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Abstract 
This project develops a cat laser toy that shines a laser for the cat to chase, while ensuring that 
the laser is not shone on a human or in user defined regions where the cat does not belong. A 
night vision camera with infrared lights is used to allow for detection in both day and night 
lighting conditions, and cats and humans are detected using a custom YOLO machine learning 
model. Aiming of the camera and laser is accomplished with a pan-tilt robot controlled by a 
Raspberry Pi. The Raspberry Pi selected for the project is slower at processing the images than 
desired, but fast enough to allow for a functional toy.  

The code for this project can be found at https://gitlab.com/dean.sieck/gimpy_squirter  
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Introduction 
Cats are prone to getting very lazy as they age, they lose interest in playing with things that 
aren't moving. In addition to causing obesity and health problems, this also causes boredom, 
which can lead to many behavior problems. For most cats lasers are one of the most enticing 
play toys and many automated laser pointers already exist. These laser pointers are usually 
very simple and just move the laser in a set pattern. They do not take into consideration the 
actual location of the cat or anything else that could be in the room. Getting attacked by a cat as 
it chases a laser across your leg is not fun, and neither is having the cat break something 
valuable as it plays. Particularly lazy cats will also tend to lose interest in toys if they always 
follow the same pattern or are always in the same location.  

A more sophisticated laser toy would solve these problems, and that is the aim of this project. 
This project develops a laser toy that will use a camera to locate the cat in a room and shine the 
laser near the cat, while also avoiding shining the laser on humans or on top of tables or any 
other surface that the user defined. It will also be capable of playing with the cat anywhere in the 
room, but will attempt to pull the cat's attention back into an ideal playing region.  

Background 
There are many other automatic cat laser toys currently on the market, most of these are very 
simple and simply shine the laser in a pattern at the angle selected by the user, some have 
options to change the pattern, or control the laser manually. [1] These toys range in price from 
approximately 20-30€. Many pet surveillance systems exist, however only one was found that 
includes a laser pointer for playing with your cat: the Pawbo+. This device primarily functions as 
a petcam, however also has a laser that the user can play with manually or set in automatic 
mode has has a retail price of $200. [2] The automatic mode for the laser functions like one of 
the simple laser controllers that are regularly available, and the camera does not recognize your 
pet or attempt to automatically interact with them. A similar product to the one created by the 
product does not exist commercially.  

Many people enjoy making projects for their pets, and there is a plethora of raspberry pi based 
laser pointers for cats. Again, most of these consist of only a pan-tilt motor to point the laser 
where indicated by the user or point the laser in a pseudo-random pattern. [3] [4] [5] [6] A few of 
the more interesting ones also include a camera.  

The Raspberry Pi wifi controlled cat toy created by DiCola, which uses a camera to allow the 
user to click on the image where they would like the laser to point. [7] DiCola used a network 
streaming video camera and struggled to find one that allowed interfacing with the Raspberry Pi, 
and allowed for receiving the video stream in real time. In his project he also mentions that the 
camera and the laser must be positioned close to each other and at a similar angle to improve 
the accuracy of the target click location to the actual location of the laser. His work did not 
include cat recognition from the video stream, however it points out two very important problems 
to solve. First, not all cameras can interface successfully with the raspberry pi, so it is important 
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to ensure that the correct camera is selected. Secondly, the camera and the laser must be as 
close as possible to each other in order for the laser positioning to be accurate. Calibrating the 
camera-laser interface is necessary in his design, where the user must draw a trapezoid of the 
playing region and then move the laser to each of the corners of the trapezoid. From this 
information a transformation is created between a quadrilateral on the screen (the red target 
area) to a quadrilateral in laser servo coordinate space (the X and Y servo values together 
define a 2D coordinate system). Plugging these quadrilaterals into a perspective projection 
equation and solving for the coefficients allows the server to transform clicks inside the target 
area to servo positions that aim the laser. [7]  When this step is performed the laser moves to 
almost exactly the same position on the screen as the click. This calibration procedure produces 
very impressive results, but requires that the playing region be on a single planar surface in 
order for the transformation to be linear.  

Another impressive project called the PiCat, created by two students at Cornell, integrates a 
camera into its design that can be used to automatically activate the laser when a cat is 
detected. [8] This project is designed to be used as a multifunctional system that also functions 
as a webcam and helps the user remember important dates for their pets. The laser part of the 
PiCat has automatic and manual modes. In the automatic mode the the laser is turned on if the 
camera detects a cat, and then changes the position of the laser randomly according to the 
position of the cat detected. In order to prevent the laser from hitting the cat's eyes, the laser will 
only appear randomly near the edge of the cat's bounding box. [8] Cat detection is performed 
using the yolov3-tiny model, and was not trained using a custom dataset, resulting in the cat 
periodically being labeled as a dog or a teddy bear. They were able to process images with an 
average of 0.6 seconds per image using the yolo model.  

