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Abstract: Nowadays, several alternatives to internal combustion engines are being proposed in
order to reduce CO2 emissions in freight transportation and citizen mobility. According to many
experts, the use of electric vehicles constitutes one of the most promising alternatives for achieving
the desirable reductions in emissions. However, popularization of these vehicles is being slowed by
long recharging times and the low availability of recharging stations. One possible solution to this
issue is to employ the concept of battery sharing or battery swapping. This concept is supported by
important industrial partners, such as Eni in Italy, Ample in the US, and Shell in the UK. This paper
supports the introduction of battery swapping practices by analyzing their effects. A discrete-event
simulation model is employed for this study. The obtained results show that battery sharing practices
are not just a more environmentally and socially friendly solution, but also one that can be highly
beneficial for reducing traffic congestion.

Keywords: electric vehicles; mobility; battery sharing; battery swapping; discrete-event simulation

1. Introduction

Electric vehicles (EVs) are among the most prominent and valid alternatives to internal
combustion-based vehicles [1,2]. Even in industrialized and technologically advanced
countries, some customers are insecure regarding the transition to EVs [3]. Some studies
have assessed the life cycle of EVs and have concluded that greenhouse gas emissions
are reduced when these vehicles are employed [4,5]. The life cycle of EVs includes their
production, use, and recycling. However, toxicity level increases because of the higher
exposure to chemicals and metals during the life cycle of EVs [4]. The initial cost of EVs is
expected to be higher than conventional diesel or petrol vehicles. Still, in the long run, the
cost of powering them is found to be much cheaper [6,7]. In addition, hydrogen vehicles
seem to be an alternative in practice, but unfortunately they are still expensive to refuel.
This is due to the fact that hydrogen is expensive to produce and refine [8]. They are similar
in design to EVs, since they are also powered by fuel cells, which are characterized by
an anode, a cathode, and a catalyst that triggers the separation of protons and electrons.
Electrons are removed from the hydrogen, sent to the power motor, and combined with
oxygen to form water vapor. The energy generated can be used both to power the electric
engine directly or to recharge small lithium-ion batteries, which allows the vehicle to store
the energy for later use.

Despite of their huge potential, the large-scale dissemination of EVs is hindered by low
efficiency and long charging times. Charging times vary depending on the technology [9]
used. These can range from around half an hour to several hours. Waiting for about
half an hour (or even more) for vehicles to recharge is not handy, realistic, or compliant
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with modern commercial transportation requirements, including the car-sharing and ride-
sharing mobility modes. In addition, charging at home is not an option for EV users that
do not have home charger. Some representatives of the automotive sector and battery
manufacturers are working to provide valid alternatives to lithium-ion batteries in terms of
duration and charging time. However, this will require big investments and a consistent
research effort.

To the best of our knowledge, given the urgency and rapid changes required, a more
straightforward solution relies on the concept of battery sharing (BS) [10,11], which is also
known as battery swapping. This refers to a situation where drivers of EVs, once arrived at
a charging station, remove exhausted batteries and replace them with the charged batteries
previously left by somebody else. This approach might be more convenient [12], and
it gives rise to a scenario that may be enhanced by previously developed technologies
provided by companies such as Ample in the US, Eni in Italy, or NIO in China.

The considered BS scenario has several requirements. First of all, batteries need
to be standard or clustered in as few categories as possible. Secondly, they must be
redistributed, since there might be more vehicles traveling in one direction rather than the
other. Whenever these requirements are correctly fulfilled, BS may lead to an increase in
efficiency of commercial travel, a reduction in waiting times at charging stations, and a
more handy and user-friendly way to use EVs [13].

Battery sharing is also a more environmentally and socially friendly scenario for the
following reasons:

• The service life of batteries is decoupled from the service life of vehicles. In this way,
the use of batteries might significantly increase.

• Batteries would be managed by a few easy-to-control companies, thus reducing the
risk of illegal disposal.

• The need to redistribute batteries may give rise to many new job positions.

The main goal of this work is to study the performance of some indicators when a BS
strategy is employed. For this, we use a discrete-event simulation model that allows us to
measure the benefits of employing such a strategy and gain insight into how BS can support
the popularization of EVs. The remaining sections are distributed as follows. Section 2
discusses the current state of the art on EVs and battery sharing. Then, Section 3 introduces
the main components and the architecture of our simulation model. This simulation model
is available at https://github.com/mattianeroni/batteryswap (accessed on 8 April 2023).
Section 4 describes the algorithms incorporated into the simulation, which allows the
reader to better understand how it works. In Section 5, the BS scenario is validated and
compared to a classic approach with no sharing in several road networks across Europe
and considering dynamic conditions. Finally, conclusions and future research perspectives
are discussed in Section 6.

