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Abstract

Structural optimization and design of lightweight structures is a crucial field of study in the
aeronautical industry, especially in the transition towards greener ways of transport.

The main purpose of this thesis is to study the buckling optimizing problem of a clamped-
clamped beam. The aim is to maximize the load at which the column begins to bend, which
can be regarded as an eigenvalues problem, where the first eigenvalue is the critical buckling
load and the eigenvectors are the buckling modes. This optimization problem is solved using a
object-oriented code developed inside the Swan framework, using pre-implemented algorithms,
namely the fmincon and MMA optimizers within Swan.

Based on previous works in the field, which were focused on the circular cross-section column,
in this thesis new column cross-sections are proposed and studied, such as the rectangular
section and the circular section with an inner hole. The obtained results are analysed using a
sensitivity study to assess the influence of different initial parameters.

Resum

L’optimització estructural i el disseny d’estructures lleugeres és un àmbit d’estudi crucial en la
indústria aeronàutica, especialment en la transició cap a mitjans de transport mes ecològics.

El principal objectiu d’aquesta tesi és estudiar el problema d’optimització del vinclament d’una
viga bi-encastada. L’objectiu és maximitzar la càrrega a la qual es produeix el vinclament, que
es pot considerar un problema de valors propis, on el primer valor propi és la càrrega cŕıtica
de vinclament i els autovectors són els modes de vinclament. Aquest problema d’optimització
es resol utilitzant un codi orientat a objectes desenvolupat dins del marc de treball Swan,
utilitzant algorismes pre-implementats, concretament els optimitzadors fmincon i MMA dins
de Swan.

Basant-se en els previs estudis en aquest àmbit, que majoritàriament es centren en la columna
de secció circular, en aquesta tesi es proposen i s’estudien nous tipus de secció transversal,
com ara la secció rectangular i la secció circular amb un forat concèntric interior. Els resultats
obtinguts són analitzats utilitzant un estudi de sensibilitat per avaluar la influència de diferents
paràmetres inicials.
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Chapter 1

Introduction

1.1 Aim

The aim of this thesis is to study the optimization problem of the buckling clamped-clamped
column, which can be regarded as an eigenvalues problem, and propose new solutions using
different types of cross-section geometries. To do so, a object-oriented code will be developed
inside the framework Swan based on the previous work done by A. Mañeru [7]. The problem
will be solved using different optimizers such as fmincon or MMA.

1.2 Relevance

Structural optimization is highly relevant in the field of engineering as it plays a crucial
role in ensuring the safety, efficiency, and durability of structures. By using mathematical
modeling and optimization techniques, structural engineers can design structures that are
capable of withstanding external forces and loads while minimizing material usage and cost.
This not only ensures the safety of the structure but also reduces the environmental impact
by minimizing the use of materials. Structural optimization also allows engineers to explore
new and innovative designs, which can lead to the creation of more efficient and sustainable
structures.

In the aeronautical industry, structural optimization is particularly relevant in ecological
terms as it can lead to significant reductions in fuel consumption and emissions. By using
optimization techniques, engineers can design aircraft that are lighter and more aerodynamic,
which in turn reduces the amount of fuel needed to operate the aircraft. This not only lowers
operating costs but also reduces carbon emissions, making air travel more environmentally
sustainable. Additionally, optimized structures can also improve the durability and lifespan
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of aircraft, reducing the need for frequent replacements and further reducing environmental
impact. Therefore, structural optimization is a key factor in achieving more sustainable
and efficient air transportation, which is increasingly important as the demand for air travel
continues to grow.

In particular, the appearance of new optimal designs is increasingly more relevant in the
industry thanks to the growing capacity of additive manufacturing techniques, which allows
to foresee a future where it will be possible to use new structures that were too complicated
to fabricate at industrial level nowadays.

1.3 Scope

The development of this project will include:

• Preliminary study

– Learning of Object Oriented Programming: Learning process of Object Oriented
Programming in order to be able to work with the Swan Code

– Theoretical review of the eigenvalue problem: Mathematical study of the eigenvalue
problems (specifically, the buckling beam eigenvalue problem) and its formulation
applied to the Finite Elements Method

– Learning of Topology Optimization’s main mathematical concepts and state of the
art

– Introduction to the Swan code: Main introduction to the Swan code, a topology
optimization code developed in Matlab by Alex Ferrer, which will be the base code
of this project

– Detailed study of Aitziber Mañeru’s Bachelor Final Thesis: Study of numerical
tools for the design of lightweight structures when considering the modal analysis,
since its developed code (Eigen Value branch of the Swan Code) and researches
are going to be used as a starting point for this project. In fact, this project is
based on one of the future lines of investigation proposed on Aitziber’s work.

• Main study

– Refactoring of the Eigen Values branch of the Swan Code: Refactoring of the Eigen
Value branch in order to make it more readable, clear and clean.

– Study of the interaction of the code with different optimizers: Performance analysis
of different optimizers used for solving the problem. Development of code that
adapts to working with different optimizers
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– Improvement of the code in order to broaden its study cases: Development of new
code to consider not only the case of solids of revolution but other kinds of cross
sectional areas in the buckling beam problem.

– Analysis of the results obtained using different optimizers
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Chapter 2

State of the art

In this chapter, a general overview of the previous works existing related to the optimization
of the buckling column is presented.

Maximization of the buckling load is essential to enhance the overall structural stability by
decreasing the possibility of reaching an unstable equilibrium position under any contemplated
loading. Therefore, is essential to understand the buckling phenomena and how it has been
studied along the years.

2.1 Buckling problem

The bucking phenomena arises as an elastic deformation before the stress level of a structure
reaches the yield strength. It manifests itself as a sudden change in the shape of the structural
components, with the appearance of important displacements transversal to the loading
direction. The critical load at which buckling occurs is known as the buckling load or the
Euler load. The buckling load depends on the geometry of the member, its material properties,
and the boundary conditions of the system. Understanding the buckling behavior of structural
members is crucial for the safe and efficient design of structures.

Buckling is included within the group of elastic instabilities. Those are a kind of instability
occurring in elastic systems where the displacements are not linearly related to the forces
applied to the system.

The buckling problem can be mathematically formulated as an eigenvalue problem, where the
critical load is the eigenvalue and the buckling mode shape is the associated eigenvector. The
solution of this problem involves finding the critical load and the corresponding mode shape,
which can be obtained using analytical, numerical, or experimental methods.
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The study of the buckling problem can be traced back to 1750 when Leonhard Euler and
Daniel Bernoulli developed the bending theory of beams by analyzing their stresses and
strains, which is a particular case of linear elasticity theories. [8] Their main postulation
resulted in the equation that relates the bending moment (M) with the deflection of the beam,
known as the Euler-Bernoulli equation.

M = −EI
d2w

dx2
(2.1)

where w is the transverse displacement of the beam, E the Young’s modulus and I the second
moment of area of the beam’s cross section. Later on, Euler analysed the deformed beam from
an energy point of view obtaining the following equation of the beam’s total strain energy

E =
1

2

∫ L

0

EI

(
d2w(x)

dx2

)2

− 1

2
λ

∫ L

0

(
dw(x)

dx

)2

(2.2)

where λ is the applied axial load. The equilibrium position can be found at an extreme value
of the functional

∂E[w(x)]

∂w(x)
(2.3)

which, for the case of a constant section and Young’s modulus beam, leads to the Euler’s
critical buckling load:

Pcr =
π2EI

L2
(2.4)

Equation 2.2 can also be regarded as an eigenvalues problem where the critical axial load λc

is the first eigenvalue.

2.2 Buckling load optimization

The problem of maximizing the critical buckling load of an elastic column was first introduced
by Lagrange in 1773. The problem focused on a column with a variable cross-sectional area,
and a given length and volume. The type of columns considered in this problem were solids of
revolution, where I = cA2. However, the solution initially obtained by Lagrange was incorrect,
as he arrived to the cylinder shape as the optimal one.

Subsequently, the first optimal solution was found analytically by T.Clausen in 1851 for the
case of a cantilever column. Contrary to Lagrange’s approach, he minimized the volume
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subject to a fixed buckling load, which is an equivalent problem. Later on, Tadjbakhsh and
Keller (1962) derived analytical optimal solutions for clamped-clamped and clamped-hinged
columns. Their findings led to a surprising conclusion for the clamped-clamped case: the area
function A(x) vanished at 1/4 and 3/4. In other words, zero cross sections appeared at some
points along the beam, giving highly non-linear and non-feasible solutions.