Other projects involving cat identification using a Raspberry Pi also exist for many other 
purposes, and the information learned from them is valuable in performing object detection and 
location in real time on a raspberry pi. A deep learning cat prey detector was made by students 
at the ETH Zurich to detect if a cat had prey in its mouth or not to decide if the cat door should 
be opened for the cat. Their project uses a CNN cascade architecture to detect cats and 
determine if they have prey in their mouth.  The initial cat-detection part of the cascade is from a 
pre-trained MobileNetV2 model, and can detect a cat in the image in about 0.5 seconds. [9] 
Another interesting project about monitoring the behaviors of cats used a YOLOv3-tiney model 
on a Raspberry Pi to detect 6 different cat behaviors with 98% accuracy. [10] These projects do 
not have the same objectives as the project for this paper, however they are useful in 
understanding the capabilities of the machine learning models and potential improvements that 
could be made to this project.  

Objectives 
The laser pointer developed in this project will need to use a camera to detect the location of 
cats and people in the room. The best way of detecting the cat would be with a machine 
learning program. The program would need to both detect and locate the cat in the image. If the 
camera is stationary, locating the cat could be done by background subtraction of the image to 
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find any moving objects, and then that region of the image would be sent to a simple image 
classifier to check if it is a cat. However, the YOLO object detection algorithm is very fast at 
detecting and locating objects in an image [11] and the additional processing time saved by only 
performing image classification in a small section of the image would likely be lost by needing to 
process the image several times for the background subtraction and segmentation that would 
need to be used to locate the regions of interest. Therefore, YOLO will be used to detect cats 
and people in the images. YOLOV5-nano was selected because it has the fastest processing 
time. [12] 

It must also be able to determine if the cat or the laser is an area that the cat is not allowed to 
be. This camera could either be located on the same platform as the laser, or the camera could 
be stationary and only the laser is moving. If the camera is stationary, defining the regions 
where the cat is not allowed to enter (referred to as no-go zones) is simple, because the user 
could just draw a region on the image where the cat should not be. This method gets more 
complicated, however, when attempting to aim the laser near the cat. As can be seen in figure 
1, the laser would require different angles for a cat that appears in the same region of the image 
depending on the distance of the cat from the camera.  

 
Figure 1: Aiming laser based on camera view.  

 

Since the relative size of the cat in the image depends not only on its distance, but also on the 
position of the cat this results in a very difficult problem to solve. In my house it cannot be 
solved in the same way that it was solved by DiCola [7] because there is not much available 
floor space, which would make the playing region very small. On the other hand, if the camera 
and the laser are mounted together the laser can be aimed simply by centering it in the view of 
the camera. Moving the camera, however, means that the pixel locations corresponding to the 
no-go zones will move. However, since these zones will not be changing during run-time it is 
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possible to save the world coordinates of the zone and then calculate where the zone will 
appear in the image based on the position of the camera relative to the world frame. Therefore 
the design should have the camera and laser mounted together on a pan-tilt platform.  

Ideally the light would be shining down on top of the cat instead of at a more horizontal angle, 
this requires that the unit be mounted near the ceiling, which requires a small portable platform. 
A Rasberry Pi is perfect for this task because it is a small portable computer that is already set 
up to integrate with a camera and is capable of processing simple machine learning programs. 
Additionally, cats are most playful at night, so it would be useful to have a night vision camera.  

Methods 

Materials 

This project requires a Raspberry Pi, night vision camera, laser, and a pan-tilt robot. The 
Raspberry Pi used was a Rasberry pi 4 with 2GB ram that was not purchased specifically for 
this project, however a new one could be purchased for approximately 60€.  The night vision 
camera was purchased was a Kuman OV5647 with infrared lights for 30€. Originally a pre-
fabricated pan-tilt robot hat was purchased from waveshare for 30€, but instead a custom 
design was 3D printed and used, making this cost potentially as low as the cost of two servo 
motors: approximately 10€. A laser was purchased from a local electronics store for 5€. The 
itemized work cost is shown table 1.  

Table 1: Itemized costs 

Item Cost (€) Comments 

Raspberry Pi 60 pre-purchased 

Night Vision Camera 30  

Pan-tilt robot 30 As low as 10€ 

laser 5  

 

The final material cost is 125€ if everything is purchased and about 45€ if it is not necessary to 
purchase a raspberry pi and a 3D printer is available. This price could also be dramatically 
decreased if items are purchased in bulk.  
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User Instructions 

Initial Setup 

The Raspberry Pi must be set up in a location where it will not be moved. The location of the Pi 
could be anywhere in the room, however an ideal position would be mounted high on a wall or 
on the ceiling where the center of the desired playing zone is visible to the camera when the 
pan-tilt joints are both positioned at 90º. When deciding where to place the Pi it is important to 
consider objects that could obstruct the view of the camera and the angle of the camera relative 
to the desired play zone and the regions that the cat is not allowed to enter (no-go zones). 

After the Raspberry pi is mounted in its final position the setup.py program will be run, which 
guides the user through a one one time setup process, consisting of calibrating the camera, 
defining the no-go zones and setting the neutral position.  

