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Abstract. With huge amounts of data being generated every second, the demand for parallelized, high 
speed, and efficient computing power is rising rapidly, pushing the limits of existing computing 
paradigms. In this circumstance, photonic computing hardware is a promising alternative to conventional 
electronics with prospects of speed and remarkably power efficient at accelerating multiply-accumulate 
(MAC) operations. Moreover, optical computing enables massive parallelism over their electronic counter 
parts through wavelength division multiplexing. This work involves the design and fabrication of an 
integrated photonic tensor core (PTC) capable of performing 60 millon MAC operations per second. 
Optical computing hardware makes use of multiple electro-optic and digital-analog converters. This work 
also involves the design and characterisation of a dedicated electronic interface to feed data to the PTC. In 
order to demonstrate the application potential, we perform convolution processing on 2D images in the 
optical domain with the newly developed hardware. 
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1. Motivation 
 
Most powerful computers in the recent years are based on a centralized processing architecture. 
First conceptualized by John von Neumann in 1945, this architecture consists of a central 
processing unit and discrete memory suited to perform sequential digital logic. Consequently, 
von Neumann computers are inefficient when it comes to processing data in a distributed and 
parallel fashion, a key requirement to perform multiply accumulate (MAC) operations [1]. It is 
indeed a significant drawback since MAC operations are at the heart of artificial intelligence 
and deep learning models required to analyze the vast amount of data being generated [2]. Even 
though, recent years have seen a rapid development in custom silicon computing hardware such 
as FPGAs*, ASICs* and GPUs* [3][4] capable of parallel processing MAC computations and 
improved data throughput, they still experience fundamental limitations of electrical signaling 
leading to great amounts of energy consumption [5].  
 
Information processing with light is gaining popularity in recent years. As photons- quanta of 
light- are roughly 300 times faster than electrons and the fact that the former is bosonic in nature, 
photonic computing hardware presents the advantage of increased speed along with massive 
parallelism over their electronic counter parts. Even though, the linear nature of light makes it 
inconvenient for digital processing, the same reason makes it expertly suited for implementing 
MAC hardware [6] [7] [8]. Optical signals are also free from electromagnetic interference, cross 
talk and Joule’s heating resulting in higher power efficiency [9]. In addition, advancements in 
integrated photonics have enabled scalable micro fabrication of these photonic circuits.  
 
A major limitation arises when it comes to operating photonic computing circuits with sufficient 
data throughput. All optical networks require certain permutations of digital to analog and 
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electronic to optical conversions at its edges [10][11]. This immediately calls for a custom 
electronic interface that can operate and test the functionalities of photonic designs. However, 
building such a flexible interface with multiple synchronized data channels running at 
throughputs of at least several megabits per second is challenging. The ideal approach here 
would be to fabricate ASICs that meet the specifications, but their utility is only viable when 
mass produced, making them prohibitive in the research and development stage. Another 
approach would be to use general purpose microcontrollers in conjunction with Digital to 
analog converter (DAC) modules. These devices even though can be programmed with relative 
ease, cannot help but compromise on the number of synchronous channels and data rate [12]. In 
this context, programming a commercially available FPGA is the next best approach. However, 
most FPGA development boards are limited in terms of analog data channels and have fixed 
signal specifications and bandwidth. 
 
With these challenges in mind, this work of mine includes the fabrication of an application 
specific integrated photonic tensor core (PTC) in conjunction with designing an electronic 
interface to perform necessary data logistics. The PTC is capable of optical MAC computations 
by which I demonstrate convolution processing on 2D images. The electronic interface has four 
synchronous channels with modulation frequencies up to 15 MHz per channel. The digital and 
analog circuit design of the interface is extensible allowing it to have several more synchronous 
channels, making it an ideal design to test and operate sophisticated photonic computing 
networks.  
 
2. Materials and methods 
 
This chapter describes the development of individual stages required for performing image 
convolutions in the optical domain. These processing stages are summarized in a flow chart 
(figure 1). The sub sections go into the details of how each of the stages were implemented and 
how the measurements were performed.  

