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Abstract In the planar circular restricted three-body problem and for any value of the mass parameter4

µ ∈ (0, 1) and n ≥ 1, we prove the existence of four families of n-ejection-collision (n-EC) orbits, that5

is, orbits where the particle ejects from a primary, reaches n maxima in the (Euclidean) distance6

with respect to it and finally collides with the primary. Such EC orbits have a value of the Jacobi7

constant of the form C = 3µ + Ln2/3(1 − µ)2/3, where L > 0 is big enough but independent of µ8

and n. In order to prove this optimal result, we consider Levi-Civita’s transformation to regularize9

the collision with one primary and a perturbative approach using an ad hoc small parameter once a10

suitable scale in the configuration plane and time has previously been applied. This result improves a11

previous work where the existence of the n-EC orbits was stated when the mass parameter µ > 0 was12

small enough. Moreover, for decreasing values of C, there appear some bifurcations which are first13

numerically investigated and afterwards explicit expressions for the approximation of the bifurcation14

values of C are discussed. Finally, a detailed analysis of the existence of n-EC orbits when µ → 1 is15

also described. In a natural way Hill’s problem shows up. For this problem, we prove an analytical16

result on the existence of four families of n-EC orbits and numerically we describe them as well as the17

appearing bifurcations.18

1 Introduction19

This paper studies the existence of ejection-collision orbits in the planar circular Restricted three-body20

problem (RTBP), which describes the motion of a particle (of neglectible mass) under the attraction21

of two point massive bodies P1 and P2, called primaries, restricted to circular orbits around their22

common center of mass. Introducing a rotating system of coordinates that rotates with the primaries,23

and using suitable units of length, time and mass, an autonomous system of four ODEs of first order24

are derived, depending on a unique parameter µ ∈ (0, 1), in such a way that the primaries have masses25

1 − µ and µ respectively. Such system of ODEs has the well known Jacobi first integral (equal to C26

along each solution) and is a regular system everywhere except when the particle collides with each27

of the primaries.28

n-ejection-collision orbits (n-EC orbits from now on) are orbits which eject from a primary reaches n29

maxima in the distance with respect to it and finally collides with the primary (see Definition 4.a).30

From a physical point of view, for instance taking the earth and the moon as primaries, we may think31

of an n-EC orbit as that described by a satellite ejecting from the earth, reaching a maximum distance32

away from the earth followed by a passage close to the earth, repeating this motion n times and finally33

landing on earth at the n-th close approach. Since the n-EC orbits are the main target of this paper34

and collisions between the particle and one primary lead to singularities in the system of ODEs, some35

kind of regularization, that transforms the original system to a new one which is regular at collisions,36

is necessary. Among the different possible choices, ranging from local to global regularizations (see37

[6, 8, 27, 28]) we will use along the paper the (local) Levi-Civita regularization [14], because it is38

conceptually simple, suitable for our theoretical purposes and efficient for numerical simulations.39
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The main analytical result of this paper is Theorem 1, where we prove that there exists an L̂ such that40

for L ≥ L̂ and for any value of µ ∈ (0, 1), n ∈ N and the Jacobi constant C = 3µ+ Ln2/3(1− µ)2/3,41

there exist four n-EC orbits, and we characterize them.42

This improves a recent result (see [21]) where the existence of four n-EC orbits ejecting (and colliding)43

from the big primary (of mass 1− µ) is proved but only for small enough µ > 0.44

To prove this main result we first consider a weaker version in Theorem 2 where we show that45

for all n ∈ N, there exists a K̂(n) such that for K ≥ K̂(n) and for any value of µ ∈ (0, 1) and46

C = 3µ+K(1−µ)2/3, there exist four n-EC orbits. This weaker version also improves the result of [21]47

since we cover any value of µ so we can eject from (and collide with) any of the primaries, irrespective48

of its mass. Another improvement is the proof’s approach. In the previous paper a perturbative49

approach for small enough µ > 0 and big enough C was considered. There, the authors computed the50

series expansion, with respect to the mass parameter µ, of the ejection (collision) manifold. So the51

explicit analytical expansion, up to certain order, of this manifold integrated up to a suitable Poincaré52

section Σ (maximum distance to the ejecting primary) was obtained. For suitable number of crossings53

with Σ, i for the ejection manifold and j for the collision one (with i+ j = n+ 1), the resulting two54

curves C+
i and C−

j were computed. Achieving such curves required some technicalities, in particular,55

the computation of terms up to order 9 (at least) in such expansions and the expressions of them in56

the usual polar coordinates (instead of the initial angle θ0). The application of the Implicit Function57

Theorem (IFT) to analyze the intersection of both curves gave rise to the existence of four n-EC orbits58

for any n, C big enough and µ > 0 small enough.59

In this paper, the perturbative approach considers a suitable small parameter, related with the inverse60

of the Jacobi constant, regardless of the value of µ. Moreover, instead of computing the two curves61

C+
i and C−

j , we consider the angular momentum at the n-th passage with the minimum distance to62

the primary (the particle ejected from). We characterize an n-EC orbit by the zero value of that63

angular momentum. This strategy to use the angular momentum simplifies the computations in three64

directions: first only expansions up to order 6 are required, second obtaining just one function instead65

of two different curves, and third the parametrization of the angular momentum directly in terms of66

θ0 (thus avoiding the technical issue of the transformation to usual polar coordinates).67

The second part of the paper focuses on the bifurcations that may appear when doing the continuation68

of families of n-EC orbits. It is clear that, given any value of µ > 0, and fixed n, we can continue69

the four families of n-EC orbits for C big enough, from the IFT. According to previous papers ([22,70

21]) we will name such families as αn, βn, δn and γn. However, as long as C decreases, the IFT does71

not apply and bifurcations may appear for suitable values of C. We analyze such bifurcations from72

the analytical expressions obtained in the series expansions for order higher than 6. A rich variety of73

bifurcations show up. They are discussed and numerically described.74

Precisely the results derived from this numerical exploration provides inspiration to obtain the main75

result: an explicit expression of the bifurcating value of C as Ĉ = 3µ+ L̂n2/3(1− µ)2/3, i.e. we prove76

that K̂(n) = L̂n2/3.77

Finally, taking µ → 1 gives rise to the Hill problem. Quite naturally the same kind of proof developed78

previously applies to the Hill problem. So as a corollary we obtain an analytical result that establishes79

the existence of four families of n-EC in this problem. Moreover the existence of the successive80

bifurcations when decreasing C for all n ∈ [1, 100] are also numerically discussed.81

Concerning previous published results on this subject for the circular planar RTBP, we distinguish82

between analytical and numerical results. Focusing on the theoretical analysis of n-EC orbits, only83

the case for n = 1 is considered in Llibre [15], Chenciner and Llibre [5] and Lacomba and Llibre [13].84

The general case n ≥ 1 is studied in [21], but for small enough values of µ > 0. Regarding a numerical85

approach, and for n = 1, we mention the papers by Bozis [2], Hénon [9, 10], where the authors86

compute some particular EC orbits that naturally appear when doing the continuation of families of87
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periodic orbits. For the general case n ≥ 1, we mention Ollé, Rodriguez and Soler papers [22, 23],88

where the authors compute and analyze the continuation of families of n-EC orbits for n = 1, . . . , 2589

and discuss the advantages and disadvantages of Levi-Civita’s versus McGehee’s [16] regularization.90

Very recently, Ollé, Rodriguez and Soler [24] analyze the global behavior of the whole set of ejection91

orbits and the dynamical consequences resulting from the interaction between ejection orbits and the92

Lyapunov periodic orbit around the collinear equilibrium point L1. In particular infinitely many (in a93

chaotic way) EC orbits show up. Finally we mention a recent preprint that studies ejection-collision94

orbits between the two primaries [4].95

We remark that the EC orbits appear quite naturally in astronomical applications. Let us mention96

that EC orbits allow to explain a mechanism of transfer of mass in binary star systems (see [11, 17, 26,97

29]), to describe regions of capture of irregular moons by giant planets ([1]) or to discuss temporary98

capture ([25]). Other applications include the probability of crash motion (see [18, 19]) or the role of99

ejection orbits to explain a mechanism for ionization in atomic problems (see [3, 20]).100

The paper is organized as follows: In Section 2 we recall some basics of the RTBP, we introduce101

the Levi-Civita coordinates and the new normalized variables that will become useful to prove the102

existence of the n-EC orbits for any value of µ > 0. Section 3 recalls the topics described in Section103

2 but for the Hill problem. In Section 4 we state the two main theorems, Theorem 1 and Theorem 2,104

concerning the existence of n-EC orbits in the RTBP. We provide the analytical proof of Theorem 2105

in Section 5. Section 6 is devoted to numerically analyse the bifurcations of families of n-EC orbits106

in the RTBP. In Section 7 we provide the analytical proof of Theorem 1. Section 8 is devoted to the107

Hill problem.108

Finally, we observe that all the numerical computations have been done using double precision and the109

numerical integration of the systems of ODE rely on an own implemented Runge-Kutta (7)8 integrator110

with an adaptive step size control described in [7] and a Taylor method implemented on a robust, fast111

and accurate software package in [12]. The absolute and relative tolerances used with the numerical112

integrators are 10−16 and the tolerances used in the Newton methods are in the range 10−15 to 10−14.113

2 The planar RTBP and the Levi Civita regularization114

As mentioned in the Introduction, we consider the RTPB. In the rotating (synodical) system, the115

primaries with mass 1−µ and µ, µ ∈ (0, 1), have positions P1 = (µ, 0) and P2 = (µ−1, 0) respectively,116

and the period of their motion will be 2π. In such context, the equations of motion for the particle in117

the rotating system are given by118

{
ẍ− 2ẏ = Ωx(x, y),

ÿ + 2ẋ = Ωy(x, y),
(1)

where ˙= d/dt and119

Ω(x, y) =
1

2
(x2 + y2) +

1− µ√
(x− µ)2 + y2

+
µ√

(x− µ+ 1)2 + y2
+

1

2
µ(1− µ)

=
1

2

[
(1− µ)r21 + µr22

]
+

1− µ

r1
+

µ

r2
,

(2)

with r1 =
√

(x− µ)2 + y2 and r2 =
√
(x− µ+ 1)2 + y2. So, the equations become singular when r1120

or r2 → 0.121

The main properties of this system used later on are the following (see [28] for details):122
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1. There exists a first integral, defined by123

C = 2Ω(x, y)− ẋ2 − ẏ2, (3)

and known as Jacobi integral.124

2. System (1) has the symmetry125

(t, x, y, ẋ, ẏ) → (−t, x,−y,−ẋ, ẏ). (4)

A geometrical interpretation of it is that given an orbit in the configuration space (x, y), the126

symmetrical orbit with respect to the x axis will also exist.127

3. The simplest solutions are 5 equilibrium points: the so called collinear ones Li, i = 1, 2, 3, and128

the triangular ones Li, i = 4, 5. On the plane (x, y), L1,2,3 are located on the x axis, with129

xL2
< µ− 1 < xL1

< µ < xL3
and L4,5 forming an equilateral triangle with the primaries. CLi

130

will stand for the value of C at Li, i = 1, . . . , 5.131

4. Depending on the value of the Jacobi constant C, the particle can move on specific regions of132

the plane (x, y), called Hill regions and defined by133

R(C) =
{
(x, y) ∈ R2 | 2Ω(x, y) ≥ C

}
. (5)

In order to deal with the singularity of the primary P1 = (µ, 0) (r1 = 0) we will consider the Levi-Civita134

regularization (see [28]). The well known transformation of coordinates and time is given by:135 
x = µ+ u2 − v2,

y = 2uv,

dt

ds
= 4

(
u2 + v2

)
,

and we remark that, taking µ ∈ (0, 1) we are regularizing the big primary (if µ ∈ (0, 1/2]) or the136

small one (if µ ∈ [1/2, 1)). In this new system of coordinates, the solutions of system (1) with Jacobi137

constant equal to C satisfy:138 

u′′ − 8(u2 + v2)v′ =
(
4U(u2 + v2)

)
u

= 4µu+ 16µu3 + 12(u2 + v2)2u+
8µu

r2
− 8µu(u2 + v2)(u2 + v2 + 1)

r32
− 4Cu,

v′′ + 8(u2 + v2)u′ =
(
4U(u2 + v2)

)
v

= 4µv − 16µv3 + 12(u2 + v2)2v +
8µv

r2
− 8µv(u2 + v2)(u2 + v2 − 1)

r32
− 4Cv,

C ′ = 0

(6)

where ′ = d/ds, Ωx and Ωy are the partial derivatives with respect to x and y respectively and139

U =
1

2

[
(1− µ)

(
u2 + v2

)2
+ µ

(
(1 + u2 − v2)2 + 4u2v2

)]
+

1− µ

u2 + v2
+

µ

r2
− C

2
.

with r2 =
√

(1 + u2 − v2)2 + 4u2v2.140

The system of ODEs is now regular everywhere except at the collision with the primary P2 (r2 = 0).141

We observe that when studying the system of ODEs (6), a value of a Jacobi constant C is fixed. Thus142

to take an initial condition of this system, we will take (u(0), v(0), u′(0), v′(0), C(0)). Nevertheless,143

along the paper, we will actually study system (6) removing the last equation in C, and we will consider144

the corresponding solution for a fixed C and initial condition simply given by (u(0), v(0), u′(0), v′(0)).145

In this new system of variables, the previous properties of the RTBP are translated as:146

4



1. Jacobi Integral:147

u′2 + v′2 = 8
(
u2 + v2

)
U , (7)

which is regular at the collision with the primary P1. In particular (see [28]), the velocity at the148

position of the first primary (u = 0, v = 0) satisfies:149

u′2 + v′2 = 8(1− µ), (8)

and therefore the velocities at the collision lie in a circle of radius
√
8(1− µ).

Figure 1: Levi-Civita transformation. Hill’s region for µ = 0.2 and CL1 . Left. Synodic (x, y)
coordinates. Right. Levi-Civita ones (u, v). The gradient of colours represents the angle with respect
to the position of the first primary in the original (x, y) synodical coordinates. In grey the forbidden
region.

