X ECCOMAS Thematic Conference on Smart Structures and Materials
SMART 2023
D.A. Saravanos, A. Benjeddou, N. Chrysochoidis and T. Theodosiou (Eds)

ONLINE STRUCTURAL DAMAGE CLASSIFICATION
METHODOLOGY FOR OFFSHORE WIND TURBINE FOUNDATIONS
USING DATA STREAM ANALYSIS

JERSSON X. LEON-MEDINA'*, NURIA PARES? AND FRANCESC POZO"?

Control, Data and Artificial Intelligence (CoDAlab), Department of Mathematics, Escola d’Enginyeria
de Barcelona Est (EEBE), Campus Diagonal-Besos (CDB), Universitat Politecnica de Catalunya
(UPC), Eduard Maristany 16, 08019 Barcelona, Spain
e-mail: jersson.xavier.leon @upc.edu

2 Laboratori de Calcul Numeric (LaCaN), Department of Mathematics, Escola d’Enginyeria de
Barcelona Est (EEBE), Campus Diagonal-Besos (CDB), Universitat Politecnica de Catalunya (UPC),
Eduard Maristany 16, 08019 Barcelona, Spain
e-mail: nuria.pares @upc.edu

3Institute of Mathematics (IMTech), Universitat Politécnica de Catalunya (UPC), Pau Gargallo 14,
08028 Barcelona, Spain
e-mail: francesc.pozo@upc.edu

Abstract. Structural health monitoring (SHM) of wind turbines is crucial to improve mainte-
nance and extend their lifespan. This study develops an online data analysis methodology using
data stream analysis to classify damage in the links of an offshore wind turbine foundation. The
methodology is validated using a laboratory-scaled jacket-type wind turbine foundation struc-
ture. 2460 measurements of the healthy structure were acquired, and a Smm crack was applied
to four different links to determine the four unhealthy classes. 820 measurements were taken
for each of the unhealthy structures, resulting in a dataset with 5740 instances. As this is an
imbalanced multiclass classification problem, a random sampler approach was used to treat the
data. The only data obtained was from eight triaxial accelerometers distributed throughout the
structure. Three different tree-based stream data classifiers were compared: Hoeffding Tree
classifier, Extremely Fast Decision Tree classifier, and Hoeffding Adaptive Tree classifier. Each
classification model underwent a tuning parameter procedure, and high values of the receiving
operating characteristic area under the curve (ROC AUC) metric were achieved as a result. It is
important to note that stream learning differs from batch learning.

Key words: stream learning; online data analysis; structural health monitoring; wind turbine
foundation; machine learning; Hoeffding Tree classifier; data stream analysis; vibration analy-
sis; condition monitoring
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1 INTRODUCTION

Wind energy is the leading source of renewable energy worldwide [1]. As of the end of 2021,
the cumulative global installed wind capacity was approximately 837 GW [2]. To reduce the
levelized cost of energy (LCOE) in the wind energy industry, various aspects must be evaluated,
including operation and maintenance (O&M) costs. Advances in structural health monitoring
(SHM) of wind turbines have improved their predictive maintenance. However, environmental
and operational conditions in offshore wind turbines can create aggressive environments [3]].
These conditions are related to the effects of wind and sea waves on structures. Recently, several
techniques have been developed to carry out SHM of jacket-type wind turbine foundations,
using only the vibration response of the structure with data acquired by accelerometers. These
data have been used to train and test various machine and deep learning methodologies for
performing structural damage classification in jacket-type wind turbine foundations.

Various machine and deep learning approaches have been used to process the data acquired
from accelerometers and perform structural damage classification in jacket-type wind turbines,
including Support Vector Machines [4]], Extreme Gradient Boosting [S]], Convolutional Neural
Networks [6], Siamese Neural Networks [7]], and Autoencoder Neural Networks [&]]. Previ-
ous studies have typically used a batch setting approach to process the data. However, when
continuous data streams are involved and models cannot be updated when new data arrives,
stream data processing approaches become necessary [9]. This study presents a structural dam-
age classification methodology based on stream data processing. Three different tree-based
stream classifiers were compared to successfully solve an unbalanced classification problem in
a jacket-type wind turbine foundation.

The remainder of this paper is organized as follows. Section 2 presents the materials and
methods, describing the experimental setup and stream data processing algorithms. Section 3
presents the results obtained after performing a dimensionality reduction stage using the Prin-
cipal Component Analysis (PCA) algorithm and the classification results using the Receiving
Operating Characteristic Area Under the Curve (ROC AUC) metric. Finally, Section 4 describes
the main conclusions.

2 MATERIALS AND METHODS
2.1 Experimental Setup

The data used in this study was obtained from a laboratory-scaled wind turbine. The wind
turbine is 2.7 m high and consists of three parts: the jacket, the tower, and the nacelle. The
structure is illustrated in Figure To simulate the effects of marine waves and wind that
offshore structures are subjected to, a white noise signal was applied to a shaker. This signal was
then amplified in a function generator by factors of 0.5, 1, 2, and 3. Subsequently, the structure
was excited, and its vibration response was measured using eight triaxial accelerometers located
as shown in Figure

Each experiment had a duration of 9.789 seconds, and a sampling frequency of 275 Hz was
used. Thus, each measurement by each of the 24 accelerometers consisted of 2417 time instants.
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Figure 1: Placement of triaxial accelerometers on the jacket-type wind turbine foundation for vibration data ac-
quisition.

