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Abstract

The aim of this work is to provide a model able to identify Alzheimer’s disease and Mild Cognitive Impair-
ment (MCI) in electroencephalogram’s (EEGs) recordings. Despite EEGs being one of the most common
tests used for neurological disorders, nowadays the diagnose of these diseases is based on the patient’s
behaviour. This is because expert’s accuracy on EEGs visual recognition is estimated to be around 50%.
To solve the difficulties of the aforementioned task, this thesis proposes a Graph Neural Network (GNN)
model to classify the subjects using only the recorded signals.

To develop the final model, first we proposed several procedures to build graphs from the EEGs signals,
exploring different ways of representing the inter-channel connectivity as well as methods for relevant
features extraction. For the time being, there are not GNN models proposed for Alzheimer or MCI detection.
Hence, we used architectures employed by similar tasks and modified them for our specific domain. Finally,
a set of coherent combinations of graph and GNN model is evaluated under the same set of metrics.
Moreover, for the best performing combinations, a study of the impact of several hyperparameters is
carried out. In order to handle all the possible experiments, we developed a software framework to easily
build the different types of graphs, create the models and evaluate their performance.

The best combination of graph building and model design, based on graph attention convolutional lay-
ers, leads to a 92.31% of accuracy in the binary classification of healthy subjects and Alzheimer’s patients
and to a 87.59% of accuracy when also evaluating MCI patients recordings, these are comparable to state
of the art results. Although this work is done within a novel field and there exist many possibilities yet
to be explored, we conclude that GNNs show super-human capabilities for Alzheimer and MCI detection
using EEGs.

Keywords

Graph Neural Network, Deep Learning, Electroencephalogram, EEGs, Alzheimer, Mild Cognitive Impair-
ment
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GNNs for EEGs classification

1. Introduction

1.1 Motivation

Alzheimer disease is a well known neurological disorder. The Alzheimer’s Association [2] estimated that
10.7% of the population older than 65 years is affected by it. Unfortunately, the percentage of affected
people increases with the age. On the other hand, Mild Cognitive Impairment (MCI) is not so well known.
The Texas Department of State Health Services [31] defines the disease as a borderline condition between
normal, age-related memory loss and early Alzheimer’s disease. Individuals with MCI have memory problems
beyond what is expected for their age with no other clinical signs of dementia. It also states that individuals
with MCI have a greater chance of developing Alzheimer’s disease. In 2019 Gillis, Cai et al. [11] estimated
that 5.3% of the population over 75 years suffered from MCI, and the percentage increased up to 16.3% for
ages over 85 years. In this context, developing techniques for the early and reliable detection of Alzheimer’s
disease (AD) and MCI is important to guarantee the well-being of the ageing population.

Nowadays, expert neuroscientists can only achieve a 50% of precision on AD diagnosis by electroen-
cephalography (EEG) visual recognition. That’s why the diagnosis is mainly based on the patient’s be-
haviour, by analyzing their performance in tests that measure the reasoning and memorizing capabilities.
The main drawback of the behavioural diagnosis is that is not an easy task to decide if the disease is
Alzheimer’s or an earlier stage of dementia. But it is decisive to be precise, because patients may need
different levels of medical care depending on their condition. For this reason, several machine learning
(ML) approaches have been developed to help identifying properly neurological disorders using EEGs.

The ML methods used to classify EEGs are diverse, and they would be further discussed in the state
of the art chapter, but mainly they rely on a feature extraction phase and a classifier model, which usually
is a Deep Neural Network (DNN). First approaches used Convolutional Neural Networks to process EEG
recordings as matrices. Nevertheless, this architecture was not optimal to exploit the spatial dependencies
and inter-channel connectivity because they are designed to deal only with grid-like data. Therefore, Graph
Neural Networks (GNNs) have been introduced into this field because of the great expressive power of
graphs, which are able to model relationships between electrodes in a much more natural way. Despite
being many publications on similar fields such as epilepsy or schizophrenia classification using EEGs and
GNNs, the Alzheimer’s and dementia stages classification with GNNs remains almost unexplored.

1.2 Scope

Within the wide range of applications that EEG analysis has, the scope of this document is to describe the
process of building a GNN based model able to classify healthy, Alzheimer’s and MCI patients using only
EEGs recordings as input data, which stands as an alternative to behavioral tests and human interpretation
of EEGs. A report of the results obtained for all the techniques is also provided. Finally, a fair comparison
of the results obtained with the ones from the main competitors in the field is given. To do so, the next
steps will be followed:

• Explore and discuss feature extraction techniques relevant for EEGs.

• Inspect GNN models and architectures.

• Compare the performance of the models with the corresponding features.
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• Describe the framework implemented to accomplish the previous steps.

1.3 Objectives

The main aim of the thesis is to find a GNN model that accurately classifies Alzheimer’s diseases, MCI and
healthy subjects, possibly exceeding the accuracy of other methods in the state of the art. For that, our
main contributions are:

• Review the proposed GNN models for other mental diseases and EEG applications.

• Propose a method to build a graph from EEG signals that accurately represents the intra-channel
information and the inter-channel connectivity.

• Provide a GNN model able to accurately solve the classification task using the graphs proposed in
the previous step.

• Evaluate and compare the performance of the models and types of graphs proposed.

• Build a software framework to accomplish the previous objectives in an efficient and scalable way.

1.4 Thesis Outline

The remainder of the thesis is organized as follows: First, background about GNN and EEG in a high-level
way is provided in Chapter 2. Next, the state of the art in GNN models being used to analyze EEGs
and their applications is surveyed in Chapter 3. Coming up next, the methodology followed, starting with
a description of the dataset used, the preprocessing of the EEGs, the models creation and how they are
evaluated is described in Chapter 4. After the methodology description, the results obtained would be shown
with a brief study of the hyperparameter and architectural decisions implications in Chapter 5. Finally, the
conclusions containing a discussion of the obtained results and future work are outlined in Chapter 6.

7
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2. Background

2.1 Brain activity measurement approaches

Neurological diseases, such as Alzheimer and MCI, directly affect to the brain’s activity, which is manifested
by electrical waves that communicate different areas of the brain at a neuron level. To measure this activity,
there exist three main approaches:

• Functional Magnetic Resonance Imaging (fMRI): It measures the blood flow across the different
brain areas. Higher activity is related to an increased flow. This technique is limited by the temporal
and spatial resolution. It is not able to capture activity within a short time span, neither is capable
of isolating small regions of neurons. In addition, the machinery needed is expensive and it is not
available in all the health centers. However, it can produce a 3D brain image and visualize the blood
flow and its directions in many brain areas.

• Electrocorticography (ECoG): This technique acquires the combined activity of millions of neurons
by means of their oscillatory waves. It can deal with much higher temporal and spatial resolutions
than fMRI. Nevertheless, it is a very invasive technique because it requires to insert an electrode
under the scalp, so surgery is mandatory. This technique is only used with patients that have already
scheduled brain surgery, it is not suitable for research purposes.

• Electroencephalography (EEG): This technique measures the electrical activity in the cerebral
cortex. It is the less invasive method and the most affordable, it only requires a helmet containing
a set of electrodes to be placed in the patient’s head. In addition, the temporal resolution is much
higher than the fMRI, it is in the range of 1 millisecond vs 1 second. On the other hand, the spatial
resolution is poor because of the difficulty of precisely determining the region originating each signal.
Unlike ECoG, the EEG cannot reach inner brain regions such as the hippocampus, which limits its
applications.

The strengths and drawbacks of the aforementioned methods are summarized in Table 1. It can be
concluded that the technique more suitable for research purposes is the EEG. Its simplicity and especially
the non-invasiveness that characterizes the procedure make possible to record the activity of several subjects
and generate datasets significant enough to conduct valid experiments. For these reasons, in the following
sections, a deeper look into EEGs and their applications is taken.

Method Temporal Resolution Spatial Resolution Invasiveness Resources
EEG High Poor Very low Cheap

fMRI Poor Medium High Expensive

ECoG High High Very High Very Expensive%

Table 1: Brain activity measurement techniques

2.2 A deeper look into EEGs

The main idea behind an EEG is to capture the combined electrical signals produced by thousands of
millions of neurons at the cerebral cortex level. To achieve that goal, several electrodes are placed around
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the head of the subject. Each one of the electrodes records a temporal signal measured in µV. Often,
the signal obtained by an electrode is referred as channel. The EEG acquisition does not have a unique
standard procedure. The methodologies differ in the number of electrodes employed and their locations.

Despite being different procedures, the majority of them are based on measurement system proposed
in 1958 by H. H. Jasper [15], known as the 10-20 montage. This montage defines how to place a total of
19 electrodes for a proper EEG recording. The 10-20 name comes from the distance percentage between
neighboring electrodes. Later, Oostenveld and Praamstra (2001) [32] updated the system to 21 electrodes,
which became the 10-20 international standard. This standard distributed three electrodes for the frontal
left, frontal right, central, parietal and occipital lobes and two electrodes for the temporal left and temporal
right lobes. Figure 1 illustrates the described location of the electrodes:

Figure 1: 10-20 international system electrodes distribution. Source: [38].

After this international montage system, several methods were proposed to record EEG. Some of the
most used are the 10-10 and the 10-5 systems, which rely on higher number of electrodes by reducing the
distance between each one of them. Within these standards, there can be found many modifications that
span between 64 and 329 electrodes. ValerJurcak, Daisuke Tsuzuki et al. (2007) [24] provide an extensive
revision of the most used systems.

The number of electrodes and their locations are not the only parameters that present variability in
EEG setups. There are other variables that might change depending on the experiment’s applications (see
next section) and available resources. For example, the sampling frequency or the bit resolution per sample.
Regarding the sampling frequency is standard to use at least 256 Hz, which is at least three times bigger
than the highest frequency band of interest, found centered at 70 Hz. A typical range for the sampling
frequency is between 256 Hz and 1024 Hz. The samples recorded are usually stored at least with a 16 bit
representation, however this decision is up to the researcher of each experiment.

2.3 EEGs applications overview

There is a wide variety of applications in the fields of EEGs analysis. In this section, an overview of them
would be provided, to illustrate the possibilities that EEGs offer. Later in the next chapter, a more technical
review of the works most related to this thesis would be carried out. To begin with the applications, the
area of neurological disorders diagnosis is one of the most explored, with applications like:
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• Neeraj Wagh and Yogatheesan Varatharajah (2020) [43] proposed a GNN model for epilepsy classi-
fication. For this same purpose, Jialin Wang et al. (2020) [44] also proposed a GNN model to solve
the task of epilepsy classification.

