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ABSTRACT: 
 
Hyperspectral image classification has drawn significant attention in the recent years driven by the increasing abundance of sensor-
generated hyper- and multi-spectral data, combined with the rapid advancements in the field of machine learning. A vast range of 
techniques, especially involving deep learning models, have been proposed attaining high levels of classification accuracy. However, 
many of these approaches significantly deteriorate in performance in the presence of noise in the hyperspectral data. In this paper, we 
propose a new model that effectively addresses the challenge of noise residing in hyperspectral images. The proposed model, which 
will be called DCT-CNN, combines the representational power of Convolutional Neural Networks with the noise elimination 
capabilities introduced by frequency-domain filtering enabled through the Discrete Cosine Transform. In particular, the proposed 
method entails the transformation of pixel macroblocks to the frequency domain and the discarding of information that corresponds to 
the higher frequencies in every patch, in which pixel information of abrupt changes and noise often resides. Experiment results in 
Indian Pines, Salinas and Pavia University datasets indicate that the proposed DCT-CNN constitutes a promising new model for 
accurate hyperspectral image classification offering robustness to different types of noise, such as Gaussian and salt and pepper noise. 
 
 
 
 

1.   INTRODUCTION 

Hyperspectral imaging systems have been increasingly used in a 
wide area of applications including agriculture (Sahu et. al., 
2019), surveillance (Freitas et. al., 2019), biomedical imaging 
(Offerhaus, Bohndiek & Harvey, 2019), and astronomy (Hege et. 
al., 2004). This is due to the fact that they efficiently combine the 
spatial information with the subtle differences in spectral 
signatures of various objects, making them valuable tools in tasks 
relevant to material detection and object recognition. These tasks 
can be viewed as classification problems, i.e. classify image 
pixels based on their spectral characteristics in order to recognize 
various materials, and objects. 
 
The high dimensionality and complexity of hyperspectral 
information (HSI), makes classification an arduous task, that 
requires special learning architectures to tackle them. This 
prohibited the use of shallow neural network architectures, such 
as Feedforward Neural Networks, since the complexity of the 
data could result in the accumulation of errors, especially when 
the derivative is in the saturation regions, where small error 
changes affect the weights significantly. This was evident even 
when trying to classify vision based data with fewer dimensions 
than HSI, like RBG or Thermal, narrow-spectrum data.  
 
The advent of deep learning brought a new era to hyperspectral 
image classification. Architectures such as Convolutional Neural 
Networks (CNN) tackled the aforementioned challenges by using 
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a number of convolution steps, extracting representative features 
at different hierarchies of resolutions from the input data. These 
features are forwarded to neural network architectures that drive 
the classification step. The feature extraction capabilities of CNN 
have significantly enhanced the performance of classifying visual 
based data. 
 
However, the majority of these approaches significantly 
deteriorate in performance in the presence of noise in the 
hyperspectral data, thus indicating insufficient robustness to 
noise and outliers. In this paper, we propose a new model that 
effectively addresses the challenge of noise residing in 
hyperspectral images. The proposed model, which will be called 
DCT-CNN, combines the representational power of 
Convolutional Neural Networks with the noise elimination 
capabilities introduced by frequency-domain filtering enabled 
through the Discrete Cosine Transform. 
 
1.1   Related Work 

Earlier works on classification of HSI, consist of two main steps, 
the computation of hand-crafted features from the raw data and 
the use of such features to train classifiers, such as Support 
Vector Machines (SVM) and Neural Networks (NN) (Camps-
Valls & Bruzzone, 2009). Camps-Valls et. al. (2014) employs 
statistical learning methods to classify high-dimensional data, 
with a few training samples available. These approaches however 
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assume a priori knowledge of the important features for the 
classification, which is usually not-known.  
 