150

2. As the Levi-Civita transformation duplicates the configuration space (see Figure 1) the equations
of motion satisfy two symmetries, (9a) as a consequence of the duplication of space and (9b)
due to (4):

(s, u, v, u′, v′) → (−s, u,−v,−u′, v′), (9a)
(s, u, v, u′, v′) → (−s,−u, v, u′,−v′). (9b)

3. The equilibrium points are now duplicated and they are located on the plane (u, v). In particular,151

the collinear points now are located in the u axis and in the v axis. See Figure 1.152

4. Similarly, given a value of the Jacobi constant C, the Hill’s region in variables (u, v) now becomes153

R(C) =
{
(u, v) ∈ R2 | (u2 + v2)U ≥ 0

}
. (10)

In particular we will consider values of the Jacobi constant C ≥ CL1 , the value of the Jacobi154

constant associated to the equilibrium point L1. In this way, it will be enough to regularize only155

the position of P1 because the Hill’s region associated to these values of C avoids collisions with156

the second primary (assuming the particle moves in a neighbourhood of P1), see Figure 1).157
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3 The Hill problem and the Levi-Civita regularization158

The Hill problem is a simplified limiting case of the RTBP that allows to study the vicinity of the159

small primary when this mass tends to 0 (when mass parameter µ is very small or very close to 1).160

We can obtain easily the equation of Hill problem making a translation of the small primary (denoted161

by Ph) to the origin, and rescaling the coordinates by a factor µ1/3 if µ → 0 or (1− µ)1/3 if µ → 1.162

For our purpose we will consider this second case, so the first step is to introduce new variables (xh, yh)163

defined by the relation164

x = µ+ (1− µ)1/3xh, y = (1− µ)1/3yh.

In this way the expression (2) becomes165

1

(1− µ)2/3

(
Ω(x, y)− 3

2

)
=

3

2
x2
h +

1√
x2
h + y2h

+O
(
(1− µ)1/3

)
, (11)

and taking the limit µ → 1 we obtain the Hill’s potential166

Ψ(xh, yh) =
3

2
x2
h +

1√
x2
h + y2h

. (12)

Thus the equations of motion are given by167 {
ẍh − 2ẏh = Ψxh

(xh, yh),

ÿh + 2ẋh = Ψyh
(xh, yh).

(13)

The Hill problem also has some interesting properties for our purposes:168

1. The system (13) has a first integral defined by169

K = 2Ψ(xh, yh)− ẋ2
h − ẏ2h, (14)

where K is related with the Jacobi integral by:170

C = 3µ+ (1− µ)2/3K +O(1− µ). (15)

2. The equations (13) not only inherit the symmetry of the problem, that is a symmetry with
respect to the xh-axis, but also has an extra one with respect to the yh-axis. In this way the
system (13) has the symmetries:

(t, xh, yh, ẋh, ẏh) → (−t, xh,−yh,−ẋh, ẏh), (16a)
(t, xh, yh, ẋh, ẏh) → (−t,−xh, yh, ẋh,−ẏh). (16b)

3. The Hill problem only preserves two equilibrium points, which are those that are in the vicinity171

of the small primary Ph. That is L1 and L2 if we consider µ → 0 or L1 and L3 if µ → 1.172

For historical consistency, we will call these equilibrium points L1 and L2, which have positions173

(±1/31/3, 0) (see Figure 2) and we will denote by KL = 34/3 the value of K at L1 and L2.174

4. In a similar way, from the first integral and taking into account that 2Ψ(xh, yh)−K ≥ 0, given175

a value of K, the motion can only take place in the Hill’s region defined by176

Rh(K) =
{
(xh, yh) ∈ R2 | 2Ψ(xh, yh) ≥ K

}
. (17)

We notice that, similarly as we do in the RTBP, we will consider values of K ≥ KL to guarantee177

that if the particle starts in a region around Ph, it will always remain there.178
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In order to regularize the Hill problem we only have to consider the Levi-Civita regularization179 
xh = u2

h − v2h,

yh = 2uhvh,

dt

ds
= 4

(
u2
h + v2h

)
,

and the system (13) becomes:180 

u′′
h − 8(u2

h + v2h)v
′
h =

(
4Uh(u

2
h + v2h)

)
uh

= −4Kuh + 12
(
2(u4

h − 2u2
hv

2
h − v4h) + (u2

h + v2h)
2
)
uh,

v′′h + 8(u2
h + v2h)u

′
h =

(
4Uh(u

2
h + v2h)

)
vh

= −4Kvh + 12
(
2(v4h − 2u2

hu
2
h − u4

h) + (u2
h + v2h)

2
)
vh,

(18)

with181

Uh =
3(u2

h − v2h)
2

2
+

1

u2
h + v2h

− K

2
. (19)

Figure 2: Levi-Civita transformation. Hill’s region for K = KL = 34/3. Left. Synodic (xh, yh)
coordinates. Right. Levi-Civita ones (uh, vh). The gradient of colours represents the angle with
respect to the position of the first primary in the original (xh, yh) synodical coordinates. In grey the
forbidden region.

Under this transformation the previous properties of the Hill problem are translated as:182

1. The first integral of (18) is given by183

u′2
h + v′2h = 8(u2

h + v2h)Uh, (20)

which is regular at the collision with Ph. In particular the velocity at the position of the primary184

(uh = 0, vh = 0) satisfies185

u′2
h + v′2h = 8. (21)

2. As the transformation duplicates the configuration space (see Figure 2), the equation (18) has
an extra symmetry:

(s, uh, vh, u
′
h, v

′
h) → (−s, uh,−vh,−u′

h, v
′
h), (22a)

(s, uh, vh, u
′
h, v

′
h) → (−s,−uh, vh, u

′
h,−v′h), (22b)

(s, uh, vh, u
′
h, v

′
h) → (−s, vh, uh,−v′h,−u′

h). (22c)

7



3. For the same reason, the equilibrium points are duplicated, and we have L1 = (±3−1/6, 0) and186

L2 = (0,±3−1/6).187

4. In a similar way, depending on the value of K we can define the valid region of motion (see188

Figure 2) in the plane (uh, vh) as:189

R(K) =
{
(uh, vh) ∈ R2 | (u2

h + v2h)Uh ≥ 0
}
. (23)

4 n-EC orbits in the RTBP and main theorems190

In this paper we will focus on a specific type of EC orbits, the n-EC orbits, formally defined as191

Definition 4.a. We call n-ejection-collision orbit of a primary, simply noted by n-EC orbit, to the192

orbit that the particle describes when ejects from a primary and reaches n times a relative maximum193

in the distance with respect to this primary before colliding with it.194

As we will consider any value of µ ∈ (0, 1) we will study only the n-EC orbits associated to the first195

primary P1. Notice that from relation (8) it is easy to compute the initial conditions of the ejection196

orbits (and the collision orbits):197

(0, 0, 2
√
2(1− µ) cos θ0, 2

√
2(1− µ) sin θ0), θ0 ∈ [0, 2π) (24)

and we can compute the manifold of the ejection (collision) orbits integrating forward (backward) in198

time. Observe that in this case it is enough to consider a value of θ0 ∈ [0, π) due to the duplication199

of the configuration plane.200

Remark. In general the n-EC orbits are not periodic or part of a periodic orbit. The angle of ejection201

θ0 is usually different than the collision θf . However, it can happen that some n-EC orbits are periodic202

(or part of a periodic orbit) as we will see below.203

Concerning the existence of n-EC orbits, we mentioned above that in [21], the existence of four n-EC204

orbits ejecting from (and colliding with) the big primary for any n ≥ 1, given C big enough and µ > 0205

small enough, was proved. The proof was based on a perturbative approach in µ and assuming that206

the orbits ejected from the big primary of mass 1− µ.207

The first goal of this paper is to improve this previous result and prove the existence of four n-EC208

orbits ejecting from (and colliding with) the big or small primary, for any n ≥ 1 given and C big209

enough. So any value of the mass parameter µ ∈ (0, 1) is possible in this context.210

For analytical and numerical purposes, though, we will use a characterization for an EC orbit, based211

upon the zero value of its angular momentum, defined from now on as M := UV̇ − V U̇ (for some212

suitable variables (U, V ) to be defined later), at a minimum distance with the primary the particle213

ejected from (see Lemma 1 below). So in order to obtain an n-EC orbit, for n ≥ 1, µ ∈ (0, 1) and C214

given, first we will compute the corresponding ejection solution for each initial condition (that is, for215

each value θ0). Second we will determine the precise time τ∗ = τ∗(θ0) when the particle reaches the216

n-th minimum in the distance to P1. At time τ∗ we will compute the value of the angular momentum217

that is, (UV̇ − V U̇)(τ∗). Varying θ0 ∈ [0, π) we will obtain the corresponding angular momentum,218

that will denote by M(n, θ0) = (UV̇ − V U̇)(τ∗) (overlooking the additional dependence on µ). The219

zeros of M(n, θ0) = 0 will provide us with the precise values of θ0 such that the corresponding ejection220

orbit is precisely an n-EC orbit. Just to show this idea, we plot in Figure 3 left the behaviour of the221

angular momentum M(1, θ0) for µ = 0.1 and C = 5. In the right figure we plot the corresponding222

ejection orbits for three chosen values of θ0: the red one and green one plotted for a range of time223

[0, τ∗ + δ] (a small suitable δ > 0) to see the change of sign in the angular momentum (shown in the224

zoom area) and the blue one which is a 1-EC orbit.225
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Figure 3: n = 1, µ = 0.1 and C = 5. Left. Angular momentum M(1, θ0). Right. Three ejection
orbits corresponding to the initial values of θ0 labelled in colours on the left plot. The blue orbit is
precisely a 1-EC orbit.

Now, we proceed to state the main result of this paper about the existence, the number and the226

characteristics of the n-ejection-collision orbits for any value of the mass parameter and n ∈ N, for227

sufficiently restricted Hill regions (i.e. C big enough).228

Theorem 1. There exists an L̂ such that for L ≥ L̂ and for any value of µ ∈ (0, 1), n ∈ N and229

C = 3µ+ Ln2/3(1− µ)2/3, there exist four n-EC orbits, which can be characterized by:230

• Two n-EC orbits symmetric with respect to the x axis.231

• Two n-EC orbits, one symmetric of the other with respect to the x axis.232

In order to prove Theorem 1 we will first state a weaker version of this theorem, Theorem 2, but233

the proof of this second version will provide light on the approach, mainly a suitable scaling in the234

configuration variables, time and the Jacobi constant C, used to prove the more optimal result in235

Theorem 1.236

Theorem 2. For all n ∈ N, there exists a K̂(n) such that for K ≥ K̂(n) and for any value of237

µ ∈ (0, 1) and C = 3µ+K(1− µ)2/3, there exist four n-EC orbits, which can be characterized in the238

same way as in Theorem 1.239

We remark that, in Theorem 2, we have a uniform constant K = K(n) for any value of µ ∈ (0, 1).240

This implies that when µ → 1 the value of the Jacobi constant (for which Theorem 2 holds) tends241

to 3, as CL1 does as well. Precisely, and as shown in the proof of Theorem 2, the expansion of CL1242

was the inspiration to choose a suitable scaling in the variables, time and C. Finally in Theorem 1 an243

expression for K(n) as Ln2/3 is provided.244
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5 Proof of Theorem 2245

In order to prove Theorem 2, let us fix C ≥ CL1
and consider the following change of variables and246

time:247 

u =

√
2(1− µ)

C − 3µ
U,

v =

√
2(1− µ)

C − 3µ
V,

τ = 2
√
C − 3µs,

(25)

that corresponds to the change that normalizes the linear term of (6) and the initial condition of the248

ejection orbits. Denoting by ˙= d
dτ the new time derivative the system (6) transforms to the following:249



Ü = − (C − µ)U

C − 3µ
+

8(1− µ)
(
U2 + V 2

)
V̇

(C − 3µ)3/2
+

12(1− µ)
2(
U2 + V 2

)2
U

(C − 3µ)
3 +

8µ(1− µ)U3

(C − 3µ)
2

+
2µU

(C − 3µ)R2
− 4µ(1− µ)U(U2 + V 2)[2(1− µ)(U2 + V 2) + (C − 3µ)]

(C − 3µ)3R3
2

,

V̈ = − (C − µ)V

C − 3µ
−

8(1− µ)
(
U2 + V 2

)
U̇

(C − 3µ)3/2
+

12(1− µ)
2(
U2 + V 2

)2
V

(C − 3µ)
3 − 8µ(1− µ)V 3

(C − 3µ)
2

+
2µV

(C − 3µ)R2
− 4µ(1− µ)V (U2 + V 2)[2(1− µ)(U2 + V 2)− (C − 3µ)]

(C − 3µ)3R3
2

,

(26)

where R2 =
√
1 + 4(1−µ)(U2−V 2)

C−3µ + 4(1−µ)2(U2+V 2)2

(C−3µ)2 .250

It is important to remark that the properties (7), (8), (10) are preserved (translated to the new
variables), and so are the symmetries obtained in the Levi-Civita regularization, i. e.:

(τ, U, V, U̇ , V̇ ) → (τ,−U,−V,−U̇ ,−V̇ ), (27a)

(τ, U, V, U̇ , V̇ ) → (−τ,−U, V, U̇ ,−V̇ ). (27b)

At this point, the two main ideas to prove the theorem are: (i) a perturvative approach taking251

δ = 1/
√
C − 3µ as a small parameter, and (ii) the requirement of the angular momentum to be zero252

at a minimum distance with the primary the particle ejected from.253

First of all we observe that the functions 1/R2 and 1/R3
2 are analytic for U , V bounded, 0 ≤ µ ≤ 1,254

and δ small enough. In fact, the expansions of 1/R2 and 1/R3
2 are of the form:255

1

R2
= 1− 2(1− µ)(U2 − V 2)δ2 + 8(1− µ)2(11(U2 − V 2)2 − 4U2V 2)δ4 +

∑
k≥3

(1− µ)kP2k(U, V )δ2k,

1

R3
2

= 1− 6(1− µ)(U2 − V 2)δ2 +
∑
k≥2

(1− µ)kQ2k(U, V )δ2k,

(28)
where P2k(U, V ) and Q2k(U, V ) are polynomials sum of monomials of degree 2k.256
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So if we expand the system (26) with respect to δ we obtain:257 

Ü = −U + 8(1− µ)(U2 + V 2)V̇ δ3 + 12(1− µ)2
[
2µ
(
U4 − 2U2V 2 − V 4

)
+ (U2 + V 2)2

]
Uδ6

+ µ
∑
k≥4

(1− µ)k−1P̄2k−1(U, V )δ2k,

V̈ = −V − 8(1− µ)(U2 + V 2)U̇δ3 + 12(1− µ)2
[
2µ
(
V 4 − 2U2V 2 − U4

)
+ (U2 + V 2)2

]
V δ6

+ µ
∑
k≥4

(1− µ)k−1Q̄2k−1(U, V )δ2k,

(29)

which is an analytical system of ODEs in δ and P̄2k−1(U, V ) and Q̄2k−1(U, V ) are polynomials sum of258

monomials of degree 2k − 1.259

Before proceeding it is important to make two observations:260

1. We can introduce the parameter ε = (1− µ)1/3δ. So we have, using that δ = 1√
C−3µ

:261

ε2 = (1− µ)2/3δ2 =
(1− µ)2/3

C − 3µ
. (30)

2. We also know that C ≥ CL1(µ) since otherwise the Hill region of motion allows transits between262

both primaries and, in this sense, Hill’s region is not regular anymore. As it is well known the263

expansion of CL1
(µ) is (see [28])264

CL1(µ) = 3 + 9

(
1− µ

3

)2/3

− 7
1− µ

3
+O((1− µ)4/3), (31)

therefore, we would like to have a uniform parameter K in order to express the value of the265

Jacobi Constant C with the same order in (1− µ) as CL1
(µ). So, introducing the variable K as266

C = 3µ+K(1− µ)2/3, (32)

we have that the previous expression (30) becomes:267

ε2 =
1

K
.