• Mohammad-Parsa Hosseini et al. (2021) [18] provided a review of machine learning for EEG signal
processing for many applications of Biongineering such as seizure localization.

• Qi Chang et al. (2021) [5] developed a model to classify first-episode schizophrenia, chronic
schizophrenia and healthy control.

• Cosimo Ieracitano and Nadia Mammone et al. (2020) [20] developed a Convolutional Neural Network
(CNN) model to classify neurodegenerative states in dementia, which are Alzheimer and MCI.

It can be appreciated that the potential of EEGs classification goes beyond Alzheimer and MCI detection.
Furthermore, there are other interesting applications related to detect the state of the subject or the task
being done. Some examples in this field are:

• Andac Demir et al. (2021) [5] developed a model to distinguish errors during spelling tasks and for
Rapid Serial Visual Presentation (RSVP), a scientific method for studying timing of vision.

• Ruilin Li et al. (2020) [28] provided a model to monitor driver’s state of awareness, to prevent him
for falling asleep while driving.

To finalize with this set of examples, two more futuristic applications are shown:

• Youngchul Kwak, Woo Jin Song and Seong Eun Kim (2020) [26] used multi-level fusion GNNs for
developing a Brain Computer Interface to exchange information between the user’s intention and the
device control signals.

• Biao Sun et al. (2021) [37] developed a spatiotemporal GNN for motor imagery classification, in
particular, to identify a set of movements of the right hand and feet.

From the above lists of applications examples, it can be concluded that machine learning algorithms are
clearly the trend-line for solving EEGs classification tasks. Specifically, deep learning (DL) models have
gained a lot of ground in the past years. Specially some particular architectures such as GNNs, CNNs,
Recurrent Neural Networks (RNNs) and Multi-layer perceptrons (MLPs) combined with hand-engineered
feature extraction methods. In Chapter 4, these architectures would be further detailed and how they
are being adapted for EEGs analysis. Moreover, notice that the previous examples use many different
approaches of feature extraction to feed into the models, this point would also be discussed.

2.4 Deep Learning for EEG classification: Main approaches

During the overview of EEG applications several architectures of DNNs were mentioned. This section
provides a high-level description of them as well as an intuition about why they are suitable for solving
EEG classification tasks.
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2.4.1 Multi Layer Perceptrons

The first and more basic structure are the MLPs. These networks stack several layers, each one of them
containing multiple perceptrons. The layers between the input layer and the final output layer are known
as hidden layers. Each perceptron, can be defined by a set of weights, one for each element within the
input data array, and a bias. By vertically stacking several perceptrons, a linear layer is obtained. When
several layers are combined, each perceptron of one layer is connected to all the perceptrons in the next
layer, that is why this layers are known as fully connected layers. The strength of each connection between
two perceptrons, is defined by the weight. For a given input, these layers would apply the following
transformation:

y = xAT + b (1)

where:

x = the input array
A = weights’ matrix of dimension input size × number of weights
b = bias array of dimension 1 × number of weights

Figure 2: Multi Layer Perceptron. Source [48]

By stacking multiple linear layers and adding activation functions in between, a MLP is created. The
last linear layer, contains as many perceptrons as classes in the classification task. Each one of them
outputs a logit, which represents the confidence of the networks of a given input belonging to each class.
These logits are inside the (−∞,∞) interval. However, the final goal is to estimate the probability of a
given input to belong to each one of the possible classes. Hence, the softmax function is typically applied.
The softmax maps the logits of each class to the interval [0, 1], obtaining the desired probabilities:

Softmax(x) =
exp(xi )∑N
i=1 exp(xi )

(2)

MLPs can be used as universal function approximators [17] as they learn the weights’ matrices and bias
during training. Therefore, given an array of features, they learn to decide which of the classes is the most
probable.

In the EEGs field, they have being used for classification tasks combined with hand-crafted features
extraction techniques. However, they are also used as a building block for more complex networks, letting
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these networks to perform the feature extraction and using the MLPs as the final classifier. Figure 2 shows
a visual description of the architecture. Indeed, they are used in all the architectures that are described
below.

2.4.2 Convolutional Neural Networks

CNNs are a huge topic with enormous research about them during the past years. The variability in
architectures, applications, types of layers is remarkable. In this section, the minimal background needed
to understand their applications in EEG classification is given.

CNNs are architectures specially developed to handle grid-like data, in other words, matrices. For this
reason, they are the preferred architecture in the computer vision field. The main idea behind CNNs are
the convolutional layers. These layers, apply bi-dimensional filters to extract features from the input data.
The power of this architecture comes from the capability of learning the filters’ weights during the network
training process.

The result of the convolution of the input matrix with a filter, is known as feature map. Each con-
volutional layer, applies many filters of the same dimensions and then stacks depth-wise each one of the
outputs to produce a volume of feature maps. Furthermore, the feature volumes can be forwarded to
another convolutional layer containing another set of learned filters, that can be of different size than the
ones from the previous layer. By applying this process, the network can learn to extract relevant features
that are rotation and scale invariant [35].

Figure 3: Convolutional Neural Network architecture. Source: 1

To reduce the large dimensionality of the problem given by the size of the matrices and the large
number of filters stacked, pooling layers are used. These layers apply several strategies, such as averaging
or maxima selection in a small neighborhood, to reduce the sizes of the feature maps. In addition, batch
normalization layers are used to normalize the feature maps. These layers shown several benefits such as
speed up the training process and help the gradient flow better through big CNNs [3].

Figure 3 shows a simple CNN architecture. Usually, a convolutional layer followed by a pooling layer
and a batch normalization layer are combined into a convolutional block. Then, the output of one block is
used as the input of the following one, with an activation function in between. The combination of these
blocks has the capability of finding from high-level generic patterns to fine granular patterns.

1Image source: https://docs.ecognition.com/v10.0.2/eCognition documentation/User%20Guide%20Developer/

8%20Classification%20-%20Deep%20Learning.htm
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For the purpose of classification, a MLP is placed on top of the convolutional blocks, using the extracted
features from the CNN to decide which is the most likely class for a given input. In the EEG classification
field, a CNN is quite a natural choice because of the structure of the data. A matrix can be built by
vertically stacking the recordings of each channel, to obtain an input of (numbers of channels, samples per
channel) size. The channels can be ordered following EEG montage used during the recording, such as
the 10-20 international standard [15]. Moreover, this solution provides flexibility on how the data of each
channel is represented.

2.4.3 Recurrent Neural Networks

RNNs are an architecture specially designed to deal with sequences of variable length. The main strength
of these networks is to capture temporal patterns in dynamic data. The fully connected layers of an MLP
connect each node to the ones in the next layer, but nodes inside the same layer are independent from
each other. In RNNs, this is no longer true as each node in the same layer receives two inputs: the first
one is the the input at the current time step xt , whereas the second input received is the output of the
previous node, which has processed the input at the previous time step, xt−1. These are known as hidden
states. By repeating this process, the network develops memory, because for every input is also considering
the previous states. Figure 4 illustrates the basic structure of a recurrent layer:

Figure 4: Recurrent Neural Network base architecture. Source: 2

Consequently, the output of a recurrent layer can be computed as follows:

ht = σh(Whxt + Uhht−1 + bh) (3)

yt = σy (Wyht + by ) (4)

where:

2Image source: https://iis-projects.ee.ethz.ch/index.php?title=File:Rnn.jpg
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xt = the input array
ht = hidden layer vector
W ,U, b = Weights and bias
yt = output array
σh,σy = activation functions

However, RNNs have a significant problem: forgetting or fading memory [14]. The deeper the network,
the harder it becomes preserving long-time relationships. To solve that problem, new architectures were
proposed based on gated units. The most popular and widely used units are Long short-Term Memory
(LSTM) [16] and Gated Recurrent Units (GRU). In the field of EEG classification tasks, LSTM is the option
that stands out. In a nutshell, a LSTM gate controls the information to be kept or forgotten at a given
time step. To do so, it relies in four main blocks:

Figure 5: LSTM Gate compared to base RNN unit. Source: 3

• Forget gate: This gate receives the information of the current input and the previous hidden state.
Its function is to decide which information should be kept and which shall be forgotten.

• Input gate: It receives the previous state and the current input. Its main task is to decide which
information must be updated.

• Cell state: To compute the cell state, the current state is multiplied point-wise by the output of the
forget gate. Then, it is point-wise added to the output of the input gate. That produces the new
cell state.

• Output gate: This gate is the one responsible of deciding the next hidden state. To do so, the
information of the previous hidden state and current input are multiplied by the updated cell state.
The output is the hidden state that would be forwarded to the next cell.

Figure 5 provides a visual description of the previously explained blocks. In the field of EEG processing,
RNN based on LSTM gates are used to detect temporal patterns along the channels, and then classify

3Image source: https://www.researchgate.net/figure/RNN-simple-cell-versus-LSTM-cell-4 fig2 317954962
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them using an MLP. Moreover, some works combine LSTMs with GNNs to first extract temporal features
and then extract spatial relationships [22].

2.5 Graphs and Graph Neural Networks

This section aims to provide the necessary background about graphs and GNNs that may be needed to
follow the rest of the work. Notice that this chapter is focused on the applications of GNNs which are
relevant for EEG classification. It is not intended to provide a wide review of all the different architectural
possibilities and tasks that can be solved with GNNs, which represents a huge design space. For that, we
refer the interested reader to [1], [51]. To understand the needs of GNNs and why are they powerful, it is
essential to have some knowledge about graphs.

2.5.1 Graphs as data structures

Graphs are data structures formed by two elements: nodes and edges. On one hand, the nodes represent
the main objects or entities present in the data to be modeled. On the other hand, edges represent the
connectivity between those objects, this is, they express how the nodes are related to each other or even
how strong is their connection. The most typical and comprehensive example of a graph is the users of a
social network, where the nodes represent the users of the network and can contain information describing
the user: the name, age, location, interests, email and so on. In turn, the edges indicate the relationship
between users. For example, if user1 follows user2, there would be an edge from user1 to user2. If two
users are not related in any way, then there would not be any edge between them.

There are many areas and examples where graphs are used, some of them are to model molecules,
to describe physical systems, to model the different scenes in an image or describing how web pages are
linked. The large variety of examples directly leads many different expressions of graphs. Next, we will go
through the most relevant, following the classification given by Jie Zhou, Ganqu Cui, et al. (2020) [51]:

• Graphs can be either directed or undirected depending on the edges. If the edges are directed, it
means that the connection begins in node X and ends in node Y. This can be the case of users in
Twitter, a directed link means that user X is following user Y, but user Y does not follow user X.
Undirected graphs represent that if nodes are linked, then they are connected in both directions. This
can be the case of Facebook users, when user X and Y become friends, it means that both follow
each other.