More efficient approaches employ the paradigm of pattern 
recognition and machine learning (Lecun et. al., 1998, Hinton 
and Salakhutdinov, 2006, Hinton et. al. 2006, Bengio et. al., 
2007) , that automate the feature extraction steep, by building 
high-level features from low-level ones. Moreover, when in 
possession of bigger training sets, such as large images with very 
high spatial and spectral resolutions, deep learning approaches 
seem more adequate for the classification problem (Chen et. al., 
2014). Techniques based on deep learning have already been 
shown promising results for the detection (classification) of 
specific objects (Han et. al., 2018), materials (Mnih and Hinton, 
2012), vehicles (Montavon et. al. 2012), actions (Bakalos et. al., 
2019a), and HSI (Chen et. al., 2014). Chen et. al., (2014) utilises 
a greedy layer based training framework (Bengio et. al., 2007) 
and Autoencoders, which are used as the basic building block for 
spectral feature extraction that are in turn combined with spatial 
information and fed to a logistic regression classifier. However, 
it is necessary to employ various adaptations of simple deep 
learning techniques in classifying high dimensional data.  This is 
evident even in application scenarios where the dimensionality of 
data is much lower than HSI such as Bakalos et. al., (2019b).  
 
Typical deep learning architectures  contain  a high  number  of  
tunable  parameters  implying  that  a  large number  of  samples  
is  also  needed  to  accurately  train  the network, and high 
complexity is introduced in the training process.  Furthermore, 
such approaches are often not sufficiently tolerant to the presence 
of noise within the hyperspectral information. The proposed 
approach in this paper introduces a pre-processing step based on 
the Discrete Cosine Transform in a CNN framework for HSI. 
 

2.   THE PROPOSED DCT-CNN FOR NOISE-
TOLERANT HYPERSPECTRAL IMAGE 

CLASSIFICATION 

The proposed model, DCT-CNN, combines the representational 
power of Convolutional Neural Networks in pixel-level 
classification of HSI with the noise elimination capabilities 

introduced by frequency-domain filtering enabled through the 
Discrete Cosine Transform. In particular, the proposed method 
entails the transformation of pixel macroblocks to the frequency 
domain and the discarding of information that corresponds to the 
higher frequencies in every patch, in which pixel information of 
abrupt changes and noise often resides. We hereby present the 
steps of our proposed technique: we first describe the plain CNN 
approach without the DCT pre-processing, and the explain the 
additional DCT step. 
 
The deep learning approach presented in this work employs CNN 
for a pixel level classification of a hyper-spectral image. 
However, the training of such architectures requires the 
convolution of hundreds of channels along the network inputs. It 
is understood that training of deep CNN architectures requires the 
convolution of hundreds of channels along the network inputs. 
This increases the computational costs of training and prediction. 
Also through a statistical analysis of spectral responses of pixels 
that belong to the same class, one easily observes that the 
variance of responses is small. This suggests that pixels that 
belong to the same class tend to have very similar values at every 
channel. At the same time, pixels that belong to different classes 
present different spectral properties.  
 
Based on the above, to achieve the best performance, a pre-
processing step that uses a Randomised Principal Component 
Analysis (R-PCA) is employed. R-PCA is applied among the 
spectral information, without affecting the spatial information. 
The number of principal components that are retained after the 
application of R-PCA, is appropriately set, in order to keep at 
least 99.9% of initial information. During the experimentation 
process on widely-used hyperspectral datasets, this amount of 
information is preserved by using the first 10 to 30 principal 
components, reducing this way up to 15 times dimensionality of 
the raw input. 
 
The hyperspectral image can be expressed as a 3D tensor, 
	
  𝑝#×𝑝%×𝑝&,  𝑝#	
  and 𝑝% representing the spatial information and 
𝑝& representing the spectral bands. We analyse the captured 
hyperspectral images in 𝑠 − 𝑠𝑖𝑧𝑒	
  square patches.  After the R-
PCA method, in the traditional CNN approach, each patch is a 
tensor of   𝑠×𝑠×𝐶-./ size, where parameter 𝐶-./ is the number 

Figure 1: Deep Learning Architecture for HSI 
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of principal components extracted during the R-PCA method. 
During the performance evaluation the selected batch size, s can 
be tried for different values. Increasing the size of s also increases 
the number of neighbours considered during the classification. 
Thus, it is evident that increasing the size of s, also increases the 
algorithms complexity. The selection of the batch-size is a critical 
step in the training process, as it optimises the 
accuracy/complexity ratio of the algorithm. Selecting batch-sizes 
bigger than 13 usually deteriorate the performance of the model. 
The CNN structure design includes the aforementioned data input 
and preprocessing (R-PCA) layers. These layers are followed by 
two convolutional layers of 3×3 and 3×𝐶-./ size. During 
training, the standard backpropagation algorithm was employed, 
i.e. minimizing the negative log-likelihood of the datasets under 
the model parameters. The CNN architecture can be seen in 
Figure 1.  
 
