
Citation: Hesselbach, X.;

Escobar-Perez, D. Machine Learning

Requirements for Energy-Efficient

Virtual Network Embedding.

Energies 2023, 16, 4439. https://

doi.org/10.3390/en16114439

Academic Editor: Valentina E. Balas

Received: 22 April 2023

Revised: 26 May 2023

Accepted: 29 May 2023

Published: 31 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Machine Learning Requirements for Energy-Efficient Virtual
Network Embedding
Xavier Hesselbach * and David Escobar-Perez

Department of Network Engineering, Universitat Politècnica de Catalunya (UPC), Jordi Girona 1-3,
08034 Barcelona, Spain; david.escobar@estudiantat.upc.edu
* Correspondence: xavier.hesselbach@upc.edu; Tel.: +34-93-401-59-87

Abstract: Network virtualization is a technology proven to be a key enabling a family of strategies in
different targets, such as energy efficiency, economic revenue, network usage, adaptability or failure
protection. Network virtualization allows us to adapt the needs of a network to new circumstances,
resulting in greater flexibility. The allocation decisions of the demands onto the physical network
resources impact the costs and the benefits. Therefore it is one of the major current problems,
called virtual network embedding (VNE). Many algorithms have been proposed recently in the
literature to solve the VNE problem for different targets. Due to the current successful rise of artificial
intelligence, it has been widely used recently to solve technological problems. In this context, this
paper investigates the requirements and analyses the use of the Q-learning algorithm for energy-
efficient VNE. The results achieved validate the strategy and show clear improvements in terms of
cost/revenue and energy savings, compared to traditional algorithms.

Keywords: energy efficiency; virtual network embedding; revenue; artificial intelligence; Q-learning;
energy savings

1. Introduction

Network virtualization [1] involves the revolutionary concept of decoupling the un-
derlying physical network infrastructure from the services and applications running on it.
It enables the creation of multiple virtual networks, each possessing its own unique set of
resources and functionalities, onto a shared physical network infrastructure.

One of the biggest challenges of network virtualization is finding the most effective
way to embed the demands of different virtual networks on a physical network trying
to make the best use of the resources. This problem is called Virtual Network Embed-
ding (VNE).

In this context, the business model includes the network services provider, the network
operator and the infrastructure provider. Virtual operators handle a part of a partition
of the physical resource, not affected by others, like a real independent network, with its
own resources, protocols and strategies. Virtual operators demand resources to build their
virtual networks (nodes and links) from the substrate infrastructure (physical network)
constructed by the infrastructure providers.

Virtual network embedding [1,2] is the efficient assignment of a set of Virtual Network
Requests (VNR) onto a physical network. These networks are composed of a set of nodes
interconnected by links. The demands or resources can be of any type, such as processing
capacity (CPU), energy consumption, bandwidth capacity (bit rate), delay and so on.

Many algorithms have been proposed recently in the literature to solve the VNE
problem for different targets [3] and regarding the strategies in terms of allocation method
(online and online), coordination (coordinated or uncoordinated), type of constraints (CPU,
bandwidth, delay, availability, etc), lifetime, rollback options and many other issues.

In computational complexity, the VNE problem is included in the NP-hard problem
group [4], as it aims to achieve optimal resource embedding for each virtual network. The

Energies 2023, 16, 4439. https://doi.org/10.3390/en16114439 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en16114439
https://doi.org/10.3390/en16114439
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-7888-3603
https://orcid.org/0009-0008-9921-5525
https://doi.org/10.3390/en16114439
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en16114439?type=check_update&version=1

Energies 2023, 16, 4439 2 of 12

NP-type problem can be solved with a non-deterministic Turing machine using a number
of polynomial computation times [5].

VNE is a critical issue for network operators in terms of the cost and the revenue,
so regarding the utilization of available resources and therefore the energy consumed.
The energy consumed is especially critical in big networks, from the resources selected
and the energy required for the computational effort, impacting the monetary benefits of
the operator.

Regarding consumption, modern devices are not only more efficient but also more
powerful than their previous generation’s counterparts. This increased efficiency and
power make the previous generation’s devices obsolete. Consequently, in heterogeneous
networks, powerful devices are typically prioritized and selected first. However, in this
work, we focus on homogeneous networks, although our analysis is not limited to them.

While the consumption model is an essential aspect to consider, it is not thoroughly
examined in this paper. Nevertheless, we have taken it into account when calculating the
cost and revenue metrics.

Each VNR is processed in general in two stages: The one that handles the virtual
nodes and the one that handles the virtual links. In some works, both stages are processed
altogether in a coordinated way. In this case, usually the complexity is bigger [6].

In [3], the authors propose an evaluation model related to coordinated mapping.
In [7], the mechanism proposed is a good application example for shared and federated
cloud services.

In the Virtual Node Embedding stage, each virtual node on the same network must be
assigned to a different physical node. Therefore, this assignment consists of the following
function: MN (): NV → NS. Where NV refers to a virtual node and NS refers to a substrate
node. MN (M) ∈ NS. MN (M) = MN (N), only if M = N, whenever it is possible to satisfy the
demands of the virtual nodes with the resources of the physical network. The demands
that arrive can be CPU, energy consumption, storage, capacity of the node, etc.

In the Virtual Link Embedding stage, each virtual link can be embedded on a single
physical link or on more than one. Virtual link embedding is implemented in the following
manner: ML (): LV → PS for all virtual links. PS (MN (M), MN (N)), where PS represents the
path which starts with the node MN (M) until the node MN (N). Thus, it is needed to be
satisfied: ML (M,N) ⊆ PS (MN (M), MN (N)), as long as the demands of the virtual links
are fulfilled. The demands that are made in a VNR regarding this scenario are usually
link capacity, delay and energy consumption at the interfaces (network interface card) in
the link.

The use of Artificial Intelligence (AI) and learning strategies based on ML [8] as a
means to solve complex technological problems is growing exceptionally fast. This opens
up a range of possibilities to be able to tackle problems such as VNE, which had not been
considered taking into account the AI-aware algorithms.