• Graphs can be homogeneous or heterogeneous. In homogeneous graphs, all nodes and all edges
contain the same type of information (same number of features). However, heterogeneous graphs
may contain different information in every node and edge. An example would be the recommendation
graph for stores like Amazon, where nodes can be users or products and the main relationships are
established between users and products.

• Depending on the evolution of the features stored in a graph, they can be static or dynamic. These
classification refers to whether the information within the graph evolves over time (dynamic) or not
(static). A static graph can be the relationship between users in a social network for a given time
stamp. However, users follow or unfollow other users, new people join the social network, and so on.
So if we model this evolution, we have a dynamic graph, that represents users interactions over time.

Graphs are defined as G = (V ,E ), where:
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|V | = N, denotes the number of nodes
|E | = Ne , denotes the number of edges

The connectivity is given by the Adjacency Matrix A. This is a binary matrix of dimensions N × N. If
node i is connected to node j , then a 1 is placed at the position (i , j) in the adjacency matrix, 0 otherwise.
With that being said, to model a graph from an EEG, it would have to be decided if: there is a sense of
direction when connecting signals from two electrodes, also if every electrode must be represented by the
same set of features or on the contrary, the features may vary depending on the channel. Finally, if the
features representing the electrodes signals shall vary over time or if they can be summarized into a static
representation.

2.5.2 GNN applications

Before explaining GNNs, it is convenient to be familiarized with the kind of tasks that they can carry out.
They can be grouped in three main categories, depending on the level of interaction with the graph:

• Node-level tasks: The GNN performs one of the following functions related to the nodes in the
graph:

– Node classification: The network intends to categorize each node within a set of predefined
classes.

– Node regression: The network predicts a continuous value for a node.

– Node clustering: Group nodes in several disjoint groups by their similarity.

• Edge-level tasks: The GNN performs one of the following functions related to the edges in the
graph:

– Edge classification.

– Link prediction: Predict possible links between edges.

• Graph-level tasks. This group involves the whole graph to perform one of the following tasks:

– Graph classification.

– Graph matching: Compare two graphs to determine if they belong or not to the same element.

– Graph regression.

These tasks have direct implications on the type of output of the network and the loss function used to
train it. In this particular scenario, the GNNs are trained to perform Graph classification. Graphs would be
built from EEG recordings and the network must try to predict one of the three classes: healthy, Alzheimer
or MCI.

2.5.3 Graph Neural Networks

GNNs are deep learning models specifically designed to process graph data. They can be understood as an
extension or generalization of CNNs to provide capabilities to process non grid-like data. This generalization
of deep learning models to a non-Euclidean domain is known as geometric deep learning [4]. To sum up,
the main idea behind GNNs is to extend operators such as convolutional layers or pooling layers to be
applied in graphs, which do not have a straight-forward sense of distance or order like in images.
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One of the main building blocks of a GNN are the graph convolutional layers. This layers are known
as propagation modules. The main function of these modules is to propagate information between nodes
in order to each node can aggregate information from its neighbours. To do so, a general framework is
implemented known as message passing.

Message passing is the procedure used to combine features from linked neighbouring nodes. This
method is not uniquely defined, it has many implementations depending on how messages are computed at
each node and how the received messages are aggregated. Following, the base procedure would be defined
to have a general understanding of the process.

Figure 6: Message Passing general schema. Source: Microsoft Research 4

The message passing process illustrated in Figure 6 is iterative. It means that at each step, every node
produces a message, propagates it and aggregates the received one, and all the nodes do it synchronously.
The process of message passing can be summarized in three main steps:

1. Message computation: each node in the graph computes its message. The computation is the
result of a function that takes into account the state of the current node, the state of the destination
node and the edge that links them.

2. Message aggregation: Each node combines the information received in all the messages. There are
several possibilities for defining the aggregation function, however, it should be permutation-invariant.

3. Update: Each node updates its attributes as a function of the aggregated messages.

If all the previous steps are formulated, the following expression is obtained:

Ht = σ(D
−1
2

IN ATD
−1
2

IN Ht−1Wt + bt) (5)

where:

4Image source: https://www.microsoft.com/en-us/research/video/msr-cambridge-lecture-series-an-introdu
ction-to-graph-neural-networks-models-and-applications/
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H = Matrix of nodes features
A = Adjacency matrix
D = Degree Matrix
W = Trainable weights matrix
σ = activation function

It can be compared to an image convolution, where at each step the weights of the filter are multiplied
by the values of the image and then aggregated in the central pixel. In the case of graphs, at each step
the hidden state of the central node and its neighbours is used to create a message. Then the messages
received at one node are aggregated. This process allows to propagate node features throughout the graph.

Notice that for the first step, each nodes receives information only of its directly linked nodes. However,
for each farther step, it would also receive, indirectly, messages from distant nodes. This phenomenon is
known as the increasing receptive field. As a consequence, after several steps, the over-smoothing [6]
effect can be produced. When this happens, all the nodes in the graph carry a global averaged information,
and the gradients can not flow properly. This is one of the main difficulties when trying to build deep
architectures with base graph convolutional layers.

As it was previously mentioned, there exist many different approaches to carry out graph convolutions.
For example, there are recurrent convolutions such as the ones implemented in RENet [23]. And also there
are graph convolutions that incorporate attention mechanisms, such as the proposed by Petar Veličković,
Guillem Cucurull, et al. (2017) [40]. As Graph Attention Networks (GAT) are relevant for this work and
would be mentioned in the following sections, the next subsection would be dedicated to understand them

2.5.4 Graph Attention Networks

The main idea and strength behind graph attention network is the capability of learning the relationships
between nodes, instead of using predefined weights for the edges or computing them based only in structural
characteristics of the data such as the degree matrix. In a nutshell, attention is a mechanism to assign
different levels of importance to samples in a given sequence. By doing this, the network knows the most
relevant features and how are they related. In the particular case of GAT, the features in the nodes are
used to learn the edges’ weights. To do so, the next procedure is applied:

Given a set of nodes, each one with a vector of features h = {
−→
h1,

−→
h2, ...,

−→
hN}. To compute the attention

coefficients, a shared attention mechanisms is applied:

eij = a(Whi ,Whj) (6)

where:

W = Trainable weights matrix
a = attention mechanism
hi , hj = array of node features
eij = attention weights

In a high-level, eij indicates the importance of node’s j features to node i [40]. The coefficients are
then normalized to make them comparable across nodes using a softmax:

αij = softmaxj(eij) =
exp(eij)∑

k∈N exp(eik)
(7)
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Finally, the weights computed by the attention mechanisms are computed as:

αij =
exp(LeakyReLU(−→a T [W

−→
hi ||W

−→
hj ]))∑

k∈Ni
exp(LeakyReLU(−→a T [W

−→
hi ||W

−→
hk ]))

(8)

where:

a = weight vector parameterized by a feedforward linear layer
|| = vector concatenation

In this work, we rely on several implementations of graph attention layers to allow the network learn the
relationship and strength of links between nodes. By doing this, it is avoided the need of static engineered
connectivity features and the choice is leveraged to the network learning.

2.5.5 Graph Pooling Layers

In CNNs, it is very common to use pooling layers after convolutional layers to reduce the dimensionality
of the problem and collapse the information across channels. In the graph domain, pooling methods are
used to extract rich latent structures and high level graph representations. In this thesis, pooling methods
are not deeply explored, however a minimal background is provided with the most used graph pooling
algorithms. Graph pooling can be classified in two main families: hierarchical and direct pooling methods
[51]. Direct pooling methods consists on a set of strategies to learn graph-level representations using the
information present in the nodes. The most common methods for direct pooling are the following ones:

• Set2Set: It is designed to deal with unordered sets. It relies on LSTM gates to produce a graph
representation invariant to order (Vinyals et al. 2016)[41].

• SortPooling: This method does sort the node embeddings according to graph structural criterion.
Once they are sorted, the ordered embeddings are fed into a CNN to produce the graph representation
(Zhang et al., 2018)[50].

Previous methods do not consider a hierarchical structure within the graphs. However, the hierarchical
pooling methods assumes hierarchy and uses several layers to learn the graph representation. Following
some of the most popular methods are briefly described:

• DiffPool: This method “learns a differentiable soft cluster assignment for nodes at each layer of a
deep GNN, mapping nodes to a set of clusters, which then form the coarsened input for the next
GNN layer.” (Ying et al. 2016)[49].

• gPool: This method relies on a projection vector to learn projection scores for each node, then selects
the top-k highest scores. Unlike DiffPool, that uses a matrix, gPool uses a projection vector, but it
does not take into account the graph structure to learn the scores. (Gao et al., 2018)[9].

• SAGPool: Applies graph convolution with self-attention taking into account the topology of the
graph and the nodes features (Lee et al., 2019)[27].

So far, the most typical architectures of deep learning methods, such as CNNs, LSTMs GNNs, and
MLPs have been explained. In GNNs, as the main topics, the principal layers such as convolutional and
pooling layers have been extensively described. In addition, an introduction of how these methods are
used for EEG classification tasks has been provided. At this point, a solid background has been stated to
understand the state of the art methods on EEG classification using GNNs and in Alzheimer’s detection.
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2.6 Challenges of current AI for EEG

When designing deep learning models for EEG classification tasks, there are several challenges intrinsic to
the data. As mentioned before, there are several standards describing possible montages for EEG recording.
The variability in the number of electrodes, their location or the used sampling rate introduces an extra
challenge into the task.

It is known that the spatial resolution in EEGs is poor. This drawback introduces the fake correlations
term. Fake correlations occur when the electrical signals of two channels seem to be correlated, but the
correlation comes from neighbouring electrodes affecting the measure of the channel being observed. This
introduces a huge channel, because the true dependencies between brain areas turns very complicated to
quantify.

Another problem is the relevance of the channels. As visual diagnosis carried out by experts is not
reliable, it is difficult to decide which channels are more relevant when trying to detect neurological diseases.
Indeed, in GNNs architectures exist the application of channel selection, which tries to answer this question.
For this same reason, another challenge is the temporal span of relevant events. EEGs are usually recorded
during several minutes, however, brain responses happen in the range of milliseconds. Distinguishing this
events and finding their temporal resolution is not an easy task.