Calibrating the camera needs to be done every time the focus of the camera is adjusted, and is 
performed by taking many images of a chessboard from different angles and using these 
images in the camera calibration script. This script saves the resulting camera intrinsic matrix 
and distortion to a file, so that this step only needs to be performed if the focus is adjusted, and 
can be skipped if the focus has not changed. This calculation runs extremely slowly on the 
Raspberry pi, so a separate function is available to calibrate the camera on a separate 
computer using images that were saved and transferred from the Rasberry Pi.  

After calibrating the camera the user can define the no-go zones. To do this the user first moves 
the camera around by left clicking on the image until the desired no-go zone is visible, then the 
user middle clicks on the image and can start drawing the zone. The zone must be a 
rectangular surface and is drawn by clicking on the four corners of the zone. It is important to 
ensure that the zone is drawn as accurately as possible.  Once the no-go zone is drawn the 
user is asked if they would like to save the zone. If the zone is saved the user will be prompted 
for the dimensions of the zone in centimeters. The user can create as many zones as desired.  

After the zones are created the user will be asked if they would like to set the neutral position. 
This is done by again left clicking on the image to move the camera. Once the camera is 
centered on the region that the user would like the center of the playing region to be, the user 
can middle click on the image to save the current pan-tilt location as the neutral position.  

The setup of the program only needs to be done when the location of the Raspberry Pi has 
been changed. All of the relevant variables will be saved as files in the Pi, and will be loaded 
automatically when the main program is run. This makes the setup process robust to power 
failures.  

Main program 

The main program does not require user input, but some variables can be changed to change 
settings related to displaying the image. Displaying the image significantly slows down the 
program and is not recommended.  
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When the main program is run the variables saved during the setup process and the YOLO 
model are loaded, Then the program is run in a continuous loop. First an image is taken by the 
camera, then the yolo model is used to detect cats and people in the image. If multiple cats are 
detected the one with the highest confidence will be selected. If a cat is not detected for more 
than 5 seconds, then the robot will go back to the neutral position and turn off the laser. If a cat 
is detected the distance from the cat to the nearest no-go zone is calculated, and if the cat is 
inside the zone then the robot will go back to the neutral position, check for humans, and then 
perform a short wiggling movement with the laser on in an attempt to lure the cat away from the 
no-go zone. Example images of the cat in a no-go zone are shown in figure 2. The no-go zone 
is outlined with a thick cyan box, which is not completely visible in the images in figure 2.  

 
Figure 2: Example scenarios where the cat is detected inside of a no-go zone.   

 

 Otherwise the robot will aim the camera at one of the corners of the bounding box of the cat. 
The corner selected changes every few seconds and is randomly selected on a probabilistic 
basis that encourages the cat to stay in the center of the playing region as defined by the 
neutral position.  

After the cat is detected, and determined not to be in a no-go zone, the program will check if the 
cat is near a human by checking if the bounding box of the cat overlaps with the bounding box 
of a human. It will also check if the center of the image (where the laser is pointing) is inside the 
bounding box of a human or a no-go zone. If none of these conditions are true then it is 
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determined to be safe to shine the laser and the laser is turned on, otherwise the laser is turned 
off. Examples of the potential scenarios are shown in figures 3 and 4 

 
Figure 3: Example scenarios where the laser is turned on. Top: human and cat detected, but bounding 

boxes not overlapping. Bottom: only cat detected.  
 

 
Figure 4: Example scenarios where the laser is turned off.  
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In this way it is ensured that the cat will not be encouraged to attack a human or object that 
should not be attacked, and is encouraged to get off tables or other regions where the cat is not 
allowed to be.  

Machine Learning 

Machine learning is used to process the images taken from the camera and determine the 
location of any cats or people that are present in the image. This presents some inherent 
challenges when working with a Raspberry pi due to its limited processing capabilities. A 
Raspberry Pi with more than 2GB ram would be beneficial, however it is capable of running the 
program with only 2GB.  

YOLO 

The YOLO model [12] was used because it is considered state of the art, and is commonly used 
in many applications where object recognition is required. YOLO stands for You Only Look 
Once, and uses a single neural network to predict bounding boxes and class probabilities 
directly from the image in one evaluation. YOLO works by performing regressive detection. It 
divides the image into an SxS grid, the grid where the center of an object falls is responsible for 
detecting the object. Each grid cell predicts bounding boxes and confidence scores for the 
boxes reflecting how confident the model is that the box contains the object. Each bounding box 
predicts the coordinates of the center of the box relative to the grid cell, the width and height of 
the box relative to the whole image, and the confidence prediction. [11] These predictions are 
then refined to obtain the final detections. This model is demonstrated in figure 5.  

