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a b s t r a c t 

We propose a novel approach to enhance the 3D body pose estimation of a person computed from 

videos captured from a single wearable camera. The main technical contribution consists of leveraging 

high-level features linking first- and third-views in a joint embedding space. To learn such embedding 

space we introduce First2Third-Pose , a new paired synchronized dataset of nearly 20 0 0 videos depicting 

human activities captured from both first- and third-view perspectives. We explicitly consider spatial- 

and motion-domain features, combined using a semi-Siamese architecture trained in a self-supervised 

fashion. Experimental results demonstrate that the joint multi-view embedded space learned with our 

dataset is useful to extract discriminatory features from arbitrary single-view egocentric videos, with no 

need to perform any sort of domain adaptation or knowledge of camera parameters. An extensive evalu- 

ation demonstrates that we achieve significant improvement in egocentric 3D body pose estimation per- 

formance on two unconstrained datasets, over three supervised state-of-the-art approaches. The collected 

dataset and pre-trained model are available for research purposes. 1 

© 2023 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Egocentric computer vision is gaining attention in recent years, 

ince it may enable several important developments in the fields 

f healthcare, robotics and augmented reality [1–3] . For many of 

hese applications, estimating the 3D full body pose of the person 

earing the camera is of special interest because it conveys rich 

nformation about his/her activities, interactions and behaviour. 

owever, inferring the first-person’s 3D body pose from a given 

gocentric video sequence is a challenging problem in computer 

ision since wearable cameras are typically worn on the chest or 

he head, and have almost no view of the camera wearer’s body. As 

 consequence, state-of-the-art approaches for third-person body 

ose estimation are not suited to the egocentric domain, and ded- 

cated methods need to be developed. 

Despite the relevance of the problem, egocentric body pose es- 

imation has received little attention so far [4–9] . Prior work has 

hown the importance of leveraging egomotion and the coarse 
∗ Corresponding author. 
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1 https://github.com/nudlesoup/First2Third-Pose 
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cene structure to predict the body pose behind the camera [4] . 

ore recently, the body pose of a second-person (as opposed to 

he first-person wearing the camera), as observed in a first-person 

ideo stream, has been used to enhance egocentric pose estimation 

uring dyadic interactions [7] . While these methods rely only on 

he egocentric video data itself to estimate the egopose, another 

ine of work uses simulated data to learn a control policy that is 

ltimately transferred to egocentric videos. 

Specifically, Yuan and Kitani [5] considers simulated data to 

earn a control policy accounting for the physics that underlies 

he kinematics of the motion and hence can generate physically 

lausible first-person body poses. In the same spirit, Yuan and Ki- 

ani [6] learns a control policy from unsegmented motion-captured 

ata without the need for domain adaptation to transfer them to 

eal egocentric data. Lately, fostered by potential applications in 

he field of augmented and virtual reality, the egocentric 3D pose 

as been estimated from wearable cameras with eye-fish lenses, 

hich ensures a larger body part view [8,9] by incorporating mo- 

ion priors learned from motion-captured data. All these meth- 

ds, however, either rely solely on information available in first- 

erson videos or leverage simulated data for egopose from existing 

otion-captured data or humanoid simulator. 

In this paper, we explore whether visual cues on third-person 

ideos can help to improve the robustness of 3D pose detectors on 
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Fig. 1. First-person (left) and third-person (right) perspectives represent the two sides of the same coin. Our work considers how a joint embedding space between these 

two worlds can facilitate egocentric 3D body pose estimation. The skeleton in the centre has been estimated from an egocentric video by relying on our joint embedding 

space. 
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rst-person views. For this purpose, we rely on a new, real dataset 

f synchronized paired first- and third-person videos to learn a 

oint embedded space that we leverage to enhance 3D egopose es- 

imation (see Fig. 1 ). To learn the embedding space, we train in a

elf-supervised fashion, a two-stream semi-Siamese convolutional 

eural network for the task of discriminating if two views (first- 

nd third-views) correspond to the same 3D skeleton. At inference 

ime, the embedded space is used to extract image features al- 

owing for the discrimination of different 3D human poses from 

ew, unpaired egocentric videos. Our approach does not require 

omain adaptation to transfer to new unpaired egocentric datasets 

nd can be applied to egocentric videos captured in the wild, for 

hich the camera parameters are typically unknown. Experimen- 

al results on two real datasets show that the use of joint first- and

hird-embedded features have a significant benefit for 3D egopose 

stimation. Specifically, we reduce the error of 12.71% and 7.51% 

n average respectively on two datasets over three state-of-the-art 

pproaches. 