Finally, the end-to-end learning is also a challenge. Many state-of-the-art solutions use complex hand-
crafted features to train the network, which involve some sort of prior knowledge like the spectral activity of
the signals. Nowadays, using the raw signal to train the network is still a challenge in numerous applications.
In particular, for GNNs how the graph is built from the EEGs is one of the most relevant decisions, and
authors propose many different approaches as we will see in the next chapter.
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3. State of the art

As it was stated in Section 2.4, there are many examples in the literature where GNNs are applied to solve
a wide variety of tasks related to EEGs. This chapter would focus mainly on two objectives. The first
one, to review GNNs architectures that solve neurological diseases classification tasks and also GNNs that
analyze EEGs for other applications such as BCI, but present some differentiable characteristic. The second
one is to review ML and DL based methods of Alzheimer and MCI classification.

3.1 GNNs for EEG classification related work

The following tables summarize several papers including the task being solved, the model architecture, how
graphs are built and the results obtained. First, Table 3.1 summarizes the publications, tasks and results
obtained of several EEG classification applications:

ID Publication Task Results

1 EEG-GNN: Graph Neural Networks
for Classification of Electroen-
cephalogram (EEG) Signals [8]

Classification of correct / incorrect
feedback during spelling task (ErrP
dataset). Classification between
tasks: emotion elicitation, resting
state, motor imagery, execution task
(RVSP dataset)

ErrP 76.73%
Acc. RSVP:
93.49% Acc

2 EEG-GCNN: Augmenting
Electroencephalogram-based Neu-
rological Disease Diagnosis using
a Domain-guided Graph Convolu-
tional Neural Network [43]

Classification between healthy sub-
jects and epilepsy patients

0.90 AUC
93.00% Acc

3 Graph Neural Network with Multi-
level Feature Fusion for EEG based
Brain-Computer Interface [26]

Classification between 5 different
motor imagery actions

92.40 % Acc

4 Classification of First-episode
Schizophrenia, Chronic Schizophre-
nia and Healthy Control Based
on Brain Network of Mismatch
Negativity by Graph Neural Network
[5]

Classification between schizophre-
nia, chronic schizophrenia, and
healthy control group

84.17 % Acc

5 A Sequential Graph Convolutional
Network with Frequency-domain
Complex Network of EEG Signals
for Epilepsy Detection [44]

Classification between epilepsy, and
healthy control group

89.30 % Acc

Table 2: Summary of publications using GNNs to solve EEG classification tasks
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Table 3 summarizes different procedures used to build a graph from the raw EEG recordings. It focuses
on the general graph structure, the node features (or embeddings), node linking rules and edge weighting
measures.

ID Graph Structure Node features Edge features

1 Static, homogeneous, undi-
rected graph. Fully connected
or node linking depending on a
policy.

Every node stores the raw fea-
tures of a EEG channel. 56
nodes for ErrP, 16 nodes for
RSVP.

Fully connected with un-
weighted edges, weighted
edges using the Pearson Corre-
lation Coefficient (PCC) (9),
only connect nodes closer than
a heuristic distance, construct
the adjacency matrix applying
k-NN over node features.

2 Static, homogeneous, undi-
rected graph. Fully connected.

Power Spectral Density (PSD)
(10) computed at 6 frequency
bands: delta (1-4Hz), theta
(4-7.5Hz), alpha (7.5-13Hz),
lower beta (13-16Hz), higher
beta (16-30Hz), and gamma
(30-40Hz)

Expected spectral coherence
(11) added to normalized
geodesic distance between
each pair of channels.

3 Static, homogeneous, undi-
rected graph. Fully connected.

Each node contains the raw
samples from one channel. 64
nodes.

Graph Laplacian (12) com-
puted from Absolute PCC ma-
trix.

4 Static, homogeneous, undi-
rected graph.

Characteristic Path Length
(16), Global Clustering Coef-
ficient, Closeness Centrality.
Before the MLP classification
layer, the following features are
concatenated: age, education,
IQ and duration of illness.

Two variants: Partial Cor-
relation Coefficient or Phase
Lagged Index (PLI).

5 Static, homogeneous, undi-
rected. The connectivity de-
pends on a defined policy.

Each node contains the Fast
Fourier Transform (FFT) of
one channel.

Node i would be linked to node
j if the following rule is true:
(|fk | − |fi |)/(k − i) < (|fj | −
|fi |)/(j − i),∀(i < k < j) being
fi , fj two different data points
in the frequency domain and fk
any data point in between the
past two frequencies.

Table 3: Graph building procedures for GNNs found in the literature for EEG analysis.

It is important to mention that the general procedure for building a graph implies windowing the full
EEG recordings. The graph construction is carried out at window level, usually these windows have a
duration between 5 and 10 seconds, depending on the sampling frequency and the task carried out by the
subjects during the recording. These windows are considered as independent samples during the network
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training. Then, the validation of the model is done at subject level, by comparing the average output of
each window belonging to the subject with the full recording ground truth.

As it can be observed in Table 3, there are many different approaches for extracting features, from
simply using the raw data for building the nodes, to more sophisticated measures such as the cross spectral
coherence. Next, the mathematical expression of the methods explained would be stated, as well as a
high-level intuition of why the measures used can be relevant for EEG detection.

• The Pearson Correlation Coefficient (PCC) is a statistical measure of linear correlation between two
arrays of data. It is bounded within the [−1, 1] interval. It can be used to know if there is a linear
correlation between the samples generated by two different electrodes, if it is the case, a strong
connection is assumed. The more correlated the samples of two channels are, the larger the weight
of the edge connecting both nodes would be. The PCC of two channels x and y can be estimated
as follows:

ρxy =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(9)

where:

x , y = data vectors
x̄ , ȳ = mean of the vectors

• The PSD describes how the power of a signal is distributed along its frequency components. In EEGs,
it can be used to measure the brain activity at several frequency bands. The spectrum of a discrete
signal can be computed as:

S̄xx(f ) = lim
N→∞

(∆t)2

∣∣∣∣∣
N∑

n=−N

xne
−i2πfn∆t

∣∣∣∣∣
2

(10)

where:

x = data vector
∆t = time increment
f = frequency variable

However, in practice, the spectrum is estimated using the Welch’s method [46]. Then, to compute
the power within a given band, the spectrum is integrated following the Simpson’s integration method
between the cut frequencies.

• The spectral coherence between two signals is a statistical measure of relation. In this case, it can
be interpreted as a measure of similarity between the spectrum produced by two different electrodes.
The coherence is a real scalar function, and to be used as a weight for the edges, the authors employed
the expected spectral coherence, defined as:

C̄xy (f ) =
|E [Sxy ]|√

E [Sxx ]E [Syy ]
(11)

where:
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Sxx ,Syy = PSD estimates of each channel
Sxy = Cross PSD estimates between channels
E = Expectation

• The laplacian graph matrix, in a high-level intuition, represents how smooth are the transitions
between features of connected nodes. This matrix is defined as:

L = D − A (12)

where:

A = Adjacency Matrix
D = Degree matrix

A = |P| − IN (13)

Dii =
N∑
j−1

Aij (14)

where:

|P| = Absolute Pearson Correlation Matrix
IN = Identity matrix of size N channels

In practice, the normalized graph laplacian is generally used:

L = IN − D−1/2AD−1/2 (15)

• The characteristic path length is a measure that comes from network theory. It computes the average
shortest path between every pair of nodes. It is one of the most robust and widely used measures
over graphs. The characteristic path length gives a measure of how well connected or dense is the
network. It can be computed as follows [29]:

d̄ =
1

|V |

N∑
i=1

d̄(i , j) (16)

where

d̄(i) =
1

(|V | − 1)

N∑
j=1

d(i , j) (17)

d̄(i) = average distance from a node i to all the remaining nodes
d(i , j) = Minimum number of edges traversed from node i to node j

Next, for each one of the graphs described in Table 3, the GNN model used to process them is described.
The description would focus on the number of layers, the type of graph convolution used and the dimensions
at each layer. This would provide an overview of the architecture of neural networks capable of resolving
EEG classification tasks.
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ID GNN Architecture

1
2 x (SAGE Conv. layer [12] + ReLU)

Readout function (sum of node representations)
MLP + Softmax

2
5 x (GCN Conv. layer [33] + Batch Normalization + Leaky ReLU)

Global Mean Pooling
MLP(3 x FC layers) + Softmax

3

6 x (Chebyshev Conv. layer [7] + Max Pooling + SoftPlus)
Skip Connections from 1st and 2nd conv. layers + MLP

Feature concatenation from skip connections and output of convolutional block
MLP + L2 Normalization + Softmax

4

4 x (Chebyshev Conv. layer [7] + Top-k-pooling + L2 normalization + ReLU)
Flatten Layer

Concatenation with quantitative indexes
MLP + Softmax

5
k-hops node aggregation [30]

2 x (SG Conv. layer [47] + Max-pooling + ReLU)
MLP (2 x FC Layers) + Softmax

Table 4: GNN Architectures for EEG classification found in the literature.

From Table 4, it can be concluded that GNNs for EEG classification have several steps in common.
First, a set of graph convolutions (many different definitions of convolution can be used) to extract features
from the input data. Depending on the dimensions of the data, several pooling strategies can be applied to
reduce it (at graph level or at node level) after convolutional layers. Finally, the features extracted can be
aggregated or reshaped to be fed into a MLP and a softmax, that would output the estimated probabilities
for each class.

3.2 Alzheimer and MCI classification related work

3.2.1 Classical Machine Learning approach

In 2020, Cosimo Ieracitano, Nadia Mammone, Amir Hussain, and Francesco C. Morabito published a novel
multi-model machine learning approach to classify states of dementia in EEGs [20]. The dataset used
in the publication was the same that the one used in this work (19 channels per trial following the 10-
20 international standard). DNN are not used in this publication; instead, they focus on specific feature
extraction based on prior knowledge about how dementia affects the brain activity in the frequency domain.
For classifying the features, different classifiers such as Support Vector Machine (SVM), MLP or Logistic
Regression (LR) are compared.