When reinforcement learning [9] is focused on the VNE problem, the algorithms of
this group can be used since the environment required can be provided by the scenarios
of the physical network. Another advantage of this type of learning is that it does not
need any kind of input data, unlike other types of learning. It learns with a state-action
mechanism receiving feedback from the environment itself.

The main objective of this paper is to underscore the remarkable advantages that AI
brings to the forefront when addressing VNE (Virtual Network Embedding) problems.
This research endeavors to introduce groundbreaking perspectives and advancements by
precisely defining the fundamental evaluation metrics, showcasing the potential benefits
through an AI strategy built upon Q-learning and extensively delving into the specific
objectives that can be effectively addressed through the utilization of AI algorithms. By
doing so, this work not only sheds light on the immense potential of AI in the realm of VNE
but also lays the groundwork for transformative progress and pioneering developments in
the field. The proposal is based on [9].

Energies 2023, 16, 4439 3 of 12

The rest of the paper is organized as follows: In Section 2, the methods required in
this work to solve the VNE problem are reviewed. In Section 3 the performance of our
proposed algorithm is compared with typical VNE algorithms. In Section 4 a discussion is
presented based on the results obtained. Finally, conclusions are drawn in Section 5.

2. Materials and Methods

In this section, the methodology and tools required to solve the VNE problem of this
work are presented.

2.1. Development Tool

A solid environment is essential to develop and implement the algorithm, to compare
the results with other algorithms. ALEVIN [10,11], coded using Java, manages various types
of offline algorithms and arbitrary parameters of resources and demands. With the help of
the user manual included in the downloadable software [12], it easily enables developers
or researchers to add their own algorithms, parameters or metrics to the software. It has a
graphical interface that allows us to view physical and virtual networks as directed graphs
in order to make the simulations more intuitive. Therefore, ALEVIN has been chosen in
this work as the environment to develop, implement and compare the algorithm.

2.2. Construction of the Algorithm

The environment definition is a critical part of the implementation of the algorithm.
The environment consists of a physical network with different resources in links and nodes,
formed mainly by bandwidth and CPU resources, and also several requests in the form of
virtual network embeddings with different demands of resources.

The structure of reinforcement learning algorithms (Figure 1) consists of an agent
and an environment, exchanging information through states, actions and rewards. The
agent chooses an action and the environment generates a reward depending on the chosen
action and returns a new state to the agent. In the strategy, for each virtual network to
be embedded, an agent must be initialized who will have access to the resources of the
physical network.

Energies 2023, 16, x FOR PEER REVIEW 3 of 12

doing so, this work not only sheds light on the immense potential of AI in the realm of
VNE but also lays the groundwork for transformative progress and pioneering develop-
ments in the field. The proposal is based on [9].

The rest of the paper is organized as follows: In Section 2, the methods required in
this work to solve the VNE problem are reviewed. In Section 3 the performance of our
proposed algorithm is compared with typical VNE algorithms. In Section 4 a discussion
is presented based on the results obtained. Finally, conclusions are drawn in Section 5.

2. Materials and Methods
In this section, the methodology and tools required to solve the VNE problem of this

work are presented.

2.1. Development Tool
A solid environment is essential to develop and implement the algorithm, to compare

the results with other algorithms. ALEVIN [10,11], coded using Java, manages various
types of offline algorithms and arbitrary parameters of resources and demands. With the
help of the user manual included in the downloadable software [12], it easily enables de-
velopers or researchers to add their own algorithms, parameters or metrics to the soft-
ware. It has a graphical interface that allows us to view physical and virtual networks as
directed graphs in order to make the simulations more intuitive. Therefore, ALEVIN has
been chosen in this work as the environment to develop, implement and compare the al-
gorithm.

2.2. Construction of the Algorithm
The environment definition is a critical part of the implementation of the algorithm.

The environment consists of a physical network with different resources in links and
nodes, formed mainly by bandwidth and CPU resources, and also several requests in the
form of virtual network embeddings with different demands of resources.

The structure of reinforcement learning algorithms (Figure 1) consists of an agent and
an environment, exchanging information through states, actions and rewards. The agent
chooses an action and the environment generates a reward depending on the chosen ac-
tion and returns a new state to the agent. In the strategy, for each virtual network to be
embedded, an agent must be initialized who will have access to the resources of the phys-
ical network.

Figure 1. Basic reinforcement learning model.

The actions that an agent will allocate refer to the nodes of the physical network so
that for each state the agent will have a set of actions: A = {0 … Nf}, where Nf will be
equivalent to the amount of total physical network nodes that can be chosen to make the
embedding in the same state. By defining the actions as the set of nodes of the physical
network, the states will be the nodes of the virtual network request that will be embedded
and, therefore, the agent will also have a set of states S = {0 … Nv}, where Nv will refer to
the total number of virtual network nodes that will define the states.

With the definitions of states and actions, the node embeddings can be processed.

Figure 1. Basic reinforcement learning model.

The actions that an agent will allocate refer to the nodes of the physical network so
that for each state the agent will have a set of actions: A = {0 . . . Nf}, where Nf will be
equivalent to the amount of total physical network nodes that can be chosen to make the
embedding in the same state. By defining the actions as the set of nodes of the physical
network, the states will be the nodes of the virtual network request that will be embedded
and, therefore, the agent will also have a set of states S = {0 . . . Nv}, where Nv will refer to
the total number of virtual network nodes that will define the states.

With the definitions of states and actions, the node embeddings can be processed.
Figure 2 illustrates a simple example with 2 VNRs and a physical network. It show-

cases a plausible and simplified allocation of the three nodes from VNR1 onto the physical
network, providing a visual representation of the concept being discussed, such that the
virtual network 1 embedding would be written with the following notation:

{0, 0}, {1, 1}, {2, 2}, where the tuples are pairs of action states {S, A}.

Energies 2023, 16, 4439 4 of 12

Energies 2023, 16, x FOR PEER REVIEW 4 of 12

Figure 2 illustrates a simple example with 2 VNRs and a physical network. It show-
cases a plausible and simplified allocation of the three nodes from VNR1 onto the physical
network, providing a visual representation of the concept being discussed, such that the
virtual network 1 embedding would be written with the following notation:

{0, 0}, {1, 1}, {2, 2}, where the tuples are pairs of action states {S, A}.