All the aforementioned solutions are unimodal, meaning that they have a single buckling
mode. However, Olhoff and Rasmussen (1977) discovered that the unimodal solution obtained
by Tadjbakhsh and Keller (1962) for the clamped-clamped case was incorrect. Olhoff affirmed
that Keller’s analysis was mistaken when it comes to differentiability, since there’s a shortage
of continuity due to the appearance of multiple eigenvalues. They numerically determined the
optimal solution to the problem and showed that the optimal solution is bimodal, meaning
that it has two buckling modes at the same buckling load. Based on their work, finally, it
was Steven J. Cox and Michael L. Overton in 1992 ([3]) who came to the right and definitive
solution. [9]

Figure 2.1: Awkward suboptimal cross-sectional area distribution of clamped–clamped
columns [6]

As a point of start for this study, the work developed by Aitziber Mañeru in 2022 [7] is used
as a reference. One part of her thesis was centered on implementing a code inside the Swan
software that was able to solve via Finite Elements Mathod (FEM) the Cox and Overton’s
problem. As well as all the aforementioned works that have studied the optimization problem
of a beam against buckling, Mañeru solved the problem defining the column as a solid of
revolution. In fact, the design variable used was the area A(x) while the circular shape was
introduced through the second moment of area, which for the case of a circular area can be
defined as I = cA2. The optimization problem studied by Mañeru is formulated as follows:
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min
A

−γ(A) s.t.


γ − λ1,1(A) ≤ 0
γ − λ1,2(A) ≤ 0
V − Vmax ≤ 0
α ≤ A ≤ β

(2.5)

where α and β are the area lower and upper bounds, which as Cox and Everton analysed, are
highly related to the appearance of single or multiple eigenvalues. λ1,1 and λ1,2 are the first
and second eigenvalues respectively.

Although the optimization problem and her code are analysed in detail later on in this thesis
(section 5), some of her most relevant results are summarized below.

In concordance with the results obtained by Cox and Overton, in table 2.1 the main results
obtained by A. Mañeru are shown.

Table 2.1: Convergence of the eigenvalue simple solution with the mesh discretization in the
clamped-clamped column with α = 0.5 [7]

Inputs Profile Results

iter
number of elements: 100 cost: 51,048

init. val. design variable: ones vol: - 1,5e-5
constraint:

number of elements: 500 cost: 51,0786
init. val. design variable: ones vol: - 10e-9

This results were obtained using the MMA optimizer, and the achieved cost was very similar
to the one obtained by Cox and Everton (51.07), therefore verifying the code implemented.
However, an issue aroused when trying to solve the problem using other optimizers such as
fmincon or Augmented Lagrangian.
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Table 2.2: Numerical results of clamped-clamped column with fmincon and Augmented
Lagrangian [7]

Inputs Profile Results

Optimizer: fmincon iter: 12
number of elements: 400 cost: 12

init. val. design variable: ones vol: - 1,5e-3

Optimizer: fmincon iter: 13
number of elements: 400 cost: 10

init. val. design variable: random vol: - 1,6e-3

Optimizer: Augmented Lagrangian iter: 10
number of elements: 400 cost: 10

init. val. design variable: ones vol: - 1,5e-3

Optimizer: Augmented Lagrangian iter: 20
number of elements: 400 cost: 10

init. val. design variable: random vol: - 0,14

As can be observed in table 2.2, all the results obtained by fmincon and Augmente Lagrangian
optimizers stayed at a cost value of 10, much below the one obtained using MMA and Cox
and Everton, and the final geometry was simply the constant cross-section column.

Thus, in this project, the main goal is to obtain new solutions to the buckling optimization
problem by using other types of cross sections such as the rectangular one or the circular with
an inner concentric hole. The code developed by A. Mañeru is used as reference, which will
be refactored and broadened to admit other design variables types than the area. Also, the
code will be fixed to work with all the optimizers available in Swan.
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Chapter 3

Buckling eigenvalues problem

In this section the differential equation that governs the buckling problem is obtained, then,
its weak formulation is introduced in order to be able to formulate the problem via Finite
Elements Method.

3.1 Buckling differential equation

The basic differential equation that governs the buckling problem can be derived applying the
equilibrium equations to the beam’s deformed geometry. In particular, a simply supported
beam subjected to an axial compressive force (P ) acting at both ends. Also, an auxiliary
distributed lateral load (q) acting along the x-direction is introduced, that will later be set to
0. The following development is based on the Euler-Bernoulli’s beams theory.

Figure 3.1: Deformed beam [10]

The equilibrium equations are applied to a differential beam element of length dx (Fig. 3.2).
For simplicity reasons, the lateral load is considered constant along the beam’s length.
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Figure 3.2: Forces acting on a beam’s slice (dx) [10]

Applying equilibrium in the y direction gives:

−V + q dx+ (V + dV ) = 0 −→ q = −dV

dx
(3.1)

and, taking moments equilibrium at point n:

M + q dx
dx

2
+ (V + dV )dx+ P

dy

dx
dx− (M + dM) = 0 (3.2)

neglecting second order derivatives gives:

V =
dM

dx
− P

dy

dx
(3.3)

Following, the Euler-Bernoulli’s equation that relates the bending moment (M) with the
transverse displacement of the beam is introduced:

M(x) = EI
d2y

dx2
(3.4)

Combining equations 3.1, 3.3 and 3.4, the following expression can be obtained:

d2

dx2

(
EI

d2y

dx2

)
+ P

d2y

dx2
= q (3.5)

Finally, the distributed lateral force q is set to 0 to obtain the differential equation that
governs the buckling behaviour of an elastic beam caused by an axial compressive force P
([10]):
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N
d2w(x)

dx2
+

d2

dx2

(
EI

d2w(x)

dx2

)
= 0 (3.6)

Analytical results have been obtained for eq.3.6 if the beam of study has constant section and
Young’s modulus along the beam axe. Which led to Euler’s Critical Buckling load equation
2.4

However, if the objective is to obtain optimal geometries other than the constant section ones,
the analytical solution is no longer useful. And another method has to be considered which
can take into account partial differential equations (PDE) with variable sections.

3.2 Weak formulation

Once the governing equation of the Buckling problem is obtained (Eq. 3.6), it is then
transformed to its weak form, in order to solve it using the Finite Element Method. Using
the weak formulation allows to relax the derivative continuity requirements of the solution.

To begin with, eq. 3.6 is multiplied by a test function v(x) and integrated over the domain Ω:∫
Ω

v(x)

[
N
d2w(x)

dx2
+

d2

dx2

(
EI

d2w(x)

dx2

)]
dx = 0 ∀v(x) (3.7)

For practicality reasons, the equation is divided into two terms:∫
Ω

v(x)N
d2w(x)

dx2
dx+

∫
Ω

v(x)
d2

dx2

(
EI

d2w(x)

dx2

)
dx = 0 (3.8)

The first term is integrated by parts once:∫
vN

d2w

dx2
dx = −

∫
N

dv

dx

dw

dx
dx (3.9)

and the second term is integrated by parts twice:∫
v
d2

dx2

(
EI

d2w

dx2

)
dx =

∫
d2v

dx2
EI

d2w

dx2
dx (3.10)

where the boundary terms have been eliminated due to the boundary conditions.

Finally, combining equation 3.9 and 3.10, the weak formulation of the Buckling problem is
obtained (eq. 3.11). Notice that the fourth derivative of the transverse displacements (w(x))
no longer appears and only its second derivative is used. The solution functions obtained
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will need a continuity requirement of type C1 that ensures the integrability of the second
derivative of the function. [5]

−N

∫
dv

dx

dw

dx
dx+

∫
d2v

dx2
EI

d2w

dx2
dx = 0 (3.11)

Following, the shape functions are introduced, which combined with the weak form will allow
to obtain the discretized equations of the problem, in the form of finite elements equations.
Considering that the exact solutions w(x) and v(x) belong to infinite dimensional spaces S
and V, the approximation consists in changing w and v with functions belonging to finite
dimensional spaces Sh and Vh, which are subsets of S and V. This new finite dimensional
functions are called wh and vh. Leading us to the discrete form of the variational equation:

−N

∫
dvh

dx

dwh

dx
dx+

∫
d2vh

dx2
EI

d2wh

dx2
dx = 0 (3.12)

The approximated transverse displacement, and also the approximated test function, are
described as the linear combination of shape functions which have to fulfill the smoothness
required by the second derivative of the displacements filed. The shape functions used will be
the same for both the trial and test functions, as in the Galerkin method, this is

wh(x) =
n∑
j

wjNj(x) (3.13)

vh(x) =
n∑
j

vjNj(x) (3.14)

Introducing eq. 3.13 and eq. 3.14 into eq. 3.12 the following equation is obtained:

n∑
j

wj[B − λK] = 0 (3.15)

where N has been renamed as λ, and B and K are respectively the Bending and Stiffness
matrices [7]:


K =

∫
dNi

dx

dNj

dx
dx Stiffness Matrix

B =

∫
d2Ni

dx2
EI

d2Nj

dx2
dx Bending Matrix

(3.16)
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3.3 Finite Elements formulation

Once the weak form of the governing equation of the Buckling problem is obtained, and has
been discretized, the finite Elements Formulation is introduced from the element point of
view.