First, the dataset is preprocessed: original samples are recorded at 1024Hz and they are downsampled to
256Hz, then a notch filter at 50Hz is applied to remove the possible effects of direct current. Also, a band
pass filter in the 0.5Hz to 32Hz band is applied. Then, every recording is windowed in 5s windows (1280
samples per channel, 19 channels in total). The following procedure of feature extraction is performed over
these windows independently, not over the whole recording of a single patient.
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For the feature extraction phase, they focus on two different techniques. For both techniques, the
analysis is focused in five different frequency bands known as: δ [0.5–4 Hz], θ [4–8 Hz], α1 [8–10 Hz], α2

[10–13 Hz], β [13–32 Hz].They compare the performance of the classifiers when both types of features are
used together and when only one type of features is used for the task. In this case, the methods used in
feature extraction are:

• Continuous Wavelet Transform (CWT): The CWT is applied independently to each one of the
19 channels. Then the time-frequency signals from all the channels are averaged into a single
representation. Using the averaged time-frequency signal, the mean, standard deviation, skewness,
kurtosis, and entropy are extracted for every frequency band. This produces a feature vector of 25
samples (5 statistical moments x 5 frequency bands).

• Bispectrum Analysis (BiS): The BiS is a method to quantify the non-linear interactions and the
deviations from normality between two signals. It is defined as:

BiS(f1, f2) = E [S(f1)S(f2)S
∗(f1 + f2)] (18)

In this case, the same procedure as in CWT is applied. However, instead of extracting statistical
moments, the following measures are computed for each frequency band:

– Normalized bispectral entropy.

– Normalized bispectral squared entropy.

– Sum of logarithmic amplitudes of the bispectrum.

– Sum of logarithmic amplitudes of diagonal elements of the bispectrum.

– First order spectral moment of the amplitudes of diagonal elements of the bispectrum.

– Second-order spectral moment of the amplitudes of diagonal elements of the bispectrum

Hence, a feature vector of 30 samples is obtained (6 bispectrum features x 5 frequency bands).

For the classification task, the the following classifiers are compared:

• Auto-Encoder (AE): Two different AE versions.

• MLP: Two different MLP versions.

• LR

• SVM

Each one of the previous classifier, is trained in three different scenarios:

• Using only CWT features (25 samples feature vector).

• Using only BiS features (30 samples feature vector).

• Using CWT and BiS features (55 samples feature vector, both types of features merged by concate-
nation).

Each classifier, using each one of the possible feature combinations, is trained to solve the following tasks:
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• AD vs. HC

• AD vs. MCI

• MCI vs. HC

• AD vs. MCI vs. HC

For all the possible combinations above, the result is evaluated with a test dataset. Even though the
classifiers are trained using the 5s windows as independent samples, the final evaluation is done at subject
level. This implies evaluating every window of a subject and deciding the class by the majority of the labels
within the set of windows. To evaluate the performance of each classifier the metrics used are: Precision,
Recall, F1-Score and Accuracy (see Section 4.5 for a description of such metrics). The best results obtained
for each classification task are summarized in the following table:

Task Best Classifier Best Features Test Accuracy

AD vs. HC MLP CWT + BiS 96.95%

AD vs. MCI MLP CWT + BiS 90.24%

MCI vs. HC MLP CWT + BiS 96.24%

AD vs. HC vs. MCI MLP CWT + BiS 89.22%

Table 5: Results of feature extraction in several classification tasks from [20]

It can be concluded that the best combination for every classification task is using both types of features
with a MLP as a classifier. In average, the MLP showed to be 5% better than the other classifiers while
using the same features. The MLP used consists on 3 FC layers, the input layer (55 units), a single hidden
layer (30 units) and the output layer (2/3 layers, depending on the number of classes).

3.2.2 Deep Learning approach

In this section, two publications that use DL approaches to classify AD and MCI would be summarized.
The first one still uses a feature extraction stage with hand-crafted methods. The second one bets for an
end-to-end DNN to directly classify the raw EEG recordings. Both methods are from the same authors
than the previous work and employ the same dataset with the same preprocessing and windowing strategy.

The first publication proposes a CNN to classify dementia stages based on 2-D spectral representation
of EEGs [19]. The method proposed consists of a feature extraction stage and a classification stage. The
steps followed are:

1. The PSD is estimated for each one of the 19 channels using the modified periodogram (windowed
periodogram). The periodogram is estimated in the 0.5-32Hz, taking one sample every 0.2Hz, for a
total of 159 samples per channel.

2. The PSD matrix is built by normalizing the features within the [0, 1] interval and vertically stacking
channels following the order of the 10-20 montage. The result of this process referred as the PSD
image.
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3. The PSD images are fed into a CNN, the four types of classification tasks described in Table 5 are
performed.

The architecture of the top performing CNN proposed for PSD image classification is the following one is
shown in Table 6. It is important to mention that the authors of [19] also evaluated a deeper architecture
with more convolutional layers and larger number of filters, but it performed worse than the aforementioned
CNN. In this case, the accuracy over the test dataset is provided at window level, so the accuracy is
computed considering only the given window and not all the windows from the same recording. The
accuracies obtained are: 92.95% AD vs. HC, 84.62% AD vs. MCI, 91.88 MCI% vs. HC and 83.33% AD
vs. MCI vs. HC.

ID Layer

1 Convolutional layer: 16 filters, 3x3 kernel size

2 ReLU Activation Function

3 Max Pooling: 2x2 kernel size

4 MLP with 3 FC layers: 11376 units, 300 units, 2/3 units + softmax

Table 6: Best CNN architecture in [19]

Later in 2020, the same group proposed an end-to-end CNN to solve the same tasks [21]. The main
change with respect to the previous publication is that the CNN is trained to process the raw data (temporal
series) of the 5s EEG windows. That means that there is no longer a feature extraction phase to be leveraged
by the network. In this case, the CNN architecture is similar to the one described in Table 6, but a second
convolutional layer (max pooling and ReLU included) is added. The other difference is the number of
filters used per layer: the first one uses 4 filters and the second one uses 8. In this publication, only binary
classifications are tested, obtaining the following accuracies over the test dataset: 85.78% AD vs. HC,
69.03% AD vs. MCI, 85.34 MCI% vs. HC.

Very recently, in June 2022, Xiaocai Shan et al. proposed a spatio-temporal GNN model to classify
HC and AD subjects [34]. They use a 23 electrode system recording at 100Hz to produce the samples,
then they divide the recordings in 0.25 second windows without overlapping. They build a fully connected
graph, using the raw temporal samples of each channel as nodes features. For the edge weights, they
explore several connectivity measures, but the one producing top results is the Wavelet Coherence (WC).

The model proposed uses spatio-temporal convolutional blocks. These blocks are formed by two dif-
ferent types of layers. The first one is the 1-dimension temporal convolution. This layer learns the weights
of a 1-D convolutional filter that processes the raw input data of each channel independently. The second
one is the graph spatial convolution, which uses the Chebyshev convolution implementation. Using these
two elements, a spatio-temporal convolutional block is defined by stacking them into the following order:
temporal convolution, graph spatial convolution and temporal convolution. The final model consists on two
of these blocks and a Fully Connected layer acting as the final classifier. The model is visually described
in Figure 7.
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Figure 7: Spatio-temporal GNN for EEG classification. Source: [34]

With the described model and graph configuration, the authors of [34] obtained a 92.3% accuracy in
the binary classification of AD vs. HC.

Finally, to sum up this chapter in a few main points:

• There exist GNNs able to perform EEGs classification tasks with high accuracy.

• There exist DL methods to classify AD and MCI with high performance.

• Hand-crafted feature extraction with traditional ML classifiers currently outperform end-to-end DL
methods.

• There have not been found GNNs for AD and MCI classification in the literature.

29



GNNs for EEGs classification

4. Methodology

In this chapter, the method used to conduct the several experiments is presented. First, a description
of the dataset available to train and validate the models designed. Then, a description of the several
approaches of graph building that have been tested. Next, a description of the models implemented with
the corresponding hyperparameter selection. Then, the metrics used for evaluating the models. Finally,
the tools and technologies used for developing all the previous steps. All the source code implemented for
this work can be found in a GitHub repository 5.

4.1 The Dataset

The dataset available for this work consists of three classes: Healthy Control (HC), Alzheimer’s Disease
(AD) and Mild Cognitive Impairment (MCI). For every class, there are 63 EEG recordings for each class of
subjects. The recording was done following the 10-20 international montage standard, using 19 electrodes
recording at 1024Hz. The subjects were recorded during several minutes in resting state, that means that
no activity was carried out while recording. The length of each recording can differ by several minutes
depending on the subject. A minimal preprocessing had already been applied to the dataset. First, it was
downsampled from the original sampling rate to 256Hz. Then, a notch filter at 50Hz was applied to remove
the DC component.

The dataset was provided stored in .mat files (the MATLAB binary file extension). These files contained
several parameters such as the sampling rate, the recording date and the EEG information. The EEG record-
ing is given in the shape of a matrix of 19 rows (one per each electrode) and recording time×sampling rate
columns, varying for each subject. Each file was named following the pattern: patient {id} {class}.

As proposed in [19, 20, 21] each recording was divided into rectangular and non-overlapping windows
of 5 seconds (1280 samples), also referred as epochs. Due to the large variability in the length of the
recordings, the dataset obtained after windowing resulted very unbalanced, having more than the double
of HC samples than AD samples. The implications of the unbalancing problem would be later discussed,
as well as methods to deal with it. Table 7 describes the distribution of the samples:

Class Number of epochs Relative Percentage
HC 6461 47.34 %

AD 2756 20.19 %

MCI 4430 32.46 %

Table 7: Dataset classes distribution

After the windowing, each resulting epoch was labeled after its parent recording. That means that if one
recording class was AD, all the epochs generated from it would also be labeled as AD. All the epochs were
stored as .mat files, to ensure backward compatibility. The naming pattern of the files was respected, but
adding an index at the end of the name to differentiate the epochs: patient {id} {class} {epoch index}.
The dataset was divided into three different folders, one per each class. Finally, a .csv file containing the
full path of each file and its label was generated to ease the iteration over all the dataset.

All the source code of this project is written in Python. Therefore, to handle the reading and writing
operations with MATLAB files, the SciPy [42] IO package was used, which is able to convert the stored

5https://github.com/Lokixin/TFM GNN
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data into Numpy [13] arrays. By doing this, the data is kept into its original format and it is compatible
with both Python and MATLAB (used to develop the experiments in [19, 20, 21]).

4.2 Building the Graphs

In this section, the procedure to build a graph representation of the data that can be processed by a GNN
from the raw recordings is explained. To begin, it must be understood how a graph is built, which implies
defining the nodes and its attributes, the edges linking the nodes and the weights (or attributes) for the
edges. To do it, Pytorch Geometric (PyG) would be used, which is a library built upon Pytorch framework
to be able to develop GNNs and handle graph-like data. In PyG, graphs are defined as objects from the
Data class, which requires four components:

1. Node features: It is a tensor of shape N rows and number of node features columns. It stores the
information of each node within the graph.

