Accepted Manuscript. Final version available at: J. Abella et al., "SAFEXPLAIN: Safe and Explainable Critical Embedded
Systems Based on AL" 2023 Design, Automation & Test in Europe Conference & Exhibition (DATE), Antwerp, Belgium, 2023,
pp. 1-6, doi: 10.23919/DATE56975.2023.10137128. © Copyright 2023 IEEE - All rights reserved.

SAFEXPLAIN: Safe and Explainable
Critical Embedded Systems Based on Al

Jaume Abella', Jon Perez?, Cristofer Englund®, Bahram Zonooz?*, Gabriele Giordana®, Carlo Donzella®,

Francisco J. Cazorla!, Enrico Mezzetti!, Isabel Serra', Axel Brando!, Irune Agirrez, Fernando Eizaguirre

2

Thanh Hai Bui®, Elahe Arani*, Fahad Sarfraz*, Ajay Balasubramaniam?, Ahmed Badar*
Tlaria Bloise®, Lorenzo Feruglio5 , llaria Cinelli®, Davide Brighenti7, Davide Cunial”

! Barcelona Supercomputing Center, Spain
2 Ikerlan Technology Research Centre, Basque Research and Technology Alliance (BRTA), Spain
3 RISE Research Institutes of Sweden, Sweden
4 Navinfo Europe, The Netherlands
5 AIKO s.rl, Italy
6 Exida Development s.r.1., Italy
" Exida Engineering s.r.l., Italy

Abstract—Deep Learning (DL) techniques are at the heart
of most future advanced software functions in Critical
Autonomous Al-based Systems (CAIS), where they also
represent a major competitive factor. Hence, the economic
success of CAIS industries (e.g., automotive, space, railway)
depends on their ability to design, implement, qualify, and
certify DL-based software products under bounded effort/cost.
However, there is a fundamental gap between Functional
Safety (FUSA) requirements on CAIS and the nature of DL
solutions. This gap stems from the development process of
DL libraries and affects high-level safety concepts such as
(1) explainability and traceability, (2) suitability for varying
safety requirements, (3) FUSA-compliant implementations, and
(4) real-time constraints. As a matter of fact, the data-
dependent and stochastic nature of DL algorithms clashes with
current FUSA practice, which instead builds on deterministic,
verifiable, and pass/fail test-based software. The SAFEXPLAIN
project tackles these challenges and targets by providing a
flexible approach to allow the certification — hence adoption
— of DL-based solutions in CAIS building on: (1) DL
solutions that provide end-to-end traceability, with specific
approaches to explain whether predictions can be trusted and
strategies to reach (and prove) correct operation, in accordance
to certification standards; (2) alternative and increasingly
sophisticated design safety patterns for DL with varying
criticality and fault tolerance requirements; (3) DL library
implementations that adhere to safety requirements; and (4)
computing platform configurations, to regain determinism, and
probabilistic timing analyses, to handle the remaining non-
determinism.

I. INTRODUCTION

CAIS industries (e.g., automotive, railway, and space)
show an increasing interest in DL-based techniques. This
trend is driven by several reasons:

o Digitization of CAIS: The number of mechanical
subsystems enhanced or completely replaced by
electronic components is increasing, Advanced software
functions are becoming ubiquitous to control all aspects
of CAIS, and safety related systems are not an
exception. The digitization of CAIS can bring huge
benefits to the society such as (1) safer roads, skies,
and airports, preventing 90% of collisions per year [1];
(2) dramatic reduction, up to 80%, of carbon dioxide
(COy) profile of different types of vehicles [1]; and (3)
improved quality of life by reducing the time people
spend driving or waiting for train and flight delays,
and making vehicles accessible to people that would be
otherwise excluded for disability or economic reasons.

o Effectiveness of Al techniques: Al techniques (and DL
in particular) are at the very heart of the realization of
advanced software functions such as computer vision
for object detection and tracking, path planning, driver-
monitoring systems, gesture-activated Al assistants,
and voice-based command and control [2]. Hence,
Al solutions are a cornerstone in the development of
future advanced (fully) autonomous systems. As such,
Al is considered crucial for providing functionally-
critical features such as perception (obstacle detection),
path/trajectory planning, and vehicle tracking in state-
of-the-art autonomous vehicles [3], [4].

Autonomous operation is the epitome of safety-related
applications of AI in CAIS, and exemplifies the need for
increasingly high computing performance whilst making Al
solutions to comply with FUSA requirements.