Our key contributions can be summarized as follows: 

• We demonstrate for the first time the benefit of linking first- 

and third-person views for the task of 3D egocentric body pose 

estimation. 
• We collect and make publicly available First2Third-Pose , a large 

dataset consisting of nearly 20 0 0 synchronized first- and third- 

views videos, capturing 14 people performing 40 different ac- 

tivities in 4 different scenarios. 
• We show that our dataset is useful to compute a joint embed- 

ded space between first- and third-views from which to extract 

discriminative features for estimating 3D egopose from arbi- 

trary egocentric videos, without any knowledge of the camera 

parameters. 
• We achieve consistent and significant performance improve- 

ment on two real datasets, First2Third-Pose and [4] , over three 

existing baseline methods [4,7,10] . 

. Related work 

3D pose estimation from third-view. Learning to estimate 3D 

ody pose from a single RGB image from a third-view (assum- 

ng the person is seen in the image) is a long-standing problem 

n computer vision. Most approaches in this area follow a fully- 

upervised pipeline and use images annotated with 3D poses to 

rain a deep neural network that regresses the 3D pose directly 

rom images [11–13] or via an intermediate step that estimates 

he 2D pose [14–16] The architectures explored so far for this 

ask range from Euclidean CNN to the more recent non-Euclidean 

raph-Convolutional Network (GCN) [17] . Some representative ex- 

mples are as follows : Li et al. [11] proposed a deep neural 

etwork approach for maximum-margin structured learning that 
2 
earns jointly the feature representations for image and pose as 

ell as the score function. Tome et al. [14] proposes the first CNN 

rchitecture for jointly estimating 2D landmarks and 3D human 

ose. Cai et al. [16] models spatial-temporal dependencies between 

ifferent joints of temporal consecutive skeletons through a GCN 

pproach and consolidates features across scales via a hierarchical 

local-to-global” architecture. 

However, since all these approaches require a large amount of 

nnotated data for training, they are typically trained on datasets 

cquired in controlled indoor environments, for which it is easy to 

se motion capture systems [18,19] . 

Along with another body of work devoted to 3D mesh recon- 

truction, the 3D skeleton is often explicitly taken into account. 

un et al. [20] proposed a module for disentangling the skeleton 

rom the rest part of the human 3D mesh, hence building a bridge 

etween 2D/3D pose estimation and 3D mesh recovery. Wang et al. 

21] directly infer sequential 3D body models by extracting local 

eatures of a sequence of point clouds and regressing 3D coordi- 

ates of mesh vertices at different resolutions from the latent fea- 

ures of point clouds. In [22] expressive body motion capture in- 

luding 3d hands, face, and body are estimated from a single im- 

ge as a form of shape and pose parameters of the SMPL-X 3D 

odel of the human body. Xu et al. [23] proposed a resolution- 

ware network for 3D human pose and shape estimation that can 

andle arbitrary-resolution input with one single model. 

Interestingly, to reduce the need for expensive 3D annotations 

nd hence enable training on 3D body pose datasets acquired in 

he wild, several approaches only use 2D weak annotations [24–

6] or used weak [27,28] and self-supervised based methods [29] . 

qbal et al. [27] proposed using unlabeled multi-view data for 

raining in an end-to-end manner by enforcing the 3D poses es- 

imated from different views to be consistent. Cai et al. [28] pro- 

osed to use depth images captured by commodity RGB-D cameras 

t training time to alleviate the burden of costly 3D annotations 

n large-scale real datasets. Jenni and Favaro [29] proposed a self- 

upervised approach to learn feature representations suitable for 

D pose estimation, that uses as a pretext task the detection of 

ynchronized views (which are always related by a rigid transfor- 

ation). 