Figure 2. VNE example.

In this algorithm, a matrix Q is defined, storing the results of every Q value of each
state-action pair. By definition, this matrix has as columns the set of actions that the agent
can take and as rows the set of states that the agent can choose (Figure 3).

Figure 3. Structure of Q matrix.

The number of rows in this array is |S| and the number of actions is |A|. As we
explained, the states represent the set of nodes in the virtual network to be embedded and
the actions represent the set of nodes in the physical network. Therefore, each element Q
(Si, Ai) represents the quality of that state-action pair, which means that a large value of Q
will correspond to a good state-action pair and a small value of Q will correspond to a bad
state-action couple.

The procedure is the following:
At each choice of state-action pair, the value that belongs to it must be calculated,

according to the equation that calculates the Q value: 𝑄 (𝑠, 𝑎) = 𝑄 (𝑠, 𝑎) + 𝛼(𝑅(𝑠, 𝑎) + 𝛾𝑚𝑎𝑥 𝑄(𝑠 , 𝑎) − 𝑄 (𝑠, 𝑎)) (1)

where 𝑄 (𝑠, 𝑎) is the current value in the table corresponding to the state-action
choice, 𝛼 is the learning value that controls how quickly the agent adopts the random
changes imposed by the environment, 𝑅(𝑠, 𝑎) is the reward provided to the agent for
taking the corresponding state-action pair, 𝛾 is a discount factor corresponding to the af-
fectation of future states to the current, 𝑚𝑎𝑥 𝑄(𝑠 , 𝑎) is the maximum value Q corre-
sponding to the new state.

Figure 2. VNE example.

In this algorithm, a matrix Q is defined, storing the results of every Q value of each
state-action pair. By definition, this matrix has as columns the set of actions that the agent
can take and as rows the set of states that the agent can choose (Figure 3).

Energies 2023, 16, x FOR PEER REVIEW 4 of 12

Figure 2 illustrates a simple example with 2 VNRs and a physical network. It show-
cases a plausible and simplified allocation of the three nodes from VNR1 onto the physical
network, providing a visual representation of the concept being discussed, such that the
virtual network 1 embedding would be written with the following notation:

{0, 0}, {1, 1}, {2, 2}, where the tuples are pairs of action states {S, A}.

Figure 2. VNE example.

In this algorithm, a matrix Q is defined, storing the results of every Q value of each
state-action pair. By definition, this matrix has as columns the set of actions that the agent
can take and as rows the set of states that the agent can choose (Figure 3).

Figure 3. Structure of Q matrix.

The number of rows in this array is |S| and the number of actions is |A|. As we
explained, the states represent the set of nodes in the virtual network to be embedded and
the actions represent the set of nodes in the physical network. Therefore, each element Q
(Si, Ai) represents the quality of that state-action pair, which means that a large value of Q
will correspond to a good state-action pair and a small value of Q will correspond to a bad
state-action couple.

The procedure is the following:
At each choice of state-action pair, the value that belongs to it must be calculated,

according to the equation that calculates the Q value: 𝑄 (𝑠, 𝑎) = 𝑄 (𝑠, 𝑎) + 𝛼(𝑅(𝑠, 𝑎) + 𝛾𝑚𝑎𝑥 𝑄(𝑠 , 𝑎) − 𝑄 (𝑠, 𝑎)) (1)

where 𝑄 (𝑠, 𝑎) is the current value in the table corresponding to the state-action
choice, 𝛼 is the learning value that controls how quickly the agent adopts the random
changes imposed by the environment, 𝑅(𝑠, 𝑎) is the reward provided to the agent for
taking the corresponding state-action pair, 𝛾 is a discount factor corresponding to the af-
fectation of future states to the current, 𝑚𝑎𝑥 𝑄(𝑠 , 𝑎) is the maximum value Q corre-
sponding to the new state.

Figure 3. Structure of Q matrix.

The number of rows in this array is |S| and the number of actions is |A|. As we
explained, the states represent the set of nodes in the virtual network to be embedded and
the actions represent the set of nodes in the physical network. Therefore, each element Q
(Si, Ai) represents the quality of that state-action pair, which means that a large value of Q
will correspond to a good state-action pair and a small value of Q will correspond to a bad
state-action couple.

The procedure is the following:
At each choice of state-action pair, the value that belongs to it must be calculated,

according to the equation that calculates the Q value:

Qt(s, a) = Qt−1(s, a) + α
(

R(s, a) + γmaxa′Q
(
s′, a′

)
−Qt−1(s, a)

)
(1)

where Qt−1(s, a) is the current value in the table corresponding to the state-action choice, α
is the learning value that controls how quickly the agent adopts the random changes
imposed by the environment, R(s, a) is the reward provided to the agent for taking the
corresponding state-action pair, γ is a discount factor corresponding to the affectation of
future states to the current, maxa′Q(s′, a′) is the maximum value Q corresponding to the
new state.

As the algorithm in the problem has been suggested, the choice of states made by
the environment does not depend on the action chosen in the previous state, as it does
not make sense to choose the next virtual node to embed from one action selected in the
previous state. This peculiarity makes the dependence between states zero, forcing a series
of adaptations to the equation that calculates the Q value in each state by deleting the factor
that calculates the incidence of future state-action pairs in the current:

Qt(s, a) = Qt−1(s, a) + α(R(s, a)−Qt−1(s, a)) (2)

Energies 2023, 16, 4439 5 of 12

This equation allows the algorithm to explore the environment and learn strategies,
considering past experiences or values regardless of future states.

In the VNE problem of this work, the node mapping stage and the link mapping stage
are considered. There has already been talk of how states are defined as virtual nodes and
actions as physical nodes, leaving the node mapping scenario ready. In some works, it is
done in a coordinated way [6], expecting better results but increasing the complexity.

To obtain a correlation between node mapping and link mapping, it has been decided
to implement a reward function that takes into account link mapping. At each node
embedding choice, this reward function will find the virtual links between the already
embedded virtual nodes and the node regarding the current state and map the links
between them to the corresponding physical paths.