The malfunctioning of a CAIS can lead to unacceptable
consequences either just economic or on the environment
and people, even causing fatalities. Hence, CAIS are
developed according to a set of requirements on the
processes and analyses for their functional and non-
functional behaviour aiming at keeping the risk of hazardous
events below an acceptable level. These requirements are
defined by generic (e.g., IEC 61508 [5]) and domain-
specific certification standards, like ISO 26262 [6] for
automotive and EN5012x [7], [8] for railway. Within the
safety process, explainability of software and traceability of
requirements are mandatory, either implicitly or explicitly.
DL-based advanced software functions are no exception
and must comply with the CAIS certification requirements.
Complementary standards, such as ISO/PAS 21448 [9] and
ANSI/UL 4600 [10], among others, are also being developed
to address safety concerns of autonomous systems that
use Al. However, these new standards are still in their
infancy, and, for instance, ISO/PAS 21448 (aka SOTIF) for
automotive focuses on what should be covered during the
system engineering, but leaves out how to achieve the goals.

Safety-related development processes build on the
unambiguous specification of FUSA requirements and steps
like:

1) Deterministic algorithms fulfilling safety requirements,

2) Verifiable implementations of those algorithms,

3) Test campaigns to validate that safety requirements are

not violated with pass/fail tests.

However, current practice in DL frontally clashes with
these FUSA-related processes since:

1) DL software is built as a combination of control (model

configuration, such as what layers to use, in which

TABLE I: Relation of SAFEXPLAIN’s main goals to DATE 2023 topics

Topic| Title SAFEXPLAIN
- Special Days on Emerging Topics. Autonomous Systems | SAFEXPLAIN is fully aligned with this Session on the use of Al in CPS like
Design automated driving, and avionics and addresses key challenges in this area related

to verification of dependable autonomous systems.

E2 Real-time, Dependable and Privacy-Enhanced Systems

SAFEXPLAIN covers aspects related to software timing validation of Al software
in heterogeneous MPSoC platforms including GPUs

E3 ML Solutions for Embedded and Cyber-Physical Systems
E4 Design Methodologies for ML Architectures
E5 Design Modelling and Verification for Embedded and CPS

SAFEXPLAIN research focus is on novel methods for the design, development,
verification, and deployment on Al-based solutions for embedded critical system
that support FUSA certification objectives.

D8 Network-on-Chip and on-chip communication

Time predictability is one of the main traits at the platform level. SAFEXPLAIN .

D9 Architectural and Microarchitectural Design

will identify major predictability walls in the NoC/processor that affect
determinism; and will benefit from any support to reduce it

T3 Dependability and System-Level Test

SAFEXPLAIN will contribute with techniques able to manage errors spanning
from both, hardware random faults and DL-related mispredictions. Common safety
measures should be devised for efficiency reasons.

order, etc.) and data (algorithm parameters are obtained
from training with specific datasets) with a stochastic
and data-dependent nature.

2) There is a lack of sufficient explainability and
traceability: it is not properly specified why each
DL layer is used, its semantics, and why layers are
deployed in a specific order (i.e. their composed
semantics) so that requirements can be traced end-to-
end. Nor it is specified what the scope of application
is (e.g. valid input data range), and the confidence that
can be reached on the obtained predictions (e.g. by
detecting occlusions).

3) Prediction accuracy is stochastic, and test campaigns
deliver, in the best case, success rates linked to
specific testing datasets, therefore exposing to dataset-
dependent test conclusions in many cases.

4) High-performance hardware in which DL solutions
executes is poorly predictable, challenging the use of
deterministic timing analysis techniques. Also on the
implementation side, DL libraries are not designed
according to any FUSA standard and make use of
features typically discouraged by safety standards
(e.g., pointers and dynamic memory) as challenging
qualification.

This paper presents SAFEXPLAIN, a newly started
Horizon Europe project (October 2022 - September 2025)
in its first stages. SAFEXPLAIN leverages the fact that the
transition to fully autonomous systems will be incremental,
with increasing safety-related functions controlled by Al
software until reaching full autonomy (e.g. level 5 for
automotive [11]). This creates an evolving and complex
environment for certification as safety needs will vary across
each increment in autonomy. This results in different AI (DL
indeed) usage levels (i.e. safety requirements) of Al software.