When assuming that hyperspectral data include noise, then we 
leverage the Discrete Cosine Transform. Transforming the 
information to the frequency domain, the core information is 
retained in low-frequency coefficients, whereas high-frequency 
coefficients tend to represent abrupt changes, edges, outliers and 
noise, hence eliminating this information can potentially provide 
robustness to noise. Based on this, the noisy hyperspectral data 
are dissembled into patches of a fixed size (different patch sizes 
have been investigated in the experimental evaluation, as noted 
above) and a Discrete Cosine Transform is applied to every 
patch. Thus, passing to the frequency domain, each patch is now 
represented by amplitude coefficients of increasingly high 
frequencies. In our method, the coefficients corresponding to the 
higher frequencies of each patch are turned into zero. More 
specifically, in the evaluation we have experimented with various 
percentages of zeroed coefficient values, ranging from 0% to 
64% of the coefficients, always starting from the highest 
frequency, i.e. from the lower right corner of the patch.  

 
3.   EXPERIMENTAL EVALUATION 

3.1   Experimental Setup 

In our study, we experimented and validated the developed 
framework with three publicly available datasets. In particular, 
we employed i) the Indian Pines dataset, which consists of 145 x 
145 pixels and 224 spectral reflectance bands in the wavelength 
range 0.4 to 2.510…meters. ii) the Salinas dataset, which is an 
224-band hyperspectral image, characterized by high resolution 
and iii) the Pavia university dataset, whose number of spectral 
bands account for 102.  
 
Supervised training was conducted using the ground truth images 
of aforementioned datasets. In particular, we split the tagged 
parts of images into two sets, training and testing data, with a split 
ratio 5:95 for Salinas and Pavia datasets, whilst for the Indian 
Pines dataset we used a different ratio accounted for 25:75. The 
different ratio concerned the last-mentioned image, has to do with 
the high variability of the number of samples between classes. 
The splitting was done randomly, and each experiment was 
conducted 10 times and the results demonstrated at the next 
section, are the average number of them. All models have been 
quantitatively validated in terms of classification accuracy.  
 
In the experimental evaluation phase, two different types of noise 
were introduced. Gaussian noise, one with std = 300 and mean = 
0 and one with std = 100 and mean = 0.  We also applied the well-
known Salt and Pepper (SnP) noise. In particular, the overall 
amount of imported noise was 10% and 80% respectively, with 
an analogy between salt and pepper of 50:50.  
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7x7 75.89 82.40 88.93 54.90 55.44 56.22 27.34 59.75 73.36
9x9 86.17 86.76 91.32 61.68 59.78 60.94 23.39 55.61 68.70
11x11 91.70 90.33 92.05 67.57 70.16 70.69 18.46 52.15 64.13
13x13 94.08 91.96 93.55 74.01 78.67 79.18 16.17 50.83 59.72
15x15 94.13 91.92 93.91 80.77 84.56 85.23 15.43 49.42 55.43

CNN SVM-­‐Linear K-­‐nn
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No	
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  =	
  3 N	
  =	
  4 No	
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  =	
  3 N	
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5x5 40.07 43.45 47.44 20.03 22.95 29.67 18.67 37.31 59.33
7x7 42.10 42.33 48.52 21.64 25.54 27.40 17.30 42.97 50.92
9x9 48.39 50.24 55.04 23.38 21.76 25.84 10.81 28.80 47.31
11x11 53.92 53.91 61.77 24.74 28.41 30.54 8.22 28.00 46.88
13x13 60.79 55.81 61.03 25.80 37.53 38.60 8.16 22.74 46.68
15x15 64.54 58.12 60.92 28.75 43.05 46.20 8.20 22.34 46.75

Salt	
  and	
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CNN SVM-­‐Linear K-­‐nn