The change (25) using (32) becomes:268



u =

√
2(1− µ)1/6√

K
U,

v =

√
2(1− µ)1/6√

K
V,

τ = 2
√
K(1− µ)1/3s,

C = 3µ+K(1− µ)2/3.

(33)

Note that the value K is related with the Hill constant by (15) when µ tends to 1.269
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So, in terms of ε = 1/
√
K the system (29) has the following expression:270 

Ü = −U + 8(U2 + V 2)V̇ ε3 + 12
[
2µ
(
U4 − 2U2V 2 − V 4

)
+ (U2 + V 2)2

]
Uε6

+ µ
∑
k≥4

(1− µ)
k−3
3 P̄2k−1(U, V )ε2k,

V̈ = −V − 8(U2 + V 2)U̇ε3 + 12
[
2µ
(
V 4 − 2U2V 2 − U4

)
+ (U2 + V 2)2

]
V ε6

+ µ
∑
k≥4

(1− µ)
k−3
3 Q̄2k−1(U, V )ε2k.

(34)

Second let us prove the following characterization for an EC orbit, based upon the zero value of the271

angular momentum at a minimum distance with the primary.272

Lemma 1. Assume C large enough. An ejection orbit is an EC orbit if and only if it satisfies that273

at a minimum in the distance (with the primary) the angular momentum M = UV̇ − V U̇ = 0.274

Proof. The minimum distance condition is given by:275

UU̇ + V V̇ = 0,

UÜ + U̇2 + V V̈ + V̇ 2 > 0,
(35)

and the angular momentum condition M = UV̇ − V U̇ = 0:276

UV̇ = V U̇. (36)

We will distinguish between two cases:277

1. V̇ ̸= 0. Then, from (36):278

U =
V U̇

V̇
and by (35) =⇒ V U̇

V̇
U̇ + V V̇ = 0 =⇒ V U̇2 + V V̇ 2 = V (U̇2 + V̇ 2) = 0 =⇒ V = 0,

and, by (36) also U = 0.279

2. V̇ = 0, we will have two subcases:280

(a) if U̇ ̸= 0, then by (35) and (36) we get U = V = 0.281

(b) U̇ = 0 then, using equations (34):282

UÜ + V V̈ = −(U2 + V 2)
[
1 +O

(
ε6(|U |4 + |V |4)

)]
,

but this quantity is negative for ε small enough, if U2 + V 2 > 0, which contradicts the283

second item of (35). We conclude that U = V = 0.284

On the other hand, it is clear that if a collision takes place, i. e. U = V = 0 and U̇2+V̇ 2 =
√
8(1− µ),285

then conditions (35) and (36) are trivially satisfied.286

Remark. The condition ε small enough comes from the perturbative approach chosen to prove the287

lemma. Note that if we impose that U̇2 + V̇ 2 > 0 we can remove this condition. This will be very288

useful when we study these orbits numerically. More precisely, we will check that an ejection orbit is289

an n-EC orbit if the angular momentum at the n-th minimum is zero and U̇2 + V̇ 2 > 0.290
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Now let us proceed. Using the vectorial notation U = (U, V, U̇ , V̇ )T , the second order system of ODEs291

(34) can be written as292

U̇ = G(U) = G0(U) + ε3G3(U) + ε6G6(U, V ) +
∑
k≥4

ε2kG2k(U, V ), (37)

where293

G0(U) =


U̇

V̇
−U
−V

 , G3(U) = 8


0
0

(U2 + V 2)V̇

−(U2 + V 2)U̇

 ,

G6(U, V ) = 12


0
0[

2µ
(
U4 − 2U2V 2 − V 4

)
+ (U2 + V 2)2

]
U[

2µ
(
V 4 − 2U2V 2 − U4

)
+ (U2 + V 2)2

]
V

 ,

G2k(U, V ) = µ(1− µ)
k−3
3


0
0

P̄2k−1(U, V )
Q̄2k−1(U, V )

 , for k ≥ 4.

(38)

We remark that G0 and G3 are the only functions that depend on U̇ and V̇ , the remaining ones294

depending only on U and V . Moreover we observe that the expressions appearing in the expansions295

are polynomials. Both properties allow to significantly simplify the computations.296

The next natural step consists in obtaining a solution U = U(τ) as a series expansion in ε:297

U =
∑
j≥0

Ujε
j . (39)

As a usual procedure to obtain the functions Uj , we plug U in system (37), and comparing the powers298

in ε, we obtain a system of ODEs for Uj .299

Computation of the functions Uj300

Now we proceed to compute the explicit expressions for Uj(τ) = (Uj(τ), Vj(τ), U̇j(τ), V̇j(τ)), for any j.301

Actually we will show that, in order to prove Theorem 2, we only need to find explicitly the functions302

Uj up to order j = 6.303

From Definition 4.a and the scaling (33), any ejection orbit U(τ) = U(τ, θ0), has the initial condition304

U(0) = (0, 0, cos θ0, sin θ0), θ0 ∈ [0, 2π), (40)

so we have305

U0(0) = (0, 0, cos θ0, sin θ0), Uj(0) = 0, j ≥ 1. (41)

Solution for ε = 0:306

We must solve the linear system:307 {
Ü0 = −U0,

V̈0 = −V0,
(42)
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which is a harmonic oscillator, with initial condition (40). Then the ejection orbit U0 is given by308

U0 = (U0, V0, U̇0, V̇0), with:309

U0(τ) = cos θ0 sin τ,

V0(τ) = sin θ0 sin τ,

U̇0(τ) = cos θ0 cos τ,

V̇0(τ) = sin θ0 cos τ.

(43)

Solution for ε ̸= 0:310

In order to find the functions Uj , we must solve the successive resulting ODEs when substituting U311

by the series expansion in (34) up to the desired order.312

We observe that, for j ≥ 1, the linear non homogeneous system of ODEs to be solved is313

dUj

dτ
= DG0(U0)Uj + Fj(U0,U1, . . . ,Uj−3) = G0(Uj) + Fj(U0,U1, . . . ,Uj−3),

where the homogeneous system is always the same but the independent term changes and increases314

in complexity with j.315

Since a fundamental matrix for the homogeneous system (the first order variational equations) is given316

by317

X(τ) =


cos τ 0 sin τ 0

0 cos τ 0 sin τ

− sin τ 0 cos τ 0

0 − sin τ 0 cos τ

 , (44)

and the initial conditions are Uj(0) = 0 for j ≥ 1, we obtain the following well known formula318

Uj(τ) = X(τ)

∫ τ

0

X−1(s)Fj(U0(s), . . . ,Uj−3(s))ds. (45)

Remark that from (45) and the expression of (37), G1(U) = G2(U) = G4(U) = G5(U) = 0, we319

know a priori that Uj(τ) = 0, for j = 1, 2, 4, 5.320

The corresponding explicit expressions are the following:321

U3(τ) = (τ sin τ − cos τ sin τ) sin θ0,

V3(τ) = −(τ sin τ − cos τ sin τ) cos θ0,

U6(τ) = − (τ − cos τ sin τ)2 sin τ − µ(15τ cos τ − (8 + 9 cos2 τ − 2 cos4 τ) sin τ)(1− 2 cos4 θ0)

2
cos θ0,

V6(τ) = − (τ − cos τ sin τ)2 sin τ − µ(15τ cos τ − (8 + 9 cos2 τ − 2 cos4 τ) sin τ)(1− 2 sin4 θ0)

2
sin θ0,

(46)
and U7(τ) = V7(τ) = 0. Once we have the ejection solution up to order j = 6, the next step consists322

of computing the n-th minimum in the distance to the primary (located at the origin) the particle323

ejected from as a function of the initial θ0. Equivalently we want to compute the n-th minimum324

of the function
(
U2 + V 2

)
(τ). This requires to compute the precise time denoted by τ∗, needed325
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to reach the n-th minimum in distance. We apply the Implicit Function Theorem to the function326

(UU̇ + V V̇ )(τ∗) = 0 in order to obtain an expansion series in ε, i.e.:327

τ∗ =

6∑
i=0

τ∗i ε
i +O(ε7).

We can easily compute τ∗0 , since we have a harmonic oscillator:328

τ∗0 = nπ.

Writing the function (UU̇+V V̇ )(τ) as an expansion series in ε and collecting terms of the same order,329

we can successively find the terms τ∗i (up to order 6, higher order terms in Appendix A):330

τ∗6 (n) =
15µnπ(1 + 3 cos(4θ0))

8
, (47)

with τi(n, θ0) = 0 for i = 1, 2, 3, 4, 5(, 7).331

Now we are ready to compute the angular momentum M(n, θ0) = (UV̇ − V U̇)(τ∗) whose expansion332

is:333

M(n, θ0) = µε6
(
−15nπ sin(4θ0)

4
+O

(
ε2
))

, (48)

or in short, since we look for the zeros of M(n, θ0) = 0, we write, dividing the previous equation by334

µε6,335

M̂(n, θ0) = −15nπ sin(4θ0)

4
+O

(
ε2
)
. (49)

Now we apply the Implicit Function Theorem and for ε > 0 small enough we obtain that the equation336

(49) has four and only four roots in [0, π) given by337

θ0 =
πm

4
+O(ε2), m = 0, 1, 2, 3. (50)

regardless of the value of the parameter µ. It is clear from (49) that the roots θ0 are simple.338

So we have proved that there exist four n-EC orbits. Moreover, applying the symmetries of the339

system we can conclude that those EC orbits with an intersection angle with m = 0, 2 correspond340

to symmetric n-EC orbits (in the sense that the (x, y) projection is symmetric with respect to the x341

axis). Those EC orbits with an intersection angle with m = 1, 3 correspond to symmetric n-EC orbits342

(in the sense that the (x, y) projection is symmetric one with respect to the other one).343

This finishes the proof of Theorem 2.344

In order to illustrate the results of Theorem 2, in Figure 4 top we plot the function M(n, θ0) for345

µ = 0.1, C = 6 and the values of n = 2 (continuous line) and n = 4 (discontinuous line). We remark346

its sinusoidal behaviour in accordance with equation (49). Consistently with Theorem 2, the curve347

M(n, θ0) intersects four times M(n, θ0) = 0.348

The four specific values of θ0 give rise to four n-EC orbits. When varying ε (or, equivalently, K and349

therefore C in (32)), we obtain four families denoted by αn, βn, γn and δn. In particular, γn and350

αn correspond to the families of orbits that are themselves symmetric with respect to the x axis that351

when C → +∞ have initial angles 0 and π/2 respectively and δn and βn correspond to the families of352

orbits that are one symmetric to the other with respect to the x axis that when C → +∞ have initial353

angles π/4 and 3π/4 respectively. The corresponding EC orbits are shown in the bottom figure in354

usual synodical coordinates (x, y).355
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Figure 4: µ = 0.1, C = 6. Top. Angular momentum M(n, θ0) for n = 2 (continuous line) and n = 4
(discontinuous line). Bottom. The corresponding four n-EC orbits in the plane (x, y) (left for n = 2
and right for n = 4).

6 Analysis of Bifurcations356

So far we have applied the Implicit Function Theorem to infer the existence of four and only four357

n-EC orbits, for any value of µ and C = 3µ + K(1 − µ)1/3 (see (32)) with K big enough, that is358

ε = 1/
√
K small enough. In this procedure the minimum order required in the ε expansions for359

both the functions Uj and τ∗j was order 6. Of course, when ε becomes bigger, the Implicit Function360

Theorem may not be applied anymore and bifurcations can appear. This section is focused on such361

bifurcations.362

We will focus on two purposes: on the one hand, the illustration of the appearance and collapsing of363

bifurcating families of n-EC orbits when doing the continuation of families varying C as parameter;364

and on the other hand, the behavior of K̂(n) and its associated value Ĉ(µ, n) = 3µ+ K̂(n)(1− µ)1/3365

provided by Theorem 2, for any value of µ ∈ (0, 1) and varying n.366

6.1 Bifurcating families367

The first task is to compute the angular momentum M(n, θ0) to higher order. To do so we need368

higher order terms for both the functions Uj and τ∗j . We have proceeded as in the previous Section;369

however, there, expressions up to order 6 were enough. To analyze the bifurcations, we provide their370

expressions for j up to order 10 in the Appendix. Now we are ready to compute the explicit expression371

for the angular momentum M(n, θ0) = (UV̇ − V U̇)(τ∗) up to order 10 which is the following:372
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M(n, θ0) = −15µnπ sin(4θ0)

4
ε6 +

105µ(1− µ)1/3nπ (sin(2θ0) + 5 sin(6θ0))

64
ε8 +

15µn2π2 cos(4θ0)

2
ε9

− 315µ(1− µ)2/3nπ(2 sin(4θ0) + 7 sin(8θ0))

128
ε10 +O(ε11).