 
Figure 5: YOLO Model [11] 
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The network of the YOLO architecture is a convolutional neural network. The initial 
convolutional layers extract features from the image and the final fully connected layers predict 
classification outputs. The YOLO network uses 1x1 reduction layers followed by 3x3 
convolutional layers. The only difference between the different versions of the YOLO 
architecture is that the smaller models, such as the nano model used for this project contain 
fewer convolutional layers and fewer filters in those layers. [11] 

The model structure for YOLOv5 consists of three parts: backbone, neck and head. The 
backbone is the main body of the network and is designed using the New CSP-Darknet53 
structure. The neck connects the backbone and the head and uses SPPF and New CSP-PAN 
structures. The head is the part responsible for the final output and the same head is used for 
YOLOv5 as in YOLOv3 created by Ultralytics. [12] The YOLOv5 architecture increases the 
efficiency and speed compared to the previous versions, while later versions focus more on 
increasing the accuracy of the results. [13] The structure of the YOLOv5-nano network is shown 
in figure 6.  

 
Figure 6: YOLOv5-nano Network Structure [14] 

 

The YOLO model improves upon other machine learning algorithms for object detection 
because it uses the entire image during training and testing, so it encodes contextual 
information about the classes in addition to their appearance. It also learns generalizable 
representations of objects, and outperforms other methods when applied to new domains. It is 
not as accurate as some other methods of image classification, however it is capable of very 
quickly locating and classifying objects. [11]  

The primary advantage to the YOLO is that it is a very fast detection method and can be run in 
real time, the YOLOV5-nano model that is used in this project is capable of performing 30 
frames per second on a normal cpu, which is faster than the standard frame rate for cameras. 
[13] This makes it the best detection method to use on the Raspberry Pi, because of its limited 
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processing capabilities. The processing rate on the images captured on the Raspberry Pi is 
approximately 0.65 seconds per image with an image size of 640 pixels, which is not nearly fast 
enough for real time detection, but is fast enough for the purposes of this project.  

The YOLOv5-nano model is the smallest model of the YOLOv5 series, and is the fastest model 
on a normal CPU. [13][14] It is not as accurate as larger models, but a high degree of accuracy 
is not as important for this project as processing time is.  

Training Data 

YOLO comes with weights pre-trained on the coco dataset, which consists of 330k images [15]. 
This dataset contains both people and cats, in addition to many other objects. However one of 
the limitations of YOLO is that it struggles to detect objects in new configurations. [11] Most of 
the images of cats in the coco dataset are taken with the camera fairly close to the cat and at a 
neutral view angle, and in daytime lighting conditions. The images that will be processed in this 
project will be with the camera fairly far from the cat, at a high view angle, and in both daytime 
and nighttime lighting conditions. As a result of these differences it is not surprising that the 
weights from the coco dataset are very good at detecting humans in the images used for this 
project, but not very reliable for cats.  

To improve the image classification results of the model it is necessary to train a custom model 
using images taken from my camera. It is important to have a large number of images to train 
on in a variety of lighting conditions and positions. It is also important that those images reflect 
similar conditions to the images that will be used for detection. In an effort to maximize the 
detection capabilities of this project a script was written to extract the images from the coco 
dataset that contain either humans or cats. Since cat detection is more important for this project 
than human detection, this dataset was augmented with a dataset containing only cats [16] and 
then the images that only contained humans were randomly removed until the number of 
humans was approximately equal to the number of cats. This resulted in a dataset containing 
11.3k pre-labeled images, example images from this dataset are shown in figure 7.  
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Figure 7: Examples of images in pre-labeled dataset. [15] [16] 

 

To ensure reliable detection in the environment that the camera will be used in, an additional 
2.3k images were taken of my cat using the camera used in the project. These images were 
then labeled using Roboflow [17] to create a custom dataset that was combined with the pre-
labeled dataset, for a final dataset size of  13.6k images. Example images of the custom dataset 
are shown in figure 8. When creating a custom dataset it is important to ensure that the 
bounding boxes in each image are drawn such that every pixel associated with an object is 
included, while minimizing the number of background pixels included.  
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Figure 8: Examples of images in custom dataset. 

 

The images in the final dataset were divided into three groups: train, test and validate. The 
training dataset contains 80% of the images and is used to build the weights for the YOLO 
model that will be used. The test dataset contains 5% of the images and is used during the 
training process to check for overfitting. The YOLO architecture automatically stops training 
after overfitting is detected and saves the weights that resulted in the best detection from the 
images used in the test dataset. The final validate dataset contains 15% of the images and is 
used after training is completed to validate the performance of the model on images that were 
not used at all during the training process.  

Results 

Two YOLO models were trained using the final training dataset: a small model and a nano 
model. The nano model processes images approximately twice as fast as the small model, and 
performs almost as well. The confusion matrices of the small dataset and the nano dataset are 
compared in figure 9. As can be seen, the small model performs slightly better than the nano 
model, but the differences are negligible, especially considering the faster image processing 
time.  
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Figure 9: Confusion matrices for small and nano YOLO models. 

 

The true positive detection rate for cats is very high, and acceptable for people. Both models are 
more inclined towards false positives than false negatives for people. False positives tend to 
occur when there is clothing, or some other fabric, in the image and false negatives tend to 
occur when the person is either very far from the camera or mostly excluded from view. False 
negatives on humans are also very likely for images taken using night vision, since very few 
night vision pictures were taken that included humans, this is not considered a problem, since 
humans usually turn the light on when they enter a room. For the purpose of this project false 
positives are preferable to false negatives, since it is desirable to avoid encouraging the cat to 
attack a person by shining the laser on them, and it is not a problem to shine a laser near 
something that is not actually a cat.  

