute the Pareto optimal set. 

The definition for Pareto optimality as defined by 

Pareto [4] as follows: 

Pareto Optimality: A point כݔ א ܺ  is Pareto 
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optimal if and only if there does not exist another 

point ݔ א ܺ , such that ܨሺݔሻ ൑ ሻכݔሺܨ , and ܨ௜ሺݔሻ ൏  .for at least one function כݔ௜ܨ

It is then up to the decision maker (DM) to select a 

point from the Pareto optimal set. The generation of 

the entire or part of the Pareto optimal set is, however, 

computationally intensive and therefore its generation 

should be avoided unless absolutely necessary. This 

norm especially applies when the number of 

objectives is larger than two, leading to a three- or 

multi-dimensional Pareto surface. In such cases, the 

DM should specify preferences articulated in terms of 

goals or the relative importance of different objectives. 

Methods based on this principle are referred to as 

having a priori articulation of preferences [1]. Most of 

these methods incorporate parameters that can be set 

to reflect the DM preferences. 

In general, it is difficult for a DM to define the 

preference function a priori. In this case, it can be 

more suitable to provide the DM with a palette of 

solutions through the Pareto optimal set, from which 

one is chosen. Methods that incorporate algorithms 

that generate the Pareto optimal set are referred to as 

having a posteriori articulation of preferences [1]. 

Clearly, however, a posteriori methods are 

computationally more intensive than a priori methods 

since a whole set of solutions needs to be generated as 

opposed to the latter in which only one solution is 

calculated.  

The systematic generation of the Pareto frontier can 

be accomplished through one of two predominant 

techniques: scalarization, and vectorization methods. 

On the one hand, scalarization methods convert the 

Multi-Objective Optimization Problem (MOOP) into a 

series of parametric Single-Objective Optimization 

Problems (SOOPs), while on the other hand, 

vectorization methods tackle the MOOP directly [5]. 

Vectorization techniques such as genetic algorithms 

[6], are in general easy to implement and regarded as 

global optimization approaches. However, due to the 

stochastic nature of their search procedures, if the 

search space is not highly constrained, the 

optimization process will require a large number of 

objective function evaluations. As a consequence, the 

algorithm can be very computationally intensive. 

Scalarization techniques, in general, do not suffer 

from the above drawback, since efficient deterministic 

optimization approaches can be exploited to find a 

(local) optimum for the different possibly large-scale 

SOOPs. The efficient solution of the SOOPs is crucial, 

because their number increases exponentially with the 

number of the objectives [7]. A number of 

scalarization methods have been proposed in the 

literature, such as the linear weighted sum, the normal 

constraint [2], the normal boundary intersection [8] 

and the physical programming [9] methods. A number 

of deficiencies in these methods were addressed by 

further work and modifications to the algorithms, 

which resulted in the modified [10] and enhanced [11] 

normal constraint methods, the normalized angular 

constraint method [12], the modified normal boundary 

intersection method [13] and the modified physical 

programming method [14].  

This paper proposes an alternative method, herein 

referred to as the adaptive bisection e-constraint 

method, for bi-criterion problems. The proposal uses 

the e-constraint method as a basis and develops an 

algorithm that systematically manipulates the SOOP 

formulations to generate a diverse, well-distributed 

Pareto frontier even in the case of non-convex Pareto 

sets. The proposed method performs as well as the 

normal constraint, normal boundary intersection 

methods and their enhancements for bi-criterion 

problems with loose or no constraints. It is however 

superior in the case of tightly constrained problems 

when individual SOOPs are sometimes infeasible. In 

such cases, the algorithm searches in the vicinity of 

the infeasible problem space until feasible solutions 

are found, such that the Pareto frontier will remain 

densely populated. To the best knowledge of the 

authors, this approach has not been adopted in other 

methods, resulting in Pareto frontiers that are sparsely 
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populated due to the lack of feasible solutions.  

This paper is structured as follows: Section 2 

presents the formulation of a general bi-objective 

optimization problem. In section 3, an overview of the 

most commonly applied scalarization methods is 

presented. Specifically, the linear weighted sum, 

normal boundary intersection and normal constraint 

methods are described with particular attention to their 

deficiencies in generating complete, well-distributed 

optimal Pareto frontiers. Section 4 presents the 

equidistant e-constraint method, which is explained 

from a graphical perspective. The ensuing problem 

formulation is also presented and an analysis with 

respect to the scalarization methods surveyed is made. 