SAFEXPLAIN tackles the above challenge by targeting a
novel and flexible approach to allow the certification — hence
adoption — of DL-based solutions in CAIS by:

o Carefully analyzing the gap between current FUSA
development processes and existing hardware and
software DL solutions.

o Devising safety patterns for different DL usage levels
(i.e. with varying safety requirements) to allow using
DL in any CAIS functionality, for varying levels of
criticality and fault tolerance. Safety patterns will allow
to develop an incremental safety approach that adapts to
the needs of every Al (DL) usage level of Al software
until reaching autonomous operation.

o Architecting DL solutions that allow explaining
why they satisfy FUSA requirements, with end-to-
end traceability, with solutions to explain whether
predictions can be trusted, and with strategies to
reach (and prove) correct operation, in accordance with

certification standards.

e Proposing MPSoC configurations, to regain
predictability as much as possible, and probabilistic
timing analyses, to handle the remaining non-
deterministic timing behaviour. This is complemented
with DL implementations that favor qualification and
timing analysis.

The rest of the paper is organized as follows. Section II
shows the relevance of SAFEXPLAIN research for DATE
topics. Section III presents an analysis of the challenges for
the use of DL software in CAIS. Sections IV and V introduce
the SAFEXPLAIN approach and methodology respectively.
Section VI summarizes the paper.

II. RELEVANCE TO THE DATE CONFERENCE

SAFEXPLAIN is aligned with several DATE 2023 topics
and special sessions. The main common ground stems from
the traction that Al software is getting in Cyber Physical
Systems (CPS) that spans safety related challenges to the
hardware and software. Table I lists some of the DATE 2023
topics on which SAFEXPLAIN can contribute or take benefit
from.

As shown, SAFEXPLAIN relates to the Special Days
on Emerging Topics and, in particular, to Autonomous
Systems Design that seek for works addressing the
challenge on “the design and verification of dependable
autonomous systems”. It relates in E2 to the software timing-
related aspects achieved via smart computing platform
configuration and novel probabilistic timing analysis
techniques. SAFEXPLAIN can also benefit by any hardware
techniques (D8 and D9) in hardware resources like NoCs
to regain time determinism. SAFEXPLAIN deals with the
safe use of DL in critical autonomous CPS, so it naturally
fits under the DL and CPS related topics E3, E4, and ES.
Last but not least, the FUSA development process has a
strong component of testing during validation phases, and of
dependability during architectural design by deploying safety
measures to manage different types of faults, hence matching
T3 topic.

III. THE CHALLENGE

There is a fundamental gap between FUSA requirements
of CAIS and the nature of DL solutions deployed to
deliver CAIS functionalities. The lack of explainability and
traceability, and the data-dependent and stochastic nature
of DL software, clash against the need for deterministic,
verifiable and pass/fail test-based software solutions for
CAIS. This section provides the first contribution of this
paper, consisting in an analysis of the ramifications of the
FUSA-DL gap.

Safety goals

specification

Precise and unambiguous
requirements

Architectural
design

+ HW: admits failure rates due to random faults
+ SW: no longer deterministic. Can deliver
erroneous output

Data-defined SW:

+ Algorithm behavior is determined by actual
data (e g, weights of a DNN)

+ Algorithm is fully “data-dependent”

Unit design
+ implem.

Code (SW) designed
mostly based on
experiments

— I
NO DRSO
DESIGN) STING

DATA DETERMINES SYSTEM DESIGN

----------- >

Lrrrnnnn

Full system
testing

Requirements
testing

Challenges to define relevant data
for testing:

= Cannot be exhaustive

* Equivalence classes

H * Operation modes cannot be

Integration
and testing

7

=3 Unit testing

enumerated deterministically

Etc.

Moreover, independence
between training and test
data must be proven

Fig. 1: Schematic of the challenges posed by DL solutions with respect to the conventional FUSA development process.

A. Specification and implementation of DL algorithms
enabling explainability and traceability

DL algorithms provide results with some degree of
accuracy and confidence levels, as opposed to other
types of control software used in FUSA-related systems,
which provides deterministic and correct-by-construction
outcomes (see in Figure 1). Hence, software architectural
design and verification methods do not longer work for
systems building on DL algorithms in general since,
even if DL software behaves as expected, outcomes can
be inconclusive or simply erroneous. Moreover, non-DL
software is developed in the form of algorithms were
traceability is feasible and the different parts of the software
at different abstraction levels (e.g., instruction, basic block,
function) produce explainable results. Instead, DL software
comes along with parameters generated from data through
training, hence lacking explainability. Finally, since DL
software is the result of a data-dependent training process,
it behaves to a large extent as a black box, ultimately
challenging traceability.

