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We introduce a different class of thresholdless three-dimensional soliton states that form in higher-order topological insulators based on a two-
dimensional Su–Schrieffer–Heeger array of coupled waveguides. The linear spectrum of such structures is characterized by the presence of a 
topological gap with corner states residing in them. We find that a focusing Kerr nonlinearity allows families of light bullets bifurcating from the 
linear corner states to exist as stable three-dimensional solitons, which inherit topological protection from their linear corner counterparts and, 
remarkably, survive even in the presence of considerable disorder. The light bullets exhibit a spatial localization degree that depends strongly 
on the array dimerization, and may feature large temporal widths in the topological gap near the bifurcation point, thus drastically reducing the 
otherwise strong instabilities caused by higher-order effects. 

After the original discovery in condensed matter, topological in-
sulators have been encountered in several other areas of physics, lead-
ing to their experimental demonstration in many systems [1-3], in-
cluding optical settings [4-6]. An important property of topological in-
sulators is the existence of topologically protected edge states with en-
ergies residing inside a topological gap. Recently, a different class of 
higher-order topological insulators has been suggested [7-10], the 
most remarkable feature of which is their ability to support topologi-
cal states with lower dimensions than the bulk [11,12]. Higher-order 
topological insulators underlie many far-reaching concepts, such as 
higher-order band topology in twisted moiré superlattices [13], Ma-
jorana-like bound states [14] and their nontrivial braiding [15], or top-
ological lattice disclinations [16], to name a few. 

Optical systems afford the possibility to combine topological ef-
fects and nonlinear self-action, hence enabling a plethora of phenom-
ena, such as modulational instabilities of the topological states [17-19], 
inversion of topological currents [20,21], nonlinear tuning of the edge 
state energies [22], induction of topologically nontrivial phases [23-
26], enhancement of parametric interactions [27,28], and rich bistabil-
ity effects [29,30]. Advances in the field are reviewed in [31-33]. In par-
ticular, nonlinearity allows the formation of so-called edge solitons — 
unique states that exhibit topological protection, that appear in a vari-
ety of shapes and feature unusual interactions. Thus, Floquet edge 
solitons in helical waveguide arrays have been theoretically predicted 
in continuous [18,34-37], discrete [38-41], and Dirac [42] models. 
Moreover, Bragg [43], multicomponent [36,37], valley-Hall edge soli-
tons [44,45] and solitons in medium with other than Kerr-type non-
linearity [46] have been addressed. Topological optical solitons have 
recently been observed experimentally [47-50], as well as nonlinear 
states bifurcating from corner modes in higher-order topological in-
sulators [51,52]. All such states are either one- (1D) or two-dimen-
sional (2D). 

Three-dimensional (3D) wave packets, referred to as light bullets 
[53], are nondiffracting and nondispersing states. They have attracted 
continuous attention during several decades (see [54-56]). However, 
in contrast to spatial 1D and 2D solitons, their experimental realiza-
tion as stable, long-lasting states remains an outstanding open chal-
lenge because of practical difficulties to fabricate a suitable material 
structure that supports stable bullets and also, more fundamentally, 
because multidimensional solitons are prone to strong instabilities 
[57]. Various theoretical schemes to realize stable multidimensional 

states have been proposed over the years [55,56], including paramet-
ric mixing in quadratic nonlinear media [58,59], nonlocal [60,61], com-
peting [62,63], and saturable [64] nonlinearities, as well as dissipative 
effects [65-70]. Transversally modulated, nonlinear media, e.g., arrays 
of evanescently coupled waveguides, have also been predicted to 
support stable light bullets [71-74]. The first experimental observation 
of light bullets in a hexagonal fiber-like array with silica cores was re-
ported in [75], a work that led to the observation of transient funda-
mental [76,77] and weakly unstable vortex [78] light bullets. Later, 
nonlinearity-induced locking of long pulses in different modes, re-
sulting in the formation of spatiotemporal localized states, was ob-
served in graded-index multimode optical fibers [79]. The recent pro-
gress in the realization of nonlinear photonic topological insulators in 
periodic systems raises the question of whether they can support sta-
ble light bullets of topological origin. 