2. Edge index: It is a 2xNe tensor. The first row contains the index of the origin node, and the second

row the index of the destination node. It describes how nodes are linked. For instance:

[
1 2 3
2 1 4

]
means that there is a bidirectional edge between nodes 1 and 2, and that node 3 is linked to node 4.

3. Edge attributes: It is a tensor with shape Ne × Ne . It defines the weights of the edges, the value
at i , j defines the weight of the edge connecting node i to node j. It can be 0 if the nodes are not
linked.

4. Labels: It is a tensor of arbitrary shape. It can contain node-level labels or graph-level labels.

For this work, it is assumed that graphs are fully connected, so the edge index would always be a tensor
of 2x361 (19x19 channels). In addition, the target task is graph classification, so the label would always be
a scalar ∈ [0, 1, 2] which are the labels for the 3 classes. This reduces the problem to extracting features
for representing the nodes and computing weights for the edges that represent the relationship between
nodes information. Figure 8 exemplifies the procedure of building a graph from an EEG recording. Next,
the different approaches for computing this tensors are explained.

Figure 8: Graph representation from EEG recording
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4.2.1 Node features computation

The main idea is to represent every physical electrode used in the EEG recording with a node in the graph.
However, there are several ways to achieve that objective. In the state of the art chapter, several methods
to extract relevant features to describe the nodes of the graph were discussed. In this work, three main
approaches have been implemented and tested. These are:

• Raw data: Each node contains the time signal produced by one electrode. Then, the features of
each node are a vector of 1280 samples (5s recordings at 256Hz). Then, all of the vectors are
vertically stacked to produce a tensor of shape [19, 1280]. This approach is used to let the network
perform the feature extraction phase and learn meaningful node embeddings. Moreover, it can be
used to exploit the temporal dependencies which are lost in other approaches. For this approach, the
only operation needed is to transform the EEG matrix into a tensor, so PyG modules can process it.
In addition, data can be optionally normalized using L1 norm, to make the model focus on signal
variations instead of absolute peaks.

• Statistical moments: In this approach, each node is represented by the mean, standard deviation,
variance, entropy, skewness and kurtosis of the temporal signal. Consequently, each node contains
the moments computed for a given channel of the EEG, resulting in a tensor of shape [19, 6]. Using
the numpy package, this metrics can be computed for each channel at the same time, leading to
fast computations which allows to build online datasets. This approach is more intended to validate
GNN models, and perform experiments in a fast and easy way than to achieve high accuracy.

• Power Spectral Density: Each node is represented by the average PSD computed as described in
(10) in six frequency bands. These bands are δ [1, 4]Hz, θ [4, 7.5]Hz, α [7.5, 13]Hz, βlow [13, 16]Hz,
βhigh [16, 30]Hz and γ [30, 40]Hz as it was proposed in [43]. As a result, each node contained 6
features, each one of them representing the average power within one of these bands. Finally, the
dimensions of the node feature tensor are [19, 6].

Notice that all of the aforementioned methods work at channel level. It means that the features
extracted for one channel depend only on the temporal signal of the same channel. Nevertheless, one of
the main advantages of using a GNN is the capability of exploiting the connections between nodes. For
this purpose, the following edge attributes computation methods have been implemented.

4.2.2 Edge attributes computation

The main function of the edge attributes is to describe how strong is the connection between nodes. In
other words, how much is the state of Nodei affected by the current state of Nodej . As fully connected
graphs are assumed because there is not a clear rule for connecting nodes in an EEG, the relationship
between each possible pair of nodes is computed (including self loops). As a result, for all the following
metrics, a [19, 19] tensor is obtained. The methods proposed are:

• PCC: It is computed for each pair of channels as described in Equation (10). This correlation measure
aims to find temporal dependencies between the channel’s signals. There are approaches that use
the absolute PCC bounded between [0, 1], however the implementation in this work does not, so the
resulting matrix is bounded within the [−1, 1] interval.

• Average Spectral Coherence: The weight of the edges are represented by the average spectral
coherence between two channels, Equation (11). As there are several examples in the literature that
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remark the importance of the frequency domain in EEG classification tasks, this measure quantifies
how similar two spectra are. Optionally, all the weights computed can be normalized to the interval
[0, 1], because the average spectral coherence is not upper bounded and may produce large weights.

• Phase Lag Index (PLI): Unlike PCC that focuses in the amplitude of the signals to compute their
relationship, the PLI focuses on the phase difference. The phase difference seems to be a more
robust approach, because the amplitude of a channel’s signal can be contaminated by neighbouring
electrodes, causing fake correlations. The PLI between two channels can be computed as follows
[39]:

PLIab =
1

N

N∑
t=1

exp(j∆Φab(t)) (19)

where:

∆Φab = Phase (computed by Hilbert transform) difference between signals a and b.

• Unweighted: Graphs can also be unweighted. This approach is useful when attention graph convo-
lutions are implemented. In this scenario, the network learns to compute the weights so there is no
need to apply neither of the previous approaches.

For every of the aforementioned methods, there is the option to apply a threshold over the weights. That
means that if any weights is lower than a given threshold, it would be set to zero. In practice, this is the
same as removing a link between two nodes, because a link with a weight equal to zero, would imply that
the node features would not be taken into account during the message passing step.

4.3 The Models

Once the graph building is prepared, it is time to design the models to process them and perform the
classification task. The first step to begin with this process was to replicate one of the publications, in
particular the one proposed in [43], which is described in Table 4. To do so, their proposed model was
implemented and trained with the TUEG dataset, that is available under request 6. The authors obtained
a 0.90 AUC, and we obtained a 0.85 AUC with less training epochs and without tuning hyperparameters.
Hence, it was considered a valid justification for the capabilities of GNNs to classify EEG data.

In addition to the replicated model, several more were designed, implemented and tested. Notice that
not all the models are designed to deal with all types of graphs, some of them are more oriented to process
raw signals and others are designed to deal, for example, with lower dimensional features such as the PSD
or the statistical moments. A description of the model’s architectures is provided below:

6Dataset source: https://isip.piconepress.com/projects/tuh eeg/html/downloads.shtml
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Model Architecture

EEGGraphConvNet

GCNConv(in=1280, out=640) + LeakyReLU + BatchNorm
GCNConv(in=640, out=512) + LeakyReLU + BatchNorm
GCNConv(in=512, out=256) + LeakyReLU + BatchNorm
GCNConv(in=256, out=256) + LeakyReLU + BatchNorm

GlobalAddPooling
MLP(FC(256, 128), FC(128, 64), FC(64, 2)) + Softmax

EEGGraphConvNetLSTM

LSTM(in features=1280, out features=hidden dim, gates=n gates)
GCNConv(in=hidden dim, out=320) + LeakyReLU + BatchNorm

GCNConv(in=320, out=180) + LeakyReLU + BatchNorm
GCNConv(in=180, out=90) + LeakyReLU + BatchNorm
GCNConv(in=90, out=50) + LeakyReLU + BatchNorm

GlobalAddPooling
MLP(FC(50, 32), FC(32, 16), FC(16, 2)) + Softmax

EEGGraphConvNetMini

GCNConv(in=6, out=16) + LeakyReLU + BatchNorm
GCNConv(in=16, out=32) + LeakyReLU + BatchNorm

GlobalAddPooling
MLP(FC(64, 32), FC(32, 16), FC(16, 2)) + Softmax

EEGGraphConvNetAttention

GATConv(in=6, out=12) + LeakyReLU + BatchNorm
GATConv(in=12, out=32) + LeakyReLU + BatchNorm
GATConv(in=32, out=64) + LeakyReLU + BatchNorm

GlobalAddPooling
MLP(FC(64, 32), FC(32, 16), FC(16, 2)) + Softmax

Table 8: GNN Architectures evaluated in this work

The in and out arguments used in the convolutional layers refer to the number of features per node. If
there is a variable instead of a predefined value, it means that it can be defined when the model is created.
The models would be evaluated and discussed in the result section, however following there are several
comments on the models described above:

• EEGGraphConvNet: This model follows the same structure as the replicated model [43], but
incorporates some changes. First, a batch normalization layer is added after each convolution, the
original model only had one batch normalization layer after all the convolutions. The second main
change is the number of input and output features. This model is intended to work with temporal
signal without any preprocessing, so that the input dimension of the first convolution must match
with the samples per window of the EEG recordings. As the input dimension is quite large, the model
tries to compress the information by reducing the number of features, instead of augmenting them.

• EEGGraphConvNetLSTM: This model aims to capture temporal relationships first and then spa-
tial relationships. To do so, a first layer with N LSTM gates is added, which would try to learn
temporal patterns. These gates process each channel individually, each temporal signal is treated as
an independent input from the LSTM point of view. Next, the embeddings produced by the LSTM
gates are fed into the set of graph convolutional layers. These layers combine the information of
every layer, and would try to identify spatial relationships between channels.
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• EEGGraphConvNetMini: This model is a smaller version of the EEGGraphConvNet. It removes the
last convolutional layer in order to avoid the oversmoothing effect. Moreover, the number of input
features is much smaller, and the convolutional layers expand the amount of features per node. This
model is designed to deal with graphs which have already been through a feature extraction phase,
such as the PSD or the statistical moments.

• EEGGraphConvNetAttention: It is a version of the previous model which changes the GCN layers
to GAT layers so the network can learn the graph’s weights. In this model, many versions of GAT
convolutions are tested to identify which implementation works best for our task. These are discussed
in the results chapter.

4.4 Model Training

4.4.1 Dataset Generation

To generate the datasets a custom Pytorch dataset was implemented. The dataset iterates through the .csv
file containing the paths of all the EEG recordings available and loading the corresponding file. However, as
explained in previous sections, there are several ways to build the graph. For this purpose, two functionalities
were implemented. The first, is to load the raw recordings and perform the desired transformation (such
as computing the PCC or the PSD) online. However, this process can slow the training because some
operations, like computing the PLI, can take a very long time.

To deal with this problem, an offline dataset generation functionality was added. This allows to compute
any nodes / edges features for all the subjects’ recordings and store them as .mat files following the exact
same structure as the original one. Using this option, the dataset can be fast and easily built by selecting
two folders: one with the precomputed node features and another with the precomputed edge weights, and
they can be combined in any way.