For better resource optimization, the paths in the physical network where the virtual
links are to be embedded will be the shortest paths. That is, an algorithm will be used
to find the shortest paths suitable for embedding depending on whether they can satisfy
resource demands or not.

The shortest paths will be found using Dijkstra’s algorithm. This, once given a couple
of nodes, returns the shortest path; it is included in the ALEVIN software thanks to the
JUNG2 library [13].

The reward function can be defined as follows:

R(s, a) = ∑NVe

i=0
1
Si

M(linki) (3)

where NVe is the number of nodes that have been embedded in the pre-current states, Si the
number of hops in the physical path where the linki is to be embedded so the chosen paths
are penalized with many hops and M(linki) returns a value according to the mapping of the
linki link with the Dijkstra algorithm. It can be a big number if the mapping was possible or
a low number if it was hardly possible due to the restrictions set by the current resources.

With the target of a more optimal embedding and a faster convergence, a function has
been added: In the last state of each embedding in each iteration, the Q values correspond-
ing to the choice of each state-action are updated. Thus, if the virtual network embedding
has been successful, a constant is added to each chosen Q value, but if the embedding has
not been successful, a constant is subtracted from each chosen Q value.

In order to obtain a stable Q matrix, where all state-action combinations have been
seen, an exploration-exploitation rule must be followed. The agent, at the beginning
of the training, has no information and all its Q values are zero, so a model capable of
balancing the use of exploration and exploitation in the algorithm is required, boosting
exploration in the first iterations to discover new Q values and exploitation in the last ones
choosing the best Q values. Therefore, the Epsilon-Greedy model is used in this work: The
Epsilon-Greedy model is a simple method to choose between exploration and exploitation
in a random way, with probability ε per exploration and 1 − ε per exploitation. In order
to obtain more stable values of Q and better convergence, it has been decided to give ε
dynamic values, in such a way that it decreases as the algorithm adds iterations. This forces
the algorithm to explore at the beginning when the Q table is empty and to explode at the
end when all possible combinations have been discovered. The equation that computes ε
in each iteration is as follows:

ε = minε +
1−minε

e−λ∗numiter
(4)

where minε is ε minimal so that the function is never 0, λ a factor that serves to attenuate the
function and takes longer to decrease more iterations and numiter is the number of iterations
at the present time. In this way, for each iteration, the value of epsilon will decrease with
the intention of prioritizing the exploitation in future iterations.

The main idea of this algorithm is to continuously update the Q matrix with the Q
values obtained from the state-action choice and their corresponding rewards. In the long

Energies 2023, 16, 4439 6 of 12

term, after a number of iterations, the Q matrix begins to gain good stability and this results
in an optimal virtual network embedding.

The Algorithm 1 consists of a main loop that repeats the code with the number of
iterations indicated with the variable max_iter. Within this loop, another loop for iterates
over all the states, over the nodes of the virtual network. For each virtual node if ε it is
smaller than num_random, it will choose the action with the best Q value in that state, as
long as it satisfies the limitations imposed on the nodes. If ε is greater than num_random,
the algorithm will take a random action of the possible ones in that state. Once an action
is decided in its current state, the reward for choosing that action or physical node is
calculated, and that reward depends on the mapping of the virtual links that links that
virtual node to the virtual nodes already embedded. Once the reward is calculated, the Q
value is updated with the Q value update formula and this Q value is stored in the Q table.

Once the for loop reaches the last state or the last virtual node when being embedded,
after updating the Q tale with the Q value corresponding to the choice of the action, it
enters the last if, since it satisfies the condition. Within this, if the embedding has been
satisfactory, the corresponding Q values are updated with a value higher than they had
before, adding a constant and, in case of the contrary, they are updated with a lower value
than they had before, subtracting the same constant, in order to achieve a stable Q table in
fewer iterations.

Algorithm 1 Q-learning-based VNE algorithm

1. while (num_iter < max_iter){
2. for (i = 0; i< Nv; i++){
3. if (num_random > ε){
4. Choose action Ai with a better Q value for this state
5. This Q value has to satisfy the restrictions imposed on the nodes
6. }else{
7. Chooses random action for this state
8. }
9. Calculate the reward R with the Equation (3)
10. Calculate the Q value with the Equation (2)
11. Update the Q table with the new Q value
12. If (i == Nv){

13.
Update all the Q values chosen in the actual embedding with a new reward

depending on whether embedding has been completed or not}
14. }
15. num_iter++;
16. ε = minε +

1−minε

e−λ∗numiter

17. Return an embedding based on the Q table
18. }

3. Results

This section presents the metrics, the algorithms used to compare with the AI proposal
of this work, the justification of the scenarios considered and the results from the simula-
tions.

3.1. Algorithms Used to Compare

3 algorithms have been selected as a reference, according to the relevance of their
performance shown in other works:

Detection of subgraph isomorphisms (SID) [14]: This algorithm proposes a solution
regarding graph theory. It is a heuristic algorithm based on finding an isomorphic graph
that represents a VNR that satisfies the demands within the physical network. One of the
features of this proposal is to try to perform node and link embedding in the same scenario,
which helps to take better decisions on link embedding. This algorithm has been chosen
to compare with the algorithm implemented in terms of runtime, as its developers say

Energies 2023, 16, 4439 7 of 12

that mappings are very fast because everything is done in the same scenario. They also
claim that it is very suitable for mapping large virtual networks, perfect for evaluating the
execution time of algorithms.

Basic VN [15]: This algorithm aims to optimize link and node stress independently by
dividing it into two smaller problems to solve it sequentially. Therefore, a virtual network
embedding is proposed considering the stress of nodes and links throughout the virtual
network embedding process. This algorithm has been chosen because its developers ensure
that it has a very good performance in networks with a large number of conditions, they
also ensure a very good performance in networks that are not very connected as is the case
of those that are formed randomly, adding that divides the problem into two smaller ones
to optimize the stress level will be a good comparison in terms of runtime.

BFS node ranking Coordinated mapping [16]: This algorithm uses a backtracking
strategy when the exploration of potential paths fails, to embed the nodes and virtual links
in the same stage. This algorithm has been chosen to compare with the algorithm imple-
mented in terms of virtual network acceptance and long-term revenue, as its developers
ensure a very high performance of the algorithm in these two metrics at the expense of
runtime due to the high level of computing needs.