Identifying the challenges toward the certification of DL-
based software is a very recent research topic. Along
this line, some efforts have been devoted to reach a
consensus on the definitions of those challenges in a
systematic and consistent way, assessing the adherence
of industrial and practically-implemented software, and
providing guidelines toward resolving some of the identified
issues according to domain-specific safety standards, in
particular ISO 26262 [12], [13]. However, these efforts do not
leverage explainability and end-to-end traceability of safety
requirements as part of the implementation and specification
of DL algorithms. Notably, these gaps are hindering the
safe adoption of DL-based solution in CAIS. The work by
Pullum et al. [14] provides some preliminary considerations
and guidance on Validation and Verification (V&V) of
neural networks. Also, Tabani et al. did an attempt to
assess the adherence of an autonomous driving (AD) system
against ISO 26262 requirements [15]. However, despite these
preliminary attempts, the gap between DL and FUSA is still
far from being filled.

B. Confidence, security, and robustness of DL algorithms

Robustness of a DL-based system implies that the system
needs to cope with noisy and uncertain input data, while
also being able to express its confidence on its output even
with unforeseen input data (see and in Figure 1).
Robustness and security also require DL-based software to

be robust against adversarial tampering with inputs [16],
from random perturbations to universal adversarial patches
to change image understanding altogether [17]. Current work
in this field focuses on detecting targeted or non-targeted
attacks on image input to various forms of Convolutional
Neural Networks (CNN) in comparison to random noise
added to an input [18]. Ensemble-techniques and uncertainty
measures are promising starting points, but they also lack
some precision and interpretability, in addition to inherent
safety concerns [19]. Understandability and self-monitoring
are elaborated upon in [20] where self-explaining models
are developed in stages, progressively generalizing linear
classifiers to complex yet architecturally explicit models.

C. Safety certification of DL software

As of today, the state-of-the-art of Al solutions appears
not to be reconcilable with safety and certification, as DL-
based software development involves a major paradigm
shift with respect to traditional system development
and safety certification. Some recent work analyses the
safety implications of Al, identifying some limitations
and withholders that should be addressed in terms
of method [12], [21], safety requirement specification,
verification, validation, and testing [22], and overall safety
lifecycle [23]. In the automotive domain, an earlier work [13]
analysed the apparent incompatibility of ISO 26262 with
DL and presented a set of initial recommendations on
how to possibly improve such compatibility gap. The
recently released ISO/PAS 21448 [9], a Publicly Available
Specification (PAS) rather than a complete standard,
acknowledges the incompatibility of DL and current
standards (in the referenced domain), and provides general
but insufficient guidance. Other related standards have also
been very recently published (ANSI/UL 4600, ISO/TR 4804)
or are currently under development (ISO/IEC TR 5469,
ISO/AWI PAS 8800, ISO/AWI TS 5083, ISO/IEC AWI TS
6254).

D. Addressing performance and platform-level concerns for
safely deploying DL software in CAIS

The computational requirement of DL-based CAIS
solutions can only be met with complex, high-performance,
heterogeneous platforms. The use of advanced high-
performance Commercial Off-The-Shelf (COTS) platforms
is known to hamper the analyzability of a system [24], and
to cause significant performance issues due to contention
accessing hardware shared resources such as memories
and caches, for which some limited solutions have been

[Functional Safety Certification

|

. . (7]

[Deep Learning Solutions " 2

Traceability 1]

Robustness Q

~ Security g)

[Platform and toolset-level 3
Observability

Support _J Controllability g‘.

Timing analysis =

Automated tests 8

Industrial case studies
g, requirements

Fig. 2: SAFEXPLAIN methodology including its 4 pillars.

proposed recently [25], [26]. However, to our knowledge,
no COTS hardware exists that allows excluding all sources
of interference [27]. Some solutions have been proposed
in different domains to deal with timing interference at
software-level [28] but none of them has proven to be the
one-fits-all solution, even for a single domain. The additional
explainable DL structure, as an expected SAFEXPLAIN
outcome, it is likely to require even more computing
resources, especially for time-critical applications.

IV. THE SAFEXPLAIN APPROACH

In the following we illustrate the approach that
SAFEXPLAIN will follow to tackle the macro-challenges
identified in the previous section.

A. Specification and implementation of DL algorithms
enabling explainability and traceability

SAFEXPLAIN will devise a data-driven software
specification approach for DL software, to develop advanced
software where traditional software specification techniques
fall short. In particular, such specification will consider how
training data determines the behaviour of the algorithm, what
steps are needed to process such data (specifically which
DNN architecture is chosen), and how those steps allow
justifying that DL components perform their functionality.
Ultimately, such specification will support the end-to-end
tracing of safety requirements.