In section 5, the adaptive bisection e-constraint 

method is presented, addressing the deficiencies in the 

equidistant e-constraint method and the methods 

described is section 3. Section 6 describes the tests 

carried out on the methods described in sections 4 and 

5 and their results. Four bi-criterion examples are 

considered, starting from a relatively simple test 

resulting in a convex Pareto frontier, then increasing 

the complexity with two further tests resulting in 

non-convex Pareto sets, and finally a tightly 

constrained optimization problem. An analysis ensues, 

which compares the proposed methods with the ones 

surveyed. A simple Pareto filter is finally coupled to 

the adaptive bisection e-constraint method to address 

the generation of non-optimal Pareto points. This final 

step in the development is also put to test with the 

examples having non-convex Pareto optimal sets. This 

paper is concluded with section 7, where a conclusion 

and some remarks are made with respect to the work 

presented. 

2. Bi-Objective Optimization Problem 
Formulation 

The bi-objective optimization problem is defined as 

follows:  min௫ሼߤଵߤଶሽ       (1) 
subject to 

 ݃௝ሺݔሻ ൑ Ͳ, ሺͳ ൑ ݆ ൑  ሻ        (2)ݎ

 ݄௞ሺݔሻ ൌ Ͳ, ሺͳ ൑ ݇ ൑ ௟௜ݔ ሻ        (3)ݏ ൑ ௜ݔ ൑ ௨௜ݔ , ሺͳ ൑ ݅ ൑ ݊௫ሻ         (4) 
where ݔ  is the vector of decision variables to be 

optimized of dimension ݊௫ , ݃௝ሺݔሻ  and ݄௞ሺݔሻ  are 

the ݎinequality and ݏequality constraints respectively, 

and ݔ௟௜  and ݔ௨௜  are the lower and upper bound 

constraint vectors on ݔ respectively, both of 

dimension ݊௫. 

3. Overview of Scalarization Methods 

The three most applied scalarization methods in the 

literature are the linear weighted sum (LWS), the 

normal boundary intersection (NBI) and the normal 

constraint (NC) methods. A brief overview of the 

individual methods is given in this section, followed 

by an analysis of the advantages and disadvantages of 

each with respect to each other. 

3.1 Linear Weighted Sum (LWS) Method 

The most common approach to multi-objective 

optimization is the LWS method. The technique is to 

reduce the MOOP into a SOOP by combining the 

multiple objectives into a single objective through the 

selection of a multiplicative weight for each criterion 

and summing them together: ܷ ൌ ∑ ሻ௞௜ୀଵݔ௜ሺܨ௜ݓ      (5) 
By modifying the weights, different points on the 

Pareto optimal set can be found. Unfortunately, 

varying the weights systematically may not 

necessarily result in an even distribution of Pareto 

optimal points. In such cases, a complete 

representation of the Pareto optimal set will not be 

achieved [15]. In most cases, the LWS is unable to 

capture the middle ground of the Pareto set, rendering 

it fairly useless as a means of studying the trade-off 

between conflicting objectives [8]. Moreover, it is 

impossible to obtain points on non-convex portions of 

the Pareto optimal set in the criterion space [1]. Even 

though non-convex Pareto optimal sets are rather 

uncommon, some examples are found in the literature 

[16-18]. This is a serious and significant limitation 

because in real world problems using simulation 
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models and/or systems of partial differential equations 

it is not always easy to check for convexity. If this 

method is used for non-convex problems, therefore, 

the Pareto frontier generated will be incomplete, 

leaving the DM with a non-complete set of feasible 

solutions [3]. 

3.2 Normal Boundary Intersection (NBI) Method 

The NBI method was developed by Das and Dennis 

[8] to address deficiencies in the LWS approach. An 

even distribution of Pareto optimal points for 

consistent weight variations, for both convex and 

non-convex Pareto sets, is possible though this 

approach. The approach is formulated as follows: 

 min௫א௑,ఒ  (6)       ߣ

subject to 

ݓ߮  ൅ ݊ߣ ൌ ሻݔሺܨ െ  ௢      (7)ܨ

where ߮ is a ݇ ൈ ݇ pay-off matrix in which the ith 

column is composed of the vector ܨሺݔ௜כሻ െ  ሻ is the vector of objective functions evaluated atכ௜ݔሺܨ ௢, andܨ

the minimum of the ith objective function. The 

diagonal elements of ߮ are zeros, w is a vector of 

scalars such that ∑ ௜ݓ ൌ ͳ௞௜ୀଵ  and ݓ ൒ Ͳ. ݊ ൌ െ߮݁, 

where ݁ א ܴ௞  is a column vector of ones in the 

criterion space. As w is systematically modified, an 

even distribution of Pareto optimal points representing 

the complete Pareto set results, even with a 

non-convex Pareto optimal set. 