When the nano model is validated using only the validation images taken by the raspberry pi the 
results (figure 10) are dramatically improved from those where the pre-labeled images are 
included in the validation set. Both cats and humans are almost always detected correctly, and 
false positives of humans are much more likely than false negatives.  

 
Figure 10: Model validation using only custom photos.  

 



Enhancing Feline Exercise: A Safe YOLO-based Laser Toy 

Dean Sieck                    16 

The confusion matrix is not the only way of evaluating the results of the model. The F1 score is 
useful to determine the optimal confidence interval that balances the precision and recall of a 
model. The precision is the percentage of true positives out of all of the positives, and the recall 
is the percentage of true positives out of all of the labeled objects. The equations for these 
parameters are shown in equation 1.   

 
Equation. 1 [18] 

 

These values can be plotted against the confidence interval or against each other in order to 
evaluate the model as shown in figure10. From these curves it is apparent that the confidence 
value that optimizes the precision and recall is about 95%. This means that the model is very 
well trained and can reliably distinguish cats and people from the background with a high 
degree of confidence.  

 
Figure 11: Relevant precision and recall curves based on validation of images selected only from the 

custom dataset.  
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Computer Vision 

Basic computer vision principles are used in this project for the creation of the no-go zones. The 
zones must first be recognized in an image, and then the world coordinates of the zone 
calculated based on that image and the kinematics of the robot. Once the world coordinates are 
estimated, they can be reprojected onto the images taken by the camera at different angles.  

Camera Calibration 

Camera calibration is an important part of many computer vision projects. It refers to the 
process of estimating the parameters of a lens and image sensor of a camera. These 
parameters are then used to correct for lens distortion, measure the size of an object in world 
units, and determine the location of the camera relative to an object. [19] A pinhole model 
camera is the most simplistic model of a camera. This model can account for the optical center 
of the image, different focal lengths in the x and y direction and skew in the image. The intrinsic 
and extrinsic camera matrices are used to transform from the world coordinates to the image 
coordinates as shown in figure 12. 

 
Figure 12: Pinhole Model Camera Transformation Matrix [19] 

 

The intrinsic camera matrix transforms the coordinates of the 3D object from the camera frame 
(with the origin at the focal point) into image coordinates. The extrinsic rotation and translation 
matrices to transform from the world frame to the camera frame are acquired from the kinematic 
properties of the pan-tilt robot.  

When light travels through a lens the image gets distorted and no longer follows the simplistic 
pinhole camera model. Lens distortion causes straight lines to appear bent and occurs when 
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light rays bend more near the edges of a lens than they do at its optical center. This is 
especially noticeable with small lenses. [19] In order to get an accurate estimation of the no-go 
zones in this project it is important to account for this distortion as well. The distortion can be 
calculated by using a grid of known size, such as a chessboard, placed at different locations 
relative to the camera. As can be seen from the images in figure 13 the camera used in this 
project has a slight pincushion distortion. If a camera with a wider view angle were used, this 
distortion would be more pronounced.  

 
Figure 13: Top: before adjusting for distortion. Bottom: after adjusting for distortion.  

 

Once this distortion is accounted for, the world coordinates of the no-go zones can be 
calculated with much greater accuracy for better re-projection into the image from a different 
camera angle.  

No-Go Zone Mapping 

Mounting the camera to the pan-tilt robot means that the relative location of the no-go zones 
must be calculated every time the camera moves. In order to do this the world coordinates of 
the zone must be known. This can be done by detecting an object of known size and 
determining its location relative to the camera. Two different methods were used for this: finding 
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a ball that could be placed on each corner of the no-go zone, and drawing the zone on an image 
and imputing the size of the zone drawn.   

For the first method, a ball of known size would be placed at each corner of the no-go zone and 
the program would search the image for round objects and then calculate the coordinates of the 
ball relative to the image using the property of similar triangles and the ratio between the 
apparent ball size and the actual ball size. This allows for an estimate of the distance from the 
camera to the ball from which it is possible to find the local coordinates based on the image 
points and the distance from the ball. The user would need to verify that the program had 
correctly detected the ball before the no-go zone could be saved.  

The second method requires the user to position the camera such that all the corners of the 
desired no-go zone are visible, draw a box around the zone in the image, and finally input the 
dimensions of the actual zone. The dimensions of the zone drawn are then used to create ‘zone 
coordinates’ and the program would then calculate the position of the camera to the zone by 
solving the Perspective-n-Point (PnP) problem. In PnP the relative pose (six degrees of 
freedom) between an object and the camera is estimated, given a set of correspondences 
between 3D points and their projections on the image plane. [20] In this project the world 
coordinate system shown in figure 14 would be the local zone coordinates, and the pan-tilt 
kinematics would be used to transform from the zone coordinates to the world coordinates once 
the transformation from the zone coordinates to the camera coordinates are known.  