B. Confidence, security, and robustness of DL algorithms

SAFEXPLAIN will pursue the definition of a new
generation of techniques for redesigning and adapting
existing DL components and architectures with a view
to improve explainability, traceability, robustness, and
understandability. SAFEXPLAIN will also investigate on
tools, models, model integration, and self-monitoring, for
the engineering of CAIS. To achieve FUSA compatibility
(including Al-related safety standards) for Al-based
software, it is necessary to determine how the Al features
of the systems shall be managed and, more concretely, how
those features are handled within engineering and assurance
tools, represented in models, and incorporated in supervisors
and self-monitoring mechanisms, to ultimately make the
qualification of those techniques possible.

C. Safety certification of DL software

SAFEXPLAIN will take a significant step towards the
reconciliation of FUSA and DL requirements, which remains
as an open challenge. It will tackle the conflicting needs

of integrating DL-based solutions for advanced functionality
and the restrictive safety certification implications by
following a FUSA-centric approach. While the prevailing
literature in the topic passively attempts to map current
Al research paradigms to standards, SAFEXPLAIN will
proactively take selected safety standards as the basis to
set the foundations on which to build its technologies,
considering an end-to-end software development process
(from design to validation, see Figure 1). SAFEXPLAIN will
pave the way towards future certifiability of DL-solutions
following an incremental FUSA strategy based on safety
patterns for increasingly complex DL wusage levels. The
viability of the approach will be assessed and demonstrated
through its integration in an industrial toolset prototype,
hence providing evidence on the fact that SAFEXPLAIN
solutions can reach TRLs above 5 in the future.

D. Addressing performance and platform-level concerns for
safely deploying DL software in CAIS

SAFEXPLAIN focuses on tailoring DL software and
deploying it conveniently on COTS hardware while
preserving the functional and non-functional features of DL
software, and achieving the performance needed. Solutions
will focus on adapting and optimizing DL software to deeply
exploit hardware performance, on exploiting observability
and controllability knobs of COTS hardware to increase
predictability, and on the use of appropriate statistical and
probabilistic analyses to attach guarantees to software timing
predictions [29].

V. METHODOLOGY

SAFEXPLAIN’s methodology builds upon four pillars.
Two main research pillars, where explainability and
traceability play a central role for the certification of DL-
based systems:

o Pillar 1: DL-aware Functional Safety Certification.

« Pillar 2: FUSA-aware Deep Learning Solutions.

As well as two supporting pillars linking pillars 1 and 2 with
real tools, systems and applications:

« Pillar 3: Platform and toolset-level support.
o Pillar 4: Industrial case studies.

A. Overall methodology

The development process of CAIS starts with the
safety analysis, which we sketch next, since it tailors the
methodology of SAFEXPLAIN.

Safety analysis identifies and assesses the system hazards
and also defines mitigation strategies. FUSA standards
define a safety life-cycle where each product item is
assessed and managed from the functional safety standpoint:
from analysis, specification, development, to operation and
decommission. In the software development phase, standards
refine the safety life-cycle in typical V-models (see blue
central “V” in Figure 1). In these models, design phases,
on the left side of the V, are matched to testing phases, on
the right side, with implementation at the bottom.

The higher the criticality level — i.e., safety integrity
level (SIL), or automotive SIL (ASIL) — of the software
functionality, the more stringent the requirements posed by
standards on the activities on each step of the V-model
are. This reduces the risk of malfunctioning to the desired
(negligible) level, i.e., probability of dangerous failure in the
range of 10~ hours of operation for SIL 4 safety functions.

The FUSA requirements placed on software emanate
directly from the functional and technical safety
requirements. Traceability is of paramount importance for
high integrity functions where all design, implementation
decisions, and tests shall be mapped to at least one

requirement. Therefore, a well-formed specification must
be made available for the software product (and parts
thereof) as a baseline for assessing the correctness of
the architectural and detailed design. The specification
is expected to provide a detailed description of both
static and dynamic aspects of execution, and to come up
with trustworthy bounds on computational resource usage
(timing, memory, communication). Under IEC 61508,
certain properties are desirable for evaluating the systematic
safety integrity of the software during safety requirement
specification: completeness and correctness, freedom from
intrinsic specification faults (including freedom from
ambiguity), understandability and traceability of safety
requirements and the capability of providing a basis for
verification and validation (V&V) and associated testing.