2. Related Work

Researcher interest in studying energy consumption has increased exponentially during
the last decade. According to the Scopus database, 205, 540 documents have been published
between 2010 and 2022 concerning energy consumption. This trend is associated with the
energy crisis, increased energy demand, and rising energy prices. Many of these documents
focused on studying models to estimate energy consumption and investigate solutions to
reduce this consumption. One of these solutions is to utilize EVs. These vehicles can substitute
traditional fossil fuel vehicles and can also include so-called unmanned aerial vehicles (drones).
EVs have a significant role in diminishing environmental pollution and counterbalancing the
effects of fossil fuel-based energy [4,14]. However, there are several obstacles that make it
difficult to complete the transition to sustainable transportation by utilizing electric power
systems. These include the potential increase in electric power demand beyond current
generation capabilities and the continued use of fossil fuel-based electric energy sources in
the industry [15]. In addition, while EVs are emission-free, the batteries used in them are not
environmentally clean in terms of production. Furthermore, an increase in EV penetration can

https://github.com/mattianeroni/batteryswap
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lead to a rise in peak load demand due to unexpected individual EV charging times, which
implies that more power plants must be constructed to maintain grid stability. There are
several factors that influence consumer perception, such as the limited drive range [14] and
extended charging time of EVs [9,16]. International standards have been defined to regulate
the charging process of EVs, such as SAE J1772 and IEC 61851-1 [17]. For example, the IEC
61851-1 standard classifies charging systems in Europe and some other countries into four
modes. Each mode defines the charging power, protection installation, and socket type.

Sanguesa et al. [2] reviewed batteries and their technology in EVs. These authors
highlighted several battery characteristics, such as their capacity, energy density, specific
power, life span, internal resistance, and efficacy. These characteristics depend on the
battery technology. One of oldest and most widely used types of batteries is the lead-acid
battery [2,18]. Because of the low energy density of lead-acid batteries [19], the battery
industry faced developments in battery technology, and new types of batteries were devel-
oped, such as lithium-ion batteries [2,5] and zinc-nickel batteries [19]. Researchers have
compared between the developed battery types and investigated possible improvements in
their characteristics [2,19,20].

In recent times, various models for analyzing energy consumption of EVs have been
established in the scientific literature. These models generally involve the examination of
real-world data and investigating the impact of various factors on the energy consumption
of EVs. Li et al. [21] employ a design of experiments to analyze the statistical significance
of various factors that affect the energy consumption of EVs. Despite the large number
of potential factors, their study focuses on four factors and their interactions, utilizing an
empirical approach that has been tested with a real-world case. The results indicate that
the use of heating, ventilation, as well as air conditioning and topography has the greatest
impact on energy consumption compared to other factors. Yang et al. [22] investigate the
impact of the road tilt angle on the energy consumption of EVs. Their study quantifies
how the energy consumption increases as the tilt angle of the road increases on uphill
sections and decreases on downhill sections. In another work, Mediouni et al. [23] propose
a machine learning model for the prediction of the energy consumption based on vehicle
speed and acceleration, road tilt angel, road coefficient of rolling resistance, wind speed, and
extra weight carried in vehicles. Fiori et al. [14] present the Virginia Tech comprehensive
power-based EV energy consumption model (VT-CPEM) as a solution to enhance the
limited driving range and harness the energy obtained during braking. The proposed
model is an EV energy model that utilizes instantaneous data—such as vehicle speed,
acceleration, and roadway grade—to calculate the energy consumption of the vehicle
for a specific driving cycle. Chen et al. [24] emphasize the significance of predicting
future driving conditions such as vehicle speed, recognizing driving styles and patterns, or
anticipating terrain information. They use this information to optimize energy consumption.
Neural networks, which are primarily utilized for route and driving pattern recognition,
are presented as the most promising equivalent factor adaptation methods for energy
consumption management systems in EVs. Moreover, machine learning techniques are
shown to have the capability to enhance control decisions through the use of historical
and real-time driving data. Wu et al. [25] propose a system for collecting in-use EV data.
The system collected and analyzed approximately 5 months of data. It was found that
providing the driver with timely information on energy usage could lead to conscious
adjustments in driving behavior, which in turn results in a reduction in energy consumption.
An analytical model is also presented to estimate the instantaneous power and trip energy
consumption in real time. It is based on the principles of vehicle dynamics and the
correlation among various essential variables. The authors concluded that driving on
urban city streets requires less power compared to driving on freeways—notice that this
differs from the typical behavior of internal combustion vehicles. Wager et al. [26] studied
energy consumption and driving range of EVs under the influence of various parameters
using mathematical modeling. They found that the driving range is significantly reduced
under high speed, as well as under scenarios where the overall weight increases. This is
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particularly true when the vehicle has also to face headwinds (20 km/h or more) and a
roof rack. Their study also highlights that the combination of the 80% charge level limit of
fast DC charging, battery aging, and battery safety margins result in not utilizing the full
battery capacity. In other words, the battery weight is not being used but it significantly
contributes to the vehicle’s weight. Chang et al. [27] introduce an instantaneous power
modeling of EVs to study the effect of velocity, acceleration, road slope, and EV weight on
the battery power consumption. In addition, they consider the effect of an onboard charger
and regenerative braking on the battery charging power. All the mentioned models found
in the literature could potentially be used as an online energy management strategy for
on-board control logic [28].