 
Figure 1 A flow chart summarizing the necessary signal processing stages to realize 

convolution processing in the optical domain 

2.1 Convolution processing in the optical domain 
 
This section describes the design of a quad channel CMOS compatible integrated photonic 
tensor core capable accelerating 2D convolutions. A discrete 2D convolution, especially the 
ones that are performed for image processing can be broken down to a sequence of matrix 
multiplications between the input matrix and a kernel (filter) matrix. Further, matrix 
multiplication (MM) in turn consists of several multiply-accumulate (MAC) calculations. A 
MAC calculation unit fundamentally requires scaling elements that perform scalar 
multiplications and later an accumulator which adds the scaled values together.  
 
In this work, scaling of optical signals are achieved with directional couplers (figure 2.A). 
Generally, directional couplers (DCs) are a set of parallel waveguides that split certain amount 
of input signal power from the incoming waveguide to a second waveguide that is in proximity 
to it. A sample structure is shown in figure 1.A. It consists of two curved sections where the 
input port A and outputs C (cross) and D (through) ports are present; and a straight section 
separated by a narrow gap. If the phase velocity of light is same in both channels and there is 
sufficient mode overlap between the two certain amounts of optical power can be transferred in 
between them. The amount of power transfer can be tuned from 0% to 100% by varying the 
waveguide separation and their interaction length (L) [13]. Therefore, DCs with a set L act as 
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hard coded optical memory units that provide a positive scaling factor between [0,1] to the 
incoming light. 
Once scaled, optical powers from multiple DCs are added together by incoherent superposition 
at photodetectors present at the output to complete an all-optical MAC operation.  
 
To further extend this functionality, an arrangement of DCs (figure 2.B) can be used to perform 
convolution processing [14]. A 2D image convolution is algorithmically a series of matrix 
multiplications. A single step of convolving an image matrix with a 2x2 convolution kernel is 
shown in the figure 2.C. The kernel multiplies with the 2x2 2D window on the image matrix. 
The resulting matrix is summed up to form a single pixel of the final output image. The 2D 
window then slides over the whole image one step at a time repeating the process to acquire the 
remaining pixels of the convolved image. Convolutional filters, depending on their shape and 
contents sharpen, blur or perform edge detection on an image. Moreover, convolutional layers 
form an integral part of convolution neural networks (CNNs) that are used in the state-of-the-art 
artificial intelligence and deep learning models. 

 
Figure 2. A) A typical directional coupler. Depending upon which port the light enters the DC 

(port A or B), ports C and D are called through and cross ports. B) Photonic circuit design 
depicting one matrix implemented with its elements hard coded in the transmission ratios of 

DCs. C) A visualization of a single matrix multiplication step towards performing a 
convolution. 

The figure 2 B) demonstrates a photonic tensor core design capable of accelerating 2D 
convolution processing with 2x2 kernels. The design was created using GDShelpers, a 
framework for developing integrated photonic circuitry.  To conveniently perform external 
modulation and detection, grating couplers are placed at the input and output ports of the design.  
The photonic circuit hardcodes the elements of the kernel matrix into several DCs to perform 
efficient convolutions. The elements of the 2x2 input matrix amplitude modulated onto an 
optical pulse train enter ports a,b,c and d simultaneously where they are weighted by the DCs. 
To incorporate negative scaling factors with DCs, in this design we use balance detection from 
two outputs and define 0 as an intermediate element between the two limits extending the range 
of scaling to [-1, 1].  The weighted light amplitudes are then coupled out of the chip through 
output ports O1 and O2. In this specific design, a DC which transfers most of the light onto the 
output O2 is defined a 1 while that brings in most light to O1 a -1. The kernel highlights edges 



Convolution processing with a photonic tensor core unit 

of the image in a certain direction. Similarly, the remaining light from the DC’s through port 
can be passed onto several kernel matrices to perform multiple separate convolution filters on 
the same input. In this work a total of four 2x2 kernels are implemented highlighting edges 
along positive/negative x and y directions.  
 