 
Figure 14: Visualization of PnP problem. [20] 

 

The minimal form of the PnP problem can be solved with three point correspondences, since 
only three points are required to construct a plane, however with only three points there are four 
geometrical feasible solutions, therefore a fourth point is necessary to remove the ambiguity. 
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Additional points can be used to minimize the reprojection error, and there are many different 
methods for reducing the error. [20] For the purposes of this project the points used in the PnP 
problem will be in a single plane, and therefore the Infinitesimal Plane-Based Pose Estimation 
(IPPE) method can be used to improve accuracy. The IPPE method exploits redundancy in the 
homography coefficients and locates a point in the plane where the transform is best estimated, 
solving with a first order PDE instead of only using the points provided. [21] This method 
provides a better geometric solution for the no-go zones that will be drawn by the user as long 
as all four points  provided are on the same plane.  

Once the world coordinates of the no-go zones are saved the kinematic model of the pan-tilt 
robot and the intrinsic parameters of the camera can be used to project the world coordinates of 
the no-go zone onto the image taken by the camera from a different position. Since the micro 
servo motors used are not highly precise there will be some error resulting from differences 
between the joint angles sent to the robot and the joint angles that the robot is actually at, in 
addition to the errors from the method used to find the world coordinates.  

Both of the methods discussed for finding the world coordinates have their own advantages and 
different sources of error. The ball method allows for creation of no-go zones of any size or 
shape, including zones that are too large to be seen in one viewpoint of the camera. However 
its errors are highly subject to the lighting of the environment, as shadows can make the ball 
appear smaller than it is. It is also likely that the circle detection algorithm will detect some other 
circle in the image, requiring the user to verify the detection in each image. Figure 15 shows the 
reprojections of the location of a ball using this method.  The image in the top left corner is the 
original image that was used to determine the location of the ball. The blue circle is the 
projection of the red ball.  

 
Figure 15: Reprojections of ball locations.  

Pan-Tilt joint angles: top left [90 55] top right [90 60] bottom left [100 60] bottom right [80 55] 
 

 



Enhancing Feline Exercise: A Safe YOLO-based Laser Toy 

Dean Sieck                    21 

The PnP method requires that the local zone coordinates of the object be known, this is easy to 
accomplish if the desired no-go zones are rectangular and on a single plane, which is the case 
for most objects in a house. Under these conditions the user would only need to enter the length 
and width of the zone and the zone coordinates can easily be generated with the origin located 
at one of the corners of the zone. This method is subject to errors in the users ability to click 
precisely on each of the corners and accurately measure the zone size. Figure 16 shows some 
reprojections of zones created using the PnP method. The image in the top left corner is the 
original image that was used to draw the zone, the zone is then reprojected back onto the 
image. The blue region is the projection of the zone drawn over the black notebook.  

  
Figure 16: Reprojections of zone locations using PnP.  

Pan-Tilt joint angles: top left [90 55] top right [90 60] bottom left [100 60] bottom right [80 55] 
 

Since the reprojection errors of the two methods were fairly similar, and the PnP had what was 
considered to be a more straightforward user interface, it was the one chosen for this project. It 
would be interesting to expand on the zone creation by allowing the user to choose which 
method they would like to use and also by using computer vision feature detection to recognize 
features of the no-go zone and decrease these errors by adjusting the projected zone location 
based on the recognized features.  

Pan-Tilt Robot 

Aiming of the camera and laser is accomplished with a simple 2 DOF robotic arm, called a pan-
tilt robot. This robot consists of two servo motors, each with 180 degrees of rotation, and the 
physical structure of the robot that allows for independent rotation of each of the motors 
throughout their full range of motions as well as attaching the end effector, which consists of the 
camera and the laser. Since the camera is mounted on the pan-tilt robot a delay is needed after 
the robot is moved to prevent blurry pictures. This delay is dynamically adjusted based on the 
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rotation speed of the servos and the distance traveled, ensuring that the minimum amount of 
delay necessary is used.  

Structure 

A pan-tilt hat for the raspberry pi was originally purchased from Waveshare [22] for controlling 
the camera position, however it did not allow full rotation of the tilt servo motor, and schematics 
were not available for the pan-tilt structure, so the distances between the joints were not known 
with precision. Therefore a new pan-tilt structure was 3D printed to solve these problems. The 
structure securely holds both the motors in place and allows for full rotation of both motors. The 
assembled structure is shown in figure 17.  