Another self-supervised method for 3D pose estimation was 

roposed in Rodhin et al. [30] , where the latent 3D representation 

s learned by reconstructing one view from another. However, dif- 

erently from Jenni and Favaro [29] their approach strictly relies 

n the knowledge of the camera extrinsic parameters and back- 

round images and therefore are not suited to datasets captured in 

he wild. 

In this paper, we use first- and third-person paired data not 

nly to get weak annotations for training but also to learn a multi- 

iew embedding space in a self-supervised fashion, which we fur- 

her exploit to enhance 3D pose estimations. Differently from Jenni 
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Fig. 2. Capture setup used for our First2Third-Pose dataset. In addition to a head- 

mounted wearable camera, two static cameras are used to capture side and front 

views. 
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nd Favaro [29] , where the pretext task translates into a classifica- 

ion of rigid versus non-rigid motion, in our case, there is no direct 

ink between the image information of the two types of images 

first and third view). In addition, in contrast to [30] , our approach 

oes not require knowledge of the camera parameters nor of back- 

round images. 

3D pose estimation from first-view. Inferring human poses 

rom egocentric images or videos is a problem that has been 

ooked into only recently. Early works focused on estimating ges- 

ures and hand poses assuming that arms were partially visible 

31–33] . In [34] several body-mounted cameras on a person’s joints 

ere used to infer body joint locations via a structure-from-motion 

pproach. Jiang and Grauman [4] has been pioneering in show- 

ng that it is possible to estimate the invisible full body pose of 

he camera wearer directly from egocentric videos. This work con- 

idered dynamic motion signatures and static scene structure cues 

o build a motion graph from the training data and recovered the 

ose sequence by solving for the optimal pose path. More recently, 

g et al. [7] leveraged the visible body pose of a person interacting 

ith the camera wearer to improve the wearer’s pose estimation. 

Other methods use a humanoid simulator in a control-based 

pproach [5,6] to estimate the 3D body pose of a camera wearer. 

uan and Kitani [5] learns a control policy on simulated data in 

 two-stage imitation learning process that yields physically valid 

D pose sequences. This is evaluated quantitatively only on syn- 

hetic sequences. On the same line, Yuan and Kitani [6] proposed 

n approach that can learn a Proportional Derivative control-based 

olicy and a reward function from unsegmented motion-captured 

ata and estimate various complex human motions in real-time 

ithout the need to perform domain adaptation. 

More recent approaches estimate egopose from video captured 

y a head-mounted and front-facing fisheye camera [8,9,35,36] , 

hich better simulates augmented and virtual devices. Mo2Cap2 

35] and xR-egopose [36] estimate the local 3D body pose in ego- 

entric camera space, whereas [9] proposes a method to estimate 

t in the world coordinate system. This is achieved by leveraging 

he 2D and 3D keypoints from CNN detection as well as VAE-based 

otion priors learned from a large motion-captured dataset. Jiang 

nd Ithapu [8] leverages both the dynamic motion information ob- 

ained from camera SLAM and the occasionally visible body parts 

o predict jointly head and body pose. Unlike any of the exist- 

ng methods, our approach exploits the underlying connection be- 

ween first- and third-views for 3D egopose estimation. 

Linking first-person and third-person perspectives. Previ- 

us work has demonstrated the benefits of linking first-person 

nd third-person perspectives for different tasks. Soran et al. 

37] showed the potential of combining a single wearable cam- 

ra and multiple static cameras to better understand action recog- 

ition. More recently, Sigurdsson et al. [38] introduced a large- 

cale dataset of paired first- and third-person videos and used it 

o learn a joint multi-view representation and transfer knowledge 

rom the third-person to the first-person domain for the task of 

ero-shot action recognition. A combination of first-person views 

rom two social partners has been explored for recognizing micro- 

ctions and reactions during social interactions [39] as well as 

o improve activity recognition of two partners engaged in the 

ame activity [40] . In [41] , an embedding space shared by first- 

nd third-person videos is learned to match camera wearers be- 

ween third and first-person. Ego-exo [42] is a framework to cre- 

te strong video representations for downstream egocentric un- 

erstanding tasks by leveraging traditional third-view large-scale 

atasets. 