2.2 Fabricating the integrated photonic chip 
 
The photonic design was fabricated on a silicon nitride Si3N4 (330 nm) on silicon oxide SiO2 
(3300 nm) on silicon Si wafer (Rogue Valley microdevices) using a 100keV Raith EBPG5150 
electron beam lithography (EBL) system. Firstly, the 20 x 20 mm wafer was annealed at 1100°C 
for four hours to ensure sufficient film quality. Next, a negative resist (Ar-N 7520.12) was spin 
coated on the sample. Thirdly, the mask for the photonic design is written on the sample (EBL). 
The mask is then developed and later the Si3N4 layer is fully etched with reactive ion etching 
using CHF3/O2 plasma. Afterwards, the resist is removed with oxygen plasma. The waveguides 
are also cladded with 800 nm HSQ. For preparing the cladding, a positive HSQ resist was spin 
coated on the sample. The area of the sample where the newly written waveguides reside are 
once again exposed under the EBL to cure the resist, completing the fabrication procedure. The 
fabricated design was then inspected (figure 3) under a microscope before further testing and 
measurements. 
 

 
Figure 3. The photonic circuits are fabricated on silicon nitride on silicon dioxide on silicon 

wafer (20 x 20 mm). a) The whole circuit with 4 kernel matrices. b) An enlarged image of the 
design marked with dotted lines in a). The DCs that encode the kernel elements are shown 

here. 

 
2.3. Building the electronic interface 
 
The photonic tensor core needs to be supplied with synchronous amplitude modulated optical 
signals to all four of its inputs to facilitate the convolution as described in Section 2.1. Since the 
image data resides on a computer in electronic digital format it had to be brought out externally 
and rearranged onto appropriate channels. In addition to the digital circuitry, a digital to analog 
converter (DAC) with appropriate output specifications was also implemented. 
 
2.3.1 Digital Design 
 
A sketch of the digital layout is shown in the figure 4. The input for the PTC resides as a digital 
image inside a PC. To transfer this data externally as electrical signals, the design uses a FTDI 
FT232H module. The module receives 4-bit integers as a first in first out (FIFO) array through a 
C++ program (provided by the manufacturer) running on the PC via USB which it outputs 
sequentially onto physical pins at the rising edge of an internal 60 MHz clock (figure 4). In 
other words, every time the clock ticks there is a new 4-bit number appearing on four physical 
pins of this board. This data bus along with the clock signal is then passed onto a field 
programmable gate array (FPGA) programmed to take care of further data processing. FPGAs 
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contain a matrix of logic blocks connected via programmable interconnects. Compared to 
general purpose microcontrollers, the structure of FPGAs allows them to execute digital logic 
continuously and at much higher speeds. The FPGA used in this work was a Lattice ICE40-hx8k, 
programmed with the ICEstorm toolkit which incorporates Verilog hardware description 
language along with some graphical layout capabilities.  
 
The instructions programmed inside the FPGA are governed by the same clock as of the USB-
FIFO module. The major component of the design consists of two sets of four digital flip flops 
(DFFs), primary and secondary as noted in the figure 3. In addition, a ring counter counts the 
positive edges of the clock ticks. The counter’s function is to sequentially activate the primary 
DFFs to store incoming values on the bus. The input to output signal propagation time at the 
PTC is several orders faster than electronic signals. Hence, any delay between the output pulses 
of individual channels of the electronic interface will result in distorted output pulses from the  
 

 
Figure 4. A schematic of the digital design programmed inside the FPGA. The above design is 

implemented in ICEstudio software, a programming environment for LATTICE FPGAs. 

PTC. Therefor the output channels need to be synchronized for which a secondary set of DFFs 
are used.  Together they function as shown in the timing diagram (figure 5). 
 

 
Figure 5. Timing diagram of the digital circuitry. Each colored block represents a 4-bit value 

transferred to the FPGA from PC via the USB-FIFO module. 