 
Figure 17: Assembled Structure of Pan-Tilt Robot Design 

 

The mount for the pan motor was designed in three parts and glued together to ensure that 
supports for the tilt motor mount (figure 19) were printed with sufficient quality to allow for 
smooth rotation. The mount for the pan motor itself (figure 18) was made very thick to ensure 
that the arms supporting the tilt motor mount were vertical, and to ensure that the structure 
would be securely mounted to the pan motor and would not shift during use. The mount for the 
tilt motor (figure 20) also includes holes for mounting the camera to ensure that its positioning is 
as precise as possible.  
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Figure 18: Mount for Pan Motor 

 

 
Figure 19: Supports for Tilt Motor Mount (glued to pan motor mount) 

 

 
Figure 20: Mount for Tilt Motor and Camera 

 

Kinematics 

Any robotic arm consists of links and joints. The links provide the structure of the arm, and the 
joints connect the links and allow for motion of the robotic arm. Links can be flexible or inflexible, 
and there are many different types of joints that can connect the links. The most common types 
of joints are revolute, which allow for rotation about a point, and prismatic, which allow for sliding 
along a single axis. [23] There are 6 possible degrees of freedom (DOF) for an object in space: 
translation along X,Y and Z axis, and rotation about X,Y and Z axis. The DOF of a robot is 
defined by the number of independent motions the robot can make, in the case of robotic arms, 
this is usually the same as the number of joints. Most industrial robotic arms have 6 DOF to 
allow the end effector to reach any position and orientation desired, however some have more 
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degrees of freedom to allow for greater flexibility in the number of ways that a desired position 
and orientation can be reached.  

For example, a human arm has 7 DOF, which allows you to move your arm, while keeping the 
position and orientation of your hand constant. There are an infinite number of possible 
orientations for your arm without changing the location or orientation of your hand, because of 
the redundant DOF.  A robotic arm with 6 DOF would have eight possible configurations for the 
arm for the end effector to reach a given position and orientation, however it would not be 
possible to move between these configurations without moving the end effector like it is with an 
arm with 7DOF.  

The kinematics of a robotic arm are what allow for calculating the possible orientations and 
motions of the robot. The forward kinematics solve the position and orientation of the end 
effector based on the current joint configurations, and the inverse kinematics solve for one or all 
of the possible joint configurations based on the position and end effector of the robot. Forward 
kinematics of a robotic arm are solved by performing a series of transformations and rotations to 
convert from one coordinate frame to another. First the world coordinates are transformed into 
the coordinate frame of the first joint, then the second joint, and so on, until finally the position 
and orientation of the end effector is known.  

Transformation of coordinate frames can be done using transformation matrices. 
Transformation matrices consist of the rotation and translation of an object. The rotation matrix 
consists of the rotation about X,Y and Z  between the two coordinate frames and can be found 
using equation 2.  

 
Equation 2 [23] 

The translation is simply how much the origen between the two frames has moved in the X,Y 
and Z directions and can be described by a vector. Combining the translation vector with the 
rotation matrix produces the transformation matrix, which is shown in the following equation and 
contains all of the information needed to transform between coordinate frames as shown in 
equation 3. [23] 

 
Equation 3 [23] 
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In order to get the transformation between the world frame and the end effector of a robot the 
transformation matrices of each of the joints must be multiplied together as shown in equation 4.  

 
Equation 4 [23] 

This allows for a chain of kinematic transformations that allow for converting between any 
coordinate frames as shown in figure 21. 

 
Figure 21: Kinematic chain of transformations [23] 

 

In order to get the transformation matrix of each of the joints the Denavit-Hartenberg (DH) 
parameters are often used. [23] The DH parameters can be found by first finding each of the 
joint axis, with the base of the robot labeled with joint axis 0. Then each of the Zi axis can be 
labeled along the joint axis i+1. Then the Xi axis is labeled along the common norm of Zi-1 and Zi 
and the Yi axis chosen to create a right handed coordinate frame. This can be seen in figure 22.  

 
Figure 22: Denavit–Hartenberg kinematic parameters [23] 
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Finally the DH parameters can be found. The DH parameters refer to four different parameters: 

➢ ai   -   The distance along Xi from Oi-1 to Oi 

➢ di   -   The distance along Zi-1 from  Oi-1 to Oi 

➢ ɑi   -   The angle between Zi-1 and Zi 

➢ θi   -   The angle between Xi-1 and Xi (the angle of rotation of the joint) 

Finally the end effector frame is chosen to align with the end effector orientation. Once the DH 
parameters are found the transformation matrix for each joint can be calculated using equation 
5 shown below. 

 
Equation 5 [23] 

 

The robotic arm used for this project is one of the simplest types of robotic arm: a pan-tilt robot. 
It has two revolute joints, which allows for 2 DOF. Despite being a very simple type of robotic 
arm, it is still very important to get the correct kinematic calculations of the arm in order to be 
able to reliably project the locations of the no-go zones into the camera as it moves. The pan-tilt 
structure was 3D printed primarily to ensure that the locations of the joints in the table of DH 
parameters is as accurate as possible. The DH parameters of the pan-tilt robot used are shown 
in table 2.  

Table 2: DH Parameters of Pan-Tilt Robot 

Joint d (mm) a (mm) α (rad) θ (rad) 

1: pan 40 28.25 π/2 θ1 

2: tilt 0 -14.675 -π/2 θ2 

EE: camera 15.35 0 0 -π/2 

 

The final ‘camera’ joint is not an actual joint, and is instead used to transform the coordinate 
system from the robot to the camera. The d parameter for joint 1 is not strictly necessary, but it 
translates the coordinate frame to the base of the raspberry pi, which makes verifying that the 
calculated world coordinates are correct significantly easier.  