In the implementation phase, the software is required to
be correct with respect to its safety requirements, simple,
readable, explainable, predictable and testable, which is
suggested to be accomplished by following a restrictive set
of coding rules and practice (e.g. no use of dynamic software
features, as pointers, avoid recursion, enforce strong typing).
Then integration gathers the different software parts and
ensures they behave together as expected.

Verification (the system is right w.r.t. requirements) and
validation (the system does the right thing w.r.t. its intended
use) activities take a prominent role in the safety life-cycle.
Hence, the importance of architecting and implementing
software so that it is explainable, traceable, robust, secure
and reliable.

While DL approaches offer a promising path to
handle the increasingly complex functionalities handled by
software in CAIS, several challenges are still unresolved
before DL can be effectively adopted in safety-critical
CAIS. The overarching approach in SAFEXPLAIN consists
in tackling these concerns combining inter-disciplinary
expertise, including AI, CAIS certification, and high-
performance mixed-criticality hardware platforms with
appropriate toolsets, studying and scrutinizing state-of-the-
art case studies. In this line, SAFEXPLAIN builds on top
of four main pillars: Functional Safety Certification, Deep
Learning methods, Platform and Toolset-Level Support, and
Case Studies. The main constituents of these pillars are
represented in Figure 2.

B. Overall Methodology across Pillars

FUSA will constitute the backbone of SAFEXPLAIN
methodology: the project will introduce DL-software
in safety-critical systems following an incremental
methodology where DL is introduced in the system
under analysis with different roles and relevance. Therefore,
SAFEXPLAIN will start from exploring more conservative
solutions, where the DL-software is not regarded as a
safety component and can be integrated in critical systems
based on the current versions of safety standards, up to the
implementation of DL-based software for high criticality
safety functions, where an update of current standards is
foreseen.

Focusing on these scenarios, SAFEXPLAIN will generate
the safety patterns based on a continuous analysis of safety
standards, inputs from industrial partners and Al experts, and
conversations with certification experts. Each pattern will
shape the set of techniques, restrictions, requirements and
rules to be adopted in SAFEXPLAIN.

For each identified safety pattern, SAFEXPLAIN will
carry out the main loop shown in Figure 2, consisting in
going through the following phases:

FUSA techniques phase: the specific safety
pattern produces a set of high-level requirements and

recommendations from the FUSA perspective. These
requirements are developed into a set of specific requirements
for the different phases in the development cycle of DL
applications and libraries: specification and design,
implementation, and V&V. With respect to the latter,
SAFEXPLAIN will devise new testing methodologies
to support the V&V activities for both functional and
non-functional aspects of execution.

DL algorithms and implementation: the set of
requirements emanating from the FUSA perspective are
considered in the definition of novel or amended solutions
in all aspects of development, still in support of the specific
safety pattern. This phase will impose new requirements
on DL software, to support explainability, traceability,
robustness, security and fault-tolerance. Simpler patterns
(e.g., not touching the safety function) will require fewer
modifications to current practice: the constraints imposed
under different SIL vary. For instance, in current standards,
some features (e.g. use of pointers) are not recommended for
high integrity level functions (e.g., ASIL C/D). Following
the same philosophy, depending on the safety patterns — and
hence the safety requirements on DL — different changes
might be needed on the DL software to reach compliance.
Hence, in this part of the work we will adapt DL software
according to the specifications in the safety pattern and will
evaluate the impact of those changes on performance.

Platform and toolset level support. Our approach
includes both, functional and non-functional aspects.

Non-functional aspects (platform predictability): the set
of FUSA requirements, in combination with the mixed-
criticality requirements, will require the enforcement of
different platform configurations for improved predictability
and analyzability. Solutions must be provided to support the
analysis techniques devised for the specific safety pattern. As
a common preliminary step, the analysis and classification of
the interference channels must be conducted on the selected
platforms [30], [31]. At platform level, the impact that other
applications (likely with different degrees of criticality) have
on the application under analysis have to be controlled.
Embracing a statistical view on residual software failure [29],
for patterns in which DL software carries some safety
requirements, may make a lower failure rate be required.

Functional aspects (industrial toolset for validation): DL-
based solutions will be integrated into the industrial toolset,
which will allow automating tests and analysing resulting
data, such as, for instance, false positives and false negatives
in object detection. Due to the novelty of these systems
in safety-related industry, the industrial toolset is still at a
prototype stage. Hence, DL-based solutions will be evaluated
in a case-by-case direct integration and test campaign against
each case study, as well as in the scope of the toolset, which
will be in turn used with the case studies to find out the best
integration approach that eases test automation and resulting
data analysis.