In any event, and to the best of our knowledge, the potential 

f linking the first-person and third-person perspectives for the 

D egocentric body pose estimation we propose in this paper has 

ever been explored so far. 
3 
. First2Third-Pose dataset 

We next introduce First2Third-Pose , a large dataset of short 

ideos covering a variety of human pose types and including 

ulti-third-person-views in addition to a first-person view. 

Dataset collection. We built a multi-view synchronized dataset 

herein we capture 14 people (in turns) of varying heights, 

eights and genders while performing 40 different activities in 

oth indoor and outdoor environments (lab, streets, parks, corri- 

ors, basketball courts, and parking). Every individual is asked to 

ear a head-mounted camera which captures his/her egocentric 

iew. We use the Go Pro Hero 4 in a normal view setting which 

ecords in 1920 × 1080 resolution at 25 fps. All indoor and outdoor 

nvironments are equipped with two static cameras that capture 

he side and front views. We use the Go Pro Hero 3 in 1920 × 1080

esolution at 25 fps to record the side view and the Sony DSLR in 

920 × 1080 resolution at 25 fps to record the front view. An ex- 

mple of outdoor capture setup is shown in Fig. 2 . The ‘Lab’ scene 

s equipped with an additional Amcrest camera that we use un- 

er the wide setting with a frame rate of 20 fps and 2304 × 1296

esolution. The top view captures a perspective from above the in- 

ividual; the side view captures the 3rd person perspective from 

ither left/right side recorded parallel to the individual; the front 

iew captures the 3rd person view of the individual from the front, 

nd the egocentric view captures the 1st person perspective of the 

ndividual. Each person performs about 40 activities in two indoor 

nd two outdoor locations. We record a total of 1950 activity se- 

uences lasting between 8 to 25 seconds, with a total duration of 

.5 hours. The activities include sports actions such as e.g. box- 

ng, basketball, soccer and day-to-day tasks like reading, typing or 

itting on a couch/chair/ground. Examples of synchronized view- 

oints for different activities in our dataset are shown in Fig. 3 . 

Post-processing. To enable synchronization across multiple 

iews, we recorded one video for each view in a location (ego, top, 

ront, side). Before starting to enact each activity, the participants 

re asked to clap. This clap is visually captured in an egocentric 

amera and heard across multiple views. The sound of the clap is 

sed to determine the starting point of each activity. We use the 

ront views to check how long the activity has been performed. 

his time duration is noted and the video is manually scanned to 

nd starting points of the activity. The activity is then clipped out 

rom the main video and annotated using the name, activity class 

erformed, location and the view that the video presents. Each 

ideo clip has one activity class. This is done for all the front, ego, 

op and side views. 

Dataset annotation. The body pose is represented by J = 17 3D 

oint positions. Similarly to previous work on egocentric pose esti- 

ation [6] , our ground truth is estimated from front views. How- 

ver, instead of using only 2D joints as in [6] , we first estimated 
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Fig. 3. Example of synchronized viewpoints in our dataset for different activities. 

Table 1 

Comparison of publicly available datasets for 3D egocentric pose estimation. 

Dataset #activities #videos #people #view #body joints #scenes #fps #camera loc. #duration #GT 

MotionGraph [4] 19 18 10 1 25 4 indoor 30 chest 1-3m KineticsV2 

You2me [7] 4 42 10 1 25 indoor 30 chest 2m Kinect&Panoptic 

[6] 8 24 5 2 22 2(indoor/outdoor) 30 head 20s 3rd-view(2D) 

Ours 40 1950 14 4 17 4(indoor/outdoor) 25 head 8-25s 3rd-view(3D) 

Table 2 

Comparison of datasets combining first-person videos with other’s viewpoint synchronized videos. 

Dataset #activities #videos #people #view #scenes #fps #add.camera #duration full pose visible Task 

location on add. camera 

[43] 12 20 11 3 3 60 hands 30s - gesture rec. 

[37] 28 140 5 4 1(Lab) 30fps side,back,top 1-2s - action rec. 

[41] uncons. 7 4 3 2 30 side 5-10m - pers. disam. 

[41] uncons. 7 4 3 2 30 side 5-10m - pers. disam. 