The research directed to batteries is not limited to the estimation of energy consump-
tion and affecting factors, but researchers also considered applying a circular economy
regarding the manufacturing of batteries [29,30]. This research trend studies the handling
of battery waste and re-manufacturing of batteries, as well as the collection of used batteries.
Another research trend is focused on operational decisions concerning the utilization of
the EVs that used these batteries. Thus, researchers planned routes that minimize traveled
time and distance [31,32], resulting in the green vehicle routing problem [33]. Reducing
the travel time and distance could reduce the energy consumption of vehicles and, hence,
have a positive impact on the environment. In this context, approaches introducing battery
sharing (battery swapping) were introduced [34]. For example, Li et al. [35] studied energy
consumption in a vehicle routing problem of EVs where battery swapping is allowed. They
aimed to support logistics enterprises so they can reduce energy consumption and gas
emissions while delivering goods. This solution is an alternative to battery charging and
affects the planning of EVs routes. Utilizing battery sharing might help to overcome one of
the EV constraints presented as limiting driving range and long charging times. Thus, this
paper investigates this approach using a simulation model.

3. Simulation Components and Architecture

In this paper, the simulation model consists of several components, as illustrated in
Figure 1 and described in the following subsections. In addition, our simulation architecture
includes algorithmic modules that are described in Section 4.

Figure 1. General architecture of the developed simulation library.
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3.1. Batteries

Batteries are the lowest-level elements of the simulation. The proposed simulation
library offers the possibility of introducing new battery types. Each type is characterized
by a certain capacity (expressed in kWh) and can be limited to a specific vehicle, i.e.,
each vehicle may require a specific type of battery. Each battery instance is characterized
by level attributes that describe the remaining energy level. Batteries move around the
network carried by vehicles and can be left at charging stations or redistributed among
charging stations.

3.2. Vehicles

Vehicles are powered by batteries and move around the road network during a simu-
lation run. Even for vehicles, it is possible to define a set of vehicle types, and each vehicle
type will mount a certain number of batteries, all of them belonging to a specific type. It is
possible to associate a consumption rate (expressed in kWh per kilometer) with any vehicle
type, as well as a positive and negative slope rate, i.e., a percentage that quantifies the effect
of street slopes on vehicle consumption. Vehicle consumption is computed as follows:

consumption = L · c · (1 + s · θ)

where L is the road length, c is the vehicle consumption rate, θ is the slope of the road, and
s refers to the vehicle slope rate, which is positive in the case of positive slope and vice
versa. This relationship between road slope and EV consumption is based on the work by
Yang et al. [22] and Anselma et al. [28].

Each vehicle type may represent a different class of vehicle characterized by the
number of batteries and a specific consumption rate (which is associated with its weight).
For instance, we may define three types of vehicles representing trucks, sport utility vehicles
(SUVs), and city cars. Each of these vehicle types will have a different consumption rate
and will require a different number and type of batteries.

3.3. Distributors

Distributors are particular vehicles in charge of taking unused batteries in a charging
station and moving them to another station which is supposed to have a higher demand.
For the sake of simplicity, in this work we have assumed that the fleet of distributors is large
enough, so we do not need to worry about capacity limitations or recharging operations in
vehicles belonging to this fleet.