Case studies: the results of the iteration of the
SAFEXPLAIN methodology will be assessed on the
industrial case studies for automotive, railway and space
domains, providing valuable feedback on its effectiveness
and industrial viability. The DL-based functionalities of
the case studies focus on camera-based object detection in
different scenarios and with different time and accuracy
requirements since navigation in roads/streets, automatic
train stopping and signal detection, and outer space
navigation do pose highly diverse problems, despite their
nominal similarity. For instance, object detection for trains
must be highly specialized to recognize signals and
unexpected objects in the railway. Instead, object detection
in the outer space must be highly precise for docking and

manage very dark environments. Finally, object detection
for cars must consider the broadest range of scenarios,
hence trading off precision across all of them. The case
studies will be adapted as needed to match the considered
FUSA scenarios, and to capture the peculiarities of the
considered safety patterns identified. This allows assessing
SAFEXPLAIN benefits under each pattern.

FUSA guidelines. After the iterations for all safety
patterns are performed, the results of combining FUSA and
DL requirements will be synthesized into a set of FUSA
guidelines, and the technical solutions (or a subset thereof)
will undergo a further external assessment. In particular:

Safety guidelines. The FUSA-related SAFEXPLAIN
outcomes obtained throughout the project will be
consolidated as safety guidelines. To this end, SAFEXPLAIN
will follow a review process for both technical and concept
assessments, first by internal certification experts from
the project partner EXIDA, which will participate in
the refinement of the certification approach, and finally
by external certification experts with respect to selected
industrial safety standards (e.g. IEC 61508, ISO 26262,
ECSS and EN5012x) in the automotive, space and railway
domains.

Technical assessment and reviews. SAFEXPLAIN selected
technical contributions will undergo a review by Certification
Experts (CE) in the automotive (ISO 26262, SOTIF), the
space (ECSS) and railway (EN 5012x) domains. These
reviews aim to assess the technical suitability of a subset
of the safety patterns and a selection of FUSA techniques
from the defined life-cycle activities.

Concept assessment. A selection of the SAFEXPLAIN
FUSA-aware solutions and their integration on top of
complex heterogeneous platforms in (mixed-) criticality
systems will be then assessed with respect to safety
certification by means of a safety concept based on a
representative case study. This concept will include an
analysis of security threats (e.g. adversarial attacks) and their
impact on the DL algorithms and system safety. As a result,
a concept review with the external certification experts and
a consolidated set of safety guidelines will be produced
with respect to selected industrial safety standards (e.g. IEC
61508, ISO 26262, SOTIF).

VI. CONCLUSIONS

DL software stochastic and data-dependent nature is at
odds with FUSA development processes, hence challenging
the adoption of DL solutions in CAIS, as needed for
autonomous operation. Therefore, new paradigms and
practical approaches are needed to overcome this gap.
SAFEXPLAIN will tackle this challenge by building DL
solutions providing explainability and traceability as the
backbone to enable FUSA-compliant development processes.
Moreover, SAFEXPLAIN will overcome the limitations
imposed by current DL-unaware FUSA standards providing
DL-aware FUSA guidelines that allow using DL solutions in
a wide variety of safety patterns with varying requirements
preserving properties such as high accuracy and confidence
of the best DL solutions, as well as sufficiently high
performance to enable their use in performance-hungry
applications such as, for instance, camera-based object
detection for driving and navigation in domains such as
automotive, space and railway.

ACKNOWLEDGEMENTS

The research leading to these results has received
funding from the Horizon Europe Programme under
the SAFEXPLAIN Project (www.safexplain.eu),
grant agreement num. 101069595. BSC authors

have also been supported by the Spanish Ministry
of Science and Innovation under grant PID2019-
107255GBC21/AEI/10.13039/501100011033.

REFERENCES

[1] J.F. McCarthy, “Sustainability of Self-Driving Mobility: An Analysis
of Carbon Emissions Between Autonomous Vehicles and Conventional
Modes of Transportation. Master’s thesis, Harvard Extension School.

) 2017.

[2] Y. LeCun et al., “Deep learning,” Nature, vol. 521, no. 7553, pp. 436—
444, 2015.

[3] “Apollo, an open autonomous driving platform.” http://apollo.auto/,
2018.

[4] NVIDIA, “NVIDIA Drive program,” https://developer.nvidia.com/dri
ve, 2018.