(51)

It is clear that if ε is small enough, the dominant term is ε6, and the zeros of M(n, θ0) are related to373

the term sin(4θ0). Therefore we obtain four n-EC orbits.374

Figure 5: µ = 0.1, Top. We plot the angular momentum M(2, θ0). Notice the zoom area where the
appearance of two new bifurcating orbits (in green), besides the family α2 is observed when decreasing
C. Bottom. Left, middle and right. Four 2-EC orbits (the colour code corresponds to the top figure)
for C = 3.76 (in blue), Cbif = 3.72442505 (the bifurcating value, in red), C = 3.69 (in green). Darker
colour: those 2-EC orbits belonging to family α2. In the right plot, also the two new bifurcated 2-EC
orbits are plotted in continuous and discontinuous purple color.

However let us discuss what happens for bigger values of ε, or equivalently for smaller values of C.375

We will illustrate two different kind of bifurcations that take place when doing the continuation of376

families of n-EC orbits and that can be explained precisely from the analytical expression of M(n, θ0)377

to higher order just obtained.378

The first kind of bifurcation can be inferred just taking into account the terms of M(n, θ0) up to379

order 8 in (51). The bifurcation is associated with the term sin(6θ0). See Figure 5 top for µ = 0.1380

and n = 2. We can clearly see how increasing ε (decreasing C), the bifurcation takes place. Let us381

describe the bifurcation close to the 2-EC orbit belonging to family α2. See the zoom area in Figure 5382

top. Locally, at a neighbourhood of the value of θ0 of such EC orbit, for some value of C the angular383

momentum has a unique transversal intersection with the x-axis (that is M(2, θ0) = 0, M ′(2, θ0) = 0).384

For C = 3.76 this intersection corresponds to the 2-EC orbit belonging to the family α2 (see the blue385

curve). For the bifurcating value Cbif = 3.72442505, M(2, θ0) crosses tangently the x axis (see the386

red curve). For smaller values of C, M(2, θ0) crosses the x axis three times, giving rise to two new387
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Figure 6: µ = 0.1, n = 3. Top. We plot the angular momentum M(n, θ0). Notice the zoom area
where the appearance of four new bifurcating orbits (in green), besides the family α3 is observed when
decreasing C. Bottom. Left, middle and right. Four 3-EC orbits (the colour code corresponds to the
top figure) for C = 3.9 (in blue), Cbif = 3.80644009 (the bifurcating value, in red), C = 3.7 (in green).
Darker colour: those 3-EC orbits belonging to family α3. In the middle plot, also the two tangent
new bifurcated 3-EC orbits are plotted. In the right plot, also the four new bifurcated 3-EC orbits
are plotted. The bifurcated orbits are plotted in continuous and discontinuous purple color.

bifurcating families of 2-EC orbits (see the green curve) besides family α2 which persists. The new388

2-EC orbits are (obviously due to symmetry (4)) one symmetric with respect to the other. From a389

global point of view, for a range C < Cbif , varying θ0 ∈ [0, π), M(2, θ0) crosses six times, that is, we390

obtain six 2-EC orbits, and this is related to the term sin(6θ0), which becomes the dominant term391

in M(2, θ0). We show these 2-EC orbits in Figure 5 bottom. More precisely, on the three plots, the392

four 2-EC orbits are shown (in the plane (x, y)) and those 2-EC orbits of family α2 are plotted in a393

darker colour. Since the family α2 persists after the bifurcation, the 2-EC orbits are plotted in the394

left, middle and right plots. The two new bifurcating 2-EC orbits after the bifurcation are also shown395

on the right plot in continuous and discontinuous purple color.396

The second kind of bifurcation can be inferred from the expression of M(n, θ0) up to order 10 given397

in (51). The bifurcation is associated with the term sin(8θ0). See Figure 6 top for µ = 0.1 and n = 3.398

We can clearly see how increasing ε (decreasing C), the angular momentum M(3, θ0) typically crosses399

four times the x-axis (for θ0 ∈ [0, π)), as expected (see the blue curve in the top figure). However at400

some bifurcating value Cbif there appear two tangencies (say from nowhere, see the red curve in the401

zoom area in Figure 6 top); each tangency gives rise to two families when doing the continuation of402

families decreasing C. See the green curve in the zoom area in Figure 6 top. So from a global point403

of view, for a range of C < Cbif and θ0 ∈ [0, π), the angular momentum M(3, θ0) = 0 crosses eight404

times the x-axis, giving rise to eight 3-EC orbits related to the term sin(8θ0). We show these 3-EC405

orbits in Figure 6 bottom. More specifically, on the three plots, the four 3-EC orbits are shown (in the406

plane (x, y)) and those 3-EC orbits of family α3 are plotted in a darker colour. The two 3-EC orbits407

that appear due to the tangency of M(3, θ0) with the x-axis are also plotted on the middle plot, in408
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purple color. Moreover, the four new bifurcating 3-EC orbits after the bifurcation are also shown on409

the right plot, in purple color. A continuous and discontinuous line with the same colour correspond410

to EC orbits that are symmetric one with respect to the other one. In fact, due to the symmetry of411

the problem, we might only consider the two intersection points (those on the left hand side or on412

the right one of the value of θ0 in α3), and the other two intersection points would be obtained by413

symmetry.414

µ n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8
0.1 3.72442505 3.80644009 4.46458918 4.98305580 5.54170719 6.06561273 6.56667290
0.8 4.10028567 4.29693486 4.48498073 4.66568948

Table 1: Values of Ĉ(µ, n) computed for µ = 0.1, µ = 0.8 and n = 2, . . . , 8.

So far we have described two specific kinds of bifurcations that take place for n = 2 and n = 3,415

for µ = 0.1. But from the expression of the angular momentum (51) and the previous discussion,416

we can foresee a great and rich variety of bifurcations. To have a global and exhaustive insight, we417

have done massive numerical simulations in the following sense: we have fixed a value of µ, and, for418

a range of values of C ≥ CL1 (for example C ∈ [CL1 , 8]), we have taken a mesh of 2000 × 2000419

points in the plane (θ, C) ∈ [0, π] × [CL1 , 8], and for each point we have computed the function420

MLC(n, θ0) =
4(1−µ)√
C−3µ

M(n, θ0), i.e. the angular momentum in the original Levi-Civita variables, for421

n = 1, . . . , 8. In Figures 7 and 8 we plot the obtained results for µ = 0.1 and µ = 0.8, what we422

call bifurcation diagrams. For n fixed, we plot the diagram (θ0, C) and the colour standing for the423

value of MLC(n, θ0). The drastic change of colour (from yellow to green) describes the change of sign424

of MLC(n, θ0) and therefore the existence of an n-EC orbit. So for any C fixed, we clearly see the425

number of n-EC orbits. Some comments about Figure 7 must be made: (i) for big values of C, the426

bifurcation diagrams show clearly four n-EC orbits for any value of n, in accordance with Theorem 2.427

See any plot in the figure. (ii) In the first row, right plot, and C close to 3.7, we see the first kind of428

bifurcation described above for n = 2. In the second row, left plot, and C close to 3.9, we recognise the429

second kind of bifurcation described above for n = 3. (iii) It is clear from such diagrams that, when430

we decrease C and increase the value of n, several phenomena of collapse of families and bifurcation of431

new families are more visible. See for example the third row plots, when decreasing C, for θ0 < π/2,432

the collapse of two families, and the appearance of two new ones for θ0 > π/2. Even richer are the433

diagrams on the last row of the figure. (iv) We have also plotted on each bifurcation diagram the value434

of the first bifurcation value of C (decreasing C), which is precisely the value Ĉ(µ, n), for µ = 0.1435

mentioned in Theorem 2. We notice in the plot how this value Ĉ(µ, n) increases when n increases (see436

Table 1).437

When we take a bigger value of µ, for example, µ = 0.8, we obtain Figure 8. Comparing the plots438

obtained with those of Figure 7, we observe two effects: the value of Ĉ(µ, n) is smaller, for the same439

value of n, and moreover, for n = 2, 3, 4, a value of Ĉ(µ, n) really smaller than CL1
is required (compare440

the four first plots in Figures 7 and 8 and see also Table 1.). For bigger values of µ and for the same441

value of C ≥ CL1
, the the Hill region gets really smaller, when increasing µ, so quite naturally, the442

probability of bifurcations decreases. On the other hand, taking C < CL1 represents an enlarging of443

the Hill’s region and therefore a more powerful influence of the big primary, so an easier scenario to444

have bifurcations.445

Remark. We notice that Lemma 1 provides a characterization of an EC orbit if C is large enough.446

Along the numerical simulations done, where the values of C are not so large, we have also used the447

same characterization, but additionally checking that when M = 0 at a minimum distance U̇2+V̇ 2 > 0448

so U = V = 0.449
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Figure 7: Bifurcation diagrams for µ = 0.1, n = 1, . . . , 8 and C in [CL1
, 8]. The color indicates

the value of MLC(n, θ0) and the black curves correspond to the values MLC(n, θ0) = 0. The value of
Ĉ(µ, n), for µ = 0.1 is indicated in each plot with an arrow in the vertical axis (see also Table 1).
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Figure 8: Bifurcation diagrams for µ = 0.8, n = 1, . . . , 8 and C in [CL1
, 8]. The color indicates

the value of MLC(n, θ0) and the black curves correspond to the values MLC(n, θ0) = 0. The value of
Ĉ(µ, n), for µ = 0.1 is indicated in each plot with an arrow in the vertical axis (see also Table 1).

6.2 Behaviour of Ĉ(µ, n)450

As a final goal, we want to describe (numerically) the behaviour of Ĉ(µ, n) = 3µ + K̂(1 − µ)2/3 for451

any value of µ ∈ (0, 1) and n. More precisely, for each value of µ and n, and C big enough, Theorem452 21



1 claims that there exist exactly four families of n-EC orbits. As discussed in the previous subsection,453

when decreasing C bifurcations appear in a natural way. So for fixed µ and n, the first value of454

C (decreasing C) such that there appear more than four n-EC orbits is precisely the value Ĉ(µ, n)455

formulated in Theorem 1.456

Figure 9: Ĉ(µ, n)

In the previous subsection, we have computed the value Ĉ(µ, n), just for µ = 0.1 and n = 1, . . . , 8.457

Our purpose now is to compute Ĉ(µ, n) for any µ ∈ (0, 1) and n. We will always assume that any value458

of C considered satisfies C ≥ CL1
(recall the Hill regions in Figure 1, there is no possible connection459

between P1 and P2, and therefore the dynamics around each primary is the simplest possible).460

The strategy to compute numerically Ĉ, for a fixed µ ∈ (0, 1) and given n, is the following: we take461

the interval I = [CL1
, Cb] of values of C, and for each C ∈ I, (starting at Cb) we vary θ0 ∈ [0, π)462

(that defines the initial conditions of an ejection orbit in synodical Levi-Civita variables) and find the463

four specific values of θ0 (such that M(n, θ0) = 0) corresponding to the expected four n-EC orbits.464

So we have four n-EC orbits for that value of C and decreasing C we obtain four families of n-EC465

orbits. However as we decrease C, we find a value of C ∈ I such that more than four n-EC orbits are466

found. This means that new families have bifurcated. Next we refine the value of C such that it is467

the frontier before appearing new families of n-EC orbits. That is precisely the specific value of Ĉ.468

In Figure 9 we show the results obtained for µ ∈ (0, 1) and n = 2, . . . , 10. Also the curve (µ,CL1
) has469

been plotted (in black). Recall that, as mentioned above, we are focussed on values of C ≥ CL1
. We470

remark that for n = 1, the value Ĉ(µ, 1) is less than CL1
and therefore is not considered. Moreover471

for the specific values of µ = 0.1 and µ = 0.8 we recover the indicated values in Figures 7 and472

8 respectively. From Figure 9 it is clear that the value of Ĉ(µ, n) increases when n increases. This473

means that for higher values of n, that is longer time spans integrations, the effect of the other primary474

is more visible.475

We remark that the shape of the curves in Figure 9 provide a hint about the dependence of K(n) in476

the expression Ĉ(µ, n) = 3µ+K̂(n)(1−µ)2/3 obtained in Theorem 2, more specifically K̂(n) = L̂n2/3.477

We will prove rigorously this dependence in Theorem 1 in the next Section.478
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7 Proof of Theorem 1479

The proof of Theorem 1 is also based on a perturvative approach. Let us introduce a new parameter480

L defined as K = Ln2/3 in (32). In this way, we perform the change (33) and a new time T̂ = τ/n:481 

u =

√
2(1− µ)1/6√

Ln1/3
U ,

v =

√
2(1− µ)1/6√

Ln1/3
V,

T̂ =
2
√
L(1− µ)1/3

n2/3
s =

τ

n
,

C = 3µ+ Ln2/3(1− µ)2/3,

(52)

where we introduce the functions in the new time:482

U(T̂ ) = U(τ), V(T̂ ) = V (τ)

The system (6) becomes, denoting ˙= d
dτ483



Ü =− n2U +
8(U2 + V2)V̇

L3/2
+

12(U2 + V2)2U
L3

+ 2µ

[
n4/3

L(1− µ)2/3

(
1

r2
− 1

)
− 4(U2 + V2)2

L3r32
− 2n2/3(U2 + V2)

L2(1− µ)1/3r32
+

4n2/3U2

L2(1− µ)1/3

]
U ,

V̈ =− n2V − 8(U2 + V2)U̇
L3/2

+
12(U2 + V2)2V

L3

+ 2µ

[
n4/3

L(1− µ)2/3

(
1

r2
− 1

)
− 4(U2 + V2)2

L3r32
+

2n2/3(U2 + V2)

L2(1− µ)1/3r32
− 4n2/3V2

L2(1− µ)1/3

]
V,

(53)

with r2 =
√
1 + 4(1−µ)1/3(U2−V2)

Ln2/3 + 4(1−µ)2/3(U2+V2)2

L2n4/3 . Let us introduce the parameter ξ = 1/
√
L, in484

this way the system (53) becomes485 

Ü =− n2U + 8(U2 + V2)V̇ξ3 + 12(U2 + V2)2Uξ6

+ 2µ

[
n4/3

(1− µ)2/3

(
1

r2
− 1

)
ξ2 − 4(U2 + V2)2

r32
ξ6 − 2n2/3(U2 + V2)

(1− µ)1/3r32
ξ4 +

4n2/3U2

(1− µ)1/3
ξ4
]
U ,

V̈ =− n2V − 8(U2 + V2)U̇ξ3 + 12(U2 + V2)2Vξ6

+ 2µ

[
n4/3

(1− µ)2/3

(
1

r2
− 1

)
ξ2 − 4(U2 + V2)2

r32
ξ6 +

2n2/3(U2 + V2)

(1− µ)1/3r32
ξ4 − 4n2/3V2

(1− µ)1/3
ξ4
]
V,

(54)

with486

r2 =

√
1 +

4(1− µ)1/3(U2 − V2)

n2/3
ξ2 +

4(1− µ)2/3(U2 + V2)2

n4/3
ξ4. (55)

Let us introduce the vectorial notation U = (U ,V, U̇ , V̇). The system (54) can be written as487

U̇ = F0(U) + µF1(U), (56)
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where488

F0(U) =


U̇
V̇

−n2U + 8(U2 + V2)V̇ξ3 + 12(U2 + V2)2Uξ6
−n2V − 8(U2 + V2)U̇ξ3 + 12(U2 + V2)2Vξ6

 ,

F1(U) =


0
0

2
[

n4/3

(1−µ)2/3

(
1
r2

− 1
)
ξ2 − 4(U2+V2)2

r32
ξ6 − 2n2/3(U2+V2)

(1−µ)1/3r32
ξ4 + 4n2/3U2

(1−µ)1/3
ξ4
]
U

2
[

n4/3

(1−µ)2/3

(
1
r2

− 1
)
ξ2 − 4(U2+V2)2

r32
ξ6 + 2n2/3(U2+V2)

(1−µ)1/3r32
ξ4 − 4n2/3V2

(1−µ)1/3
ξ4
]
V

 .