The actual pan-tilt robot and its kinematic scheme are shown in figures 23 and 24. For ease of 
viewing they are shown with the tilt joint at 90º, the configuration of the robot at 0º has the 
camera pointing up so that the camera's coordinate system is simply a translation of the world 
coordinate system.  
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Figure 23: Actual Pan-Tilt Robot as Installed on Raspberry Pi 

 

figure 24: Kinematic Scheme of Pan-Tilt Robot 
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Aiming 

In order to ensure that the laser is enticing for even a very lazy cat it must be in the general 
vicinity of the cat. For this reason the target location of the laser is one of the corners of the 
bounding box for the cat generated by the YOLO model. In order to keep the cat from chasing 
the laser out of the range available to the camera the selected corner is chosen probabilistically 
based on the difference between the current joint angles and the neutral position of the camera. 
Every few seconds a new corner of the bounding box is chosen.  

For example, if pan joint is 25% of the way through its possible motion to the left then the 
probability of the laser moving left will be 75% of what it would have been if the camera were in 
the neutral position. Likewise, if the tilt joint is 60% of the way through the possible movement 
upwards then the probability of choosing the top of the bounding box will only be 30%. This 
calculation is shown in table three and the final normalized probability of selection is shown in 
table 4.  

              Table 3: Calculating Corner Probabilities             Table 4:  

 
Aiming is accomplished by centering the target location in the camera, the laser is positioned to 
be as near as possible to the camera's optical axis, so the location of the laser is very close to 
the center of the camera view. The distance from the cat to the camera affects how far across 
the image the object will move with a given change in joint angles. Since the distance is 
unknown and could only be very roughly estimated based on the apparent size of the cat, it is 
therefore not possible to calculate how far the pan-tilt robot must move to center the object. To 
solve the problem of aiming a simplification of the pan-tilt was used, where it is assumed that 
the pan motor controls the error in the x direction and the tilt motor controls the error in the y 
direction. This is an oversimplification, but works well enough for objects that are not near the 
limits of the tilt joint range. In this project the cats location, and therefore the set value, is 
constantly changing, which makes centering the camera a very dynamic problem to solve and 
requires a robust control system.  

PID Control 

The amount to move with each increment is determined with the use of a proportional-
integration-derivative (PID) controller. A PID controller is considered one of the best closed 
feedback control systems and provides the ability to automatically maintain a set value and 
compensate for changes in the environment. [24]  as can be seen in figure 25 the error from the 
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desired setpoint is taken as a proportional, integral and derivative value, and each of these 
values is multiplied by a constant.  

 
Figure 25: A block diagram of PID control system [24] 

 

Tuning the PID controller is done by manually changing values of Kp Ki and Kd until an 
appropriate response is achieved. The effects of each of these variables is shown in the 
following table. [24] 

 

Since the cats location is constantly changing it is important to reach the desired location as 
quickly as possible, so a small rise time and settling time is very important. Likewise a low 
steady-state error will be impossible to achieve and is irrelevant for this application. However it 
is important to avoid having too much overshoot, otherwise there is a risk that the cat will not be 
in the image at all anymore.  

With these considerations we can determine that Kp should be the largest value to get a fast rise 
time. And that Kd will also need to be large to offset the overshoot that comes with a small rise 
time, and to decrease the settling time. Ki will need to be the smallest parameter, and could be 
excluded altogether, making the system a PD controler. 

Conclusion 
Overall the results are satisfactory with the objectives of this project. The YOLO model is 
capable of reliably detecting both cats and people. The Raspberry Pi is not capable of 
processing the images with YOLO in real time, but it is still fast enough for the purposes of the 
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project. The projection of the no-go zones could be improved upon in many ways, but is 
accurate enough considering the inherent sources of error involved.  

At 45€ out of pocket, this device is about twice as expensive as most commercially avaliable 
automatic cat laser pointers, although even its maximum cost of 125€ is significantly less than 
the $200 of the most similar commercially available product. The laser pointer developed in this 
project provides a more interesting playing dynamic for the cat, by ensuring that the laser is 
always near the cat, with the additional piece of mind of not worrying about getting attacked by 
the cat if you stand in the wrong spot. If the device were to be mass produced a less expensive 
processor could be built, since the Raspberry Pi has many capabilities that are not needed in 
this project, and all of the parts purchased were significantly cheaper if bought in bulk. It is likely 
that a retail price would be low enough to keep it competitive against the current options for 
people who enjoy high-tech devices.  

It would also be possible to expand on this project by including other features such as those 
presented in other projects. For example, allowing the user to watch and interact with the cat 
remotely, [2][7][8] detecting if the cat has prey, [9] or detecting certain cat behaviors. [10] It 
would also be interesting to include options to scare the cat away from no-go zones by using a 
squirt bottle or a noise, or recognizing different pets and behaving differently for each one. If 
these features were implemented it could transform into a useful pet management tool, in 
addition to a toy.  
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