After a data unfolding procedure, each signal was ordered one after the other such that the total
size of a measurement was 2417 x 24 = 58008 data points per experiment. The structural
damage introduced in the structure consisted of a Smm crack in four different links, one at a
time, as illustrated in Figure 2] There were five structural classes in total: the healthy structure
and four different unhealthy structures. The total number of acquired samples of the healthy
structure was 2460, while 820 samples were acquired for each damaged structure. Therefore, a
total of 5740 samples were part of the final dataset obtained.

2.2 Hoeffding tree classifier

The Hoeffding tree [10, [11] is trained incrementally, using each sample in the stream only
once. This means that the tree is the only information stored in memory [9]. The tree is updated
by adding more leaves with its capability to grow. This tree can make predictions at any time;
however, its performance improves incrementally as more data from the stream is processed.
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Figure 2: Visual representation of a damaged link with a 5 mm crack in the jacket-type wind turbine foundation.

2.3 Adaptive Hoeffding tree classifier

The Hoeffding Adaptive Tree method [12} [13] learns from streams that change their distribu-
tion over time. This method uses an adaptive sliding window size, based on defining instances of
estimators of frequency statistics at every node [14]. The Adaptive Sliding Window (ADWIN)
[15] is used as an estimator and drift detector. The Hoeffding Adaptive Tree variant measures
drift in the branches in such a way that when accuracy decreases, the branches are replaced. In
addition, bootstrap sampling is performed to improve its performance.

2.4 Extremely Hoeffding tree classifier

The Extremely Fast Decision Tree classifier (EFDT) [[16} [17] has a variation in the way the
algorithm performs splits. It does this by re-evaluating the performed split and determining if
there is a better possible split, which is then used to replace the performed split. One impor-
tant aspect of EFDT is that it maintains a steady tree size. The Extremely Fast Decision Tree
classifier is also referred to as the Hoeffding AnyTime Tree (HATT) classifier.

3 RESULTS

The developed structural damage classification methodology was implemented in Python,
using the scikit-learn [18] machine learning library and the River [19] dynamic data streams
and continual learning library.

3.1 PCA dimensionality reduction

The Principal Component Analysis (PCA) method [20]] was used to handle the high dimen-
sionality of the two-dimensional unfolded matrix, which had 58008 columns. The new rep-
resentation of the data is explained by the principal components. Eight principal components
were used as input to the Hoeffding tree machine learning classifiers. These eight principal
components represent a cumulative explained variance of 38%. Therefore, the reduced feature
matrix input had a size of 5740 x 8. Figure |3[ shows a bi-dimensional scatter plot of the sec-
ond vs. third and first vs. second principal components, illustrating the formation of circular
manifolds from the data.
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Figure 3: Scatter plot of the data in a reduced feature space obtained by the Principal Component Analysis (PCA)
method. Left: second vs. third principal component. Right: first vs. second principal component.

3.2 Hoeffding tree stream classification

Different approaches were used to treat the imbalanced dataset used in this study. First, a
baseline was constructed without modifying the samples. Second, a sampling method with a
desired sample size and the random sampler method was defined using under-sampling and
over-sampling according to a restriction imposed as a parameter. The size of the training data
was also included as a parameter. Finally, third, a hybrid approach combining random under-
sampling and importance weighting was used. For each of the three Hoeffding tree methods, the
receiving operating characteristic area under the curve (ROC AUC) metric was calculated. The
ROC AUC results are shown in Table [I} The results in the baseline setting show that the best
method was the Hoeffding Adaptive Tree, reaching a ROC AUC value of 90.09%. Additionally,
when the hybrid approach was used, an improvement in the ROC AUC value of the Extremely
Fast Decision Hoeffding Tree was evident, reaching 92.48%.

Table 1: ROC AUC percentages obtained by the three different classifiers under three different settings: Baseline,
Sampling with a Desired Sample Size, and Hybrid Approach.

Hoeffding Extremely Fast Hoeffding
tree Decision Hoeffding Tree Adaptive Tree
Baseline 72.73% 83.80% 90.09%
Sampling with a desired sample size ~ 68.55% 64.23% 73.27%
Hybrid approach 49.15% 92.48% 85.09%

4 CONCLUSIONS

This study presented a structural damage classification methodology in a stream fashion us-
ing a Hoeffding tree. The methodology is composed of several steps, including data unfolding,
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data scaling, dimensionality reduction using the PCA method, stream learning classification us-
ing a Hoeffding tree, and the evaluation of model performance using a progressive validation
score based on the calculation of the ROC AUC metric. The dataset used in this study was im-
balanced and was treated using a random sampler technique. The hybrid approach combining
random under-sampling with importance weighting yielded the best ROC AUC results. Fur-
thermore, the Extremely Fast Decision Hoeffding Tree exhibited the best behavior, reaching a
ROC AUC value of 92.48%. Further studies will focus on exploring different sampling tech-
niques to treat the imbalance, as well as investigating the influence of the number of principal
components as an input parameter in the classification process.
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