3.4. Stations

Stations are the network nodes where vehicles can stop to charge or swap batteries.
Charging takes place if no sharing is carried out, while swapping takes place only in case
of battery sharing. Stations are split into types, and each type is characterized by a certain
disbursed power (expressed in kW), a capacity, i.e., the number of vehicles that can be
processed at the same time, and a charging capacity, representing the maximum number of
batteries of each type the station can charge at the same time; if a station does not handle
any battery type, this number can be simply set to 0.

In our experiments, battery charge is assumed to be linear with time, as discussed in
Zeng et al. [36] and Cataldo-Díaz et al. [37]. In addition Cataldo-Díaz et al. [37] assumed
linear recharge at stations, despite the fact that this assumption might not be fully accurate
when using high recharging speeds. Hence, given a battery capacity C, a starting battery
power level, and the station disbursed power p, the charging time is computed as follows:

time = (C − level)/p
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3.5. Road Network

The road network is a directed graph including additional details that concern road
slope, charging stations, real-time vehicle positions, and distribution of batteries among
charging stations.

3.6. Runner

The runner is the main element of the simulation and is in charge of coordinating
and running all the simulation processes. Given the number of travelling vehicles in the
simulation N, the main process is designed to keep this number constant. Hence, it initially
instantiates and executes N processes (one per vehicle). Then, as soon as a process is
concluded, a new one is started. It may be represented as in Algorithm 1.

Algorithm 1 Main simulation process
Instantiate N vehicle trip processes
while Simulation is not concluded do

Get the concluded vehicle trip processes
for each process concluded do

Instantiate a new vehicle trip process
end for

end while

In the case of sharing, a parallel process is executed; this process is analogous to the
one mentioned in Algorithm 1. However, while the main process is in charge of keeping
constant the number of traveling EVs, i.e., the traffic intensity, this vehicle handles the
redistributors, so that the redistribution of batteries never stops.

4. Incorporated Algorithms

In this section, a deeper description of the algorithmic modules represented in Figure 1
is provided. The algorithms herein described are essential for the simulation to function.
Many alternative solutions can be designed and implemented in the simulation model,
which allows us to analyze their performance. Notice, however, that the objective of this
study is not to find an optimal solution, but rather to reproduce reasonable decisions a stan-
dard driver would make in his/her daily activity. The main decision-making processes to
consider concern how drivers define the path and how battery redistribution is carried out.

4.1. Driver’s Path Definition

The procedure for determining the path of a vehicle when traversing from point a to
point b involves the following steps:

1. Using the A∗ algorithm [38], find the shortest path from a to b.
2. If a path is not possible, we have a graph error and the trip is considered concluded

as well as excluded from the final statistics.
3. If a path can be covered without stopping at the charging stations, the trip is simulated

and the process concluded.
4. If b cannot be reached without stops, the algorithm iterates the nodes from a to b

looking for a charging station s.
5. If s exists and is on the original path, we simulate a trip from a to s, set a = s, and

go to step 1. Otherwise, if there are no stations on the path or the station s cannot be
reached with residual battery, the algorithm moves to the next step.

6. For each node i from the last reachable node to a, consider i as the root and start a
breadth-first search method [39], looking for a station outside the original path. If a
station is found, then simulate a trip to s, set a = s, and go to step 1.
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4.2. Battery Redistribution

The process of redistributing batteries among charging stations is extremely important
in periods when most of the vehicles are moving. In these periods, some stations could end
up without batteries. As mentioned above, each station has a charging capacity describing
the maximum number of batteries that it can charge at the same time. However, vehicles
are allowed to leave exhausted batteries in a station even if the station charging capacity
is saturated. These batteries will take the name of batteries on-the-side and will remain
unused until the station has the opportunity to charge them. Distributors are responsible for
identifying the nearest station with a critical number of batteries on-the-side and shipping
them to the station with the greatest need for additional batteries. The path traversed
by distributors is again determined using the A∗ algorithm. As mentioned previously,
distributors do not have loading capacity limitations and do not require recharging or
refueling operations.