The buckling problem that is being studied is a one dimensional problem, therefore, the beam
must be discretized in elements along the x-direction.

As concluded previously, the approximate solutions, and the shape functions, for each beam
element require C1 continuity. The second derivatives of the transverse displacement appearing
in the weak form of the problem require the existence of the rotation θ = dw

dx
as a degree of

freedom to maintain the continuity between elements. Therefore, each 2-nodes element will
have four degrees of freedom: the transverse displacement at each node, and its rotations. [5]
Thus, the nodal displacement vector can be described as

de =


ue
1

θe1
ue
2

θe2

 (3.17)

where u1 = u(x1), θ1 = u′(x1), u2 = u(x2) and θ2 = u′(x2).

The interpolation functions selected for this case, which must be C1 functions, are the Hermite
polynomials. Below they are described for an element of length le using the parent domain ξ:

Nu1 =
1

4
(1− ξ)2(2 + ξ) (3.18)

Nθ1 =
le

8
(1− ξ)2(1 + ξ) (3.19)

Nu2 =
1

4
(1 + ξ)2(2− ξ) (3.20)

Nθ2 =
le

8
(1 + ξ)2(ξ − 1) (3.21)

where

ξ =
2x

le
− 1 and − 1 ≤ ξ ≤ 1
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Figure 3.3: Hermite C1 shape functions for a two-node beam [5]

As can be observed in figure 3.3, the Hermite polynomials have the following Kronecker delta
properties:

Nui
(xj) = δij and

dNθi

dx
(xj) = δij (3.22)

concluding that they interpolate both the function and its derivatives at the nodes.

Therefore, the approximation function of the transverse displacement is

ue(x) = Nu1u1 +Nθ1θ1 +Nu2u2 +Nθ2θ2 (3.23)

Written in a matricial way, we have:

ue =
[
N e

u1(ξ) N e
θ1(ξ) N e

u2(ξ) N e
θ2(ξ)

] 
ue
1

θe1
ue
2

θe2

 (3.24)

In order to calculate the shape functions derivative with respect to x that appear in equation
3.16, the following expression is used

d

dx
=

l

2

d

dξ
and

d2

dx2
=

l2

4

d2

dξ2
(3.25)

Finally, the bending and stiffness matrices can be rewritten as:

(Be)ij =

∫ 1

−1

l
EI

2

∂2Ni

∂ξ2
∂2Nj

∂ξ2
dξ (Ke)ij =

∫ 1

−1

l
1

2

∂Ni

∂ξ

∂Nj

∂ξ
dξ (3.26)
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Chapter 4

Optimization problem

In this section the formulation of the optimization problem is presented. First, there’s a
general overview of mathematical optimization. Then the buckling optimization problem is
detailed using the general and the bound formulation.

4.1 Mathematical optimization

An optimization problem is a mathematical problem that involves finding the best solution
among all possible solutions, typically subject to some constraints. The goal is to minimize or
maximize a particular objective function, which measures the quality of the solution.

The classic constrained optimization problem can be described using the following nomencla-
ture: {

minimize f0 (x)

subject to fi (x) ⩽ bi, i = 1, ...,m
(4.1)

Here, x represents the optimization variable or design variable, f0 denotes the objective
function, fi refers to the equality and/or inequality constraints, and bi represents the bounds
on the constraints. A feasible value or vector is considered to be a solution of the optimization
problem if it yields the lowest possible objective value while satisfying all of the constraints.

The form of the objective and constraint functions determine the class of the optimization
problem. An optimization problem where the objective and constraint functions are lineal is
called a linear program, while if they are not linear is called a nonlinear program.[11]

In this work the algorithms behind the optimizers used are not going to be detailed, since
it is not in the scope of the study. However, is necessary to acknowledge the requirements
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needed by the optimizers to work. In the iterative process that an optimizer carries out, to
calculate each next step, the algorithm requires both the value and the gradients of the cost
and constraint functions. The two main optimizers used in this thesis are the fmincon and
the MMA.

4.2 Buckling optimization

The optimal buckling design of a slender column may be defined as finding the maximum
value of the critical buckling load for a given volume. A common alternative approach to the
problem definition it may be to minimize the structural weight that satisfies a prescribed
buckling load. However, this study is centered on the first definition.

General formulation

Following the mathematical nomenclature of an optimization problem, the buckling optimiza-
tion problem can be defined as

max
ρ

λ1(ρ)

s.t


(B(ρ)− λK)ϕ = 0

α ≤ ρ ≤ β∫
A(ρ) dx ≤ Vmax

(4.2)

which is read as: maximize the first eigenvalue, which is the objective function and depends
on the design variable ρ, subject to the detailed constraints. The first constraint, which is an
equality constraint, denotes the eigenvalues problem, i.e. that the eigenvalue λ1 must be a
solution of this equation. The second (inequality) constraint defines the lower (α) and upper
(β) bounds of the design variable ρ, which have an important relevance in the appearance of
multiple eigenvalues, as detailed J. Cox and L. Overton in [3]. The last (inequality) constraint
defines the volume restriction, in a way that the volume can be less or equal than the maximum
imposed volume, but never greater. This constraint could also be defined as an equality
constraint, but for the case of study the first option is used give the optimizer more freedom
to achieve different results.

For convenience with the optimzers used, the maximization problem (eq. 4.3) is transformed
into an equivalent minimization problem by taking the negative value of the objective function
[7]:
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min
ρ

−λ1(ρ)

s.t


(B(ρ)− λK)ϕ = 0

α ≤ ρ ≤ β∫
A(ρ) dx ≤ Vmax

(4.3)

Bound formulation

In case that eigenvalues have a multiplicity of two, there will exist two associated eigenvectors
ϕ1 and ϕ2 that correspond to the double eigenvalue λ1. Although the objective function
is not differentiable, it is still possible to calculate directional derivatives in two directions.
To achieve this, a method called the ”Bound Formulation” must be utilized, which involves
adding two new constraints to the problem. [4] The first step is to rename the cost function
introducing a new scalar variable γ which will have to fulfill

λ1,1(ρ) ≥ γ
λ1,2(ρ) ≥ γ

(4.4)

where λ1, 1 and λ1, 2 are the double eigenvalues. Finally, the problem that is going to be
solved in this work can be formulated using the bound formulation as

min
ρ

−γ(ρ)

s.t


γ − λ1,1(ρ) ≤ 0

γ − λ1,2(ρ) ≤ 0

α ≤ ρ ≤ β∫
A(ρ)dx ≤ Vmax

(4.5)

where
[B(ρ)− λK]ϕ = 0 (4.6)

and
B(ρ) = I(ρ)B0 (4.7)

4.2.1 Shape functionals

Both, the objective function and the constraints can be considered as Shape Functionals. The
values of this shape functionals, together with its gradients, are passed to the optimizer in
order to find the new design variable distribution on each iteration.
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Objective function

In this case the objective function, also named as Cost, takes the form of the scalar variable
γ. Consequently, the shape function and its gradient are described as:

f0 = −γ

f ′
0 = 0

(4.8)

Constraints 1 & 2: Eigenvalues

Due to the bound formulation, the buckling problem is solved at the constraints introducing
the two first eigenvalues in the following way:

f1 = γ − λ1

f2 = γ − λ2

(4.9)

Owing to its complexity, the derivative of the eigenvalues is detailed next, in section 4.3

4.3 Eigenvalues sensitivity

In order to calculate the gradient of the shape functionals that involve the eigenvalues solution
of the buckling problem (axial loads), it is necessary to know its sensibility with respect to
the design variable vector. Thereby, in this section a general formulation for the sensitivity
analysis of finite element discretized structural eigenvalues problem is presented based on the
work developed by A.P. Seyranian, E. Lund and N. Olhoff in [1]. The analysis is dived in two
parts considering the cases of single eigenvalues and multiple eigenvalues, which entail a more
complex problem due to the non-differentiability.

Let’s firs consider the general eigenvalues problem definition

Bϕj = λjKϕj j = 1, ..., n (4.10)

where λj are the eigenvalues and ϕj the corresponding eigenvectors. The dimensions of the
problem, n, indicate the number of possible eigenvalues, which will be sorted and numbered
form the smallest to the highest in the following manner

0 < λ1 ≤ λ2 ≤ ... ≤ λj ≤ ... ≤ λn (4.11)

For further convenience, the eigenvectors are K-orthonormalized

ϕT
j Kϕk = δjk, j, k = 1, ..., n (4.12)
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where δjk is the Kronecker’s delta. The eigenvectors are also B-orthogonal, as is demonstrated
premultiplying eq. 4.10 by ϕT

j

ϕT
j Bϕk = λjδjk, j, k = 1, ..., n (4.13)

Simple eigenvalues

For the case of simple eigenvalues the approach to obtain the sensibility is to differentiate eq.
4.10 by a design variable, xi.