[39] 7 1226 6 2 6 60 head 1.5s - act./react. 

[40] 4 24 4 2 3 30 head 90s - act.rec. 

Ours 40 1950 14 4 4(in/out) 25 side,front,top 8-25s yes 3d pose est. 
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t

D body poses by using Detectron2 [44] , and then we obtained 3D 

ody estimations via a pre-trained lifting model [45] . As the latter 

ethod reports an average error of 4–5 cm on large-scale datasets, 

e can assume that at most the same holds in our case. Visual 

nspection of 3D pose predictions on the test set corroborated the 

lausibility of such an assumption. It is worth remarking that as 

ur dataset was captured in multiple scenarios, the camera extrin- 

ic parameters are not available. Therefore, the computation of the 

round truth could not benefit from triangulation methods by us- 

ng multiple views. However, the ground truth annotations are not 

equired to compute the joint embedded space we exploit in the 

roposed approach. 

Dataset comparisons. In Table 1 we summarize the charac- 

eristics of our proposed dataset with respect to other available 

enchmarks for 3D egopose estimation. It can be observed that 

ur dataset scales existing ones in terms of the number of videos 

nd presents more variability in terms of background scenes, num- 

er of participants and activities. Furthermore, it provides multiple 

iews of the same scene (egocentric, top, side, front). Therefore, 

t is currently the largest and most comprehensive dataset for 3D 

gopose estimation from videos. 

In Table 2 we compare qualitatively existing datasets with syn- 

hronized videos including at least one first-person viewpoint, and 

e show that our dataset is the only one suited for the task of 

D egopose estimation. We stress that while other paired datasets 

ith first- and third-person views currently exist, e.g. [38] , we did 
4 
ot include them in Table 2 since they are not synchronized and 

herefore not suitable for our task. All our data will be made pub- 

icly available upon acceptance. 

. Approach 

Given an egocentric video sequence as input, our goal is to es- 

imate the 3D body joints of the camera wearer as output. More 

ormally, for each egocentric video frame at time t , the output is a 

et of J joint 3D coordinates corresponding to the skeleton of the 

amera wearer at frame t , with shape p t ∈ R 

3 J . 

Our key insight is to build image features allowing us to dis- 

riminate different 3D human poses by projecting and aligning 

ata from the first and third-view onto a shared representation 

pace. Formally, our objective is to learn functions f 1 : R 

F → R 

J 

nd f 2 : R 

T → R 

J which map first and third views corresponding 

o the same 3D pose respectively onto nearby points in a joint em- 

edded space. Positive first-third pairs are extracted from synchro- 

ized videos and fed into a two-stream Siamese architecture with 

 first-view subnetwork and a third-view subnetwork, each pro- 

ucing 64-D embeddings. A curriculum-based mining schedule is 

sed to select appropriate negative pairs which are then trained 

sing a contrastive loss, as detailed below. Our contrastive loss 

valuates if pairs of first- and third-person views are synchronized. 

o solve such a synchronization task, the network must learn what 

hese extremely different views have in common when they are 
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Fig. 4. Our model uses a semi-Siamese architecture to learn to detect if a pair of first- and third-view videos of the First2Third-Pose paired source dataset are synchronized 

or not, by minimizing a contrastive loss ( arrows). This pretext task leads to learning a joint embedding space, where the gap between the first-view and third-view 

worlds is minimized. The so-learned joint embedding space can in principle be leveraged by any supervised method for 3D egopose estimation on a target dataset, without 

a need for domain adaptation. At both train time ( arrows) and test time ( arrows), the semi-Siamese network is used for feature projection onto the learned 

joint embedded space. z is 64-dimensional vector, obtained once removed the softmax layer of the Siamese network was pre-trained with our dataset. 
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ynchronized: the 3D human body pose of the person is visible 

n the third-view but invisible in the first-view. Consequently, the 

roposed synchronization pretext task translates well to the down- 

tream task of 3D egopose estimation. 