Figure 2: Indian Pines Dataset: Classification accuracy rates for CNN, SVM and k-NN based approaches, for 
Gaussian and Salt & Pepper noise, for different patch sizes and different numbers of zeroed high-frequency 
DCT coefficients. Yellow-coloured rates show the best performing configuration per technique, and green-

coloured rates the best performing one among all techniques for the given patch size.  
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9x9 88.68 90.36 90.39 75.57 72.88 73.93 78.99 88.79 90.00
11x11 90.39 94.32 94.29 78.98 75.13 74.76 78.26 83.18 89.06
13x13 93.39 95.89 95.62 81.88 74.87 75.83 75.71 84.34 85.98
15x15 94.43 95.41 95.57 83.34 79.50 79.31 76.27 81.36 82.27
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7x7 71.90 74.66 75.95 49.17 54.57 58.42 31.96 37.16 53.00
9x9 76.07 77.99 78.29 47.37 49.27 52.72 35.22 37.57 43.86
11x11 78.62 79.82 80.88 52.01 47.09 49.16 34.83 31.65 38.68
13x13 80.92 81.98 82.04 54.98 43.75 47.39 30.91 33.39 32.47
15x15 83.04 83.38 83.09 56.29 46.19 45.18 33.19 28.88 32.44
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CNN SVM-­‐Linear K-­‐nn

Figure 4: Pavia University Dataset: Classification accuracy rates for CNN, SVM and k-NN based approaches, 
for Gaussian and Salt & Pepper noise, for different patch sizes and different numbers of zeroed high-

frequency DCT coefficients. Yellow-coloured rates show the best performing configuration per technique, and 
green-coloured rates the best performing one among all techniques for the given patch size.  

 

Figure 3: Indian Pines Dataset: Classification maps for indicative CNN-based configurations.  
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11x11 95.78 93.40 93.85 71.95 65.80 69.61 87.04 89.85 91.61
13x13 96.60 94.70 95.21 73.01 81.74 80.95 88.07 91.53 92.02
15x15 97.08 94.69 95.64 75.94 83.10 83.68 87.76 91.30 92.49
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Figure 6: Salinas Dataset: Classification accuracy rates for CNN, SVM and k-NN based approaches, for 
Gaussian and Salt & Pepper noise, for different patch sizes and different numbers of zeroed high-frequency 
DCT coefficients. Yellow-coloured rates show the best performing configuration per technique, and green-

coloured rates the best performing one among all techniques for the given patch size.  
 

Figure 5: Pavia University Dataset: Classification maps for indicative CNN-based configurations.  
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3.2   Results 

Experimental results are provided for various patch sizes, ranging 
from 5x5 up to 15x15. Furthermore, we have experimented with 
different ratios of zeroed high-frequency DCT coefficients. The 
results tables indicate the yielded classification accuracy of CNN, 
SVM and kNN models, for different patches and different ratios 
of zeroed high-frequency DCT coefficients (i.e., no coefficients 
zeroed, a sub-patch of size 3x3 in the lower-right corner zeroed 
and a sub-patch of size 5x5 in the lower-right corner zeroed). 
Figures 2, 4, and 6 present the accuracy rates for the Indian Pines, 
Salinas, and Pavia University datasets respectively, whereas 
Figures 3, 5, an 7 provide the hyperspectral classification maps 
for indicative cases of noisy data handled with plain CNN and 
DCT-CNN. 

 
The results indicate that the approach based on DCT-CNN 
handles noisy hyperspectral data in a more effective manner than 
plain CNN approaches. As expected, the noise-tolerance 
technique based on CNN outperforms similar techniques applied 
on other learning models such as SVM and k-NN, although in 
those cases the benefits of DCT for noise robustness can be seen 
as well. It can also be observed that generally when the patch size 
increases, a higher number of zeroed high-frequency DCT 
coefficients tends to provide better performance rates. 
 
 

4.   CONCLUSION 

In this paper, we have proposed DCT-CNN, a model that 
combines the representational power of Convolutional Neural 

Figure 7: Salinas Dataset: Classification maps for indicative CNN-based configurations.  
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Networks with the noise elimination capabilities introduced by 
frequency-domain filtering enabled through the Discrete Cosine 
Transform. The presented method involves the transformation of 
pixel macroblocks to the frequency domain and the discarding of 
information that corresponds to the higher frequencies in every 
patch, in which pixel information of abrupt changes and noise 
often resides. Experiment results in Indian Pines, Salinas and 
Pavia University datasets indicate that the proposed DCT-CNN 
constitutes a promising new model for accurate hyperspectral 
image classification offering robustness to different types of 
noise, such as Gaussian and Salt and Pepper noise. As future 
directions of our work, we aim at investigating the efficacy of 
other transformations, such as wavelets, in conjunction with deep 
learning, as well as tensor-based machine learning which have 
been shown to require a lower amount of annotated data for 
training. 
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