∂B

∂xi

ϕj + (B − λjK)
∂ϕj

∂xi

=
∂λj

∂xi

Kϕj + λj
∂M

∂xi

i = 1, ..., I (4.14)

where the index I is the number of design variables.

Premultiplying by ϕT
j and applying the normalization in 4.12 the following expression is

obtained for the eigenvalue sensitivity in the case of simple eigenvalues

∂λj

∂xi

= ϕT
j

(
∂B

∂xi

− λj
∂K

∂xi

)
ϕj i = 1, ..., I (4.15)

Taking into account that the stiffness matrix (eq. 3.16) is independent of the design variable,
its term is eliminated.

∂λj

∂xi

= ϕT
j

∂B

∂xi

ϕj i = 1, ..., I (4.16)

Finally, must be noticed that the only term inside the bending matrix that is dependent on
the design variable is the second moment of area (I). Thus, the folloing expression is obtained
for the derivative of the bending matrix:

∂B

∂xi

=
∂I

∂xi

Be e = 1, ..., nElem (4.17)

Multiple eigenvalues

The appearance of N multiple eigenvalues as a solution of the eigenvalue problem in Eq. 4.10
brings an added difficulty to the calculation of the eigenvalues sensitivity. This is due to the
fact that each multiple eigenvalue λj will have a linearly independent eigenvector associated.
Therefore, any linear combination of the eigenvectors will satisfy the eigenvalue problem.

λ̃ = λj, j = 1, ..., n, (4.18)
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Assuming K-normalized eigenvectors

ϕT
j Kϕk = δjk, j, k = 1, ..., n (4.19)

a linear combination of eigenvectors is introduced in order to ensure its continuity

ϕ̃j =
n∑

k=1

βjkϕk, j = 1, ..., n, (4.20)

where βij are coefficients to be determined. The multiple eigenvalues sensitivities can be
calculated introducing and solving a subeigenvalue problem. To do so, a small increment of
an arbitrary design variable ∆xi is introduced, which will produce the following increment of
the stiffness and bending matrices:

K +
∂K

∂xi

∆xi and B +
∂B

∂xi

∆xi, i = 1, ..., I (4.21)

Thus, the eigenvalues and their respective eigenvectors for the perturbed design can be
expressed as

λj(xi + ε∆xi) = λ̃+ εµj(xi,∆xi) + o(ε), j = 1, ..., n (4.22)

ϕj(xi + ε∆xi) = ϕ̃j + ενj(xi,∆xi) + o(ε), j = 1, ..., n (4.23)

where the coefficients µj and νj are the eigenvalue and eigenvector sensitivities respectively,
still unknown. Then, substituting eq. 4.21, 4.22 and 4.23 into eq. 4.10 the following expression
is obtained: (

∂B

∂xi

− λ̃
∂K

∂xi

)
ϕ̃j + (B − λ̃K)νj = µjKϕ̃j (4.24)

Next, premultiplying by ϕT
s gives

ϕT
s =

(
∂B

∂xi

− λ̃
∂K

∂xi

)
ϕ̃j = µjϕ

T
s Mϕ̃j, s = 1, ..., n (4.25)

Taking into account that the terms ϕ̃j were the linear combination of the eigenvectors ϕk

(eq. 4.20), and using the K-orthonormalization described in eq. 4.19, the following system of
equations is obtained
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N∑
k=1

βjk

[
ϕT
s

(
∂B

∂xi

− λ̃
∂K

∂xi

)
ϕk − µjδsk

]
s = 1, ..., n (4.26)

Finally, and denoting that the stifness matrix is independent of the design variable, the
condition that imposes the existence of the nontrivial solution is

det

[
ϕT
s

∂B

∂xi

ϕk − µjδsk

]
= 0 s, k = 1, ..., n i = 1, ..., I (4.27)

which is the equation that allows to obtain the sensitivities µj of multiple eigenvalues λ̃
for small changes of the design variable. Notice how eq.4.27 acquires the form of a typical
eigenvalue problem, where the sensitivities µj are the eigenvalues to be found.

28



Chapter 5

Code

To fulfill the goal of this study a software is required that is able to, on the one hand,
solve through the Finite Element Method the differential equations that govern the Buckling
problem, and on the other hand, optimize the beam, given an objective function and a set of
constraints.

To do so, a code is developed encompassed inside the Swan framework, and based on the
previous work and code developed by Aitziber Mañeru [7]. While Aitziber’s code was able to
optimize beams with circular cross-section, being the area the single design variable, now,
the code is improved and made more versatile to allow it to handle a variety of different
cross-section’s geometries with more than one design variable, such as a rectangular or a
hollow circular cross-sections.

In addition to functionality, the code adheres to a clean code philosophy, emphasizing
readability and simplicity by avoiding redundancies and complexity. Moreover, the code
follows an Object-Oriented Programming paradigm, providing a modular structure that allows
reusability and flexibility.

The development of the work is divided in two main fields. The first is a refactoring phase
that involves restructuring the code without changing its output and the second is a process
of implementing new functionalities. The refactoring phase seeks to optimize and ”clean”
some functions and processes of the code to make it faster and cleaner. To ensure that the
results obtained are not different from those obtained in the previous code, it is essential
to have a system to verify them. For this reason, a test methodology is implemented that
compares the old results with the new ones.

In figure 5.1 the flow chart of the optimization code main steps is shown. Two main parts can
be identified. First, a initialization process takes part, where all the required data and classes
are created and then passed to the next part, which is the optimization iterative process,
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where, through an optimizer, the new proposed design variables distribution are calculated at
each step until convergence is reached.

Figure 5.1: Flowchart of the optimization algorithm [7]
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This section provides a brief introduction to the Swan framework and the main concepts
of Object-Oriented Programming, followed by an analysis of the code’s primary structure.
Finally, the major issues addressed during the refactoring process are detailed, as well as the
new functionalities that have been implemented.

5.1 The Swan framework

Swan is a versatile software designed for topology optimization. Initially created in 2017 as
part of several bachelor theses, Swan has since expanded its capabilities to solve heat transfer
problems, Navier-Stokes-based problems, and non-linear deformation elasticity problems.
The software is written in MATLAB and uses an object-oriented approach for its main
architecture. Over time, the architecture has been enhanced to address new problems and
features. Swan follows a test-driven development approach by setting benchmark cases with
analytical solutions to validate results. Swan is designed as an open source software, and
therefore has been benefited by the work of several students in their bachelor and masters
thesis. [2]

5.2 Object Oriented Programming

The code used to solve the buckling optimization problem, as well as the general Swan, is
developed using object-oriented programming.

Object-oriented programming (OOP) is a programming paradigm, supported by main coding
languages such as Pyhton, C++ or MATLAB, that organises the codes around a modular
structure. OOP enables to combine data (properties) and functions that interact with this
data (methods) into modules called objects.

Objects are in fact instances of classes. Those are the templates that define the methods and
properties included in a particular object. For instance, in the Swan code, an important class
is the Mesh. This class contains all the methods related to the generation of different types of
mesh, and within its properties there are the connectives and coordinates matrices. Once
you want to create a particular mesh inside the code you create an object, which will be an
instance of the class Mesh, and this object will have its particular values of connectivity and
coordinates. Classes could be regarded as the passive actors in the code whereas objects are
the active ones.

Object oriented softwares allows coping with high-complexity and can avoid code duplication
by creating reusable objects with well-defined interfaces that hide the complexity of the
underlying code. OOP it is well suited for programs that are large, complex, and actively
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updated or maintained, as is the case of Swan, since it simplifies software development and
maintenance.

One of the main strengths of Object Oriented Programming is the way objects are organised
and the relationship that is established between them. This relations can be classified as
Composition or Inheritance among others.

By Composition, an object contains other objects within itself. Whereas, in Inheritance,
an object is a ”child” of other object, in a way that it ”inherits” (hence the name) all the
properties and methods of the ”parent” object, added to the ones that he has. The concept
Composition over inheritance refers to the importance of prioritising the first over the second
for versatility and flexibility. By using composition, is possible to achieve code reuse by
containing instances of other classes that implement the desired functionality rather that
using the ones contained in a ”parent” object.

Within large codes, object-oriented architectures can quickly become complex due to the
many relationships between objects. Following clean code practices is thus important to
keep the code manageable and easy to understand. By prioritizing readability and simplicity,
developers can reduce the time and effort required to maintain the code, and minimize the
risk of introducing bugs or errors. Is for this reason that object-oriented programming and
clean code are concepts that must always come together. [2]

5.3 Code refactoring

General structure

When Aitziber’s code was inherited, it was divided in two main different parts. The first one
was the class EulerBeamOptimizer, where all the initialization parameters were defined, the
mesh, the initial design variable vector and all the main classes were created and then passed
to the class IterativeProcessComputer. However, the cost and constraints, as well as the
EigModes class, were created inside the IterativeProcessComputer, as well as the initialization
of the optimizer. This class constituted the second general part of the code, where the
optimization iterative process took part.