(57)

Remark. Note that F1(U) only depends on the position variables, F1(U) = F1(U ,V).489

At this point, our next goal is to find the solution as U = U0 + U1 where490

U̇0 = F0(U0), (58a)
491

U̇1 = µF1(U0 + U1) +F0(U0 + U1)−F0(U0). (58b)

Notice that U0 is the solution of the 2-body problem (µ = 0) in synodical (rotating) Levi-Civita492

coordinates. That is, we consider system (56) as a perturbation of the 2-body problem (58a) where493

the perturbation parameter is ξ which will be small enough and for any value of µ ∈ (0, 1). Roughly494

speaking, for big values of the Jacobi constant the problem is close the two body problem of the495

mass-less body and the collision primary, regardless the value of the mass parameter µ.496

Note that we are interested only in the ejection orbits Ue = Ue
0 + Ue

1 and the initial conditions of497

these orbits are given by498

Ue
0(0) = (0, 0, n cos θ0, n sin θ0) and Ue

1(0) = 0. (59)

To prove the theorem we will use the same strategy of computing the angular momentum M(n, θ0)499

at the n-th minimum of the distance to the origin and find the values of θ0 such that M(n, θ0) = 0.500

Thus, we will compute Ue and the time needed to reach n-th minimum solving
[
UeU̇e + VeV̇e

]
(θ0, T̂ ∗) =501

0. The last step will be to calculate M(n, θ0).502

The unperturbed system503

As a first step we must solve system (58a)504 Ü0 = −n2U0 + 8(U2
0 + V2

0 )V̇0ξ
3 + 12(U2

0 + V2
0 )

2U0ξ
6,

V̈0 = −n2V0 − 8(U2
0 + V2

0 )U̇0ξ
3 + 12(U2

0 + V2
0 )

2V0ξ
6,

(60)

with initial conditions U0(0) = (0, 0, n cos θ0, n sin θ0).505

In order to obtain the solution of this system, we first consider the 2-body problem in sidereal coor-506

dinates:507 
¨̄U0 = −

[
n2 − 4(Ū0

˙̄V0 − V̄0
˙̄U0)ξ

3
]
Ū0,

¨̄V0 = −
[
n2 − 4(Ū0

˙̄V0 − V̄0
˙̄U0)ξ

3
]
V̄0,

(61)
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and the change of time508

dt

dT̂
= 4(Ū2

0 + V̄2
0 )ξ

3. (62)

being (Ū0(T̂ ), V̄0(T̂ )) the associated solutions.509

We recall that for the two body problem the angular momentum is constant, consequently510 [
Ū0

˙̄V0 − V̄0
˙̄U0

]
(T̂ ) =

(
Ū0

˙̄V0 − V̄0
˙̄U0

)
(0), (63)

and therefore the solution of (61) is given by511 
Ū0(T̂ ) = Ū0(0) cos(ωT̂ ) +

˙̄U0(0)

ω
sin(ωT̂ ),

V̄0(T̂ ) = V̄0(0) cos(ωT̂ ) +
˙̄V0(0)

ω
sin(ωT̂ ),

(64)

where ω =

√
n2 − 4(Ū0

˙̄V0 − V̄0
˙̄U0)(0)ξ3. Moreover the value t(T̂ ) is simply obtained from (62) and512

(64):513

t(T̂ ) = 2

[ (
Ū2
0 + V̄2

0

)
(0)

(
T̂ +

cos(ωT̂ ) sin(ωT̂ )

ω

)
+

2
(
Ū0

˙̄U0 + V̄0
˙̄V0

)
(0)

ω2
sin2(ωT̂ )

+

( ˙̄U2
0 + ˙̄V2

0

)
(0)

ω2

(
T̂ − cos(ωT̂ ) sin(ωT̂ )

ω

)]
ξ3,

(65)

Now we apply the rotation transformation to (64) to obtain the solution of system in synodical514

coordinates (60),515 

U0(T̂ ) = Ū0(T̂ ) cos(−t/2)− V̄0(T̂ ) sin(−t/2),

V0(T̂ ) = Ū0(T̂ ) sin(−t/2) + V̄0(T̂ ) cos(−t/2),

U̇0(T̂ ) =
[
˙̄U0 + 2(Ū2

0 + V̄2
0 )V̄0ξ

3
]
cos(−t/2)−

[
˙̄V0 − 2(Ū2

0 + V̄2
0 )Ū0ξ

3
]
sin(−t/2),

V̇0(T̂ ) =
[
˙̄U0 + 2(Ū2

0 + V̄2
0 )V̄0ξ

3
]
sin(−t/2) +

[
˙̄V0 − 2(Ū2

0 + V̄2
0 )Ū0ξ

3
]
cos(−t/2),

(66)

Notice that the relation between the sidereal initial conditions and the synodical ones (U0V0, U̇0V̇0)(0),516

are obtained simply from (66) putting T̂ = 0517 
U0(0) = Ū0(0),

V0(0) = V̄0(0),

U̇0(0) =
˙̄U0(0) + 2(Ū2

0 + V̄2
0 )(0)V̄0(0)ξ

3,

V̇0(0) =
˙̄V0(0)− 2(Ū2

0 + V̄2
0 )(0)Ū0(0)ξ

3,


Ū0(0) = U0(0),

V̄0(0) = V0(0),

˙̄U0(0) = U̇0(0)− 2(U2
0 + V2

0 )(0)V0(0)ξ
3,

˙̄V0(0) = V̇0(0) + 2(U2
0 + V2

0 )(0)U0(0)ξ
3.

(67)

Since we are interested in the particular case of ejection orbits, which have as their initial condition518

Ū0(0) = (0, 0, n cos θ0, n sin θ0), (68)

the corresponding ejection solution is given by Ue
0 = (Ue

0 ,Ve
0 , U̇e

0 , V̇e
0), where:519 Ue

0 (θ0, T̂ ) =
[
cos θ0 cos (−t/2)− sin θ0 sin (−t/2)

]
sin(nT̂ ) = cos(θ0 − t/2) sin(nT̂ ),

Ve
0(θ0, T̂ ) =

[
cos θ0 sin (−t/2) + sin θ0 cos (−t/2)

]
sin(nT̂ ) = sin(θ0 − t/2) sin(nT̂ ),

(69)
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with520

t = 2

[
T̂ − cos(nT̂ ) sin(nT̂ )

n

]
ξ3. (70)

If we denote by T̂ ∗
0 the time needed by Ue

0(T̂ ) to reach the n-th minimum distance to the origin, it is521

clear from (69) that522

T̂ ∗
0 = π. (71)

The perturbed system523

In order to solve the perturbed problem (i.e. µ ̸= 0) we rewrite system (58b) as524

U̇1 = DF0(U0)U1 + G(U1), (72)

where U0 = Ue
0 is the ejection solution (69) of the two body problem and525

G(U1) = µF1(Ue
0 + U1) +F0(Ue

0 + U1)−F0(Ue
0)−DF0(Ue

0)U1. (73)

Note that the ejection solution Ue
1 has zero initial condition and therefore is the solution of the implicit526

equation527

Ue
1 = H{Ue

1}, (74)

where we define528

H{U}(T̂ ) = X(T̂ )

∫ T̂

0

X−1(T̂ )G(U(T̂ )) dT̂ , (75)

and X(T̂ ) is the fundamental matrix of the linear system:529

U̇1 = DF0(Ue
0)U1. (76)

We will apply a Fixed Point Theorem to prove the existence of the solution Ue
1. Thus we consider the530

space531

χ = {U : [0, T ] −→ R4, U continuous},

for a given T , for example T = 2π.532

For a given function U = (U ,V, U̇ , V̇) ∈ χ we consider the norm:533

||U || = sup
T̂ ∈[0,T ]

(n|U(T̂ )|+ n|V(T̂ )|+ |U̇(T̂ )|+ |V̇(T̂ )|). (77)

With this norm χ is a Banach space.534

As usual, given an R > 0, we define the ball BR(0) ⊂ χ as the functions U ∈ χ such that ∥U∥ ≤ R.535

Next lemmas show that the required hypotheses for the Fixed Point Theorem to be applied are536

satisfied.537

Lemma 2. There exist ξ0 > 0 and a constant M1 > 0 such that, for 0 < ξ < ξ0, 0 < µ < 1 and538

n ∈ N,539

∥H{0}∥ ≤ M1µξ
6.

Proof. See Appendix B.1.540

Lemma 3. There exist 0 < ξ1 ≤ ξ0 and a constant M2 ≥ M1 such that, for 0 < ξ < ξ1, 0 < µ < 1541

and n ∈ N, given U⊕, U⊖ ∈ BR(0) with R = 2M1µξ
6 then542

∥H{U⊕} −H{U⊖}∥ ≤ M2µξ
6∥U⊕ − U⊖∥.
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Proof. See Appendix B.2.543

At this point we select ξ1 s.t. M2µξ
6
1 < 1/2, so we have the following result544

Lemma 4. Under the same hypotheses of Lemma 3 if we reduce ξ1 such that M2µξ
6
1 < 1/2, one545

has that the operator H : BR(0) → BR(0) and it is a contraction and therefore there exists a unique546

Ue
1 ∈ BR(0) which is solution of the equation (74) in χ.547

Proof. If U ∈ BR(0), then:548

∥H{U}∥ = ∥H{0}+H{U} −H{0}∥ ≤ ∥H{0}∥+ ∥H{U} −H{0}∥ ≤ R

2
+

R

2
= R,

and we already know by Lemma 3 that H is Lipschitz with Lipschitz constant M2µξ
6 < 1/2.549

By the Fixed Point Theorem there exists a unique Ue
1 ∈ BR(0) which is solution of the equation550

(74).551

Observe that once we know the existence and bounds of the function Ue
1, its smoothness is a conse-552

quence of being solution of a smooth differential equation.553

The results of the previous lemmas give us the following properties:554

• ∥Ue
1∥ ≤ R = 2M1µξ

6,555

• ||Ue
1 −H{0}|| = ||H{Ue

1} −H{0}|| ≤ M2µξ
6||Ue

1|| ≤ 2M1M2µ
2ξ12.556

Writing these inequalities in components, and using the definition of the norm (77), we have557

• Ue
1 = H1{0}+

µ2

n
O(ξ12),558

• Ve
1 = H2{0}+

µ2

n
O(ξ12),559

• U̇e
1 = H3{0}+ µ2O(ξ12),560

• V̇e
1 = H4{0}+ µ2O(ξ12),561

where H = (H1,H2,H3,H4).562

Lemma 5. With the same hypotheses of Lemma 4, the value of H{0} is given by563

H1{0} = Ue
6 (T̂ )ξ6 +

µ

n
O(ξ8),

H2{0} = Ve
6(T̂ )ξ6 +

µ

n
O(ξ8),

H3{0} = U̇e
6 (T̂ )ξ6 + µO(ξ8),

H4{0} = V̇e
6(T̂ )ξ6 + µO(ξ8).

(78)
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where Ue
6(T̂ ) = (Ue

6 ,Ve
6 , U̇e

6 , V̇e
6)(T̂ ) are the coefficients of Ue

1 of order 6 in ξ. They are given by:564

Ue
6 (T̂ ) = −

µ cos θ0(2 cos
4 θ0 − 1)

(
60nT̂ − 16 sin(2nT̂ ) + sin(4nT̂ )

)
cos(nT̂ )

8n2
,

Ve
6(T̂ ) = −

µ sin θ0(2 sin
4 θ0 − 1)

(
60nT̂ − 16 sin(2nT̂ ) + sin(4nT̂ )

)
cos(nT̂ )

8n2
,

U̇e
6 (T̂ ) = −

µ cos θ0(2 cos
4 θ0 − 1)

[(
33− 35 cos2(nT̂ ) + 10 cos4(nT̂ )

)
cos(nT̂ )− 15nT̂ sin(nT̂ )

]
2n

,

V̇e
6(T̂ ) = −

µ sin θ0(2 sin
4 θ0 − 1)

[(
33− 35 cos2(nT̂ ) + 10 cos4(nT̂ )

)
cos(nT̂ )− 15nT̂ sin(nT̂ )

]
2n

.