In this paper, we explore a 2D Su–Schrieffer–Heeger (SSH) [80] 
optical lattice, possessing second-order localized corner modes, to re-
alize families of stable topological corner 3D light bullets bifurcating 
from linear corner states belonging to a topological gap. Such bullets 
are localized both in space and time, and their spatial structure can be 
controlled by changing the dimerization of the array, while their tem-
poral localization depends on their detuning from linear corner states, 
which allows to obtain well-localized states with temporal durations 
at which higher-order effects can be neglected. They inherit the stag-
gered spatial structure from corner modes, which distinguishes them 
from usual light bullets in periodic optical potentials. The bullets do 
not require energy threshold for their existence, and can be stable at 
low and high energies, even in weak optical potentials. They are ro-
bust against considerable disorder introduced into the underlying 
waveguide array due to topological protection. 

We address the propagation of 3D light beams along the 𝑧-axis in 
a medium with a Kerr 𝜒(3) nonlinearity and an inhomogeneous re-
fractive index distribution forming a 2D SSH array of evanescently 
coupled waveguides. The corresponding normalized evolution equa-
tion for the light field reads as 

𝑖
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𝜕𝑧 = −

1
2 (

𝜕2𝜓
𝜕𝑥2 +
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𝜕2𝜓
𝜕𝑡2 − |𝜓|2𝜓 − 𝑅(𝒓)𝜓. (1) 
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Here the transverse coordinates 𝒓 = (𝑥, 𝑦) and the propagation dis-
tance 𝑧 = 𝑍 𝑍𝑑⁄  are normalized to the characteristic transverse scale 
𝑤0 and diffraction length 𝑍𝑑 = 𝑘0𝑛0𝑤0

2, respectively, where 𝑘0 =
𝜔0 𝑐⁄  is the wavenumber, 𝜔0 is the carrier frequency, 𝑛0 is the unper-
turbed refractive index defining 𝜅(𝜔) = 𝑛0(𝜔)𝜔 𝑐⁄ , 𝑡 =
(𝑇 − 𝑍 𝑣𝑔⁄ ) 𝑇𝑠⁄  is the time in the frame moving with group velocity 
𝑣𝑔, 𝑇𝑠 = 𝑤0[−𝜅(2)𝜅(𝜔)]1 2⁄  is the time scaling, 𝜅(2) = 𝜕𝜔

2𝜅(𝜔) < 0 is 
the anomalous group velocity dispersion coefficient. Our 2D SSH ar-
ray possesses a square geometry with four waveguides in a unit cell 
as depicted in Fig. 1. There are two competing parameters in the array: 
the intracell (𝑑1) and the intercell (𝑑2) distances between waveguides. 
They modulate the coupling strengths between nearest lattice sites, 
while 𝑑1 + 𝑑2 = 2𝑑, where 2𝑑 is the lattice constant. For simplicity, 
we define dimerization parameter Δ = (𝑑1 − 𝑑2) 2

√
2⁄ , that is, the 

diagonal shift of the waveguides from the equilibrium position when 
the distance between neighboring waveguides is equal to 𝑑 (for Δ =
0, the array becomes square with the lattice constant 𝑑). The array is 

composed of identical waveguides of width 𝜎 placed in the nodes 
𝒓𝑛𝑚 = (𝑥𝑛𝑚, 𝑦𝑛𝑚) of the 2D SSH grid 𝑅(𝒓) =
𝑝 ∑ exp[− (𝒓 − 𝒓𝑛𝑚)2 𝜎2⁄ ]𝑛𝑚  with depth 𝑝 = max(𝛿𝑛) 𝑘0

2𝑤0
2𝑛0, 

where 𝛿𝑛 is the refractive index contrast. Having in mind a potential 
realization of our system with fs-laser written waveguide arrays in 
fused silica [81], we select the values of the dimensionless parameters 
to be 𝑑 = 3, 𝜎 = 0.4, and 𝑝 = 4. This corresponds to a 60 𝜇m distance 
between waveguides at Δ = 0, a waveguide width of 8 𝜇m (hereaf-
ter, we use the characteristic transverse scale 𝑤0 = 20 𝜇m), a refrac-
tive index contrast of about 𝛿𝑛 ≈ 4.2 × 10−4 at the wavelength 𝜆 =
1550 nm (the background refractive index is 𝑛0 ≈ 1.45); while 𝑧 = 1 
corresponds to about 2.34 mm. The group velocity dispersion for 
such a wavelength is of the order of 𝜅(2) ≈ −28 fs2/mm and the time 
scaling factor is 𝑇𝑠 = 8.1 fs. 
 