5. Validation and Results

In order to validate the proposed concepts and show the benefits that battery sharing
can provide, our simulation model was used to analyze several scenarios. First of all,
four different road networks were used (Figure 2): (i) a small section of the Chicago (IL)
downtown area, representing a small test network; (ii) the urban area of Modena, a typical
Italian medium-sized city; (iii) the urban area of Sassari, an Italian city representing an
ancient road network; and (iv) the urban area of Barcelona, representing a modern and
large European city. As mentioned, each selected network has some peculiarities that make
it a good representative for a specific scenario. The details that concern the road networks
were extracted from Open Street Maps (OSM) by using the standard API. Concerning
the elevation and altitude, since OSM does not provide this information, the possibility
of querying the Open Elevation (https://open-elevation.com/, accessed on 8 April 2023)
and National Map (https://www.usgs.gov/the-national-map-data-delivery, accessed on
8 April 2023) services was implemented. For this study, elevation data were taken from
Open Elevation. For each road network, we simulated three different situations: (i) a
scenario in which no sharing is carried out (i.e., when a vehicle arrives to a charging station,
it simply waits to be charged); (ii) a scenario with battery sharing where drivers are allowed
to take only fully charged batteries; and (iii) a scenario with battery sharing where even
partially charged batteries can be picked up.

The proposed simulation model described in Section 3 offers many possibilities to
customize the system’s behavior. However, in order to carry out a feasibility analysis and
validate the BS approach, we will standardize it using the following configuration:

• The simulation handles three types of batteries—small, medium, and large—with
respective capacities 10, 15, and 20 kWh. For experimental purposes, we have consid-
ered that the batteries do not reduce their performance with use. Thus, the simulator
assumes that the capacity of the batteries does not decrease with the charge cycles.

• In each road network, exactly 2% of nodes are characterized by the presence of a
charging station. This results in a different number of charging stations for each net-
work: 4 charging stations in the test network, 69 in Sassari’s network, 66 in Modena’s
network, and 196 in Barcelona’s network.

• The simulation handles three types of vehicles. The first two types are more frequent
and powered by two batteries each, while the latter is less frequent and powered by
three batteries.

• All vehicles have the same consumption rate, 0.3 kWh/km, and their consumption is
equally affected by the road slope.

• The simulation handles two types of equally spread charging station, small and large.
The first one can process only one vehicle at a time and disburses a power of 10 kWh.
The second one can process two vehicles together and disburses a power of 12 kWh.
The charging time can be easily estimated using the following equation:

https://open-elevation.com/
https://www.usgs.gov/the-national-map-data-delivery
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ChargingTime =
BatteryCapacity · CurrentBatteryLevel

DisbursedPower

• The number of traveling vehicles is constant, exactly 1, 100 vehicles, during the entire
duration of the simulation.

• Battery swapping takes 60 s.
• There are 10 vehicles dedicated to battery redistribution, and a new redistribution is

carried out every hour if the previous one is already concluded.
• The simulation runs for 8 h.

(a) (b)

(c) (d)

Figure 2. Main streets of considered roads networks. (a) Test network (b) Sassari (c) Barcelona
(d) Modena.

Notice that all technical and quantitative data we assumed herein are in line with the
current technical solutions on the market, as well as well-justified by scientific publica-
tions [13,16,30].

Results are presented in terms of relative travel time (i.e., travel time/covered distance),
average waiting time at charging stations (i.e., difference between the time at which the
vehicle enters the charging station to be processed and the time at which it enters the
queue), and average queue at the entrance of the charging station. Results are reported in
Tables 1–4, which are also summarized in Figures 3–5.
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Table 1. Results concerning the test network.

Scenario Relative Travel Time [min/km] Waiting Time [s] Queue

Sharing of partially charged batteries 1.020 127 3.247
Sharing of fully charged batteries 1.091 3060 77.104

No sharing 1.200 5803 103.570

Table 2. Results concerning Sassari’s city network.

Scenario Relative Travel Time [min/km] Waiting Time [s] Queue

Sharing of partially charged batteries 1.020 62 0.154
Sharing of fully charged batteries 1.2 5517 30.004

No sharing 1.38 8917 31.692

Table 3. Results concerning Modena’s city network.

Scenario Relative Travel Time [min/km] Waiting Time [s] Queue

Sharing of partially charged batteries 1.020 62 0.126
Sharing of fully charged batteries 1.14 2020 6.679

No sharing 1.200 4091 15.641

Table 4. Results concerning Barcelona’s city network.