It is worth noting that, unlike the LWS, the weights 

in the NBI method do not give the DM information on 

the relative importance of the objectives. Therefore, a 

priori articulation of preferences is not suitable for 

this method, as the selection of preferences would be 

hard for the DM to visualize. A weak point of the NBI 

method is that in highly nonlinear problems, it is hard 

to obtain optimal solutions due to equality constraints 

[19]. Yet, another problem is that, with this method, 

solutions of sub-problems need not be Pareto-optimal 

(not even locally), because the NBI approach aims at 

getting boundary points on the Pareto frontier. The 

resulting boundary points are a superset of the Pareto 

optimal set [13]. 

3.3 Normal Constraint (NC) Method 

The NC method developed by Messac et al. [2] 

provides an alternative to the NBI method with some 

improvements. The method proceeds as follows. First, 

the utopia point, which is a combination of the 

individual minima of the objective functions, is found, 

and its components are used to normalize the 

objectives. A utopia hyperplane in the criterion space 

is thus formed from the vertices of the individual 

minima of the objective functions. A sample of evenly 

distributed points on the utopia hyperplane is 

determined from a linear combination of the vertices 

with evenly varied weights in the criterion space. The 

pareto points are generated by minimizing one of the 

normal objective functions with additional inequality 

constraints in succession using the weights generated 

from the evenly distributed points on the utopia 

hyperplane. It is relevant to note that in the NC 

method additional inequality constraints are added in 

the problem formulation as opposed to equality 

constraints in the NBI method. 

As this approach may lead to non-optimal Pareto 

optimal solutions, the NC method is usually used with 

a Pareto filter. Furthermore, evenly spaced Pareto 

optimal points in the criterion space are produced if a 

normalization process is included in the algorithm. 

Failure to include this feature will lead to non-evenly 

distributed Pareto sets for differently scaled design 

objectives. The addition of the Pareto filter and the 

normalization process to the algorithm leads to what is 

referred to as the Normalized Normal Constraint 

(NNC) method. Even with these added features, a 

drawback of the NNC method is that, although in 

general it generates well-distributed solutions in the 

Pareto frontier, it loses consistency if the slope of this 

frontier is close to the horizonal [10]. 

4. The Equidistant e-Constraint Method 

The e-constraint method was first proposed by 

Haimes et al. in 1971 [20]. In this method, one of the 
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objective functions is selected to be optimized while 

the other(s) are converted into additional constraints, 

leading to a solution that can be proven to always be 

weakly Pareto optimal [3]. Systematic modification of 

the values of the objective functions forming the 

additional constraints leads to the generation of an 

evenly distributed Pareto frontier. A method for 

systematically modifying the additional constraints, 

referred to as the equidistant e-constraint method, is 

being proposed and proceeds as follows. 

The algorithm starts by obtaining the anchor points ߤଵכ and ߤଶכ of the BOOP, corresponding to the 

minimum values of each of the objective functions 

through solving the following two single-objective 

optimization problems: 

 min௫ሼߤଵߤଶሽ       (8) 

subject to 

 ݃௝ሺݔሻ ൑ Ͳ, ሺͳ ൑ ݆ ൑  ሻ           (9)ݎ

 ݄௞ሺݔሻ ൌ Ͳ, ሺͳ ൑ ݇ ൑  ሻ           (10)ݏ

௟௜ݔ  ൑ ௜ݔ ൑ ௨௜ݔ , ሺͳ ൑ ݅ ൑ ݊௫ሻ      (11) 

The solution of Eq. (8) leads to the anchor points of 

the Pareto frontier being captured, ensuring that no 

part of the Pareto frontier fails to be considered in the 

optimization process. The intersection of the lines ߤଵ ൌ ଶߤ and כଵߤ ൌ כଶߤ  defines the utopian point ߤ௨, 

which, albeit being an ideal solution, does not lie in 

the feasible region of the optimization problem (Fig. 