 

 
Fig. 1. Propagation constants of the linear modes of the 2D SSH array vs dimerization parameters Δ (a). The red line corresponds to corner 
topological modes, the blue dots correspond to the modes shown in the bottom row of the figure. Lattice profiles for Δ = 0.75 (b) and Δ =
−0.75 (c). Corner modes for Δ = 0.75 (d) and Δ = 1.3 (e). Edge states for Δ = 0.75 (f). An example of a bulk mode in a nontopological lattice 
(g) for Δ = −0.75. Here and below 𝑝 = 4, 𝑑 = 3 and 𝜎 = 0.4. Here and in all figures below all quantities are plotted in dimensionless units. 
 
 

For the 2D SSH array a topological phase can be introduced by 
varying the dimerization parameter Δ (see Fig. 1). The examples of 
arrays with positive and negative Δ are illustrated in Figs. 1(b) and 
1(c). The emergence of a topological phase in the array of this type can 
be characterized by the corresponding topological invariants defined 
for the periodic non-truncated array — two polarizations 
 

𝑃𝑗 = −𝑆−1 ∬ ∑𝐴𝑗
𝑙𝑙

𝑙
𝑑𝑘𝑥𝑑𝑘𝑦

 

𝐵𝑍

, (2) 

 
where 𝐴𝑗

𝑛𝑚 = −𝑖⟨𝜙𝑘,𝑛∣ 𝜕𝜙𝑘,𝑚 𝜕𝑘𝑗⁄ ⟩ is the Berry connection with 
product ⟨𝑢|𝑔⟩ = ∬ 𝑢∗𝑔 𝑑𝑥𝑑𝑦 

𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙
, 𝑆 is the area of the first Brillouin 

zone (BZ), 𝒌 = (𝑘𝑥, 𝑘𝑦) is Bloch momentum, 𝜓𝒏 = 𝜙𝑘,𝑛exp(𝑖𝒌𝒓 +
𝑖𝑏𝑧), where 𝜙𝑘,𝑛(𝑥, 𝑦) = 𝜙𝑘,𝑛(𝑥 + 2𝑑, 𝑦 + 2𝑑) is the Bloch function 

of 𝑛th band which is periodic along 𝑥 and 𝑦 axes. This Bloch function 
solves the eigenvalue problem 𝑏𝜙𝑘,𝑛 = [(𝛁 + 𝑖𝒌)2 2⁄ + 𝑅(𝒓)]𝜙𝑘,𝑛, 
where 𝛁 = (𝜕 𝜕𝑥⁄ , 𝜕 𝜕𝑦⁄ ), 𝑅(𝒓) is the profile of the periodic ar-
ray, and 𝑏 is the propagation constant. For the SSH array, the topo-
logical phase corresponds to Δ > 0 with 𝑃𝑥 = 𝑃𝑦 = 1 2⁄  and the 
trivial phase is identified by vanishing polarizations 𝑃𝑥 = 𝑃𝑦 = 0 for 
Δ < 0 [82-84]. 

We start elucidating the linear properties of the structure, as they 
are central for understanding of the topological properties of the sys-
tem. First, we consider a truncated 2D SSH array with 49 unit cells 
with different dimerizations Δ. The linear eigenmodes propagating 
in the 𝑧-direction can be found as 𝜓(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤(𝑥, 𝑦) exp(𝑖𝑏𝑧) 
where 𝑏 is the eigenvalue (propagation constant) of the mode, while 
a real time-independent function 𝑤 describes the mode profile in the 
transverse plane. The dependence of the eigenvalues 𝑏 on the dimer-
ization parameter Δ is shown in Fig. 1(a) for 𝑑 = 3. One can see that 



for positive Δ, corner states appear in the topological gap between 
first and second bands in accordance with nonzero values of bulk po-
larizations. The corresponding corner state is highlighted in red. The 
bottom row of the figure shows examples of linear modes in the top-
ological and nontopological phases. The localization of the topologi-
cal corner modes progressively increases with the increase of Δ [see 
Figs. 1(d) and 1(e)]. In addition to corner states, one can see the ap-
pearance of the group of eigenvalues associated with edge states, 
which we will further call the edge state band [an exemplary profile of 
such edge state is presented in Fig. 1(f)]. In the nontopological regime, 
at Δ < 0 all modes of the array are delocalized; one illustrative exam-
ple is presented in Fig. 1(g). Below, we will use topological corner 
states at Δ = 0.75 to construct nonlinear 3D light bullets. The corner 
states are degenerate for the large array considered here, thus one can 
always select linear combinations of such states localized in only one 
corner of the structure, as in Fig. 1(d). Topological protection of linear 
corner states has been tested by adding small disorder into wave-
guide depths and positions, which did not lead to appreciable shifts 
of their propagation constants. Note that the structure considered 
here is large enough, with a well-developed gap, as seen from com-
parison with the spectrum of a larger array with 196 cells shown in 
Appendix A. 
 