.1. Learning a joint first/third view embedding 

First and third-person perspectives are very different in ap- 

earance (see Fig. 3 ). However, previous work [38,41] has shown 

hat it is possible to find spatial and motion domain feature cor- 

espondences between video types in a self-supervised fashion. 

hile this has proved to be useful in the context of activity 

ecognition and second-person disambiguation, its usefulness for 

D body pose estimation has never been investigated before. Our 

oal is therefore to attain a semantically meaningful space where 

aired first- and third-person videos are close to each other while 

he proximity of unpaired videos is avoided. The pretext task is 

o classify paired views into synchronized and unsynchronized, 

hich in turn corresponds to determining if pairs of first-person 

nd third-person views correspond to the same 3D human pose. 

imilarly to Fan et al. [41] , this is achieved by training a two-

tream semi-Siamese Convolutional Neural Network (CNN) with a 

esNet50 backbone [46] . Differently from Fan et al. [41] , where 

elf-supervision is performed separately on the spatial and mo- 

ion domains, we treat them jointly and we minimize a single con- 

rastive loss. Since first- and third-person views are very different 

n appearance, parameter sharing is allowed only for the last fully 

onnected layer. The semi-Siamese architecture is shown in the up- 

er part of Fig. 4 . 

At training time, we feed to the network paired exemplars of 

rst-view and third-view, consisting of stacked RGB and optical 

ow frames. To estimate optical flow on your dataset, we used 

he FlowNet2 [47] architecture pre-trained on the FlyingChairs 

48] and subsequently fine-tuned on the Things3D [49] datasets. 
5

pecifically, for each given video frame, we computed the optical 

ow field as a forward pass for a window of length 11 centered 

n it. We corroborated the quality of the estimation by visually in- 

pecting the results. We then minimize a contrastive loss by mea- 

uring the Euclidean distance for positive exemplars and a hinge 

oss for negative ones. Our loss function is as follows: 

 = 

M ∑ 

j 

y j || x f j − x t j || 2 + (1 − y j ) max (0 , m − || x f 
j 
− x t j || ) 2 

here M is the number of frames in a batch, m is a predefined 

onstant margin, x f and x t indicate first and third views (stacked 

GB and optical flow frames) respectively, y i is an indicator that 

akes value 1 if x 
f 
j 

and x t 
j 

are synchronized exemplars, and 0 oth- 

rwise. Following its effectiveness in self-supervised learning as 

n alternative to random exploration, we adopted a curriculum 

earning strategy for training [50] . Concretely, we defined it as 

asy negatives pairs of first- and third video clips corresponding 

o the same person doing a different activity in the same environ- 

ent. Hard negatives were defined as pairs of first- and third video 

lips corresponding to the same person doing the same action in 

he same environment at different intervals of time. 

In the following subsection, we aim at leveraging this joint rep- 

esentation space learned with our source First2Third-Pose dataset 

o estimate the 3D body pose of the person behind the camera in 

rst-view videos from a target dataset. 

.2. Transfer to 3D egopose estimation 

As a byproduct of learning to classify paired first- and third- 

iew videos into synchronized and unsynchronized, the represen- 

ation gap between the two perspective views is minimized. There- 

ore, the representation space shared by the first and third-view 

nables learning a semantically rich space to represent 3D human 
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2 http://www.hao-jiang.net/egopose/index.html 
3 https://github.com/facebookresearch/you2me 
4 https://github.com/una- dinosauria/3d- pose- baseline 
ose. From this low-dimension representation we can learn to pre- 

ict 3D human pose regression via supervised learning. 

We used the semi-Siamese network pre-trained on the pretext 

ask with the source First2Third-Pose dataset to extract features, 

hich are then useful for 3D pose estimation from egocentric 

ideos. More specifically, stacked RGB and optical flow frames from 

he unpaired egocentric video are fed into the first-view stream of 

he network in a forward pass. The bottom part of Fig. 4 shows 

ow to target train and test egocentric video datasets that can 

e used as input to our pre-trained semi-Siamese network to ex- 

ract features that are subsequently used as additional features by 

 supervised 3D egopose estimation method. The network can in 

rinciple be used as a feature extractor by an arbitrary supervised 

odel for 3D egopose estimation, at both training and test time. 

t training time, the target dataset is used as input for both the 

upervised method at hand and the pre-trained Siamese network. 

owever, the latter is used only to perform a forward pass allow- 

ng to project of the input videos into the shared representation 

pace and hence obtaining discriminative features used as addi- 

ional input for the supervised approach. In our experiments, we 

ill show that even if the embedding space has been learned re- 

ying on the First2Third-Pose source dataset, it transfers well on a 

ifferent tar get egocentric video dataset, without a need for do- 

ain adaptation. 