(79)

Proof. See Appendix B.3.565

With this notation, we have566

• Ue(T̂ ) = Ue
0 (T̂ ) + Ue

6 (T̂ )ξ6 +
µ

n
O(ξ8),567

• Ve(T̂ ) = Ve
0(T̂ ) + Ve

6(T̂ )ξ6 +
µ

n
O(ξ8),568

• U̇e(T̂ ) = U̇e
0 (T̂ ) + U̇e

6 (T̂ )ξ6 + µO(ξ8),569

• V̇e(T̂ ) = V̇e
0(T̂ ) + V̇e

6(T̂ )ξ6 + µO(ξ8).570

From Lemma 5 we have that:571

Ue
6 (T̂ ∗

0 ) = −15(−1)nµπ cos θ0(2 cos
4 θ0 − 1)

2n
,

Ve
6(T̂ ∗

0 ) = −15(−1)nµπ sin θ0(2 sin
4 θ0 − 1)

2n
,

U̇e
6 (T̂ ∗

0 ) = −4(−1)nµ cos θ0(2 cos
4 θ0 − 1)

n
,

V̇e
6(T̂ ∗

0 ) = −4(−1)nµ sin θ0(2 sin
4 θ0 − 1)

n
.

(80)

The time needed to reach the n minimum in the distance with the first primary can be obtained from572

the following Lemma:573

Lemma 6. With the same hypotheses of Lemma 4, the time T̂ ∗ needed for the ejection solution Ue to574

reach the n minimum in the distance with the first primary is given by T̂ ∗ = T̂ ∗
0 + T̂ ∗

1 , where T̂ ∗
0 = π575

and:576

T̂ ∗
1 =

15µπ(3 cos(4θ0) + 1)

8n2
ξ6 +

µ

n2
O(ξ8). (81)
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Proof. In order to compute the n minimum in the distance with the first primary we have to solve577

0 =
(
UeU̇e + VeV̇e

)
(T̂ ∗)

=
(
[Ue

0 + Ue
1 ][U̇e

0 + U̇e
1 ] + [Ve

0 + Ve
1 ][V̇e

0 + V̇e
1 ]
)
(T̂ ∗)

=
(
Ue
0 U̇e

0 + Ve
0 V̇e

0

)
(T̂ ∗) + ξ6

(
Ue
0 U̇e

6 + Ue
6 U̇e

0 + Ve
0 V̇e

6 + Ve
6 V̇e

0

)
(T̂ ∗) + µO(ξ8)

+ ξ12
(
Ue
6 U̇e

6 + Ve
6 V̇e

6

)
(T ∗) +

µ2

n
O(ξ14)

=
(
Ue
0 U̇e

0 + Ve
0 V̇e

0

)
(T̂ ∗) + ξ6

(
Ue
0 U̇e

6 + Ue
6 U̇e

0 + Ve
0 V̇e

6 + Ve
6 V̇e

0

)
(T̂ ∗) + µO(ξ8)

=
(
Ue
0 U̇e

0 + Ve
0 V̇e

0

)
(T̂ ∗

0 + T̂ ∗
1 ) + ξ6

(
Ue
0 U̇e

6 + Ue
6 U̇e

0 + Ve
0 V̇e

6 + Ve
6 V̇e

0

)
(T̂ ∗

0 + T̂ ∗
1 )

+ µO(ξ8)

=
(
Ue
0 U̇e

0 + Ve
0 V̇e

0

)
(T̂ ∗

0 ) + T̂ ∗
1

(
Ue
0 Üe

0 + U̇e2

0 + V0V̈0 + V̇e2

0

)
(T̂ ∗

0 )

+ ξ6
(
Ue
0 U̇e

6 + Ue
6 U̇e

0 + Ve
0 V̇e

6 + Ve
6 V̇e

0

)
(T̂ ∗

0 ) + µO(ξ8)

= T̂ ∗
1 n2 + ξ6

(
Ue
6 U̇e

0 + Ve
6 V̇e

0

)
(T̂ ∗

0 ) + µO(ξ8),

and therefore we have578

T ∗
1 =

(
Ue
6 U̇e

0 + Ve
6 V̇e

0

)
(T ∗

0 )

n2
ξ6 +

µ

n2
O(ξ8) =

15µπ(3 cos(4θ0) + 1)

8n2
ξ6 +

µ

n2
O(ξ8). (82)

579

Finally the angular momentum at T̂ ∗ is given by580

Lemma 7. With the same hypotheses of Lemma 4, the angular momentum of the ejection solution581

Ue at time T̂ ∗ is given by:582

M(n, θ0) = −15µπ sin(4θ0)

4
ξ6 + µO(ξ8).

Proof.

M(n, θ0) =
(
UeV̇e − VeU̇e

)
(T̂ ∗)

=
(
Ue
0 V̇e

0 − Ve
0 U̇e

0

)
(T̂ ∗) + ξ6

(
Ue
0 V̇e

6 + Ue
6 V̇e

0 − Ve
0 U̇e

6 − Ve
6 U̇e

0

)
(T̂ ∗) + µO(ξ8)

=
(
Ue
0 V̇e

0 − Ve
0 U̇e

0

)
(T̂ ∗

0 ) + T̂ ∗
1

(
Ue
0 V̈e

0 − Ve
0 Üe

0

)
(T̂ ∗

0 ) +
µ2

n
O(ξ12)

+ ξ6
(
Ue
0 V̇e

6 + Ue
6 V̇e

0 − Ve
0 U̇e

6 − Ve
6 U̇e

0

)
(T̂ ∗

0 ) + µO(ξ8)

=
(
Ue
0 V̇e

0 − Ve
0 U̇e

0

)
(T̂ ∗

0 ) + ξ6T̂ ∗
6

(
Ue
0 V̈e

0 − Ve
0 Üe

0

)
(T̂ ∗

0 )

+ ξ6
(
Ue
0 V̇e

6 + Ue
6 V̇e

0 − Ve
0 U̇e

6 − Ve
6 U̇e

0

)
(T̂ ∗

0 ) + µO(ξ8)

= ξ6
(
Ue
6 V̇e

0 − Ve
6 U̇e

0

)
(T̂ ∗

0 ) + µO(ξ8)

= −15µπ sin(4θ0)

4
ξ6 + µO(ξ8).

583
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In this way, applying the Implicit Function Theorem, we have that for ξ ≥ 0 small enough we obtain584

that M(n, θ0) has four and only four roots in [0, π) given by585

θ0 =
πm

4
+O(ξ2), m = 0, 1, 2, 3

regardless of the values of the mass parameter µ and n. We can characterize this n-EC orbits in the586

same way as in Theorem 2.587

This concludes the proof of Theorem 1.588

8 Results for the Hill problem589

As we have seen in Section 3, Hill problem is a limit case of RTBP. In this way, the results obtained590

in the previous sections can easily be extrapolated to the case of Hill problem. In particular, if in (18)591

we introduce the new variables592 
uh =

√
2

K
Uh,

vh =

√
2

K
Vh,

τ = 2
√
Ks,

(83)

we obtain the system593 
Ü = −U +

8(U2 + V 2)V̇

K3/2
+

12
[
2
(
U4 − 2U2V 2 − V 4

)
+ (U2 + V 2)2

]
U

K3
,

V̈ = −V − 8(U2 + V 2)U̇

K3/2
+

12
[
2
(
V 4 − 2U2V 2 − U4

)
+ (U2 + V 2)2

]
V

K3
,

(84)

which is the same system of equations that we have obtained in (34) imposing now µ = 1 and recalling594

that ε = 1/
√
K. So we already know the solution of system (84) which is the one obtained for system595

(34) with µ = 1.596

In this way, using the extra symmetry (16b) of the Hill problem we obtain the following Corollary of597

Theorem 2:598

Corollary 8.1. In the Hill problem, for all n ∈ N, there exists a K̂(n) such that for K ≥ K̂(n) there599

exist exactly four n-EC orbits, which can be characterized by:600

• Two n-EC orbits themselves symmetric with respect to the x axis and one symmetric to the other601

over the y axis. The corresponding families are γn and αn and, when C → +∞, have initial602

angles 0 and π/2 respectively.603

• Two n-EC orbits themselves symmetric with respect to the y axis and one symmetric to the other604

over the x axis. The corresponding families are δn and βn and, when C → +∞, have initial605

angles π/4 and 3π/4 respectively.606

It is important to note that the proof is exactly the same with the observation, as we have said before,607

that the families of orbits that were symmetric with respect to the x axis in the RTBP (αn and γn) are608

now also symmetric one of the other with respect to the y axis, and the families that were symmetric609

one of the other in the restricted problem (βn and δn) are now also symmetric themselves with respect610

to the y axis (see Figure 10).611
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Figure 10: Trajectories of the four n-EC orbits αn (yellow), βn (green), γn (blue) and δn (red) for
n = 1, 2, 3 (from left to right) and K = 8.

Furthermore, thanks to the fact that the polynomials P̄2k and Q̄2k disappear, it is not necessary612

to consider an expansion in terms of ε = 1/
√
K and it can be considered directly an expansion on613

ϵ = 1/K3/2.614

Similarly, if we introduce K = Ln2/3, that is, we consider the change615 

uh =

√
2√

Ln1/3
Uh,

vh =

√
2√

Ln1/3
Vh,

T̂ =
2
√
L

n2/3
s,

(85)

we obtain the same system of equations as (54) putting µ = 1 and considering ξ = 1/
√
L. In this way616

we can obtain the following corollary of Theorem 1:617

Corollary 8.2. There exists an L̂ such that for L ≥ L̂ and for any value of n ∈ N and K = Ln2/3,618

there exist exactly four n-EC orbits, which can be characterized in the same way as the previous619

corollary.620

In this way, if we do the numerical exploration to compute the n-EC orbits that exist for values of621

K ≥ KL (see Figure 11) we see that, as expected by the Corollary 8.2, the value of K̂ grows with n.622

Before going into more detail on the value of K̂ let us make a few comments about Figure 11. It is623

important to note that thanks to the extra symmetry we could only study the ejection orbits with624

θ0 ∈ [0, π/2), but in order to visualize the evolution of the n-EC orbits we will consider the interval625

θ0 ∈ [0, π) in Figure 11. In this figure we observe how at least the first new families of n-EC orbits626

that appear are born from two of the original families (αn and γn, or βn and δn) when the angle of627

ejection θ0 is 0 and π/2 respectively (i.e. ϑ0 = 0, π) and collapse into the two other original families628

when the value of θ0 is π/4 and 3π/4 (i.e. ϑ0 = π/2, 3π/2) (see for example Figure 12).629

These respective values are very particular, since when these bifurcations take place we have that the630

n-EC orbits are periodic or are part of a periodic EC orbit. In particular we have:631

• If the θ0 of βn is 0 or π/2 (therefore θ0 of δn is π/2 or 0) then we have periodic EC orbit formed632

by βn and δn (see Figure 12 left). Analogously, if the θ0 of αn is π/4 or 3π/4 (therefore θ0 of633

γn is 3π/4 or π/4) then we have periodic EC orbit formed by αn and γn (see Figure 12 right).634
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Figure 11: Value of the angular momentum of the ejection orbits at the n intersection with Σm for
K ∈ [KL1

, 8] and n = 3, . . . , 10. In black the values corresponding to n-EC orbits.
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Figure 12: Top. Initial conditions for the 5-EC orbits corresponding to the families αn (yellow), βn

(green), γn (blue), δn (red) and the new families of orbits (purple) as function of K. Bottom. The
trajectories of the orbits (in correspondence with the previous color) that exist for the values of K
denoted previously. The values of K correspond to the value of the bifurcation K ≈ 5.02714993 (left),
a value where we have eight 5-EC orbits K = 4.86 (middle) and the value of collapse K ≈ 4.72835275.

• If the θ0 of βn is π/4 or 3π/4 (therefore θ0 of δn is 3π/4 or π/4) then βn and δn are periodic635

EC orbits (see Figure 13 right). Analogously, if the θ0 of αn is 0 or π/2 (therefore θ0 of γn is636

π/2 or 0) then αn and γn are periodic EC orbits (see Figure 13 left).637

We have computed the value K̂(n) for n = 1, . . . , 100 (see Figure 14). It is important to remark that638

the numerical value of K̂(n) obtained fits with the expression of the Corollary 8.2. In particular, if we639

draw the curve Ln2/3 with L = 22/3 we can see how it practically matches the value of the numerical640

bound obtained for K̂ (see Figure 14).641

To conclude, we have seen how not only does the value of K̂(n) follow the curve Ln2/3 with L = 22/3,642

but also the successive bifurcations (the values of K where appear new EC orbits) are closely related643

to the curves Ln2/3 with L = (2/p)2/3 being p a natural number. In particular, in Figure 15 we can644

see how the value of the successive bifurcations coincides with the curves Ln2/3 with L = (2/p)2/3645

and p = 1, . . . , 10.646
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Figure 13: Trajectories of 9-EC periodic orbits associated with α9 (yellow) and γ9 (blue) for K ≈
4.77318771 (left) and β9 (green) and δ9 (red) for K ≈ 4.42215362 (right).

Figure 14: Dots: Values of K̂(n). Black line, curve Ln2/3 with L = 22/3.