 
Fig. 2. Family of light bullets bifurcating from linear topological corner 
modes in a 2D SSH array with Δ = 0.75 and 𝑑 = 3. Black branches 
are stable, while red ones are unstable. Shaded regions show bulk and 
edge state bands. In the linear limit, where the propagation constant 𝑏 
tends to a linear propagation constant [red line in Fig. 1(a)] the bullet 
energy 𝑈  and the amplitude 𝑎𝑠 vanish. The inset illustrates an en-
larged image of such a dependence. The dots correspond to the bul-
lets depicted in Fig. 3. 
 

To search for nonlinear bifurcation of the family of light bullets 
from linear topological corner states we consider stationary soliton 
profiles in the form 𝜓(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤(𝑥, 𝑦, 𝑡) exp(𝑖𝑏𝑧). Substitution of 
this expression in Eq. (1) leads to the nonlinear problem 
 

𝑏𝑤 =
1
2(

𝜕2𝑤
𝜕𝑥2 +

𝜕2𝑤
𝜕𝑦2 ) +

1
2

𝜕2𝑤
𝜕𝑡2 + 𝑤3 + 𝑅(𝑥, 𝑦)𝑤, (3) 

 
where 𝑏 is a propagation constant that defines the energy of the bullet 
𝑈 = ∭|𝑤|2 𝑑𝑥𝑑𝑦𝑑𝑡, its amplitude and width. We solved this equa-
tion using a modified squared operator method [85]. The dependence 
of 𝑈  on 𝑏 that we found is shown in Fig. 2. The gray areas in this figure 
correspond either to the allowed bands of the linear spectrum or to 
the band, occupied by the edge states. There are three different re-
gions in the figure: (i) the part of the topological gap below the band 
of edge states, (ii) a topological gap above the band of edge states, and 
(iii) a semi-infinite gap. Remarkably, because light bullets bifurcate 

from localized corner modes, their energy vanishes at the 𝑏 value cor-
responding to the propagation constant of the corner state. When 𝑏 
approaches the bifurcation point, the amplitude of the bullet de-
creases, its spatial width approaches the width of the corner topolog-
ical mode, while the temporal width drastically increases. 
 

 
Fig. 3. Spatial distributions at 𝑡 = 0 (left column), and temporal pro-
files at 𝑥 = −20, 𝑦 = 20 (right column) for light bullets with (a) 𝑏 =
0.2, (b) 𝑏 = 0.25, (c) 𝑏 = 0.29, (d) 𝑏 = 0.34, corresponding to the dots 
in Fig 2. In the left column, the red regions correspond to high inten-
sities and magenta regions correspond to low intensities. Light bullets 
from gap (i) have the structure of tails associated to topological states, 
while in gap (ii) the corner bullet acquires in-phase tails. The temporal 
width of the bullets increases when 𝑏 approaches the bifurcation point 
from the corner mode. Here Δ = 0.75. 
 

In Fig. 3 we show examples of the cross-sections at 𝑡 = 0 and 𝑥 ≈
−20, 𝑦 ≈ 20 of solutions from parts (i) [Fig. 3(a), (b) and (c)] and (ii) 
[Fig. 3(d)] of the topological gap. Increasing the nonlinearity may 
drive the corner bullets into the band of edge states, causing their cou-
pling with edge modes. One can see that in this case the bullet ac-
quires long tails along the edges of the array [see Fig. 3(b) and (c)]. 



Noteworthy, bullets from region (i) have an out-of-phase tail in neigh-
boring waveguides to the corner one [see Fig. 3(d)], while the tails of 
light bullet from regions (ii) and (iii) are in-phase [see Fig. 3(a)-(c)]. The 
temporal width increases as the propagation constant decreases, as 
shown in the right column of the figure. We also found that in region 
(ii), the family is divided into two branches. In the semi-infinite gap, 
as the propagation constant 𝑏 increases, the amplitude of the topolog-
ical light bullet increases, while the spatial and temporal widths de-
crease. 