The first four primary DFFs are filled up by the fourth rising edge of the clock. On the falling 
edge of the fourth clock tick, all the four values are simultaneously passed onto the secondary 
set of DFFs whose outputs are mapped to 16 physical general purpose input output GPIO pins 
of the device. On the 5th clock cycle the primary set of DFFs start to get overwritten with new 
values while the secondary set of DFFs hold the previous set of values. On the 7th falling edge 
of the clock, the secondary DFFs are reset to 0 too. This procedure keeps on executing as long 
as there is data on the USB-FIFO bus. In this manner the FPGA divides the 4 bit 60 MHz single 
channel bus into a 4-bit quad channel bus running at 15 MHz. The data channels carry the 
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appropriate information to be fed into four photonic chip inputs if the domain crossings are done 
accordingly.  
 
2.3.2 Digital to analog converter design 
 
To amplitude modulate the prepared data onto light, the digital data signals had to be converted 
into analog voltages that drive electro-optic modulators. The digital to analog conversion is 
done with the circuit is depicted in the figure 6. The primary stage of the circuit consists of a 4-
bit R-2R DAC circuit. The R-2R DAC employs an arrangement of passive resistors to convert 
the digital signals produced by the FPGA into a square pulse train of 16 different amplitude 
levels [15]. The most significant bit (MSB) through the least significant bit (LSB) are driven 
with voltages from the GPIO pins of the FPGA. The FPGA switches between 0 V 
corresponding to a logic 0 to a 3.3V corresponding to a logic 1. The ladder network of resistors 
then causes this 3.3V signal to be weighted in their contribution to the output depending on the 
significance of the bit. The circuit only uses two resistor values namely R and 2R and operates 
as a string of current dividers, whose output accuracy is a function of how precisely the resistor 
values are matched. After a formal analysis of this circuit, one finds the output impedance and 
input impedance of to be R. To ensure maximal signal transfer, this impedance R needs to be at 
least ten times the output impedance [16] of the FPGA pins (100 Ω). Hence, an R value of 1 kΩ 
was chosen for this DAC.  
 

 
Figure 6 Circuit diagram of the Digital to Analog converter. The DAC stage and amplifier 

stage are marked separately. 

Further, the converted analog signal is passed through a high pass filter to remove the DC bias 
from it before entering an amplifier stage. The amplifier stage consists of an LM7171 high 
speed operational amplifier with a bandwidth of 200 MHz in non-inverting configuration [16]. 
This stage acts as a buffer between the R-2R DAC and the output load to be connected to it. A 
buffer stage helps to prevent any kind of unacceptable loading of the DAC circuit that could 
interfere with its desired operation. The output of the amplifier is then further connected 
conveniently to an SMA connector with a 50 Ω series termination resistor in order to match the 
input impedance of the EOMs, minimizing reflections. Series termination resistors do limit the 
current output of the circuit. However, since EOMs are voltage driven devices, this was not an 
issue.    
 
The design was initially simulated and revised to ensure intended functionality using LT Spice 
circuit simulation software before physically being assembled on a printed circuit board (PCB). 
The FPGA connects to the PCB via proprietary board to board connectors from the 
manufacturer. Once on-board the digital signals are redirected onto four separate DACs as 
described earlier. Since, the board generates frequencies in the order of several megahertz, it 
was also necessary to have a double layer PCB design with an uninterrupted ground layer 
directly under the signal traces. Once the functionality of the board was tested electrically using 
an oscilloscope, it was ready to be used in combination with the photonic chip.  
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2.4 Experimental setup 
 
To perform image convolutions using the photonic tensor core, the setup in figure 7 was used. A 
1550 nm amplified spontaneous emission (ASE) laser source is divided into 4 coherent channels 
using a 4-port splitter. Further, each one of these channels are amplitude modulated using 
external EOMs to encode pixel values of the image to be convolved. The modulation signals for 
the EOMs are provided by the electronic interface.  
The modulated optical signal is then connected to polarization controllers to optimize the 
coupling efficiency to the TE mode of the on-chip waveguides. The modulated optical signals 
enter the integrated waveguides through a fiber array positioned above on-chip grating couplers. 
The photonic chip also resides conveniently on a computerized stage to precisely align the fiber 
array above on-chip grating couplers. The same fiber array collects the output light signal from 
the integrated wave guides which connects to photodetector. The RF output of the photodetector 
is monitored using a 4-channel oscilloscope. The data from the oscilloscope is collected and 
post processed on a PC to reveal the convolved images. 
 