1). 

Defining d as the vertical distance between the 

utopian point ߤ௨ and the anchor point ߤଵכ, the line d 

is divided into ൫݊௣ െ ͳ൯ equidistant points of 

separation ∆݀  (Fig. 2). The value of ݊௣  is user 

specified and it determines the target number of points 

on the Pareto frontier. 

The equidistant e-constraint method transforms the 

BOOP into ݊௣ SOOPs. The anchor points are 

determined through the solution of two 

single-objective problems, leaving ൫݊௣ െ ʹ൯ 
problems to be solved, which are formulated as 

follows:   
 min௫  ଵ         (12)ߤ

subject to 

݃௝ሺݔሻ ൑ Ͳ, ሺͳ ൑ ݆ ൑  ሻ       (13)ݎ
 ݄௞ሺݔሻ ൌ Ͳ, ሺͳ ൑ ݇ ൑  ሻ            (14)ݏ

௟௜ݔ  ൑ ௜ݔ ൑ ௨௜ݔ , ሺͳ ൑ ݅ ൑ ݊௫ሻ           (15) 
with the additional constraint: 

ଶߤ  ൌ  ௖           (16)ߝ
The additional constraint of Eq. (16) is unique for 

each problem formulation and is calculated as follows: 
௖ߝ  ൌ כଶߤ ൅ ∆ௗሺܿ െ ʹሻ   (17) 

where c is the problem formulation number having a 

range ൣ͵, ݊௣൧. 
The equidistant e-constraint method is a very 

intuitive and simple method to apply to bi-criterion 

problems. However, it suffers from a significant 

number of deficiencies. Firstly, without proper scaling 

of the objective functions, a well-distributed spread of 

the Pareto frontier is not achieved. Nevertheless, it 

still performs better than the LWS method, as the 

whole frontier is covered, albeit with a varying density 

of points. Secondly, the solutions, although being 

weakly Pareto optimal, are not necessarily global 
 

 
Fig. 1  Graphical representation of the design metric space 
for a BOOP. 
 

 
Fig. 2  A set of equidistant points on the Utopia line for a 
BOOP. 
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Pareto optimal points and this raises the need for a 

Pareto filter to dispose of non-global Pareto points. 

Another significant problem that is present in all the 

methods reviewed, including the NBI and NNC 

methods, is that if a specific SOOP formulation is 

infeasible, a potential point is lost from the Pareto 

frontier since no other SOOP is formulated to find an 

alternative solution in the Pareto optimal set. Thus, 

this method, together with the other reviewed methods, 

is not suitable for tightly constrained problems or 

Pareto frontiers with discontinuities when the DM 

requires a representation of the whole Pareto frontier. 

It is interesting, however, that this method is able to 

represent non-convex Pareto frontiers, unlike the LWS 

method. 

5. The Adaptive Bisection e-Constraint 
Method 

The adaptive bisection e-constraint method 

proposed in this work was developed to address the 

deficiencies in the equidistant e-constraint method. It 

differs from the equidistant e-constraint method in the 

way the additional constraint of Eq. (16) is calculated.  

The concept behind the method is to first find the 

anchor points of the Pareto frontier. Then, the utopia 

line, which is the straight line joining the anchor 

points, is bisected to obtain a value ߝ௖ for the 

additional constraint of Eq. (16) of the BOOP defined 

in Eq. (12). 

The solution of the optimization problem will lead 

to an additional point on the Pareto frontier. 

Sometimes, this will lead to an infeasible problem that 

leads to no solution. In this case, the line joining the 

anchor points is subdivided into four sections and the 

constraint ߝ௖ is set to the value of ߤଶ at one-fourth 

the length of the line. If the problem is still infeasible, 

the value of ߤଶ at three-quarters of the line joining 

the anchor points is then tried. The line will continue 

being bisected until a solution is found or a constant K 

set by the user is reached. 

Once an additional point ߤଷכ  is found, the euclidean 

distance between the point and other points on the 

Pareto frontier is determined. The two points with 

minimal euclidean distance are then used to find an 

additional point on the Pareto frontier by using the 

method of line bisection as previously described. 

This process is repeated until the number of Pareto 

points ݊௣  requested by the user is found. A 

simplified flow diagram of the algorithm is illustrated 

in Fig. 3. 