We checked the stability of the 3D states via comprehensive prop-
agation simulations. We expect that the solitons corresponding to the 
stable branches are able to withstand small perturbations without col-
lapse, whereas linearly unstable solitons are expected to either col-
lapse or spread, depending on the type and strength of the perturba-
tion. We simulated the evolution of perturbed solitons using the input 
conditions 𝜓(𝑧 = 0) = 𝑤(𝑥, 𝑦, 𝑡)(1 + 𝑛𝑟𝑒 + 𝑖𝑛𝑖𝑚), where 𝑛𝑟𝑒 and 
𝑛𝑖𝑚 represent a small noise, whose amplitude is uniformly distrib-
uted in the interval [−0.05, 0.05]. We found that stability properties 
in semi-infinite gap agrees with the Vakhitov-Kolokolov criterion [86] 
implying stability for 𝜕𝑈 𝜕𝑏⁄ > 0 branches and instability for 
branches with negative slope. In contrast to our 3D solitons, 2D (1D) 
nonlinear corner (edge) states in the SSH array exhibit stability 
throughout the semi-infinite gap. Stable 3D states in Fig. 2 are shown 
in black, while unstable states are shown in red. Both branches of re-
gion (ii) are unstable, however, it should be noted that for larger depth 
𝑝 of waveguides, it is possible to obtain stable states from this gap too. 
Remarkably, the entire branch of bullets bifurcating from the linear 
corner state corresponds to stable states, even when it penetrates into 
the edge state band. This suggests that higher-order topological insu-
lators may allow to observe stable bullets even with low ener-
gies/peak amplitudes. This is in contrast to usual nontopological 
waveguide arrays, where stable 3D states exist only in narrow band 
of energies, limited both from below and above. 

Examples of stable and unstable evolution of topological light bul-
lets are shown in Fig. 4. The left column of the figure shows the evo-
lution of the peak amplitude 𝑎𝑠 of the bullets along propagation, 
while the right column shows representative isosurfaces (|𝜓| =
const) at various 𝑧. The amplitude, temporal and spatial widths of 

stable perturbed light bullets belonging to region (i) oscillate only 
slightly, and no collapse or breakup is observed during propagation 
over considerable distances [black line in Fig. 4(a)]. In contrast, under 
the action of small noise unstable solitons usually quickly decay, as 
shown in Fig. 4(b). 

In practice, the impact of higher-order effects is critical for the ex-
citation of long-lived light bullets. Such effects occur with ultrashort 
pulses and quickly destroy the bullets. However, as the light bullets 
described here are stable at low energies, one may excite them with 
relatively large temporal width. For instance, a temporal full width at 
half maximum (FWHM) of the topological bullet with 𝑏 = 0.2 shown 
in Fig. 3(a) is 14.2, which corresponds to a time duration of about 
115 fs, and the light bullet with 𝑏 = 0.19 has a FWHM of 22.6 
(183 fs). On the other hand, the spatial localization of the bullets is dic-
tated by the localization degree of the topological corner state from 
which they bifurcate (see Appendix B), and one can readily control 
such degree by changing the dimerization Δ of the array or the wave-
guide depth 𝑝. 

To elucidate the robustness of our light bullets we also examined 
how disorder in the underlying array impacts their propagation. To 
such end, we consider the propagation of one of the light bullets from 
the topological gap in the SSH lattice with diagonal and off-diagonal 
uncorrelated disorder. We assumed that the depths of waveguides 
take random values uniformly distributed in the interval [𝑝(1 −
𝛿𝑝), 𝑝(1 + 𝛿𝑝)]. We also changed the spatial position of each wave-
guide by a random shift uniformly distributed within [−𝛿𝑑, 𝛿𝑑] along 
the 𝑥 and 𝑦 axes. Such a disorder broadens the bulk bands and simul-
taneously leads to small fluctuations of the propagation constant of 
the corner states. The evolution of the light bullet peak amplitude ver-
sus propagation distance for several disorder realizations is depicted 
by red curves in Fig. 4 (a) for 𝛿𝑝 = 0.03 and 𝛿𝑑 = 0.1. One concludes 
that stable states are only weakly affected by disorder in the array. 
Similar conclusions about robustness of the light bullets were ob-
tained by considering 𝑧-dependent diagonal and off-diagonal disor-
der that varies with 𝑧 not too fast, at the scales substantially exceeding 
𝑧 = 1. 
 