 
 

Figure 7 A block diagram of the experimental setup. 

3. Results and discussion 
 
3.1 Directional coupler characteristics  
 

 
Figure 8 (LEFT) The dependence of light transmission through the cross port of Directional 

couplers as a function of their coupling length (L). (RIGHT) The same measurement done for 
adjacent wavelengths to demonstrate potential for wavelength-division multiplexed inputs. 

In order to ensure correct power distributions in the photonic matrix, the transmission in the 
cross port of the DCs are to be characterized. The transmissions were measured experimentally 
from the several calibration devices included in the fabricated design. Figure 8 depicts the 
measured data. The transmission follows a sin2 dependence as expected from theory [13]. The 
range of accessible scaling factors were slightly lower than expected most probably due to 
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insertion losses at the input and outport ports of the DC. The second plot shows the same 
measurements around adjacent wavelengths. Scaling factors from 0 to about 0.75 were achieved 
up to 20 nm away from the central wavelength. It is clear from this plot that a broad range of 
wavelengths can be used for multiplexing input matrices for parallel computing on the same 
device, an additional technique to improve the data throughput without increasing the 
modulation frequency. The relative loss in transmission between the curves is most likely due to 
wavelength dependent performance of the grating couplers. Hence, adopting wider bandwidth 
couplers or performing modulation and detection on-chip are certainly sought for in further 
design revisions. 
 
3.2 Electronic interface performance 
 
A 7.5 MHz square wave generated with the electronic interface is shown in figure 9A. The 
maximum peak to peak voltage was 2.7V compared 3.2V from the initial simulation. This could 
be due to insertion losses at multiple connectors in the transmission path. The rise time of the 
pulses also seemed to be slightly longer. The stepped rise of the pulses is clearly an indication 
of impedance variations in the transmission line. The pulse periods are also not perfectly regular 
most likely due to finite jitter of the FPGA clock. Even though the first two effects are less 
significant for our experiments, the last observation implies that we cannot simply sample the 
final output signal from the PTC at regular intervals to determine the pulse amplitudes. Instead, 
the situation called for a sophisticated algorithm that detected the rising and falling edges of 
individual pulses before sampling between them.  
 

 
Figure 9. A) A square wave generated with the electronic interface. The curve in blue is from 
simulating the same setup in LT Spice circuit simulation software. B) Render of the electronic 
interface PCB  

After ensuring sufficient signal integrity, the pixel values of a gray scale image were encoded 
onto the square pulse amplitudes. The electrical signal was converted to an optical one using an 
EOM which was directly monitored with a photo diode. The pulse amplitudes were determined 
from the photodiode output to reconstruct the original image. Figure 10 shows the original 
image and the one after reconstruction. Both are near identical except for a slight decrease in 
contrast. 

 
Figure 10  (LEFT) 128 px X 128 px grayscale image with 4-bit color depth. The pixel values of 
this image are sent as an amplitude modulated pulse train through the electronic interface. 

(RIGHT) The same image reconstructed after electro-optic, digital-analog domain 
conversions and back. 
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3.3 Convolution Processing 
 
Convolution kernels are small matrices used to apply effects, such as blurring, sharpening, 
outlining or embossing, on images. They're also used in machine learning for 'feature 
extraction', a technique for determining the most important portions of an image.  The 2x2 
kernels hardcoded in our PTC detect the edges of an image in certain directions. Edge detecting 
kernels help draw boundaries around objects in an image. Since our kernel matrix dimensions 
are limited to 2x2, edge detection is only possible in a certain direction from a single kernel. 
These kernels are as shown below:  

. 
A 64px x 64px gray scale image shown in figure 11 was chosen as the input. Since all kernels 
are inscribed in the same matrix, the pixel values of all four convolved images can be obtained 
simultaneously, including 16 dot product operations in total limited only by the modulation 
frequency of the electronic interface. The interface modulates the input vectors at a rate of 15 
MHz equaling to 4 image convolutions in 1 millisecond.  
 