Once the dataset is built, it is divided in three different splits: train, test and validation. The train
dataset contains the 70% of the windows, the test dataset a 20% and the validation dataset the remaining
10%. However, due to the unbalancing problem shown in Table 7, only the 60% of the HC samples are
used, to avoid over-representing that class. The train dataset is the one used to train the network, so the
network’s weights are updated as a function of the classification error of this dataset. The test dataset would
be used to monitor the performance of the model, but only used in the forward stage, no backpropagation
is done with it. Its main function is to detect overfitting if it appears. Finally, the validation set would be
used to check that the model is capable to generalize well with unseen data.

After the dataset division, the Dataloaders are implemented. Using a Dataset class allows to load one
sample per iteration, but for training the models it is needed to load data in batches of N samples. To
achieve that, the PyG Dataloaders are used, which can load batches of a given size of unrelated graphs.
Moreover, it gives the option to shuffle the data, which results really handy to ensure that at every batch
there are samples from all the different classes. At this point, everything is ready to start forwarding the
dataset through the designed models. In the next section, the training configuration including optimizers,
loss functions, schedulers and hyperparameters choices is explained.

4.4.2 Training Configuration

The model is trained using a batch of 64 to 128 samples of unrelated graphs. For each batch, the samples
are forwarded through the network, which returns the probabilities of a given samples to belong to each
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one of the possible classes. This probabilities are compared with the ground truth using a defined criterion
to compute the error during the training stage. The criterion used for this purpose is the Cross Entropy
Loss. This loss is designed for classification problems, it computes the cross entropy between the input
(the model’s prediction) and the target (the label or ground truth). It is defined as follows:

l(x , y) = L = {l1, l2, ..., lN}T , ln = −
C∑

c=1

wc log
exp(xn,c)∑C
i=1 exp(xn,i )

yn,c (20)

where:

C = number of classes
N = Number of samples in the batch
x = model output
y = target value
w = optional weight for each class

Once the loss is computed, it must be backpropagated through the network, so the error related to each
weight is computed. Once this task is finished, an optimization step can start, which is the responsible
of updating the weights of the model to minimize the loss function. To do so, the Adam optimizer [25]
is employed, which shows to be more robust and converge to better results in this scenario than other
methods such as Stochastic Gradient Descent (SGD). The optimizer is initialized with a 0.1 learning rate.

To control the learning rate during the training, an optimizer scheduler is used. In this case, the
ReduceLROnPlateau from Pytorch. This scheduler tracks the progress of one metric, in our case the
training loss, and reduces the learning rate when the metric being tracked gets stuck during several epochs.
There are many parameters that can be configured in the scheduler, the main ones are the following:

• Patience: The amount of epochs that the scheduler waits before reducing the learning rate if the
metric being tracked does not improve. For training the models 5 epochs of patience were used.

• Threshold: The threshold defines the minimum margin of improvement needed. If the metric
improves, but less than the threshold, the scheduler would be triggered anyways. A 0.05 threshold
was used over the loss decrease.

• Cooldown: The amount of epochs to wait before start counting patience epochs again after the
learning rate has been reduced. 2 cooldown epochs were given.

• Factor: The factor of learning rate reduction after the patience epochs have been completed.

• Minimum learning rate: A lower bound for the learning rate that would not be farther reduced
event though the metric does not improve.

All the models are trained up to 100 epochs, however the process can be stopped earlier if no progress is
observed despite decreasing the learning rate.

4.5 Metrics for evaluating models performance

There exist a wide range of metrics that can be used to assess the performance of the model. The most
commonly used is the accuracy, which represents the percentage of samples classified correctly over the
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total number of samples. Despite of the fact that accuracy guarantees a global overview of the model
behavior, in medical terms, this metric lacks of specificity. A clear example is that diagnosing a disease
when the subject is healthy, is much less severe than considering the subject healthy when in actually has
the disease. However, when computing the accuracy both types of errors weight the same. In addition, the
accuracy metric does not consider if a class is over-represented or infra-represented, neither what classes
are causing more confusion to the model. To solve this inconveniences and to achieve a more detailed
evaluation of the model, the following metrics are proposed:

For the following definitions this nomenclature is followed: TP stands for True Positive, it means that
the subject has a disease and it is correctly diagnosed. TN means True Negative, it happens when the
subject is healthy and the system classifies it as healthy. FP is False Positive, when the subject is actually
healthy but is diagnosed with a disease. And finally, FN means False Negative, is the case when the subject
has a disease but it is not diagnosed.

• Accuracy: It is the hit rate of the model. Defined as:

Accuracy =
#hits

total samples
(21)

• Balanced accuracy: This version of the accuracy computes the weighted per class accuracy. If the
model is unbalanced, the accuracy may be high but the balanced accuracy would be significantly
lower. It is computed as:

BalancedAccuracy =
TP

TP+FN + TN
TN+FP

2
(22)

grouping the summands in the numerator, it also can be defined as:

BalancedAccuracy =
Sensitivity + Specificity

2
(23)

• Precision: It computes the ratio between the TP and the total positive predictions.

Precision =
TP

TP + FP
(24)

• Recall: It is a very representative measure because it gives the ratio between the correct diagnoses
and the missed diagnoses.

Recall =
TP

TP + FN
(25)

• F1-Score: It summarized the overall model performance by averaging the precision and recall values.

F1Score =
2 ∗ Precision ∗ Recall
Precision + Recall

(26)

• The Area Under the Receiver Operator Curve (AUC): This metric averages the precision obtained
at several values of recall. It is bounded between [0.5, 1], the closer to 1 the better the model is
working. It is computed as the area under the Precision vs. Recall curve.
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5. Results

This chapter is dedicated to evaluate the performance of the models based on the metrics defined in Section
4.5. The models would be evaluated together with the different approaches of graph building. Hence, every
experiment would be carried out with one model, one of the possible node features and one of the edge
weight computation options. These combinations would be evaluated for the binary classification task of
AD vs. HC. Then, the ones showing the best performance would be evaluated in the classification of AD
vs. HC vs. MCI classification.

It is important to notice that not all the possible combinations of model, edge and nodes would be tested.
Some models are designed to specifically process a concrete type of node features. Furthermore, only for
the best models, the effects of changing some parameters such as the number of filters of convolutional
layers, the type of attention, or the pooling methodology would be evaluated.

Even though the models are trained up to 100 epochs, the state of the model which gives the higher
test accuracy during the training is saved. Then, these weights are the ones used to evaluate the model
with the train, test and validation dataset and obtain the final metrics. Tables 9 and 10 show all the results
for all the experiments performed.
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Model Nodes Edges
Replicated PSD Spectral Coherence

Set Acc.(%) Bal.Acc.(%) Precision(%) Recall(%) F1(%) AUC
Train 45.67 50.02 72.83 50.02 31.39 0.74
Test 46.97 50.00 23.48 50.00 31.96 0.75
Val 48.00 50.00 24.00 50.00 32.43 0.73

Model Nodes Edges
GraphConvNet Raw PCC

Set Acc.(%) Bal.Acc.(%) Precision(%) Recall(%) F1(%) AUC
Train 99.09 99.11 99.05 99.11 99.08 0.99
Test 69.34 69.36 69.34 69.36 69.33 0.74
Val 70.93 70.99 70.89 70.99 70.88 0.80

Model Nodes Edges
GraphConvNet Raw PLI

Set Acc.(%) Bal.Acc.(%) Precision(%) Recall(%) F1(%) AUC
Train 96.17 96.41 96.20 96.41 96.17 0.97
Test 73.17 73.81 73.43 73.81 73.11 0.81
Val 75.20 75.68 75.87 75.68 75.19 0.83

Model Nodes Edges
GraphConvNet Raw SC

Set Acc.(%) Bal.Acc.(%) Precision(%) Recall(%) F1(%) AUC
Train 75.14 75.82 76.00 75.82 75.13 0.80
Test 75.49 75.88 76.26 75.88 75.45 0.80
Val 73.33 74.16 74.02 74.16 73.33 0.79

Model Nodes Edges
GraphConvNetLSTM Raw PCC

Set Acc.(%) Bal.Acc.(%) Precision(%) Recall(%) F1(%) AUC
Train 90.84 90.65 90.92 90.65 90.76 0.97
Test 65.42 65.04 65.15 65.04 65.07 0.70
Val 59.20 59.15 59.13 59.15 59.13 0.65

Model Nodes Edges
GraphConvNetMini Moments PCC

Set Acc.(%) Bal.Acc.(%) Precision(%) Recall(%) F1(%) AUC
Train 73.71 73.47 73.58 73.47 73.51 0.81
Test 73.35 72.86 73.19 72.86 72.96 0.81
Val 71.73 71.16 71.40 71.16 71.24 0.80

Model Nodes Edges
GraphConvNetMini PSD PCC

Set Acc.(%) Bal.Acc.(%) Precision(%) Recall(%) F1(%) AUC
Train 86.39 86.26 86.32 86.26 86.29 0.94
Test 85.47 85.38 85.43 85.38 85.40 0.93
Val 84.80 84.59 84.63 84.59 84.61 0.93

Table 9: Results of models with different combinations of node and edge features in AD vs. HC classification
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Model Nodes Edges
GraphConvNetMini PSD PLI

Set Acc.(%) Bal.Acc.(%) Precision(%) Recall(%) F1(%) AUC
Train 86.04 86.03 86.03 86.03 86.03 0.94
Test 87.01 87.02 87.01 87.02 87.01 0.94
Val 83.53 83.36 83.21 83.36 83.28 0.90

Model Nodes Edges
GraphConvNetMini PSD SC

Set Acc.(%) Bal.Acc.(%) Precision(%) Recall(%) F1(%) AUC
Train 89.41 89.45 89.42 89.45 89.41 0.97
Test 86.61 86.67 86.56 86.67 86.59 0.94
Val 82.93 82.93 83.08 82.93 82.92 0.92

Model Nodes Edges
GraphConvNetAttention PSD Attention

Set Acc.(%) Bal.Acc.(%) Precision(%) Recall(%) F1(%) AUC
Train 96.99 96.89 96.73 96.89 96.81 0.99
Test 91.57 91.29 90.91 91.29 91.09 0.97
Val 92.31 91.80 91.90 91.80 91.85 0.97

Table 10: Results of models with different combinations of node and edge features in AD vs. HC classifi-
cation (continued)

For the AD vs. HC vs. MCI classification task only the best model configuration was evaluated, the
GraphConvNetAttention. The model architecture remains the same, but it is retrained using data from the
three classes and using a lower initial learning rate (0.001 instead of 0.1). The obtained results are shown
in Table 11.