One of the major drawbacks of this organisation was the nested structure that implied the
transmission of a lot of information and objects from the ”higher” class EulerBeamOptimizer
to the ”lower” class IterativeProcessComputer. Also, although the idea of the organisation was
to have all the initialization part grouped in one class and the optimization part in another,
in the end, what happened was that the objects were created in different classes without a
strict criteria. And rigorously, the optimization process takes part inside the optimizer class,
thus the IterativeProcessComputer class had no major functionalities implemented, becoming
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redundant.

Figure 5.2: A. Mañeru IterativeProcessComputer class UML diagram[7]

Having analyzed the main structure of the code, a new architecture is proposed that is more
horizontal and readable. To begin with, the class IterativeProcessComputer is eliminated.
Instead, all the classes that were created inside it are now created at the superior level
EulerBeamOptimizer. The idea is to have the creation of all the relevant classes (i.e. the mesh,
the design variable, the cost and constraints and the eigen modes) at the EulerBeamOptimizer,
and then, passing the required ones to a new class called OptimizerCreator which deals with
initializing and running the optimizer. All the not so relevant classes are now grouped inside
one of the aforementioned classes. For instance, while before the creation of the bending
and stiffness matrices took part at the same level as the creation of the EigModes, now, the
EigModes includes them inside, being a more compact and consistent class that deals with
everything related to solving the eigenvalues buckling problem.

Also, a new class is created, called SectionVariablesComputer that seeks to deal with all
the data related with the cross section of the beam, and that is then required by the
shape functionals and its gradients. The idea is that the class receives as an input data
the design variable vector (x) and it returns as an output the area, its derivative, and
the second moment of area with its respective derivative. This way, the DesignVariable
class is exempt of performing all this calculation and just deals with the initialization of
the design variables and storing its value over the iterations. On the other hand, the new
class SectionvariablesComputer has all those calculations grouped, increasing this way the
reusability between similar cross-sections geometries that can share some functions. Inside
the class, another class is created according to the type of section that is being calculated.
For the moment, this can only be a QuadrilateralSection or a CircularSection. However, this
modular structure easily allows the implementation of other new section types.

Finally, another important refactoring implemented to the code has consisted of bringing all
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the configuration parameters to the surface. This means, for example, to be able to change
the maximum volume restriction or the type of optimizer used at the EulerBeamOptimizer
level, and not inside a subclass. This feature adds the capability to test different simulations
within a shorter time and increases the flexibility at the time of trying new configurations

Figure 5.3: SectionVariablesComputer class structure

The problem found by A. Mañeru when using other optimizers than the MMA, that gave
constant solutions, which has been detailed in section 2.2 has also been solved. The issue was
related with the way the design variable restrictions were defined and passed to the optimizers,
which was incompatible with the majority of optimizers. The code works now for all the
optimizers implemented inside Swan.

In figure 5.4 the general architecture of the code is shown once the refactoring has been
carried out. It is depicted using a UML (Unified Modelling Language) graphic, which is a
standardized language used to visualize and document code. Here the black arrows denote
Composition, in the sense that a class is using instances of other classes within itself, and the
white arrows denote Inheritance, in the sense that the ”child” classes inherit the methods
and properties of the ”parent” class.
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Figure 5.4: General UML graphic for the Euler Beam Optimizer code

Finally, the processes that are taking place at EulerBeamOptimmizer class after the refactoring
are listed below:

1. Initialize parameters

2. Mesh creation

3. Design variable vector creation

4. Section variables class creation

5. EigModes, Cost and Constraints creation

6. Optimizer creation

7. Solving the iterative problem through the optimizer

8. Post process

3D plots

A new functionality that has been implemented to the code is the capability of visualizing
the resulting beams in 3-dimensional graphics. This feature allows a more realistic view of
the obtained geometries, and therefore can lead to more interesting analysis of the results. Is
of particular interest in the more than one design variable cross section designs, since the 2D
view couldn’t achieve to show changes occurring out of the plane.
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This feature is implemented inside a class called Plot3DBucklingColumn. Basically, the class
creates a group of level set functions that determine which areas of a background mesh contain
material and which does not.

The level set curves of the function f are the set of points (curves) that given to the function,
this returns a constant value c.

Lc(f) = {(x1, ..., xn)|f(x1, ..., xn) = c} (5.1)

Is called a zero level-set when the constant value is zero.

Based on the zero-level set of a circle of radius r and center (x0, y0), a function (eq. 5.2) is
obtained that returns positives values if the point (x, y) is outside the circle, negative values
if the point is inside the circle and zero if the point is on the boundary of the r-radius circle.
Each type of cross section uses a different level set function.

L = (x− x0)
2 + (y − y0)

2 − r2 (5.2)

This is the basis of the system used to generate 3D representations of the obtained beams, as
the one shown in figure 5.5.

Figure 5.5: Example of the 3D visualization of the column

36



For loops elimination

Another important change to the code is the substitution of all the For loops that iterated
through the total number of elements, usually with the following syntax:

Algorithm 1 For loop structure

for iElem = 1 to nElem do
Syntax(iElem)

end for

The idea behind this change is to optimize the code by using equally valid alternatives that
aren’t as computationally expensive as the loops through the elements. The loops that iterate
through all the elements are a potential problem that needs to be solved, although for a small
number of elements doesn’t pose a significant problem, for high number of element’s cases
those loops would transform in a very time consumption computation.

The most relevant case where this change has been implemented is when calculating the
gradients of the eigenvalues, inside the EigModes class. Both in the case of simple or multiple
eigenvalues, a loop through the elements was used to calculate eq. 4.16 and eq. 4.17. Which
can be rewritten as

∂λj

∂xi

=
∂I

∂xi

(
ϕT
j Be ϕj

)
for

i = 1, ..., nDesignV ar
e = 1, ..., nElem

(5.3)

The product of the eigenvectors by the bending matrix requires iterating through the elements
to obtain the corresponding elemental bending matrix each time. To do so, a sub-vector of
eigenvectors values corresponding to the global degrees of freedom of the respective element
are used. And to obtain this sub-vectors a index operator is used. This process is described
in algorithm 2

Figure 5.6: Schematic representation of the matrices product
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Algorithm 2 Product by using a for loop through the elements

for iElem = 1 to nElem do ▷ Loop through all the elements
index = ndofn · (iElem− 1) + 1 : ndofn · (iElem− 1) + ndofe
dx = dIiElem

dfdxiElem = −dx · (ϕT
index ·BiElem · ϕindex)

end for

Alternatively, the following algorithm is proposed that avoids iterating through all the elements.
Using the decomposition of the matrices product depicted in eq. 5.5, the product can be
achieved iterating by rows and columns.

[
ϕ1 ϕi ... ϕn

]
·


Be

11 Be
1j . . . Be

1n

Be
i1 Be

ij Be
in

...
. . .

...
Be

n1 Be
nj . . . Be

nn

 ·


ϕ1

ϕj
...
ϕn

 i, j = 1, ..., n (5.4)

n∑
j=1

ϕj

(
n∑

i=1

ϕiB
e
ij

)
=

n∑
j=1

n∑
i=1

ϕiB
e
ijϕj (5.5)

where n is the number of degrees of freedom by element, that in this case is n = 4.

However, here we still need to iterate the elements since this operation has to be repeated
for each elemental bending matrix (Be). The new idea introduced is to think in the bending
matrix as a three-dimensional matrix, where each elemental matrix is stacked one behind the
other so that the third dimension is the elements dimension. In this case, this bending matrix
would become a 4 × 4 × nElem matrix. Then each item in the two-dimensional plane, i.e.
the elemental degrees of freedom plane, can be transformed into a nElem length vector. For
instance, one vector would contain all the values in the position 11 of each elemental matrix.
From here, the product of scalars in eq. 5.5 is transformed into a vectors product (element by
element).
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Algorithm 3 Product by avoiding iterating through the elements

Compute eigenvector by DOF
for iDof = 1 to nDofE do

for jDof = 1 to nDofE do
Bij(:, 1) = Belem(iDof, jDof, :)
w = ϕ(:, iDof) ·Bij · ϕ(:, jDof)
Wab = Wab+ w

end for
end for
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Chapter 6

Change of design variable

In order to develop and broaden the cases of study, having in mind not only the solid of
revolution case, but also other different types of cross sections, first, in this section a change
of design variable is implemented. The problem is solved now with the column radius as
the new design variable instead of the column area. While the problem remains the same:
to maximize the first buckling eigenvalue of a clamped-clamped solid of revolution, now is
reformulated using the cross section radius as design variable. The same results as in the area
case should be obtained to validate the change. This change aims to establish the basis and
procedures of future more complicated changes. The problem is now formulated as:

min
r

−γ(r) s.t.