As for the quality of the images after convolution, the first two kernels produced the best 
results. The second two indeed highlights the expected edges but at the same time do not 
completely suppress the original image, revealing slight characteristics of it. This could be from 
the unbalanced optical power input in the individual channels resulting from the insertion losses 
of the fiber cables at all components from external EOMs to the polarization controllers. This 
imbalance results in unequal weighting from certain kernel elements. Fabrication imperfections 
could also result in variations of the splitting ratios of individual DCs, adding to this imbalance. 
Additionally, in this design successive kernels only receive a part of the light from the previous 
ones worsening the signal to noise ratio in former’s output. In any case, irrespective of these 
power fluctuations the convolved images, when added together, successfully highlighted most 
edges of the original image confirming the functionality of our PTC and its electronic interface. 

 
Figure 11. The upper row shows the reconstructed images after convolving with edge 

highlighting kernels. Kernels 1 and 4 highlight opposite vertical edges while the other two 
detect the horizontal ones. The lower row shows the original 64px x 64px image and the 

result after combining all the convolved images from the upper row. 

The power consumed by the PTC to perform the image convolutions is dominated by the 
control electronics and photodetectors. However, an estimate of the optical energy consumption 
by the PTC alone can be determined from the cumulative losses introduced by the integrated 
photonic devices. The max output pulse power from the PTC was about 8 µW. This is after 6 
dB loss from the grating couplers and 9 dB loss from the arrangement of DCs. These losses 
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along with the input pulse duration (133 ns) was used to estimate the energy consumed by the 
PTC per MAC operation which came out to be approximately 8pJ/ MAC. This energy 
consumption can be significantly improved by implementing DCs with lower insertion losses 
[14]. The coupling losses can also be brought down to 1.5 dB per coupler with optimized low 
loss couplers [17]. Integrating the laser source and modulators on the same chip will further 
minimize the cumulative loss. 
 
4. Conclusion and outlook 
 
This work demonstrates the fabrication of a CMOS compatible, application specific integrated 
photonic tensor core capable of performing 2D convolutions in the optical domain. The device 
performs efficient in-memory MAC computations by hardcoding the matrix elements of 
convolution kernels in the splitting ratios of photonic direction couplers. Since, optical 
computing architectures analog signals to perform calculations, a custom interface was built to 
convert digital electronic data stored on a PC into analog optical signals. The interface has four 
synchronous channels, each with a modulation frequency up to 15 MHz. The digital and analog 
design is also extensible allowing several more channels to be implemented limited only by 
GPIO pins on FPGAs. To establish the functionality of the newly developed hardware, a set of 
image convolutions were successfully performed with edge highlighting kernels.  
 
Even though, the electronic interface here has the possibility to modulate several channels at 15 
MHz, it bottlenecks the data throughput of the optical circuit by manifolds. In order to resolve 
this bottleneck, we need an optoelectronic co-design that considers opto-electronic converters 
and digital/analog converters [17]. However, integrating CMOS electronics with optical circuits 
and fabricating a high density opto-electronic interface that includes several on-chip optical 
sources, modulators and detectors require advancements in photonic computing architecture as 
well as in hybrid fabrication [18]. Another promising approach to bypass the parasitic effects of 
digital to analog domain conversion is to implement optical DACs and ADCs [19][20]. This 
would mean that photonic processors can take in digital optical signals, convert them to analog 
before processing and convert them back into digital data at their outputs [21]. These optical 
processing networks will then be more conducive to be implemented along with existing high 
speed CMOS technology to allow for maximum data throughput.  
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