[5] International Electrotechnical Commission, IEC 61508. Functional
Safety of Electrical/Electronic/Programmable Electronic Safety-related
Systems, 1998.

[6] International Standards Organization, ISO/DIS 26262. Road Vehicles
— Functional Safety, 2009.

[71 European Committee for Electrotechnical Standardization
(CENELEC), EN 50126 - Railway Applications - The Specification
and Demonstration of Reliability, Availability, Maintainability and
Safety (RAMS), 2017.

, EN 50128 - Railway applications - Communication, signalling
and processing systems - Software for railway control and protection
systems, 2020.

[9] International Organization for Standardization (ISO), ISO/PAS 21448
Road vehicles - Safety of the intended functionality, 2019.

[10] Underwriters Laboratories (UL), ANSI/UL 4600 Standard for Safety
for the Evaluation of Autonomous Products, 2020.

[11] SAE International, J3016: Taxonomy and Definitions for Terms Related
to On-Road Motor Vehicle Automated Driving Systems, 2014.

[12] P. Koopman and M. Wagner, “Autonomous vehicle safety: An
interdisciplinary challenge,” IEEE Intelligent Transportation Systems
Magazine, vol. 9, no. 1, pp. 90-96, 2017.

[13] R. Salay et al., “An analysis of ISO 26262: Machine learning
and safety in automotive software,” IEEE Intelligent Transportation
Systems Magazine, no. SAE Technical Paper 2018-01-1075, 2018.

[14] L. Pullum et al., Guidance for the verification and validation of neural
networks. John Wiley and Sons, 2007.

[15] H. Tabani et al., “Assessing the adherence of an industrial autonomous
driving framework to iso 26262 software guidelines,” in DAC, 2019.

[16] C. Szegedy et al., “Intriguing properties of neural networks,” 2013.
[Online]. Available: https://arxiv.org/abs/1312.6199

[17] T. Brown et al., “Adversarial patch,” 2017. [Online]. Available:
https://arxiv.org/abs/1712.09665

[18] A. Fawzi et al., “Robustness of classifiers: From adversarial to random
noise,” in NIPS, 2016.

[19] M. Abbasi and C. Gagné, “Robustness to adversarial examples
through an ensemble of specialists,” 2017. [Online]. Available:
https://arxiv.org/abs/1702.06856

[20] D. Alvarez-Melis and T. S. Jaakkola, “Towards robust interpretability
with self-explaining neural networks,” in NIPS, 2018.

[21] J. Herndndez-Orallo et al.,, “Surveying safety-relevant Al
characteristics,” in SafeAl Workshop, 2019.

[22] P. Koopman and M. Wagner, “Challenges in autonomous vehicle
testing and validation,” SAE International Journal of Transportation
Safety, vol. 4, no. 1, pp. 15-24, 2016.

[23] A. Pereira and C. Thomas, “Challenges of machine learning applied
to safety-critical cyber-physical systems,” Machine Learning and
Knowledge Extraction, vol. 2, no. 4, pp. 579-602, 2020.

[24] J. Abella et al., “WCET analysis methods: Pitfalls and challenges on

their trustworthiness,” in SIES, 2015.

S. Girbal and J. Le Rhun, “BB-RTE: a Budget-Based RunTime

Engine for Mixed and Safety Critical Systems,” in ERTS, 2018.

[Online]. Available: https://hal.archives-ouvertes.fr/hal-02278298

[26] A. Kritikakou et al., “Distributed run-time WCET controller for
concurrent critical tasks in mixed-critical systems,” in RTNS, 2014.

[27] J. Pérez-Cerrolaza et al., “Multi-core devices for safety-critical

systems: A survey,” ACM Comput. Surv., vol. 53, no. 4, pp. 79:1-

79:38, 2021.

S. Girbal et al., “Deterministic platform software for hard real-time

systems using multi-core COTS,” in DASC, 2015.

[29] F. J. Cazorla et al., “Probabilistic worst-case timing analysis:
Taxonomy and comprehensive survey,” ACM Comput. Surv., vol. 52,
no. 1, pp. 14:1-14:35, 2019.

[30] 1. Agirre et al., “On the tailoring of CAST-32A certification guidance
to real COTS multicore architectures,” in SIES, 2017.

[31] FE.J. Cazorla et al., “Dissecting robust resource partitioning, robust time
partitioning, and robust partitioning in CAST-32A,” SAE Technical
Paper 2021-01-5101., 2021.

(8]

[25]

(28]