Data availability647

The datasets generated during and/or analysed during the current study are available from the cor-648

responding author on reasonable request.649
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Figure 15: In color values of K where exists more than 4 n-EC orbits for n = 1, . . . , 100. The black
lines correspond to the curves Ln2/3 with L = (2/p)2/3 and p = 1, . . . , 10.
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A Values of the solutions727

U7(τ, θ0) = 0,

V7(τ, θ0) = 0,

U8(τ, θ0) =
µ(1− µ)1/3

6

[
105τ cos τ − (48 + 87 cos2 τ − 38 cos4 τ + 8 cos6 τ) sin τ

]
∗ (5 cos6 θ0 − 6 cos2 θ0 + 2) cos θ0,

V8(τ, θ0) = −µ(1− µ)1/3

6

[
105τ cos τ − (48 + 87 cos2 τ − 38 cos4 τ + 8 cos6 τ) sin τ

]
∗ (5 sin6 θ0 − 6 sin2 θ0 + 2) sin θ0,

U9(τ, θ0) = − 1

24

[
4(τ − cos τ sin τ)3 sin τ − µ

(
3τ(23 + 144 cos2 τ + 8 cos4 τ) sin τ

− (379− 217 cos2 τ − 178 cos4 τ + 16 cos6 τ) cos τ − 480τ(1 + 6 cos2 τ) sin τ cos2 θ0

+ 32(81− 53 cos2 τ − 32 cos4 τ + 4 cos6 τ) cos τ cos2 θ0 − 360τ2 cos τ cos4 θ0

+ 240τ(3 + 15 cos2 τ − cos4 τ) sin τ cos4 θ0

− 8(374− 257 cos2 τ − 143 cos4 τ + 26 cos6 τ) cos τ cos4 θ0

)]
sin θ0,

V9(τ, θ0) =
1

24

[
4(τ − cos τ sin τ)3 sin τ − µ

(
3τ(23 + 144 cos2 τ + 8 cos4 τ) sin τ

− (379− 217 cos2 τ − 178 cos4 τ + 16 cos6 τ) cos τ − 480τ(1 + 6 cos2 τ) sin τ sin2 θ0

+ 32(81− 53 cos2 τ − 32 cos4 τ + 4 cos6 τ) cos τ sin2 θ0 − 360τ2 cos τ sin4 θ0

+ 240τ(3 + 15 cos2 τ − cos4 τ) sin τ sin4 θ0

− 8(374− 257 cos2 τ − 143 cos4 τ + 26 cos6 τ) cos τ sin4 θ0

)]
cos θ0,

U10(τ, θ0) =
µ(1− µ)2/3

8

[
315τ cos τ −

(
128 + 325 cos2 τ − 210 cos4 τ + 88 cos6 τ

− 16 cos8 τ
)
sin τ

]
(3− 20 cos2 θ0 + 30 cos4 θ0 − 14 cos8 θ0) cos θ0,
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V10(τ, θ0) =
µ(1− µ)2/3

8

[
315τ cos τ −

(
128 + 325 cos2 τ − 210 cos4 τ + 88 cos6 τ

− 16 cos8 τ
)
sin τ

]
(3− 20 sin2 θ0 + 30 sin4 θ0 − 14 sin8 θ0) sin θ0.

Then, writing the function UU̇ + V V̇ as an expansion series in ε and collecting terms of the same
order, we can successively find the terms τ∗i of order i = 7, . . . , 10 from (UU̇ + V V̇ )(τ∗) = 0:

τ∗7 (n, θ0) = 0,

τ∗8 (n, θ0) = −35µ(1− µ)1/3nπ cos(2θ0)(5 cos
2(2θ0)− 3)

4
,

τ∗9 (n, θ0) =
15µn2π2 sin(4θ0)

2
,

τ∗10(n, θ0) =
315µ(1− µ)2/3nπ(13− 10 cos(4θ0)− 35 cos2(4θ0))

256
.

Now we are ready to compute the explicit expression for the angular momentum M(n, θ0) = (UV̇ −728

V U̇)(τ∗) up to order 10 which is the following:729

M(n, θ0) = −15µnπ sin(4θ0)

4
ε6 +

105µ(1− µ)1/3nπ (sin(2θ0) + 5 sin(6θ0))

64
ε8 +

15µn2π2 cos(4θ0)

2
ε9

− 315µ(1− µ)2/3nπ(2 sin(4θ0) + 7 sin(8θ0))

128
ε10 +O(ε11).

which is precisely (51).730

B Proof of the auxiliary lemmas731

We must prove Lemmas 2, 3 and 5. First, let us fix some notation. Given a matrix A = (aij)i,j=1,...,4,732

we denote the new matrix733

|A| = (|aij |)i,j=1,...,4.

Analogously for vectors v = (v1, . . . , v4):734

|v| = (|v1|, . . . , |v4|),

and given two vectors v = (v1, . . . , v4), w = (w1, . . . , w4), we will say that735

v ≤ w if vi ≤ wi ∀i = 1, . . . , 4.

Similarly with matrices A ≤ B.736

With this notation we have:737

|Av| ≤ |A||v|.

During this section we will use M to denote any constant which appears in the bounds and is inde-738

pendent of ξ, µ and n ∈ N.739
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Lemma 8. The fundamental matrix X for system (76) can be expressed as740

X(T̂ ) =



cos(nT̂ ) +O(ξ3) O(ξ3)
sin(nT̂ ) +O(ξ3)

n

1

n
O(ξ3)

O(ξ3) cos(nT̂ ) +O(ξ3)
1

n
O(ξ3)

sin(nT̂ ) +O(ξ3)

n

−n sin(nT̂ ) + nO(ξ3) nO(ξ3) cos(nT̂ ) +O(ξ3) O(ξ3)

nO(ξ3) −n sin(nT̂ ) + nO(ξ3) O(ξ3) cos(nT̂ ) +O(ξ3)


,

and its inverse matrix as741

X−1(T̂ ) =



cos(nT̂ ) +O(ξ3) O(ξ3)
− sin(nT̂ ) +O(ξ3)

n

1

n
O(ξ3)

O(ξ3) cos(nT̂ ) +O(ξ3)
1

n
O(ξ3)

− sin(nT̂ ) +O(ξ3)

n

n sin(nT̂ ) + nO(ξ3) nO(ξ3) cos(nT̂ ) +O(ξ3) O(ξ3)

nO(ξ3) n sin(nT̂ ) + nO(ξ3) O(ξ3) cos(nT̂ ) +O(ξ3)


.

Proof. Consider the general solution U0 of system (58a) given by (64), (65) and (66), we can express742

the fundamental matrix of the system743

U̇1 = DF0(U0)U1,

as744

X = RA,

where745

R =


cos(−t/2) − sin(−t/2) 0 0
sin(−t/2) cos(−t/2) 0 0

0 0 cos(−t/2) − sin(−t/2)
0 0 sin(−t/2) cos(−t/2)

 , (86)

and A is the matrix with rows746

A1(T̂ ) =

[
∂Ū0

∂U0(0)
+

V̄0

2

∂t

∂U0(0)

]
(T̂ ),

A2(T̂ ) =

[
∂V̄0

∂U0(0)
− Ū0

2

dt

∂U0(0)

]
(T̂ ),

A3(T̂ ) =

[
∂ ˙̄U0

∂U0(0)
+ 2

(
Ū2
0 + 3V̄2

0

)
ξ3

∂V̄0

∂U0(0)
+ 4Ū0V̄0ξ

3 ∂Ū0

∂U0(0)
+

˙̄V0 − 2(Ū2
0 + V̄2

0 )Ū0ξ
3

2

∂t

∂U0(0)

]
(T̂ ),

A4(T̂ ) =

[
∂ ˙̄V0

∂U0(0)
− 2

(
3Ū2

0 + V̄2
0

)
ξ3

∂Ū0

∂U0(0)
− 4Ū0V̄0ξ

3 ∂V̄0

∂U0(0)
−

˙̄U0 + 2(Ū2
0 + V̄2

0 )V̄0ξ
3

2

∂t

∂U0(0)

]
(T̂ ),

(87)

where Ū0 is given by (64).747

Note that we are interested in solving equations (76), which correspond to the ejection orbits Ue
0,748

that have initial conditions (0, 0, n cos θ0, n sin θ0). So we must compute the fundamental matrix X749

with U0(T̂ ) = Ue
0(T̂ ). We denote by Ae and Re the corresponding matrices. Recall also that the750

expression of t is given by (70) and the explicit elements of Ae are provided in Appendix C.751
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In this way, we can express Ae and Re as752

Ae =



cos(nT̂ ) +O(ξ3) O(ξ3)
sin(nT̂ ) +O(ξ3)

n

1

n
O(ξ3)

O(ξ3) cos(nT̂ ) +O(ξ3)
1

n
O(ξ3)

sin(nT̂ ) +O(ξ3)

n

−n sin(nT̂ ) + nO(ξ3) nO(ξ3) cos(nT̂ ) +O(ξ3) O(ξ3)

nO(ξ3) −n sin(nT̂ ) + nO(ξ3) O(ξ3) cos(nT̂ ) +O(ξ3)


,

Re = Id+


O(ξ6) O(ξ3) 0 0
O(ξ3) O(ξ6) 0 0

0 0 O(ξ6) O(ξ3)
0 0 O(ξ3) O(ξ6)

 ,

and therefore,753

X(T̂ ) =



cos(nT̂ ) +O(ξ3) O(ξ3)
sin(nT̂ ) +O(ξ3)

n

1

n
O(ξ3)

O(ξ3) cos(nT̂ ) +O(ξ3)
1

n
O(ξ3)

sin(nT̂ ) +O(ξ3)

n

−n sin(nT̂ ) + nO(ξ3) nO(ξ3) cos(nT̂ ) +O(ξ3) O(ξ3)

nO(ξ3) −n sin(nT̂ ) + nO(ξ3) O(ξ3) cos(nT̂ ) +O(ξ3)


.

The expression for X−1(T̂ ) can be found in a similar way.754

755

B.1 Proof of Lemma 2756

From (73) and (75) we have757

H{0}(T̂ ) = X(T̂ )

∫ T̂

0

X−1(T̂ )G(0) dT̂ = µX(T̂ )

∫ T̂

0

X−1(T̂ )F1(Ue
0(T̂ )) dT̂ , (88)

so, the first step is to bound the components of F1(Ue
0) (see (57)).758

Concerning the expansions involving r2 in (55), we have759 (
1

r2
− 1

)
= −2(1− µ)1/3(U2 − V2)

n2/3
ξ2 +

4(1− µ)2/3(U4 − 4U2V2 + V4)

n4/3
ξ4 +

1

n2
O(ξ6),

1

r32
= 1− 6(1− µ)1/3(U2 − V2)

n2/3
ξ2 +

1

n4/3
O(ξ4),

(89)

where the symbol O refers to terms bounded for bounded U and any µ ∈ (0, 1) and n ∈ N. Thus, we760

obtain761

F1(U ,V) =


0
0

24
(
U4 − 2U2V2 − V4

)
Uξ6 + 1

n2/3O(ξ8)
24
(
V4 − 2U2V2 − U4

)
Vξ6 + 1

n2/3O(ξ8)

 . (90)

Let us bound |F1(Ue
0 ,Ve

0)|. Recall that (see (69)) we have that,762

Ue
0
2(θ0, T̂ ) + Ve

0
2(θ0, T̂ ) = sin2(nT̂ ) ≤ 1,
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Therefore, |Ue
0 | ≤ 1, |Ve

0 | ≤ 1 are bounded and consequently, for ξ small enough:763

|F1(Ue
0 ,Ve

0)| ≤ M


0
0

ξ6 + 1
n2/3O(ξ8)

ξ6 + 1
n2/3O(ξ8)

 = M

[
ξ6 +

1

n2/3
O(ξ8)

]
0
0
1
1

 ≤ Mξ6


0
0
1
1

 . (91)

and the constant M is independent of µ and n.764

By Lemma 8 we can bound |X| ≤ M and |X−1| ≤ M where765

M =



1 +O(ξ3) O(ξ3)
1 +O(ξ3)

n

1

n
O(ξ3)

O(ξ3) 1 +O(ξ3)
1

n
O(ξ3)

1 +O(ξ3)

n
n+ nO(ξ3) nO(ξ3) 1 +O(ξ3) O(ξ3)

nO(ξ3) n+ nO(ξ3) O(ξ3) 1 +O(ξ3)


. (92)

In this way, we have766

|X−1(T̂ )F1(Ue
0 (T̂ ),Ve

0(T̂ ))| ≤ |X−1(T̂ )||F1(Ue
0 (T̂ ),Ve

0(T̂ ))|
≤ M|F1(Ue

0 (T̂ ),Ve
0(T̂ ))|

≤ Mξ6


1/n
1/n
1
1

 .

(93)

And, therefore, as we have taken T = 2π:767

∫ T

0

|X−1(T̂ )F1(Ue
0 (T̂ ),Ve

0(T̂ ))| dT̂ ≤ Mξ6


1/n
1/n
1
1

 . (94)

Finally, multiplying by µX we have768

|H{0}| ≤ Mµξ6


1/n
1/n
1
1

 . (95)

and using the definition of the norm in (77) and renaming M1 = M we obtain the desired result:769

∥H{0}∥ ≤ Mµξ6. (96)

B.2 Proof of Lemma 3770

In order to bound H(U⊕) − H(U⊖) (see (75)), first we need to bound G(U⊕) − G(U⊖), for U⊕,771

U⊖ ∈ BR(0), where R = 2M1µξ
6. In order to ease the computations, let us introduce772

G(U1) = G0(U1) + G1(U1), (97)

with773

G0(U1) = F0(Ue
0(T̂ ) + U1)−F0(Ue

0(T̂ ))−DF0(Ue
0(T̂ ))U1,

G1(U1) = µF1(Ue
0 (T̂ ) + U1,Ve

0(T̂ ) + V1).
(98)

We will bound separately the term G0(U⊕)−G0(U⊖) in Lemma 9 and G1(U⊕)−G1(U⊖) in Lemma774

10.775
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Lemma 9. Take U⊕,U⊖ ∈ BR(0). Then for 0 < ξ small enough we have that:776

∥G0(U⊕)− G0(U⊖)∥ ≤ Mµ

n
ξ9∥U⊕ − U⊖∥.

Proof. First, we observe that G0(U) = (G1
0 ,G2

0 ,G3
0 ,G4

0)(U) = (0, 0,G3
0 ,G4

0)(U). Therefore we will777

consider the last two components. We will do the computations for G3
0 , the ones for G4

0 are analogous.778

Using the Mean Value Theorem we have:779

G3
0(U⊕)− G3

0(U⊖) = F3
0 (U0 + U⊕)−F3

0 (U0 + U⊖)−DF3
0 (U0)(U⊕ − U⊖)

=

∫ 1

0

[
DF3

0 (U0 + sU⊕ + (1− s)U⊖)(U⊕ − U⊖)
]
ds−DF3

0 (U0)(U⊕ − U⊖)

=

{∫ 1

0

[
DF3

0 (U0 + sU⊕ + (1− s)U⊖)−DF3
0 (U0)

]
ds

}
(U⊕ − U⊖)

=

{∫ 1

0

∫ 1

0

(sU⊕ + (1− s)U⊖)
t
D2F3

0 (U0 + z [sU⊕ + (1− s)U⊖]) dz ds

}
(U⊕ − U⊖).