The adaptive bisection e-constraint method, albeit 

slightly more complex to implement than the 

equidistant e-constraint method, is still very intuitive 

and simple to implement and apply to bi-criterion 

problems. Nonetheless, the simplicity does not 

compromise the performance of the algorithm. As 

opposed to the first method proposed, this method 

does not suffer from scaling problems. It is also able 

to generate equally distributed Pareto frontiers for 

both non-convex and horizontal (or vertical) Pareto 

frontiers, which is not the case for the NNC method. 

Finally, the greatest feature is the adaptivity of the 

algorithm, which allows the reformulation of 

individual SOOPs in the case of infeasibility to ensure 

a dense Pareto frontier for even the most difficult of 

optimization problems. 

6. Numerical Examples 

In this section. four examples are used to generate 

Pareto frontiers with the proposed methods. First, the 

equidistant e-constraint method is considered with 

inequality constraints, i.e., setting Eq. (16) to ߤଶ ൑  .௖ߝ
Such a formulation is less difficult than setting an 

equality constraint from an optimization point of view. 

Then, the e-constraint method as formulated in section 

4 is put into practice. Finally the adaptive bisection 

e-constraint method is considered. 

6.1 Example 1 

The first example considered [2] results in a 

convex Pareto frontier, constituting both vertical and 

horizontal parts with the scales of the objective 
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Fig. 3  Flow diagram of the adaptive bisection e-constraint method. 
 

functions having different orders of magnitude. The 

BOOP has two optimization variables, two equality 

constraints and an inequality constraint and it is 

defined as follows: 
 min௫ሼߤଵߤଶሽ    (18) 

subject to 

ଵߤ  ൌ  ଵ     (19)ݔ

ଶߤ  ൌ  ଶ        (20)ݔ

 ቀ௫భିଶ଴ଶ଴ ቁ଼ ൅ ቀ௫మିଵଵ ቁ଼ ൑ ͳ        (21) 

6.2 Example 2 

The second example considered [2] generates a 

non-convex Pareto frontier. Similar to example 1, it 

has two optimization variables, two equality 

constraints and one inequality constraint: 
 min௫ሼߤଵߤଶሽ     (22) 

subject to 
ଵߤ  ൌ  ଵ     (23)ݔ

ଶߤ  ൌ  ଶ     (24)ݔ
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 ͷ݁ି௫భ ൅ ʹ݁ି଴.ହሺ௫భିଷሻమ ൑  ଶ  (25)ݔ

6.3 Example 3 

An example with several noncontiguous complex 

parts is considered next [21]. The number of 

optimization variables increases drastically to thirty. 

However, no constraints are set. The BOOP problem 

is formulated as follows: 
 min௫ሼߤଵߤଶሽ    (26) 

subject to 
ଵߤ  ൌ  ଵ        (27)ݔ

ଶߤ  ൌ ݃ ൤ͳ െ ට௫భ௚ െ ௫భ௚ sin ͳͲݔߨଵ൨    (28) 

 ݃ ൌ ͳ ൅ 9ሺ∑ ௜௡௜ୀଶݔ ሻ/ሺ݊ െ ͳሻ     (29) 
 ݊ ൌ ͵Ͳ       (30) 

6.4 Example 4 

Finally, a bi-objective problem which has 

particularly tight constraints [22], is put to the test. It 

is bi-objective, has two optimization variables, two 

equality constraints and two inequality constraints: 
 min௫ሼߤଵߤଶሽ    (31) 

subject to 
ଵߤ  ൌ  ଵ          (32)ݔ
ଶߤ  ൌ ሺͳ ൅  ଵ      (33)ݔ/ଶሻݔ
ଶݔ  ൅ ଵݔ9 ൒ ͸     (34) 
 െݔଶ ൅ ଵݔ9 ൒ ͳ        (35) 

6.5 Results and Discussion 

In the first algorithm, involving the equidistant 

e-constraint method with inequality constraints, the 

inequality constraint replacing Eq. (16) made the 

optimization problems less constrained, resulting in 

less computational resources being required. 

Unfortunately, however, the downside is that for a 

number of individual BOOPs, the gradient-based 

optimizer proceeded with its search away from the 

potentially infeasible solutions at ߤଶ ൌ ௖ߝ . This 

resulted in repeated solutions at other points on the 

Pareto frontier where, from an initial stage, the 

solution will seem more feasible. Figs. 4a, 5a, 6a, and 

7a demonstrate this fact. As a consequence, the Pareto 

frontiers generated are incomplete with a high density 

of points in only a few regions. 