3.2. Metrics Used for the Evaluation of the Algorithm

To evaluate the algorithm and compare the results obtained, the most relevant metrics
used in the literature to evaluate the performance of the algorithms that solve the VNE
problem have been chosen:

• Cost: Refers to the total physical resources required to map virtual networks. It is
determined by taking into account all the resources of the physical network that have
been used by the VNRs.

• Revenue: Refers to the sum of the virtual resources requested by the virtual networks
that have been successfully mapped.

• Cost/Revenue: This metric will be used to evaluate how the algorithm optimizes
the resources of the physical network to find embeddings. A high value of this
metric means that a lot of resources are needed to embed virtual networks. Optimally,
Cost/Revenue = 1.

• Runtime: This metric measures the time it takes the algorithm to complete the embed-
dings. This is relevant in terms of the mathematical complexity of the problem and
the heuristics that are taken into consideration.

• Acceptance of VNRs: This metric will be used to assess the ability of the algorithm
to host different VNs on the same physical network, taking into account the use of
network resources.

Three scenarios have been defined to evaluate the performance. The main features are
detailed below.

3.3. Simulation Scenario 1

This scenario consists of a physical network with nine nodes forming a grid topology.
This topology is chosen in order to obtain a type of network similar to the mesh networks
that are so much used to improve the performance of a network. What is intended in this
scenario is, from the same physical network, to perform different simulations by increasing
the size of the virtual network to be embedded in order to evaluate the cost/revenue metric
to get a good performance in terms of reducing costs in embedding, as all nodes in the
network they are interconnected with each other.

In this scenario, the physical network nodes and links have 100 CPU resources and
bandwidth, respectively. The VN increases the number of nodes by two in each sub-
scenario, with the VN demands ranging from 0 to 90 for each link and node in terms of
bandwidth and CPU, respectively.

It has already been clarified in previous sections that the cost/revenue metric refers
to the division between the physical network resources required for embedding and the

Energies 2023, 16, 4439 8 of 12

resources demanded by the virtual network. The optimal value to be obtained should be
close to 1, meaning low cost and high revenue.

The graph in Figure 4 shows that all algorithms are decreasing in terms of cost/revenue
as the embedding of the VNR is larger. In terms of stability, it should be noted that the
implemented algorithm is obtaining better values in each embedding, highlighting the first
value obtained when the algorithms were executed to embed a three-node network. This
means that this algorithm takes great care of the way the physical network resources are
used and one could say that one of its strengths is the efficiency with which the network
resources are treated in each embedding, obtaining the most optimal possible solutions.

Energies 2023, 16, x FOR PEER REVIEW 8 of 12

3.3. Simulation Scenario 1
This scenario consists of a physical network with nine nodes forming a grid topology.

This topology is chosen in order to obtain a type of network similar to the mesh networks
that are so much used to improve the performance of a network. What is intended in this
scenario is, from the same physical network, to perform different simulations by increas-
ing the size of the virtual network to be embedded in order to evaluate the cost/revenue
metric to get a good performance in terms of reducing costs in embedding, as all nodes in
the network they are interconnected with each other.

In this scenario, the physical network nodes and links have 100 CPU resources and
bandwidth, respectively. The VN increases the number of nodes by two in each sub-sce-
nario, with the VN demands ranging from 0 to 90 for each link and node in terms of band-
width and CPU, respectively.

It has already been clarified in previous sections that the cost/revenue metric refers
to the division between the physical network resources required for embedding and the
resources demanded by the virtual network. The optimal value to be obtained should be
close to 1, meaning low cost and high revenue.

The graph in Figure 4 shows that all algorithms are decreasing in terms of cost/reve-
nue as the embedding of the VNR is larger. In terms of stability, it should be noted that
the implemented algorithm is obtaining better values in each embedding, highlighting the
first value obtained when the algorithms were executed to embed a three-node network.
This means that this algorithm takes great care of the way the physical network resources
are used and one could say that one of its strengths is the efficiency with which the net-
work resources are treated in each embedding, obtaining the most optimal possible solu-
tions.

Figure 4. Cost/revenue simulation 1.

3.4. Simulation Scenario 2
This scenario consists of a physical network with ten nodes forming a topology in

random shape with the Waxman generator (α = 1, β = 0.5). The main goal is to evaluate the
acceptance metric of virtual networks. So, different sub-scenarios with the same physical
network will be considered, and in each, increasing in steps of one the number of virtual
networks that must be embedded, starting with the first one with one VNR, the second
one with two VNRs, up to the sixth one with six VNRs, in order to see the number of
VNRs accepted in each algorithm and compare it with the metric obtained with Q-learn-
ing.

The generation is made using a Waxman generator. The physical network consists of
a maximum of 250 resources on each CPU node and a maximum of 250 bandwidth re-
sources on each link, which means that each node and physical link respectively will get
a number of resources between 0 and 250 at random. Each VN contains 3 nodes and 3 to
5 links each, a maximum of 70 CPU resources for each node and a maximum of 70

Figure 4. Cost/revenue simulation 1.

3.4. Simulation Scenario 2

This scenario consists of a physical network with ten nodes forming a topology in
random shape with the Waxman generator (α = 1, β = 0.5). The main goal is to evaluate the
acceptance metric of virtual networks. So, different sub-scenarios with the same physical
network will be considered, and in each, increasing in steps of one the number of virtual
networks that must be embedded, starting with the first one with one VNR, the second one
with two VNRs, up to the sixth one with six VNRs, in order to see the number of VNRs
accepted in each algorithm and compare it with the metric obtained with Q-learning.

The generation is made using a Waxman generator. The physical network consists of a
maximum of 250 resources on each CPU node and a maximum of 250 bandwidth resources
on each link, which means that each node and physical link respectively will get a number
of resources between 0 and 250 at random. Each VN contains 3 nodes and 3 to 5 links each,
a maximum of 70 CPU resources for each node and a maximum of 70 bandwidth resources
for each link, obtaining a number of resources between 0 and 70 randomly for each element
of the virtual network.