(99)
Now we want to bound the expression appearing in the previous double integral. Notice that D2F3

0780

(see (57)) is given by:781

D2F3
0 =


16
[
V̇ + 3(5U2 + 3V2)Uξ3

]
ξ3 48(3U2 + V2)Vξ6 0 16Uξ3

48(3U2 + V2)Vξ6 16
[
V̇ + 3(U2 + 3V2)Uξ3

]
ξ3 0 16Vξ3

0 0 0 0
16Uξ3 16Vξ3 0 0

 ,

and thus, as (see (69)):782

|Ue
0 | ≤ 1, |Ve

0 | ≤ 1, |U̇e
0 | ≤ n, |V̇e

0 | ≤ n, ∥U⊗∥ ≤ 2M1µξ
6,

we have that:783

∣∣D2F3
0 (U

e
0 + U⊗)

∣∣ ≤ Mξ3


n ξ3 0 1
ξ3 n 0 1
0 0 0 0
1 1 0 0

 . (100)

Now, as ∥U⊙∥ ≤ 2M1µξ
6:784

|U t
⊙D

2F3
0 (U

e
0 + U⊗)| ≤ |U t

⊙| |D2F3
0 (U

e
0 + U⊗)|

≤ 2M1µξ
6 (1/n, 1/n, 1, 1)Mξ3


n ξ3 0 1
ξ3 n 0 1
0 0 0 0
1 1 0 0


≤ 2MM1µξ

9 (1, 1, 0, 1/n) .

(101)

Taking into account the integral expression in (99) we obtain785

|G3
0(U⊕)− G3

0(U⊖)| ≤ 2MM1µξ
9 (1, 1, 0, 1/n) |U⊕ − U⊖| ≤

1

n
2MM1µξ

9∥U⊕ − U⊖∥.

We get a similar bound for the fourth components and using that the first and the second are identically786

zero and the definition of the norm we get the result of the lemma.787

The next goal is to bound G1(U⊕)− G1(U⊖). To do so, we apply the same trick:788

42



Lemma 10. Given U⊕,U⊖ ∈ BR(0). Then for ξ > 0 small enough we have that789

∥G1(U⊕)− G1(U⊖)∥ ≤ Mµξ6

n
∥U⊕ − U⊖∥.

Proof. Using again the Main Value Theorem we obtain:790

G1(U⊕)− G1(U⊖) =

∫ 1

0

DG1(sU⊕ + (1− s)U⊖) (U⊕ − U⊖) ds. (102)

So we only need to bound |DG1(U⊙)| where U⊙ ∈ BR(0), = 2M1µξ
6

791

Let us recall that792

DG1(U⊙) = µDF1(Ue
0 + U⊙,Ve

0 + V⊙),

and F1 is given in (57). Proceeding similarly as to bound F1 we can differentiate (89) to obtain:793

DF1(U ,V) =


0 0 0 0
0 0 0 0

24(5U4 − 6U2V2 − V4)ξ6 + 1
n2/3O(ξ8) −96(U2 + V2)UVξ6 + 1

n2/3O(ξ8) 0 0
−96(U2 + V2)UVξ6 + 1

n2/3O(ξ8) 24(5V4 − 6U2V2 − U4)ξ6 + 1
n2/3O(ξ8) 0 0



= 24ξ6


0 0 0 0
0 0 0 0

5U4 − 6U2V2 − V4 + 1
n2/3O(ξ2) −4(U2 + V2)UV + 1

n2/3O(ξ2) 0 0
−4(U2 + V2)UV + 1

n2/3O(ξ2) 5V4 − 6U2V2 − U4 + 1
n2/3O(ξ2) 0 0

 .

So, using again that (see (69)):794

|Ue
0 | ≤ 1, |Ve

0 | ≤ 1, ∥U⊙∥ ≤ 2M1µξ
6,

795

|DF1(Ue
0 + U⊙,Ve

0 + V⊙)| ≤ [120ξ6 +
1

n2/3
O(ξ8)]


0 0 0 0
0 0 0 0
1 1 0 0
1 1 0 0

 ,

and therefore796

|DG1(U⊙)| ≤ Mµξ6


0 0 0 0
0 0 0 0
1 1 0 0
1 1 0 0

 .

And using the integral equation (102) and the fact that the first two rows of the previous matrix are797

zero we get:798

|G1(U⊕)− G1(U⊖)| ≤ Mµξ6


0
0

|U⊕ − V⊕|
|U⊕ − V⊕|

 ≤ Mµξ6

n
∥U⊕ − U⊖∥


0
0
1
1

 .

Now, using the definition of the norm we get the result.799

800
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From the results of lemmas 9 and 10 we have:801

∥G(U⊕)− G(U⊖)∥ ≤ Mµξ6

n
∥U⊕ − U⊖∥.

Now, proceeding as we did in the proof of Lemma 2, we multiply G(U⊕)− G(U⊖) by X−1, integrate802

for a finite time and multiply the resulting expression by X. We use that |X| ≤ M and |X−1| ≤ M803

where M is given in (92) and proceed to bound the expression which gives H{U⊕} −H{U⊖} as we804

did for H{0} in (93), (94), (95), (96), to obtain805

∥H{U⊕} −H{U⊖}∥≤ M2µξ
6||U⊕ − U⊖||. (103)

This finishes the proof of Lemma 3.806

B.3 Proof of Lemma 5807

In order to compute H{0}(T̂ ∗
0 ) let us recall its expression:808

H{0}(T̂ ∗
0 ) = X(T̂ ∗

0 )

∫ T̂ ∗
0

0

X−1(T̂ )G(0) dT̂ = µX(T̂ ∗
0 )

∫ T̂ ∗
0

0

X−1(T̂ )F1(Ue
0(T̂ )) dT̂ .

From (90), substituting (69) we have809

F1(Ue
0 ,Ve

0) =


0
0

24 sin5(nT̂ ) cos θ0(2 cos
4 θ0 − 1)ξ6 +O(ξ8)

24 sin5(nT̂ ) sin θ0(2 sin
4 θ0 − 1)ξ6 +O(ξ8)

 , (104)

Multiplying (104) by X−1 using the expression provided in Lemma 8 we obtain:810

X−1F1(Ue
0 ,Ve

0) =


−
24 sin6(nT̂ ) cos θ0(2 cos

4 θ0 − 1)

n
ξ6 +

1

n
O(ξ8)

−
24 sin6(nT̂ ) sin θ0(2 sin

4 θ0 − 1)

n
ξ6 +

1

n
O(ξ8)

24 cos(nT̂ ) sin5(nT̂ ) cos θ0(2 cos
4 θ0 − 1)ξ6 +O(ξ8)

24 cos(nT̂ ) sin5(nT̂ ) sin θ0(2 sin
4 θ0 − 1)ξ6 +O(ξ8)


.

Finally, integrating and multiplying by µX using the expression of X provided in Lemma 8 we have:811

H1{0} = −
µ cos θ0(2 cos

4 θ0 − 1)
(
60nT̂ − 16 sin(2nT̂ ) + sin(4nT̂ )

)
cos(nT̂ )

8n2
+

µ

n
O(ξ8),

H2{0} = −
µ sin θ0(2 sin

4 θ0 − 1)
(
60nT̂ − 16 sin(2nT̂ ) + sin(4nT̂ )

)
cos(nT̂ )

8n2
+

µ

n
O(ξ8).

Note that the values of H3{0} and H4{0} can be obtained directly by differentiating H1{0} and812

H2{0} respectively. This finishes the proof of Lemma 5.813

C Value of the auxiliary matrix Ae
814

The values of the terms (Ae
i,j) are given by

Ae
11 = cos(nT̂ )− sin(2θ0)

[
T̂ cos(nT̂ )− sin(nT̂ )

1 + sin2(nT̂ )

n

]
ξ3
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+
2 sin2 θ0

n

[
T̂
(
1 + 2 cos2(nT̂ )

)
− 3 cos(nT̂ ) sin(nT̂ )

n

]
sin(nT̂ )ξ6,

Ae
12 = 2

cos2 θ0T̂ cos(nT̂ )−
sin(nT̂ )

(
cos2 θ0 − sin2 θ0 sin

2(nT̂ )
)

n

 ξ3

− sin(2θ0)

n

[
T̂
(
1 + 2 cos2(nT̂ )

)
− 3 cos(nT̂ ) sin(nT̂ )

n

]
sin(nT̂ )ξ6,

Ae
13 =

sin(nT̂ )

n
+

2 sin2 θ0
n

[
T̂ − cos(nT̂ ) sin(nT̂ )

n

]
sin(nT̂ )ξ3,

Ae
14 =

sin(2θ0)

n

[
T̂ − cos(nT̂ ) sin(nT̂ )

n

]
sin(nT̂ )ξ3,

Ae
21 = −2

sin2 θ0T̂ cos(nT̂ ) +
sin(nT̂ )

(
sin2 θ0 − cos2 θ0 sin

2(nT̂ )
)

n

 ξ3

− sin(2θ0)

n

[
T̂
(
1 + 2 cos2(nT̂ )

)
− 3 cos(nT̂ ) sin(nT̂ )

n

]
sin(nT̂ )ξ6,

Ae
22 = cos(nT̂ ) + sin(2θ0)

[
T̂ cos(nT̂ )− sin(nT̂ )

1 + sin2(nT̂ )

n

]
ξ3

+
2 cos2 θ0

n

[
T̂
(
1 + 2 cos2(nT̂ )

)
− 3 cos(nT̂ ) sin(nT̂ )

n

]
sin(nT̂ )ξ6,

Ae
23 = −2 cos2 θ0

n

[
T̂ − cos(nT̂ ) sin(nT̂ )

n

]
sin(nT̂ )ξ3,

Ae
24 =

sin(nT̂ )

n
− sin(2θ0)

n

[
T̂ − cos(nT̂ ) sin(nT̂ )

n

]
sin(nT̂ )ξ3,

Ae
31 = −n sin(nT̂ ) + sin(2θ0) sin(nT̂ )

(
nT̂ + 3 cos(nT̂ ) sin(nT̂ )

)
ξ3

+ 2

[
sin2 θ0T̂

(
5− 8 cos2(nT̂ )

)
cos(nT̂ )

− sin(nT̂ )

n

(
cos2 θ0

(
8− 13 cos2(nT̂ ) + 2 cos4(nT̂ )

)
+ 9 cos2(nT̂ )− 6

)]
ξ6

− 2 sin(2θ0)

n

[
T̂
(
1 + 2 cos2(nT̂ )

)
− 3 cos(nT̂ ) sin(nT̂ )

n

]
sin3(nT̂ )ξ9,
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Ae
32 = −2

[
n cos2 θ0T̂ −

(
1 + 3 sin2 θ0

)
cos(nT̂ ) sin(nT̂ )

]
sin(nT̂ )ξ3

+ sin(2θ0)

[
T̂
(
5− 8 cos2(nT̂ )

)
− 8− 13 cos2(nT̂ ) + 2 cos4(nT̂ )

n
sin(nT̂ )

]
ξ6

+
4 cos2 θ0

n

[
T̂
(
1 + 2 cos2(nT̂ )

)
− 3 cos(nT̂ ) sin(nT̂ )

n

]
sin3(nT̂ )ξ9,

Ae
33 = cos(nT̂ ) + sin(2θ0)

[
T̂ cos(nT̂ ) +

2− 3 cos2(nT̂ )

n
sin(nT̂ )

]
ξ3

− 4 cos2 θ0
n

[
T̂ − cos(nT̂ ) sin(nT̂ )

n

]
sin3(nT̂ )ξ6,

Ae
34 = 2

[
sin2 θ0

(
T̂ − cos(nT̂ ) sin(nT̂ )

n

)
cos(nT̂ ) +

2 sin2 θ0 + 1

n
sin3(nT̂ )

]
ξ3

− 2 sin(2θ0)

n

[
T̂ − cos(nT̂ ) sin(nT̂ )

n

]
sin3(nT̂ )ξ6,

Ae
41 = 2

[
n sin2 θ0T̂ − (1 + 3 cos2 θ0) cos(nT̂ ) sin(n)T̂

]
sin(nT̂ )ξ3

+ sin(2θ0)

[
T̂
(
5− 8 cos2(nT̂ )

)
− 8− 13 cos2(nT̂ ) + 2 cos4(nT̂ )

n
sin(nT̂ )

]
ξ6

− 4 sin2 θ0
n

[
T̂
(
1 + 2 cos2(nT̂ )

)
− 3 cos(nT̂ ) sin(nT̂ )

n

]
sin3(nT̂ )ξ9,

Ae
42 = −n sin(nT̂ )− sin(2θ0) sin(nT̂ )

(
nT̂ + 3 cos(nT̂ ) sin(nT̂ )

)
ξ3

+ 2

[
− cos2 θ0T̂

(
5− 8 cos2(nT̂ )

)
cos(nT̂ )

− sin(nT̂ )

n

(
sin2 θ0

(
8− 13 cos2(nT̂ ) + 2 cos4(nT̂ )

)
+ 9 cos2(nT̂ )− 6

)]
ξ6

+
2 sin(2θ0)

n

[
T̂
(
1 + 2 cos2(nT̂ )

)
− 3 cos(nT̂ ) sin(nT̂ )

n

]
sin3(nT̂ )ξ9,

Ae
43 = −2

[
cos2 θ0

(
T̂ − cos(nT̂ ) sin(nT̂ )

n

)
cos(nT̂ ) +

2 cos2 θ0 + 1

n
sin3(nT̂ )

]
ξ3

− 2 sin(2θ0)

n

[
T̂ − cos(nT̂ ) sin(nT̂ )

n

]
sin3(nT̂ )ξ6,

Ae
44 = cos(nT̂ )− sin(2θ0)

[
T̂ cos(nT̂ ) +

2− 3 cos2(nT̂ )

n
sin(nT̂ )

]
ξ3

− 4 sin2 θ0
n

[
T̂ − cos(nT̂ ) sin(nT̂ )

n

]
sin3(nT̂ )ξ6.

46


	Introduction
	The planar RTBP and the Levi Civita regularization
	The Hill problem and the Levi-Civita regularization
	n-EC orbits in the RTBP and main theorems
	Proof of Theorem 2
	Analysis of Bifurcations
	Bifurcating families
	Behaviour of (,n)

	Proof of Theorem 1
	Results for the Hill problem
	Acknowledgements
	Values of the solutions
	Proof of the auxiliary lemmas
	Proof of Lemma 2 
	Proof of Lemma 3
	Proof of Lemma 5

	Value of the auxiliary matrix Ae