Scenario Relative Travel Time [min/km] Waiting Time [s] Queue

Sharing of partially charged batteries 1.020 31 0.037
Sharing of fully charged batteries 1.083 1074 2.012

No sharing 1.267 2933 5.553

Figure 3. Comparison of relative travel time for each scenario.
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Figure 4. Comparison of waiting times for each scenario.

Figure 5. Comparison of queues for each scenario.

As can be seen in these figures, the scenario without battery sharing shows visible
traffic congestion that would require the installation of further charging stations. The
waiting time at charging stations always exceeds 1 h (and sometimes exceeds 2 h). The
relative travel time is higher (because of waiting time at charging stations), and queues
exceed 103 vehicles in the test network, 30 vehicles in Sassari city, 15 vehicles in Modena
city, and 5 vehicles in Barcelona (since the number of vehicles is constant, the queue length
is higher in small networks characterized by fewer charging stations). All conditions being
equal, the adoption of partially charged battery sharing leads to a perfectly feasible situation
with no need of further charging stations. The relative travel time is reduced, while the
waiting time and the queues are almost non-existent. Of course, one should notice that
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sharing of partially charged batteries generally requires drivers to take more stops during a
single trip. Therefore, it may be convenient in terms of the overall network but inefficient
from a drivers’ perspective. The scenario in which battery sharing is allowed only for fully
charged batteries lays in between the other two scenarios. The average waiting time at
charging stations is between 30 min and 1 h. This can be considered as an amount of time
reasonable according to current standards, even though it can be improved. The queue
length at charging stations is often excessive, especially in small networks, and the relative
travel time lays in between the results obtained in other scenarios.

As an example, in order to provide an intuitive and visual representation, we can
compare in Figures 6 and 7 a representation of the Barcelona city network before and after
implementing battery sharing. In the figures, we can see in red, orange, and green the
streets with high, medium, and low traffic, respectively. The red points represents the
charging stations, and it is easy to see how, in the case of no sharing, the most congested
streets are the ones characterized by the presence of a charging station, where vehicles
waste a considerable amount of time.

Additional results are obtained by increasing the number of redistributors, i.e., vehicles
in charge of moving batteries from one charging station to another, from 10 to 100 vehicles.
Table 5 shows how sharing of fully charged batteries may be easily improved with a
relatively low budget if compared to the construction of new charging stations required by
a scenario with no sharing.

Figure 6. A view of Barcelona city network with no battery sharing.
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Figure 7. A view of Barcelona city network after implementing battery sharing.

Table 5. Results obtained increasing the number of redistributors in a scenario of fully charged
battery sharing.

Scenario Relative Travel Time
[min/km] Waiting Time [s] Queue

Test network 1.158 3010 45.210
Sassari 1.28 2012 5.110

Modena 1.13 1920 3.029
Barcelona 1.083 433 1.512

6. Conclusions and Future Work

This paper has analyzed a novel concept: the impact of using a strategy of battery
sharing in electric vehicles as an alternative to a full charging strategy, which is not handy
and efficient at the moment mainly due to long charging times. Battery sharing strategies
are based on the fact that drivers remove exhausted batteries and replace them with
the charged batteries previously left by somebody else (after they have been partially
recharged in the station). This allows for significantly reducing the waiting queue at the
charging stations. To assess how this approach may affect traffic conditions and how it
relates to a classic scenario where no sharing of batteries is used, we have developed a
discrete-event simulation model, which validates our approach in four different real road
networks and under several environmental conditions. Results show that battery sharing, if
feasible from a technological point of view, may be beneficial for traffic networks and easily
scalable in case of limited resources, such as the possibility or the budget to install several
high-performance charging stations. The current study does not consider imposed costs
associated with swapping those batteries and their handling, which are partially caused
by the need to hire more staff at the stations. We are aware that research is moving fast
in this area and parameters, technologies, and interests may be subject to rapid changes.
The objective of this paper was to share a first starting point of a long research project that
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may also lead to several possible improvements and changes according to the evolution of
the EV market. In addition, the simulation results we have obtained are based on some
assumptions and data, which means that modifications in these inputs might generate
slightly different results. As future work and research perspective, we plan to include into
the simulation model more realistic and accurate aspects concerning battery changes and
energy consumption starting from weather conditions, passengers, type of vehicle, road
state, and many others. As future work, we also plan to combine optimization methods
with the proposed simulation model, in order to optimize decisions about which battery
has to be selected. Notice that this might depend upon different variables, including the
travel time to reach the destination, the type of vehicle, or the number of passengers.
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