γ − λ1,1(r) ≤ 0
γ − λ1,2(r) ≤ 0
V − Vmax ≤ 0
α ≤ A(r) ≤ β

(6.1)

Following, the results obtained by using as design variable the radius instead of the area
are shown. Each figure displays the column profile, and the Cost and Volume Constraints
evolution through the iterations. The cases are calculated with a 500 elements mesh for a
unit length an volume column. MMA and fmincon have been used as optimizers. As can be
observed, the costs obtained are equal to the ones obtained in A. Mañeru’s work, which were
the same obtained by Cox and Overton. Therefore, the change of design variable has been
validated.
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(a) Column profile (b) Cost (c) Volume constraint

Figure 6.1: MMA, α = 0.5, Random initial values, Cost = -51.07

(a) Column profile (b) Cost (c) Volume constraint

Figure 6.2: MMA, α = 0.5, Constant initial Value, Cost = -51

(a) Column profile (b) Cost (c) Volume constraint

Figure 6.3: MMA, α = 0.25, Random initial values, Cost = -52.24
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(a) Column profile (b) Cost (c) Volume constraint

Figure 6.4: fmincon, α = 0.5, Random initial values, Cost = -51.07

Also, the problem is simulated for the case of a cantilever beam and a hinged-hinged beam.

(a) Column profile (b) Cost (c) Volume constraint

Figure 6.5: Cantilever beam, MMA, α = 0.5, Random initial values, Cost = -3.19

(a) Column profile (b) Cost (c) Volume constraint

Figure 6.6: Hinged-hinged beam, MMA, α = 0.5, Random initial values, Cost = -12.77
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6.1 More than one design variables

In order to implement different more complex cross section geometries other than the circular
one, the next step is to adapt the code to handle more than one design variables cases. First, it
is necessary to adapt the design variables vector. This vector contains the values of the design
variable at each element, therefore for more than one design variables, they are implemented
stacking on variable after the other as is shown in equation 6.2

x =
[
a1 . . . an, b1 . . . bn

]
n = 1, ..., nElem (6.2)

Inside the FEM equations developed in section 3.3 the cross-section type is defined using the
second moment of area (I) inside the bending matrix. Thus, by changing the definition of I
inside the code, the section is easily implemented with a code that receives as input the design
variables vector (x), obtains the variables values at each element and calculates I, which is
always a vector with the same length as the number of elements.

For calculating the derivative of eigenvalues, equation 4.17 is used, which already considers
multiple design variables xi. Contrary to the I vector, the derivative of the eigenvalues vector
will have the same length as the number of design variables times the number of elements,
e.g. for a 2 design variables section with 500 elements the vector will have 1000 elements.

When implementing sections with more than one design variable it is important to choose the
correct parameters that will characterize it, since a wise selection can avoid complexity to
the code. For example, to define a rectangular section with a rectangular inner hole, four
design variables are required. A possible selection of design variables could be the external
and internal width and height. However, this choice would entail the addition of additional
constraints in order to avoid non realistic solutions such as the case of the inner width being
larger than the external width. Alternatively, another possible choice, which is the one used in
this thesis, is the external rectangle width and height and each side thickness. This selection
avoids the aforementioned problems without the need of adding more constraints which would
add unnecessary complexity to the code.

6.2 Dimensional analysis

When analysing the results obtained by Cox and Overton and by A.Mañeru, it was noticed
that the solutions at which they arrived hardly fulfilled the slenderness assumptions in the
Euler-Bernoulli theory (i.e. that the beam must always have one dimension much bigger than
the other two), used to develop the governing equations of the problem. Since sometimes
the diameter of the section was longer than the unitary length of the column. This can’t
be considered a historically mistake in solving the buckling optimization problem. The idea

43



was to use a non-dimensional approach to the problem by using a column of unitary length,
volume and even with a Young’s modulus of value 1.

However, in this thesis it has been decided to use a more realistic approach in obtaining
the results. Therefore a dimensional analysis is carried out for each type of cross section in
order to fulfill an arbitrary slenderness ratio. This ratio is calculated by dividing the length
of the column by a characteristic parameter of each type of section, for example for the
case of a circular section the diameter is selected as a characteristic parameter. Once the
correspondent parameter is calculated, then the cross sections reference area is computed.
Finally, multiplying the area by the length the volume is obtained.

Figure 6.7: Schematic representation of the dimensional analysis

This analysis is used to establish the maximum volume constraint given a determined column
length.
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Chapter 7

Sensitivity and results analysis

In this section, a sensitivity analysis with the results of different cases is carried out. The aim
is to study the influence of different simulation parameters in the results obtained. Several
simulations are run changing different parameters such as the optimizer type, the initial
values, the volume and design variable restrictions for each kind of design variable and cross
section.

All the cases are based on a column of 20 units length and using a 500 elements mesh. Each
case takes as a reference the volume and characteristic parameter values obtained from the
pertinent dimensional analysis. However, those values are not considered immovable, since
the objective of those analysis is to study its influence on the models, and they have to be
varied to do so. Another point of view could be that of a reference uniform section column
that takes as parameters the length, width and volume maximum values obtained from the
dimensional analysis, which is then used to evaluate the slenderness of the solutions.

7.1 Circular section

The circular cross-section is a 1 design variable section. In this analysis it has been defined
using the radius r.

The circular section column takes as a characteristic parameter the diameter of the section.
Therefore, considering a 20 units length column, the dimensional analysis gives a radius of 1,
and taking the column of constant circular section the maximum volume obtained is 20π.

Below, some of the most significant results obtained for the case of the circular cross section
column of 20 units length are analysed. The design variables distribution of each result as
well as its correspondent 3D column are shown in figure 7.1.
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(a) N1 Cost = −1 (b) N1 3D (c) N3 Cost = −1 (d) N3 3D

(e) N4 Cost = −0.07 (f) N4 3D (g) N8 Cost = −1.16 (h) N8 3D

(i) N9 Cost = −0.91 (j) N9 3D (k) N12 Cost = −0.83 (l) N12 3D

Figure 7.1: Circular section results
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Reference case

Among all the results, a the reference case is first proposed. This case is characterized for
having a constant radius of value 1 along the length. In other words, it is taking the geometry
of the reference column obtained from the dimensional analysis. This basic solution obtains
a cost of value −1 and all of them are obtained using fmincon optimizer. In table 7.1 the
initial configurations that arrive to this solution are shown. The initial values can be constant
or using a random distribution. The basic random distribution provides values from 0 to 1,
however, this distribution can be escalated by multiplying it by a constant value.

Table 7.1: Reference cases initial configuration

N Optimizer Max. volume
Initial values Des var restrictions

Cost
r Max Min

1 fmincon 20π 2 2 - -1
2 fmincon 20π 2*random - - -1
3 fmincon 20π 0.5*random - - -1

Adding the design variable constraints

When the maximum design variable is constrained to 1, the value of the radius in the reference
column, the solutions obtained are achieving a maximum radius value of 0.5, as if the optimizer
hindered the column to achieve higher values. Therefore, the solutions are never using the
maximum volume available and the cost is lower in consequence.

Table 7.2: Hindered cases initial configuration

N Optimizer Max. volume
Initial values Des var restrictions

Cost
r Max Min

4 fmincon 20π 2 1 - -0.07
5 fmincon 20π 0.5 1 - -0.07
6 fmincon 20π 2*random 1 - -0.06
7 fmincon 20π 0.5*random 1 - -0.07

Optimal case

An optimal solution is obtained using the fmincon optimizer, a constant initial value of r = 2
and no restrictions to the design variable maximum nor minimum value. This solution obtains
a cost of −1, 16, higher than in the basic case. The final geometry is wider at the ends and at
the center of the column while thinner at 1/4 and 3/4 of the length. This fact resembles to
the unitary column obtained by Cox and Everton, and seems to be a general tendency of the
optimal columns obtained.
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Table 7.3: Optimal case initial configuration

N Optimizer Max. volume
Initial values Des var restrictions

Cost
r Max Min

8 fmincon 20π 2 - - -1.16

Other solutions

Other solutions, which are not optimal but that present another interesting geometry are
shown below. This cases are obtained both with fmincon and MMA optimizer, however the
design variable distribution is more accentuated using the MMA.

Table 7.4: Other cases initial configuration

N Optimizer Max. volume
Initial values Des var restrictions

Cost
r Max Min

9 fmincon 20π 0.5 2 - -0.91
10 fmincon 20π 2*random 2 - -1.01
11 MMA 20π 0.5 2 0.3 -0.84
12 MMA 20π 2 2 0.3 -0.83
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7.2 Circular section with inner concentric hole

The circular section with an inner concentric hole is a 2 design variables section. It is defined
using the inner radius (r) and the thickness (e) as design variables. This means that this
section is always symmetrical, despite the different configurations of the variables.

As a characteristic parameter to use for the dimensional analysis, for this section the external
radius is selected. Therefore, the reference parameters used are the same as the circular
section case.