The equidistant e-constraint method as formulated 

in section 4 performed better than the equidistant 

e-constraint method with inequality constraints. 

Nonetheless, it still suffered from a number of 

deficiencies. The first can be observed in Fig. 4b, 

where the vertical part of the Pareto frontier is 

represented by equally distributed points. However, as 

the gradient of the Pareto frontier starts decreasing, 

the distribution of the points starts getting sparser. 

Clearly the scalarization approach is performing badly 

because the different scale magnitudes of the objective 

functions are different. Another deficiency is that a 

number of gaps appear in the Pareto frontier, shown 

clearly in Figs. 5b and 7b. These gaps occur because 

in the respective area, the optimizer finds a difficulty 

finding a feasible solution with the initial guess it is 

given. For tightly constrained problems such as that of 

example 4, this deficiency will lead to the situation 

where the DM does not have enough information to 

make an informed choice on the best solution for the 

problem at hand. 

Finally, the adaptive bisection e-constraint method 

proposed in this paper was tested. In the first example, 

the deficiency suffered by the previous two methods 

was resolved and a complete, evenly distributed 

Pareto frontier can be observed in Fig. 4c. The gaps in 

the Pareto frontiers generated by the equidistant 

e-constraint methods have also been addressed by 

formulating problems in the vicinity of infeasible 

regions until a solution is found. The algorithm 

actively varies the constraints to obtain better Pareto 

diversity, even in the case of problems with high 

levels of infeasible solutions. As a result, all Pareto 

frontiers generated for the four examples considered 

are evenly distributed as illustrated in Figs. 4d, 5d, 6d, 

and 7d.  

In all three methods, both convex and non-convex 

Pareto frontiers were captured. Unfortunately, one 

deficiency observed in all methods remains which is 

the generation of non-globally optimal Pareto solutions 
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(a)                                  (b)                                (c) 

Fig. 4  Pareto frontiers for Example 1: (a) Equidistant e-constraint method with inequality constraint; (b) Equidistant 
e-constraint method and (c) Adaptive bisection e-constraint method. 
 

 
(a)                                  (b)                                (c) 

Fig. 5  Pareto frontiers for Example 2: (a) Equidistant e-constraint method with inequality constraint; (b) Equidistant 
e-constraint method and (c) Adaptive bisection e-constraint method. 
 

 
(a)                                  (b)                                (c) 

Fig. 6  Pareto frontiers for Example 3: (a) Equidistant e-constraint method with inequality constraint; (b) Equidistant 
e-constraint method and (c) Adaptive bisection e-constraint method. 
 

 
(a)                                  (b)                                (c) 

Fig. 7  Pareto frontiers for Example 4: (a) Equidistant e-constraint method with inequality constraint; (b) Equidistant 
e-constraint method and (c) Adaptive bisection e-constraint method. 
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(a)                            (b) 

Fig. 8  Non-dominated Pareto frontiers: (a) Example 2; (b) Example 3. 
 

in the non-convex part of the Pareto frontier. As such, 

a Pareto filter similar to the one used with the NNC 

method [2], needs to be used in conjunction with any 

of the methods above to remove any sub-optimal 

solutions. Following Pareto filtering of the Pareto 

frontiers of examples 2 and 3, which have non-convex 

regions, the true non-dominated set of solutions are 

represented in the Pareto frontier as can be seen in Fig. 

8. 

7. Conclusions 

This paper presented the adaptive bisection 

e-constraint method, which adaptively generates the 

Pareto frontier for bi-objective optimization problems. 

It addresses the deficiencies in the other scalarization 

methods, namely the NC, NNC and NBI methods to 

generate well-distributed Pareto frontiers for various 

problems. The distribution of the points is uniform 

even for vertical (or horizontal) parts in the Pareto 

frontier, a feature which lacks in the NNC method. An 

important feature in the algorithm is its robustness 

when generating Pareto frontiers for ill-conditioned or 

numerically demanding optimization problems. In 

such cases, the NBI method fails to generate a 

complete Pareto frontier, in contrast to the adaptive 

bisection e-constraint method. The final Pareto set 

may contain non-optimal solutions if the set problems 

are non-convex, in which case a simple Pareto filter 

can be used to remove non-optimal solutions, leaving 

only the Pareto optimal set.  
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