Set Acc.(%) Bal.Acc.(%) Precision(%) Recall(%) F1(%) AUC
Train 97.50 97.36 97.29 97.36 97.32 1.00
Test 87.68 86.64 87.07 86.64 86.84 0.96
Val 87.59 86.69 86.60 86.69 86.63 0.97

Table 11: Results GraphConvNetAttention for AD vs. HC vs. MCI classification
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5.1 Discussion of results

5.1.1 Proposed Models Comparison

The top results of all the proposed models are summarized in Figure 9, where the accuracy, F1-score and
AUC are given to compare the their general performance. Only the results of the best combinations of
node and edge features are shown.

Figure 9: Results comparison between top performing models

It can be clearly observed that the worst model is the ConvNetLSTM, which achieves a 30% lower
accuracy than the best one, the ConvNetAttention. Another direct conclusion is that the models using
hand-crafted features for the nodes, outperform the ones using the raw temporal signals. This is because
the network receives relevant features, instead of having to learn a meaningful representation from the raw
data, so the job is easier. However, the different methods used to compute the edges (PLI, SC, PCC) do
not seem to have a major impact over the models performance. In this case, letting the network learn
the edges weights produces notorious better results. In addition, it can be seen that the accuracy and the
F1-score bars are almost identical, which means that the model is balanced and it is not over-represented
by any class.
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5.1.2 Models training

In addition to the final results, it is important to discuss the behaviour of the models while training. All the
models were trained using an Intel i7 10750H CPU and 16GB of RAM, following the procedure described in
the methodology section. In addition, all features were precomputed offline, so the differences in training
time are only due to the model architecture, and not related to the feature extraction methods. Note that
all the computing times could be reduced with proper acceleration techniques [1, 45, 10] and not pose a
roadblock in the EEG analysis in general and the present use case in particular. Next, the evolution of loss
and accuracy curves during training is shown for all of the proposed models.

The GraphConvNet model took 4 hours to complete the 100 epochs of training, as shown in Figure 10.
At epoch 25, it started to show obvious signs of overfitting.

Figure 10: GraphConvNet training evolution.

The GraphConvNetLSTM model took 7 hours to complete 25 epochs of training, where it was stopped
because of overfitting and lack of progress. As it is expected from a recurrent model, it was the one that
took longer to train by far. These results are shown in Figure 11.
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Figure 11: GraphConvNetLSTM training evolution.

Models that process temporal data directly need to perform larger convolutions due to the features
dimensionality. As it can be expected, they need more time to be trained because the operations are more
expensive. On the contrary, the following models process features with lower dimensionality and have less
convolutional layers, so they are remarkably faster.

The GraphConvNetMini architecture only has two convolutional layers. It took only 48 minutes to
converge. As the model has less parameters, it is not as prone to overfit as the temporal models. Moreover,
it reaches better results as shown in Figure 12.
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Figure 12: GraphConvNetMini training evolution.

Finally, the GraphConvNetAttention architecture took between 2 and 3 hours to train, depending on
the number of heads and the attention implementation. Figure 13 illustrates the evolution of the training.

Figure 13: GraphConvNetMini training evolution.

44



5.1.3 Best model configuration

From Tables 9 and 10 it can be concluded that the best overall model is GraphConvNetAttention. This
model receives as input a fully connected unweighted graph (weights are learnt by the network using
attention), where nodes are the average PSD at 6 frequency bands. The model general architecture is
described in Table 8. The graph attention convolution layers that gave the best performance were the
TransformerConv, defined in [36]. For every TransformerConv layer, two attention heads were defined.
It is important to remark that the results obtained with this model only differ around 1-2% between
the train, test and validation splits. Hence, it is proven that the GraphConvNetAttention is capable of
generalizing with unseen data. Next, Table 12 shows a comparison of performance depending on the type
of convolutional layer used:

Attn. Layer Acc.(%) Bal.Acc.(%) Precision(%) Recall(%) F1(%) AUC
GAT 86.13 86.27 86.23 86.27 86.13 0.95

GATv2 89.01 88.51 87.94 88.51 88.20 0.97
TransformerConv 92.31 91.80 91.90 91.80 91.85 0.97
SuperGATConv 91.02 90.96 91.14 90.96 91.00 0.96

Table 12: Comparison between convolutional attention layers

All of the aforementioned attention layers rely on attention heads to find different patterns and re-
lationships between nodes features. The number of features is proportional to the number of heads.
Table 12 shows a small study about the impact of the number of heads while using the TransformerConv
convolutional layer.

Number of heads Acc.(%) Bal.Acc.(%) Precision(%) Recall(%) F1(%) AUC
1 83.20 83.09 82.88 83.09 82.97 0.90
2 92.31 91.80 91.90 91.80 91.85 0.97
3 87.03 86.74 85.84 86.74 86.23 0.95

Table 13: Comparison between number of attention heads

An increment in the number of heads directly implies a larger number of trainable parameters in the
network. This is because each head contains a FC layer to learn different projections. However, if the
dataset is not large enough, or the number of node features is small, using a larger number of heads may
not produce a positive impact on the network’s performance.

5.2 Comparison with State of Art Methods

In this section, the results obtained in this work are compared with state-of-the-art methods from [19], [20],
[21] and [34] labeled as MLP, CNN-2018, CNN-2020, and ST-Conv here, respectively. They are compared
in terms of accuracy and F1-score obtained with the validation datasets. First, the performance on the
binary classification task of AD vs. HC is compared in Figure 14.
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MLP CNN-2018 CNN-2020 ST-Conv ConvNetAttention
Models
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Figure 14: Comparison of the proposed work (ConvNetAttention) with respect to the state of art methods
[19, 20, 21, 34] for the binary classification case.

Notice that despite using the same dataset (MLP, CNN-2018, CNN-2020), the splits may change
because of random shuffling when producing the train, test and validation splits. Moreover, the ST-Conv
model was trained with a different dataset recorded with a different EEG montage. With that being said,
the MLP model which uses CWT and BiS features is still the best method. The CNN-2018 uses the PSD
of the complete spectrum obtains slightly better results than our proposed model, which uses the PSD of
six frequency bands. The model with worst performance is the CNN-2020, but it uses the raw data without
any feature extraction previous to the CNN. The ST-Conv model authors do not provide any metric but
accuracy, so the F1-Score can not be compared.

The following graphic shows a comparison of the proposed model for the AD vs. MCI vs. HC classifi-
cation with the state of art models described in [19, 20, 21].
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Figure 15: Comparison of the proposed work (ConvNetAttention) with respect to the state of art methods
[19, 20, 21] for the AD vs. MCI vs. HC case.

The proposed GNN improved the results obtained by the CNN-2018, which also used PSD features, by
a 4%. Compared to the MLP, the accuracy is 2% lower but the F-Score is 6% higher, which indicates that
the proposed model may provide a more balanced solution. The CNN-2020 model proposed by [21] and
the STConv model by [34] were only used for binary classification tasks, so in these cases such techniques
can not be added to the comparison.
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6. Conclusions

This master thesis has explored different combinations of graph building and GNNs models for classifying
EEGs from AD and MCI patients. It has been demonstrated that GNNs are suitable architectures for
detecting neurological diseases from EEG recordings, without the need of extra information about the
patient. From the exhaustive comparison of models and feature extraction methods, many interesting
conclusions can be stated.

First, the combination of hand-engineered feature extraction methods with neural network models used
as classifiers outperforms end-to-end learning methods. This phenomenon can be detected also in many
state of the art publications. It is difficult to directly process the raw temporal signals captured during the
recordings and achieve acceptable results. The main reason behind this is that there exist prior knowledge
on how neurological diseases affect to the brain activity, so features that better represent these alterations
would ease the job of the network. Despite neural networks can learn to extract features by their own,
they do not possess high-level human knowledge about particular topics such as the Alzheimer’s disease.
A clear example is the use of the PLI instead of the PCC: researchers know that relationships between
channels amplitudes may be fake because of the interference of neighbouring electrodes. However, they
know that the phase information of the electrical signal is more reliable. As a result, the PLI, which uses
phases information, is preferred over the PCC, that relies on amplitude measure instead. This is a very
difficult deduction for a neural network to make. However, if the model is trained with these features, it
would benefit from the prior human knowledge about the task.

Following with the feature extraction topic, it can be concluded that information related to the frequency
domain is very relevant for detecting neurological diseases. The best model proposed in this work uses
the PSD to compute the nodes features, whereas the best overall model in the literature uses CWT and
BiS features, all of them coming from the frequency domain. Nevertheless, this does not happen with
the edges. Graph attention mechanisms capable of learning relations between nodes have showed to be
superior to all the manual edge weight computation methods proposed. This finding is really meaningful,
since attention methods can signify a huge step in the field of GNNs explainability. The capability of the
network to learn the edges weights can help to understand how signals from different channels relate to
each other, and which are the most important features across channels.

Finally, despite getting really close, all results from the literature could not be outperformed. However, a
baseline of GNN architectures, node feature extraction methods, edge weight computation, model training,
and metrics extraction is provided. This can be the foundation of more optimized models that overpass
the current results, not only in AD and MCI classification, also for other neurological diseases.

6.1 Future Work

Due to the wide array of options to be evaluated, there are many topics related to this work that remain
to be tested. The first one would be to optimize the current models. This step would include a cross-
optimization between the type of attention layers, the global pooling methodologies, and the number of
input/output features per layer. In addition, a more in-depth study of training hyperparameters such as
the learning rate or the batch size would be beneficial. Following this point, searching better models for
the three way AD vs. HC vs. MCI classification would be the next step. This work was initially focused to
solve the AD vs. MCI task, and due to lack of time a better model for the three classes task could not be
designed.
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Another field with huge potential is that of spatio-temporal graphs. Nowadays, many state-of-the-art
graph convolutional layers are developed to find not only spatial, but also temporal relationships in graphs.
This would be a really interesting topic of research because EEGs are intrinsically temporal signals. To
exploit the temporal dependencies, it would be great to explore high density datasets, using higher sampling
rates and larger number of electrodes, so the time series are better represented.
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A. Abbreviations

• EEGs: Electroencephalograms

• GNNs: Graph Neural Networks

• MCI: Mild Cognitive Impairment

• fMRI: Functional Magnetic Resonance

• ECoG: Electrocorticography

• CNN: Convolutional Neural Network

• RSVP: Rapid Serial Visual Presentation

• ML: Machine Learning

• DL: Deep Leaning

• DNN: Deep Neural Network

• RNNs: Recurrent Neural Networks

• MLP: Multi Layer Perceptron

• FC: Fully Connected

• GAT: Graph Attention

• CWT: Continuous Wavelet Transform

• BiS: Bispectrum
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