As the other types of cross-sections presented, a different variety of results are obtained,
having a strong influence the different initial configurations.

As initial values for this section, inner radius of 1 and 2, and thickness of e = 0.3 are considered,
for both constant and random. Also, a sinusoidal distribution of the form

r = 0.4 · sin(θ) + 1
e = 0.2 · sin(θ) + 0.3

(7.1)

is proposed, where θ goes from 0 to 5π radians.

As optimizers, fmicon and MMA are used. The maximum volume restriction is set to 20 · π,
although some sensitivity analysis is also performed on the volume. And the maximum design
variable restrictions are varied between non restriction at all, 2, 4 and 6. For the MMA, a
minimum restriction is also required for the optimizer to work well, so minimum of 0,2 is set
in those cases.
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(a) N1 Cost = −0.16 (b) N1 3D (c) N5 Cost = −0.44 (d) N5 3D

(e) N6 Cost = −0.35 (f) N6 3D (g) N8 Cost = −0.26 (h) N8 3D

(i) N9 Cost = −0.16 (j) N9 3D (k) N10 Cost = −0.16 (l) N10 3D

(m) N11 Cost = −0.26 (n) N11 3D (o) N12 Cost = −0.07 (p) N12 3D

Figure 7.2: Circular with inner hole section results
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Reference case

Among all the solutions obtained, the reference case can be differentiated, i.e. a column with
a constant section along all the length. This base column takes an almost constant inner
radius of r = 0.8 and a thickness of e = 0.5. Taking all the volume available, and therefore
making the volume constraint 0. The cost reached for this solutions is −0.16.

The different initial configurations that arrive to this solution are shown in table 7.8. Using
MMA optimizer, a similar solution is achieved for the r = 1 and e = 0.3 initial values and
2/0.2 as maximum and minimum design variables restriction, however, this solution is a little
bit wider, obtaining a final constant radius r = 1 and thickness e = 0.4.

Table 7.5: Reference cases initial configuration

N Optimizer Max. volume Cost
Initial values Des var restrictions
r e Max Min

1 fmincon 20π 1 0.3 2 - -0.16
2 fmincon 20π 2 0.3 2 - -0.16
3 fmincon 20π random 0.3*random 2 - -0.16
4 fmincon 20π 2*random 0.3*random 2 - -0.16

Optimal cases

Another ”family” of solutions obtained are the optimal ones. That is the solutions that are
achieving a lower cost that −0.16. Inside this group different solutions are found.

Table 7.6: Optimal cases initial configuration

N Optimizer Max. volume
Initial values Des var restrictions

Cost
r e Max Min

5 fmincon 20π 1 0.3 - - -0.44
6 fmincon 20π 1 0.3 4 - -0.35
7 fmincon 20π 1 0.3 6 - -0.33
8 fmincon 20π sin sin 4 - -0.26

The best solution in terms of cost (−0.44) is the one depicted in figure 7.2c, case N5. However,
due to not having any maximum design variable restriction, the optimizer here is looking for
a solution as wider an thinner as possible. Arriving at values of r = 3.8 and e = 0.15, which
are far from the reference constant section column of r = 1 obtained from the dimensional
analysis.
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Other interesting solutions, which have higher cost values than −0.44, but that are more
slender than the previous one are obtained giving as maximum design variable restriction
values of 4 and 6, i.e. letting the optimizer consider wide solutions but with some limit
imposed. (Case N6: Fig. 7.2e) For the first case, it is necessary to highlight how the optimizer
first finds a constant section solution of −0, 25 cost, however around the 25th iteration, a
better solution is found which is the −0.35 cost. This behaviour can be observed in the cost
monitoring graphic in figure 7.3.

(a) Cost (b) λ1 constraint (c) Volume constraint

Figure 7.3: N6 monitoring

Finally, inside this group of better solutions than the basic case, a −0, 26 cost solution is
found using a sinusoidal initial distributions with the fmincon optimizer. This is achieved
using a maximum design variable restriction of 4, since the same conditions with a restriction
of 2 are giving the base case as a solution. (Case N8: Fig. 7.2g)

Other solutions

Apart from the cases already mentioned, other solutions are obtained that may not have
lower cost values than the base case (−0.16), but that are arriving at solutions with different
geometries than the constant section column.

Table 7.7: Other cases initial configuration

N Optimizer Max. volume
Initial values Des var restrictions

Cost
r e Max Min

9 MMA 20π random 0.3*random 2 0.2 -0.16
10 MMA 20π 2 0.3 2 0.2 -0.16
11 fmincon 80 1 0.3 2 - -0.26
12 fmincon 40 1 0.3 2 - -0.07
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Using the MMA optimizer two similar solutions are obtained which have a particular geometry
consisting on two small peaks at the ends and a wider one in the middle. Both solutions
achieve a cost of −0.16 and fulfill the slenderness requirements having inner radius of around
r = 0.9. (Case N9: Fig. 7.2i and Case N10: Fig. 7.2k)

Another set of cases analyse the sensibility of the volume constraint considering as maximum
volume values of 80 and 40, to analyse the influence of higher and lower volumes keeping the
maximum design variable value possible as 2. The solutions obtained in both cases can be
considered as equivalents to the base case, with a constant cross section, but with greater and
lower values respectively. (Case N11: Fig. 7.2m and Case N12: Fig. 7.2o)
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7.3 Rectangular section

The rectangular cross-section is a 2 design variables section. It is defined using both sides of
the rectangle which are named as a and b.

The characteristic parameter used to analyse the slenderness of the beam is the length of the
longest side, which for the case of a 20 units length column is set to 2. Meaning that for a
constant section beam with both sides being 2, the maximum volume is 80.

Between the different initial configurations studied, the initial values of the sides used are:
both sides equal at a value of 3, and one side longer than the other with the values 3 and 0.5.
Also, initial values following a sinusoidal distribution of the form

a = 0.4 · sin(θ) + 2
b = 0.4 · sin(θ) + 2

(7.2)

are tried. Where θ goes from 0 to 5π radians. The MMA and the fmincon optimizers are
used in this case. The design variables maximum restrictions used are no restrictions, 2 and 4.
With a minimum restriction for the MMA 0.3.

Following, some of the most relevant results are analysed.

54



(a) N1 Cost = −0.13 (b) N1 3D (c) N7 Cost = −0.029 (d) N7 3D

(e) N8 Cost = −0.009 (f) N8 3D (g) N15 Cost = −0.05 (h) N15 3D

(i) N11 Cost = −0.14 (j) N11 3D (k) N12 Cost = −0.13 (l) N12 3D

(m) N13 Cost = −0.15 (n) N13 3D (o) N14 Cost = −0.15 (p) N14 3D

Figure 7.4: Rectangular section results
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(q) N16 Cost = −0.14 (r) N16 3D (s) N17 Cost = −0.14 (t) N17 3D

(u) N18 Cost = −0.07 (v) N18 3D (w) N19 Cost = −0.20 (x) N19 3D

Figure 7.4: Rectangular section results

Reference case

As with the other cross-sections cases presented, the reference case is differentiated among
all the solutions. This case is characterized by a constant cross-section along the length of
the beam. This section takes the form of a square with both sides being almost equal, with
a value of 2, i.e. taking the maximum volume available in the form of the reference slender
column. This solution obtains a cost of −0.13 and is achieved only by fmincon optimizer
when there is no maximum design variable restriction or when the restriction is 4.
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Table 7.8: Reference cases initial configuration

N Optimizer Max. volume
Initial values Des var restrictions

Cost
a b Max Min

1 fmincon 80 3 3 - - -0.13
2 fmincon 80 3 3 4 - -0.13
3 fmincon 80 3 0.5 4 - -0.13
4 fmincon 80 sin sin - - -0.13
5 fmincon 80 3*rand 3*rand 4 - -0.12
6 fmincon 80 3*rand 0.5*rand 4 - -0.12

Adding design variable constraints

A curious phenomena is observed when the maximum design variable restriction is set to
2. It would be logical to think that the optimizers still can arrive to the base case of equal
sided section of values a, b = 2. However, all the solutions achieved using this restriction are
obtaining maximum side values of 1.4, and in no case a side value of 2 is obtained. Therefore,
they are never using the maximum volume available and the volume constraint is never 0.
Furthermore, all those solutions are of constant section, thinner square columns than the
basic case. The costs of those solutions varies form −0.008 to −0.029.