In this way, the ability of algorithms to embed different networks on the same physical
network where resources are randomly distributed can be evaluated.

The graph of Figure 5 shows how the implemented algorithm, Q-learning, remains
constant at each execution embedding all VNRs; however, the other algorithms do not
show this constancy, as they are not able to embed all VNRs in some of the executions.
Therefore, Q-learning is the winner.

Energies 2023, 16, 4439 9 of 12

Energies 2023, 16, x FOR PEER REVIEW 9 of 12

bandwidth resources for each link, obtaining a number of resources between 0 and 70
randomly for each element of the virtual network.

In this way, the ability of algorithms to embed different networks on the same phys-
ical network where resources are randomly distributed can be evaluated.

The graph of Figure 5 shows how the implemented algorithm, Q-learning, remains
constant at each execution embedding all VNRs; however, the other algorithms do not
show this constancy, as they are not able to embed all VNRs in some of the executions.
Therefore, Q-learning is the winner.

Figure 5. Acceptance ratio of VNRs simulation 2.

3.5. Simulation Scenario 3
This scenario consists of a physical network with 30 nodes forming a random net-

work topology with the Waxman generator (α = 1, β = 0.5). The aim is to make different
simulations from the same physical network, increasing the size of the virtual network to
be embedded, in order to evaluate the runtime metric. As the VNE is an NP-hard problem,
the performance of the algorithm in terms of complexity with medium networks will be
evaluated using the random topologies that both are used in intra-domain networks, be-
coming a challenge for different algorithms to embed random networks in another one of
very large size.

Each sub-scenario will consist of only one VNR and the physical network so that in
each sub-scenario the number of nodes will increase from the first sub-scenario with 3
nodes to the last with 10 nodes.

Physical network resources are randomly distributed on each node and linked with
a value between 0 and a maximum of 300 resources. Those of the VNR are distributed in
each node and linked with a value between 0 and a maximum of 50 resources.

As can be seen in Figure 6, basic VN and SID get very good execution times and a
projection that in large scenarios this will not increase so abruptly. On the other hand, BFS
node ranking coordinated VNE and Q-learning get worse times, making Q-learning
slightly worse than BFS node ranking.

Figure 5. Acceptance ratio of VNRs simulation 2.

3.5. Simulation Scenario 3

This scenario consists of a physical network with 30 nodes forming a random network
topology with the Waxman generator (α = 1, β = 0.5). The aim is to make different
simulations from the same physical network, increasing the size of the virtual network to
be embedded, in order to evaluate the runtime metric. As the VNE is an NP-hard problem,
the performance of the algorithm in terms of complexity with medium networks will
be evaluated using the random topologies that both are used in intra-domain networks,
becoming a challenge for different algorithms to embed random networks in another one
of very large size.

Each sub-scenario will consist of only one VNR and the physical network so that
in each sub-scenario the number of nodes will increase from the first sub-scenario with
3 nodes to the last with 10 nodes.

Physical network resources are randomly distributed on each node and linked with
a value between 0 and a maximum of 300 resources. Those of the VNR are distributed in
each node and linked with a value between 0 and a maximum of 50 resources.

As can be seen in Figure 6, basic VN and SID get very good execution times and a
projection that in large scenarios this will not increase so abruptly. On the other hand,
BFS node ranking coordinated VNE and Q-learning get worse times, making Q-learning
slightly worse than BFS node ranking.

Energies 2023, 16, x FOR PEER REVIEW 10 of 12

Figure 6. Runtime simulation 3.

4. Discussion
Three algorithms have already been used to compare the results with the algorithm

implemented, that three already implemented in ALEVIN, which is unexpected the low
runtime of the SID and basic VN algorithms, although these do not show good stability in
terms of acceptance of virtual networks and have a poor cost/revenue ratio compared to
the other two algorithms.

The BFS node ranking coordinated mapping algorithm obtains execution times
slightly shorter than the implemented algorithm, but longer than those of SID and basic
VN. On the other hand, it gets better results in the other two metrics with respect to SID
and basic VN, but worse results than the AI algorithm, which does not make it stand out
in any way.

The modeling of the VNE problem with an algorithm from AI opens up new roads
for studying the efficiency of traditional algorithms used to solve the problem, as these
present worse metrics in terms of cost/revenue and acceptance of virtual networks.

The good results obtained by Q-learning are not a coincidence. Throughout this work
it has been shown how this algorithm is focused on improving these two metrics, thanks
to the training method implemented with the corresponding rewards obtained with the
virtual link embedding and with the incentives given at the end of each iteration depend-
ing on whether the embedding has been a success or not. One must take into account,
however, the large number of iterations that the algorithm needs to find the most optimal
solution to the problem, but also the best metrics of the comparison in cost/revenue and
in acceptance of virtual networks has been reached. So, in terms of efficiency and perfor-
mance, it is the best strategy.

In the current state proposed, Q-learning is not designed to solve problems in very
large environments, as it would result in a table with thousands of states and actions, but
it is a promising strategy. Finding a way to improve the algorithm in terms of runtime is
presented as a difficult but exciting challenge. In order to get better performance in terms
of runtime, two ways could be explored:
• Try a new AI algorithm that solves the VNE problem, which means that all the pro-

gress made in terms of cost/revenue and acceptance of VNRs may change.
• Improve the algorithm with new tools to be able to obtain better results in terms of

execution time, with good results in the other metrics.
The recommendation is to explore these AI tools that are presented as an update to

the implemented algorithm:
Deep Q-learning [17] is a great opportunity to improve the implemented algorithm.

This algorithm is an extension of the classical Q-learning algorithm, it uses deep neural
networks to approximate Q values, where states form the input and the Q value of all
possible actions is generated as the output. Figure 7 maps a neural network where the

Figure 6. Runtime simulation 3.

Energies 2023, 16, 4439 10 of 12

4. Discussion

Three algorithms have already been used to compare the results with the algorithm
implemented, that three already implemented in ALEVIN, which is unexpected the low
runtime of the SID and basic VN algorithms, although these do not show good stability in
terms of acceptance of virtual networks and have a poor cost/revenue ratio compared to
the other two algorithms.