 

 
Fig. 4. Evolution of light bullets for 𝑏 = 0.2 (a) and 𝑏 = 0.34 (b). The case 𝑏 = 0.34 represents an unstable state, while 𝑏 = 0.2 is stable. The 
evolution of the peak amplitude of the light bullets during propagation is shown on the left, and the isosurfaces (|𝜓| = 𝑐𝑜𝑛𝑠𝑡) at  𝑧 = 100 and 
𝑧 = 1000 for the unstable and stable cases, respectively are shown on the right. The contours are taken at 1 5⁄  and 1 60⁄  of the maximum ampli-
tude 𝑎𝑠. Red curves in (a) show peak amplitude as a function of propagation distance 𝑧 for 𝑏 = 0.2 for different realizations of disorder with 
𝛿𝑝 = 0.03 and 𝛿𝑑 = 0.1. Here Δ = 0.75. 
 
 

In summary, we have shown the existence of stable 3D spatio-
temporal solitons in a higher-order topological insulator constructed 

using a 2D Su–Schrieffer–Heeger optical lattice with parameters that 
are experimentally realizable. We verified the robustness of the 3D 



states via numerical propagations in the presence of disorder. The re-
sult puts forward a different approach to tackle the longstanding 
problem of experimental formation of long-lived nondiffracting and 
nondispersing self-sustained 3D objects in nonlinear optical media, 
by exciting them as corner states in a photonic topological insulator. 
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APPENDIX A: LINEAR SPECTRUM OF 2D SU–SCHRIEFFER–
HEEGER WAVE-GUIDE ARRAY 

In the main text of this paper, we use the SSH array with 49 unit 
cells. To stress that the band-gap structure is similar in larger arrays 
and that the topological gap is already well-developed in the array 
with the 49 unit cells considered in the main text, in Fig. 5 we pre-
sent the spectrum (propagation constants of all linear eigenmodes 
of array versus dimerization parameter Δ) for a larger array with 
196 unit cells. The red dots in this spectrum correspond to corner 
states appearing between the first and second bulk bands at Δ > 0. 
They may partially overlap with bulk band at Δ < 0.6 as observed 
also in [55]. In addition to corner states, one can see the appearance 
of the group of eigenvalues associated with edge states (blue dots). 
Black dots correspond to delocalized bulk modes. It can be seen that 
the boundaries of the gaps and bands from Fig. 1(a) of the main text 
agree well with the boundaries in the spectrum of larger array from 
Fig. 5, i.e., the gap is well developed for the array used in the main 
text. 
 

 
Fig. 5. Propagation constants 𝑏 of the linear modes of the 2D SSH ar-
ray vs dimerization parameters Δ. Red dots correspond to corner 
topological modes, blue dots correspond to edge modes, and black 
dots correspond to bulk modes. 
 
APPENDIX B: SPATIAL DISTRIBUTIONS OF LIGHT BUL-
LETS FOR DIFFERENT 𝚫  

Next, we consider three-dimensional solitons that bifurcate from 
linear corner states for different dimerization parameters Δ. In the 
main text, we show that at sufficiently low energies, when 𝑏 is close 

to the bifurcation point, the temporal width of the soliton drasti-
cally increases. Here we confirm that in this regime the spatial 
width of the light bullet can be controlled by dimerization parame-
ter Δ. In Fig. 6 we show the examples of the field distributions at 
𝑡 = 0 in light bullets with a fixed propagation constant 𝑏 = 0.2 for 
different Δ values. One can see that the spatial width of the bullet 
decreases with increasing dimerization parameter. At the same 
time, one can clearly see that the field changes its sign in wave-
guides belonging to different unit cells, which is a characteristic fea-
ture for these states of topological origin with propagation con-
stants belonging to the topological gap that clearly distinguishes 
them from conventional light bullets with in-phase tails. 
 

 
Fig. 6. Spatial field distributions at 𝑡 = 0 in light bullets with (a) Δ =
0.5, (b) Δ = 0.75, (c) Δ = 1, and (d) Δ = 1.50 with fixed propaga-
tion constant 𝑏 = 0.2. These light bullets have staggered structure of 
tails representative for topological states. With increase of Δ the spa-
tial width of the bullet gradually approaches the width of the linear 
topological corner mode. 
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