Table 7.9: Hindered cases initial configuration

N Optimizer Max. volume
Initial values Des var restrictions

Cost
a b Max Min

7 MMA 80 3 3 2 0.3 -0.029
8 MMA 80 3 0.5 2 0.3 -0.009
9 fmincon 80 3 3 2 - -0.008
10 fmincon 80 3 0.5 2 - -0.008

Optimal solutions

Although no much lower than −0.13 cost solutions are obtained, there is a group of solutions
with different geometries from the constant section column which give values between −0.13
and −0.15 cost.
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Table 7.10: Optimal cases initial configuration

N Optimizer Max. volume
Initial values Des var restrictions

Cost
a b Max Min

11 MMA 80 3 3 4 0.3 -0.14
12 MMA 80 3 0.5 4 0.3 -0.13
13 fmincon 80 sin sin 4 - -0.15
14 MMA 80 sin sin 4 0.3 -0.15

Using MMA optimizer, depending on the initial values, two slightly different geometries are
found. Starting with a, b = 3 and with a maximum restriction of 4, case 11, a cost of -0.14 is
obtained. In figure 7.4i, the design variable values can be observed, being the column wider
at the ends and the middle. On the other hand, beginning with a = 3 and b = 0.5, the cost is
-0.13 and the geometry is different. One of the sides is of almost a constant value 2, while
the other is showing three peaks at 3, 10 and 17 units length. Consequently augmenting the
general area in those parts. (Fig. 7.4k)

If we use as initial conditions a sinusoidal distribution of the design variables, eq. 7.2, the
final geometry is different. Both cases, N13 and N14, using fmincon and MMA respectively,
obtain a sinusoidal solution with a cost of -0.15. Therefore, those cases are the optimal ones
from all the configurations tested.

Other solutions

Other solutions different from the aforementioned, which are not optimal but that arrive to
distinct geometries, are presented below.

Table 7.11: Other cases initial configuration

N Optimizer Max. volume
Initial values Des var restrictions

Cost
a b Max Min

15 fmincon 80 3 0.5 - - -0.05
16 MMA 80 3*rand 3*rand 4 0.3 -0.14
17 MMA 80 3*rand 0.5*rand 4 0.3 -0.14
18 fmincon 60 3 3 4 - -0.07
19 fmincon 100 3 3 4 - -0.20

Using the fmincon optimizer, starting with initial side values of a = 3 and b = 0.5 and without
imposing any design variable restriction a constant rectangular section column is obtained. It
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arrives to a cost of −0.05 and the sides take a constant value of a = 3.18, b = 1.25. (Case
N15: Fig. 7.4g

Using MMA optimizer, and starting with a random initial distribution of the design variables,
solutions N16 and N17 are found. The resulting geometries are unrealistic and and hardly
feasible, however a tendency can be sensed towards a solution similar to the one obtained in
case N12.

Finally, two more cases, N18 and N19, study the influence of the maximum volume constraint.
In case 18 the volume constraint is set at 60, and the result is the basic case, i.e. constant
square section, but with lower side values, that are 1.7 instead of 2. However, when the
maximum volume is 100, (case 19) instead of arriving to the basic solution, a slightly different
geometry is obtained resembling the one obtained in case N12.
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Chapter 8

Conclusions

The main objective of this thesis has been to investigate new designs of lightweight structures
to maximize the buckling critical load, which is the first eigenvalue of the problem. With the
exception of the implementation of the rectangular section with an inner hole, that due to a
lack of time hasn’t been possible to make it work correctly, all other objectives have been
successfully accomplished.

A change of design variable has been implemented, for the same circular cross-section shape
that was studied by A. Mañeru. Her work, as well as the historical research done in this field,
was developed using the circular section’s area (A) as a design variable. However, in this
thesis, the radius (r) has been implemented as design variable. The results obtained using the
radius have been consistent with those obtained using the area. In particular, the -51 cost
value achieved by Cox and Everton has been obtained for the case of a unitary volume and
length column.

However, the primary focus in this thesis has been the research of new designs for maximizing
buckling first eigenvalues. Two new cross-section geometries were studied, and their solutions
were analyzed. Adapting the code to solve columns with more than one design variable was
required for these new sections, such as the rectangular section or the circular section with a
concentric inner hole.

After analyzing the solutions of the circular, circular with inner hole, and rectangular sections,
some general conclusions have been drawn.

It has been observed that in all three sections a basic case is obtained which consists in a
constant section column. This basic solution takes the form of the reference column obtained
from the dimensional analysis, as is the case of the cylinder for the circular section case and
the square prism for the rectangular case.

Another characteristic observed is related to the functioning of the design variables restriction.
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When the maximum value of the design variable is set as the reference value obtained from
the dimensional analysis, e.g 2 for the rectangle case, the solutions obtained never reach that
value, instead they stay always some margin below it. However, when a higher margin is
introduced, the solutions do reach the reference value, e.g. when the maximum value is set
to 4 for the rectangle case the obtained values are around 2. In other words, the reference
values are never reached if the same reference value is used as a maximum restriction. This
behaviour is related to the way the optimizers look for for the optimal solution and is a feature
that could be deepened in further studies.

Among all the solutions that have been studied there are two kind of distributions of the
design variable that appear repeatedly in the optimal cases. One of those solutions is similar
to the results obtained by Cox and Overton in the sense that distributes the material making
the column wider at its ends and center (e.g. fig. 7.1g). The other solution tends to expand
the section at around 1/6 and 5/6 of the length and at its center (fig. 7.4k).

Future lines of investigation

As further lines of investigation, the development of the buckling optimization problem can
be broadened to other cross sections types, for example, regarding the typical sections used
in industrial designs, as are the I and T-shaped sections. Parametrizing the sections with
other design variables. For example, the circular hole case could not necessarily be concentric,
adding more freedom to the generation of solutions.

Other studies could address the implementation of different materials in the optimization of
the column. This change would be introduced by changing the Young’s modulus (E), and the
study could go from the influence of different materials in the final solutions obtained to the
development of more than one material designs.

Finally fixing the implementation of the rectangular section with a rectangular hole, which
was a initial feature in the scope of the thesis but that in the end has failed to be implemented,
is the most direct way of continuing the work developed in this project.
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Appendix A

Cross-sections

Following, the main parameters of the different cross sections implemented in the code are
detailed. The design variables that uses each kind of section as well as the area, inertia and
its derivatives equations are presented.

A.1 Circular section

To define the circular section, the radius (r) is selected as design variable.

Figure A.1: Circular section

A = πr2 (A.1)

∂A

∂r
= 2πr (A.2)
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I =
π

4
r4 (A.3)

∂I

∂r
= πr3 (A.4)

A.2 Square section

The square section is a particular one design variable case of the rectangular section. To
define it the length of one side is used as design variable (a).

Figure A.2: Square section

A = a2 (A.5)

∂A

∂a
= 2 a (A.6)

I =
a4

12
(A.7)

∂I

∂a
=

a3

3
(A.8)
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A.3 Rectangular section

The rectangular section is a two design variables section which is characterized by the length
of each side a, b.

Figure A.3: Rectangular section

A = a b (A.9)

∂A

∂a
= b (A.10)

∂A

∂b
= a (A.11)

I =
a b3

12
(A.12)

∂I

∂a
=

b3

12
(A.13)

∂I

∂b
=

a b2

4
(A.14)
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A.4 Circumference with concentric hole section

The circular section with concentric inner hole is a two design variables section. To parametrize
it, the inner radius and the thickness have been selected as design variables.

Figure A.4: Circular section with concentric inner hole

A = π(R2
ext −R2

int) = π((r + e)2 − r2) (A.15)

∂A

∂r
= 2πe (A.16)

∂A

∂e
= 2π(r + e) (A.17)

I =
π

4
(R4

ext −R4
int) =

π

4
((r + e)4 − r4) (A.18)

∂I

∂r
= π((r + e)3 − r3) (A.19)

∂I

∂e
= π(r + e)3 (A.20)

where r is the inner radius and e the thickness so that the external radius is r + e.
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A.5 Rectangular section with rectangular inner hole

The rectangular section with a rectangular inner hole is a four design variables section. To
characterize it the length of the external sides and the width of each side are elected as design
variables.

Figure A.5: Hollow rectangle

h, b, eh, eb

b1 = b− 2 · eb (A.21)

h1 = h− 2 · eh (A.22)

Ix =
bh3 − b1h

3
1

12
=

bh3 − (b− 2 · eb)(h− 2 · eh)3

12
(A.23)

∂Ix
∂b

=
h3 − (h− 2 · eh)3

12
(A.24)

∂Ix
∂h

=
3bh2 − 3(b− 2 · eb)(h− 2 · eh)2

12
(A.25)

∂I

∂eb
=

(h− 2 · eh)3

6
(A.26)

∂I

∂eh
=

(b− 2 · eb)(h− 2 · eh)2

2
(A.27)

A = h · b− h1 · b1 = h · b− (h− 2 · eh) · (b− 2 · eb) (A.28)

∂A

∂b
= h− (h− 2 · eh) (A.29)
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∂A

∂h
= b− (b− 2 · eb) (A.30)

∂A

∂eb
= 2 · (h− 2 · eh) (A.31)

∂A

∂eh
= 2 · (b− 2 · eb) (A.32)
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