The BFS node ranking coordinated mapping algorithm obtains execution times slightly
shorter than the implemented algorithm, but longer than those of SID and basic VN. On
the other hand, it gets better results in the other two metrics with respect to SID and basic
VN, but worse results than the AI algorithm, which does not make it stand out in any way.

The modeling of the VNE problem with an algorithm from AI opens up new roads for
studying the efficiency of traditional algorithms used to solve the problem, as these present
worse metrics in terms of cost/revenue and acceptance of virtual networks.

The good results obtained by Q-learning are not a coincidence. Throughout this work
it has been shown how this algorithm is focused on improving these two metrics, thanks
to the training method implemented with the corresponding rewards obtained with the
virtual link embedding and with the incentives given at the end of each iteration depending
on whether the embedding has been a success or not. One must take into account, however,
the large number of iterations that the algorithm needs to find the most optimal solution to
the problem, but also the best metrics of the comparison in cost/revenue and in acceptance
of virtual networks has been reached. So, in terms of efficiency and performance, it is the
best strategy.

In the current state proposed, Q-learning is not designed to solve problems in very
large environments, as it would result in a table with thousands of states and actions, but
it is a promising strategy. Finding a way to improve the algorithm in terms of runtime is
presented as a difficult but exciting challenge. In order to get better performance in terms
of runtime, two ways could be explored:

• Try a new AI algorithm that solves the VNE problem, which means that all the progress
made in terms of cost/revenue and acceptance of VNRs may change.

• Improve the algorithm with new tools to be able to obtain better results in terms of
execution time, with good results in the other metrics.

The recommendation is to explore these AI tools that are presented as an update to
the implemented algorithm:

Deep Q-learning [17] is a great opportunity to improve the implemented algorithm.
This algorithm is an extension of the classical Q-learning algorithm, it uses deep neural
networks to approximate Q values, where states form the input and the Q value of all
possible actions is generated as the output. Figure 7 maps a neural network where the
input is the states with value [1–4] and the output is represented by the actions with their
corresponding Q value. Using neural networks to the detriment of the Q tables to store
the Q value of each state-action pair makes the computation time required to execute the
algorithm shorter.

Energies 2023, 16, x FOR PEER REVIEW 11 of 12

input is the states with value [1–4] and the output is represented by the actions with their
corresponding Q value. Using neural networks to the detriment of the Q tables to store
the Q value of each state-action pair makes the computation time required to execute the
algorithm shorter.

Including this extension in the classic Q-learning algorithm would improve perfor-
mance in terms of runtime and it is expected to maintain good results in terms of cost/rev-
enue and acceptance of VNRs, as the body of the algorithm would remain the same be-
cause it would only change the way the information is stored.

Figure 7. Mapping of a neural network.

5. Conclusions
Machine Learning requirements for energy-efficient Virtual Network Embedding

have been studied and defined. The primary focus of this paper has been to emphasize
the compelling advantages offered by AI when addressing VNE problems. This research
aims to introduce novel insights and advancements by defining the essential metrics nec-
essary for evaluation, demonstrating the potential benefits through an innovative AI strat-
egy based on Q-learning, and extensively exploring the specific objectives that can be ef-
fectively tackled using AI algorithms.

Based on the initial findings presented in this paper, the proposed strategy emerges
as an exceptionally promising approach to significantly enhance the effectiveness of em-
bedding in small and medium virtual networks. In terms of both VNR acceptance rates
and cost/revenue considerations, this strategy showcases notable advantages over existing
methods documented in the literature. These early results strongly suggest that the pro-
posed approach holds substantial potential for achieving superior performance and
achieving notable advancements in the field of virtual network embedding.

Hence, this work serves as a pivotal foundation for the development of the next gen-
eration of coordinated or uncoordinated VNE strategies, with a specific focus on optimiz-
ing energy efficiency. By laying the groundwork and presenting groundbreaking insights,
this research paves the way for innovative approaches that will significantly advance the
field and foster substantial improvements in energy-efficient VNE methodologies.

As this work is an initial exploration into harnessing the promising advantages of AI
in tackling Virtual Network Embedding problems, it is imperative to conduct comprehen-
sive tests encompassing diverse strategies and parameters. This approach is vital in order
to evaluate the performance and effectiveness of the proposed methodology, paving the
way for further advancements.

Figure 7. Mapping of a neural network.

Energies 2023, 16, 4439 11 of 12

Including this extension in the classic Q-learning algorithm would improve per-
formance in terms of runtime and it is expected to maintain good results in terms of
cost/revenue and acceptance of VNRs, as the body of the algorithm would remain the
same because it would only change the way the information is stored.

5. Conclusions

Machine Learning requirements for energy-efficient Virtual Network Embedding have
been studied and defined. The primary focus of this paper has been to emphasize the
compelling advantages offered by AI when addressing VNE problems. This research aims
to introduce novel insights and advancements by defining the essential metrics necessary
for evaluation, demonstrating the potential benefits through an innovative AI strategy
based on Q-learning, and extensively exploring the specific objectives that can be effectively
tackled using AI algorithms.

Based on the initial findings presented in this paper, the proposed strategy emerges
as an exceptionally promising approach to significantly enhance the effectiveness of em-
bedding in small and medium virtual networks. In terms of both VNR acceptance rates
and cost/revenue considerations, this strategy showcases notable advantages over exist-
ing methods documented in the literature. These early results strongly suggest that the
proposed approach holds substantial potential for achieving superior performance and
achieving notable advancements in the field of virtual network embedding.

Hence, this work serves as a pivotal foundation for the development of the next gener-
ation of coordinated or uncoordinated VNE strategies, with a specific focus on optimizing
energy efficiency. By laying the groundwork and presenting groundbreaking insights, this
research paves the way for innovative approaches that will significantly advance the field
and foster substantial improvements in energy-efficient VNE methodologies.

As this work is an initial exploration into harnessing the promising advantages of AI in
tackling Virtual Network Embedding problems, it is imperative to conduct comprehensive
tests encompassing diverse strategies and parameters. This approach is vital in order to
evaluate the performance and effectiveness of the proposed methodology, paving the way
for further advancements.

Author Contributions: Conceptualization, X.H.; Software, D.E.-P.; Formal analysis, X.H.; Investiga-
tion, X.H.; Writing—original draft, X.H. and D.E.-P. All authors have read and agreed to the published
version of the manuscript.

Funding: This work has been supported by the Agencia Estatal de Investigación of Ministerio de Cien-
cia e Innovación of Spain under project PID2019-108713RB-C51 MCIN/AEI/10.13039/501100011033.

Data Availability Statement: Data sharing not applicable. No new data were created or analyzed in
this study. Data sharing is not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Fischer, A.; Botero, J.F.; Beck, M.T.; De Meer, H.; Hesselbach, X. Virtual Network Embedding: A Survey. IEEE Commun. Surv.

Tutor. 2013, 15, 1888–1906. [CrossRef]
2. Cao, H.; Wu, S.; Hu, Y.; Liu, Y.; Yang, L. A survey of embedding algorithm for virtual network embedding. China Commun. 2019,

16, 1–33. [CrossRef]
3. Fan, W.; Xiao, F.; Lv, M.; Han, L.; Wang, J.; He, X. Node Essentiality Assessment and Distributed Collaborative Virtual Network

Embedding in Datacenters. IEEE Trans. Parallel Distrib. Syst. 2023, 34, 1265–1280. [CrossRef]
4. Andersen, D.G. Theorical Approaches to Node Assignment. 2002. Available online: http://citeseerx.ist.psu.edu/viewdoc/

summary?doi=10.1.1.119.1332 (accessed on 29 September 2021).
5. NP (Complexitat)—Viquipèdia, L’enciclopèdia Lliure. Available online: https://ca.wikipedia.org/wiki/NP_(Complexitat)

(accessed on 29 September 2021).
6. Hesselbach, X.; Amazonas, J.R.; Villanueva, S.; Botero, J.F. Coordinated node and link mapping VNE using a new paths algebra

strategy. J. Netw. Comput. Appl. 2016, 69, 14–26. [CrossRef]
7. Sermakani, A.M.; Paulraj, D. Effective Data Storage and Dynamic Data Auditing Scheme for Providing Distributed Services in

Federated Cloud. J. Circuits Syst. Comput. 2020, 29, 2050259. [CrossRef]

https://doi.org/10.1109/SURV.2013.013013.00155
https://doi.org/10.23919/JCC.2019.12.001
https://doi.org/10.1109/TPDS.2023.3242952
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.119.1332
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.119.1332
https://ca.wikipedia.org/wiki/NP_(Complexitat)
https://doi.org/10.1016/j.jnca.2016.02.025
https://doi.org/10.1142/S021812662050259X

Energies 2023, 16, 4439 12 of 12

8. Andriy Burkov, B. The Hundred-Page Machine Learning. 2019. Available online: http://themlbook.com/ (accessed on 23
September 2021).

9. Qiang, W.; Zhongli, Z. Reinforcement Learning Model, Algorithms and Its Application. In Proceedings of the IEEE 2011
International Conference on Mechatronic Science, Electric Engineering and Computer (MEC), Jilin, China, 19–22 August 2011;
pp. 1143–1146. [CrossRef]

10. Fischer, A.; Botero, J.F.; Duelli, M.; Schlosser, D.; Hesselbach, X.; De Meer, H. ALEVIN—A Framework to Develop, Compare, and
Analyze Virtual Network Embedding Algorithms. Electron. Commun. Eur. Assoc. Softw. Sci. Technol. 2011, 37. [CrossRef]

11. Duelli, M.; Schlosser, D.; Botero, J.F.; Hesselbach, X.; Fischer, A.; de Meer, H. VNREAL: Virtual Network Resource Embedding
Algorithms in the Framework ALEVIN. In Proceedings of the 7th EURO-NGI Conference on Next Generation Internet Networks,
Kaiserslautern, Germany, 27–29 June 2011. [CrossRef]

12. Duelli, M.; Fischer, A.; Botero, J.F.; Diaz, L.; Till, M.; Schlosser, D.; Singeorzan, V.; Hesselbach, X. Alevin2/Wiki/Home. Available
online: https://sourceforge.net/p/alevin/wiki/home/ (accessed on 26 September 2021).

13. JUNG—Java Universal Network/Graph Framework. Available online: http://jung.sourceforge.net/ (accessed on 27 September 2021).
14. Messmer, B.T.; Bunkem, H. Efficient subgraph isomorphism detection: A decomposition approach. IEEE Trans. Knowl. Data Eng.

2000, 12, 307–323. [CrossRef] [PubMed]
15. Zhu, Y.; Ammar, M. Algorithms for Assigning Substrate Network Resources to Virtual Network Components. In Proceedings of

the 25TH IEEE International Conference on Computer Communications, Barcelona, Spain, 23–29 April 2006. [CrossRef]
16. Cheng, X.; Su, S.; Zhang, Z.; Wang, H.; Yang, F.; Luo, Y.; Wang, J. Virtual network embedding through topology-aware node

ranking. ACM SIGCOMM Comput. Commun. Rev. 2011, 41, 38–47. [CrossRef]
17. Fan, J.; Wang, Z.; Xie, Y.; Yang, Z. A Theoretical Analysis of Deep Q-Learning. Available online: http://arxiv.org/abs/1901.00137

(accessed on 10 January 2019).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://themlbook.com/
https://doi.org/10.1109/MEC.2011.6025669
https://doi.org/10.14279/tuj.eceasst.37.495
https://doi.org/10.1109/NGI.2011.5985874
https://sourceforge.net/p/alevin/wiki/home/
http://jung.sourceforge.net/
https://doi.org/10.1109/69.842269
https://www.ncbi.nlm.nih.gov/pubmed/35874684
https://doi.org/10.1109/INFOCOM.2006.322
https://doi.org/10.1145/1971162.1971168
http://arxiv.org/abs/1901.00137

	Introduction
	Materials and Methods
	Development Tool
	Construction of the Algorithm

	Results
	Algorithms Used to Compare
	Metrics Used for the Evaluation of the Algorithm
	Simulation Scenario 1
	Simulation Scenario 2
	Simulation Scenario 3

	Discussion
	Conclusions
	References