. Experiments 

Implementation details. We train a semi-Siamese network 

ased on the ResNet50 backbone that takes an input RGB frame on 

ach stream, stacked to the optical flow fields for a set of 10 con- 

ecutive frames. We used FlowNet2 [47] to estimate optical flow. 

he output of the ResNet in each stream is fed to a fully connected 

ayer of dimension 100. The last common fully connected layer has 

 dimension of 64. 

We generate the training data by splitting our Multiview 

ataset into 150k training frames and 40k testing frames. The train 

et includes activities performed by 10 people (8 actors, 2 ac- 

resses), while the test set includes activities performed by 4 un- 

een people (2 actors, 2 actresses). To train the Siamese Network 

e generate positive and negative image pairs, where the positive 

airs are generated by taking synchronized first- and third-view 

front) video frames. As we adopted a curriculum learning strategy 

or training, we generated negative pairs in two ways. Easy nega- 

ive pairs correspond to first- and third-view videos of the same 

erson doing different activities in the egocentric and front images 

ut in the same environment. Hard negative pairs correspond to 

hifted time intervals in paired first-and-ego views. We follow cur- 

iculum learning to train the Siamese network for 2 epochs. We 

rain the network using easy negative pairs for the first epoch and 

se the hard negative pairs for the second epoch. We use the con- 

rastive loss with a margin of 0.9 to train the network using these 

airs. Training time is 96 hours on a single GPU for 2 epochs. The 

earning rate is set to 0.0 0 01 with the momentum 0.9 and the 

eight decay 5e-4. Each predicted 3D body pose has the hip joint 

ositioned at the origin of the coordinates system. The first axis 

s parallel to the ground and points to the wearer’s facing direc- 

ion. The second axis is parallel to the ground and points to the 

eft hip. The third axis is perpendicular to the ground and points 

n the direction of the spine. To account for the variability in hu- 

an dimensions, we normalize each skeleton for scale based on 

he individual’s shoulder width. 

Datasets. In addition to our First2Third-Pose dataset described 

n Section 3 , we use the dataset introduced in [4] . The first-view

or the two datasets has been captured wearing the camera on the 

ead for our dataset and on the chest for the other. More details 

bout the dataset [4] can be found in Table 1 . Difference in appear-
6 
nce with our source First2Third-Pose dataset can be appreciated in 

ig. 4 (see source and target first-view videos). Figure 6 illustrates 

he difference in appearance between two datasets used in the pa- 

er for the same activity: our proposed First2Third-Pose captured 

y a head-mounted camera, and the Invisible pose dataset [4] cap- 

ured by a chest-mounted camera. Baselines. We considered two 

tate-of-the-art methods for 3D egocentric pose estimation [4,7] , 

nd we considered also a baseline method tailored for 3D pose es- 

imation from third-view videos [10] that we adapted to our task. 

otionGraph [4] is currently the state-of-the-art method for pre- 

icting 3D body pose from real egocentric videos without a second 

nteracting person. We used the publicly available author’s code 2 

o extract static and motion features from our dataset, and modi- 

ed the MotionGraph dynamic programming algorithm to account 

or the features extracted by relying on our joint embedded space. 

e retrained the model for both datasets, using the 300 quantized 

oses as used in [4] . You2me [7] has been recently proposed as 

 method able to account for the visible second person interact- 

ng with the camera wearer, as it leverages his/her 3D pose esti- 

ates to improve egopose predictions. Even if there are no sec- 

nd persons in our First2Third-Pose dataset, this approach is still 

 valid alternative to state-of-the-art MotionGraph, since the use 

f a recurrent long short-term memory (LSTM) network ensures 

mooth frame-to-frame 3D body pose transitions. We used the au- 

hor’s code 3 , that takes as input motion and appearance-based fea- 

ures, and used additional features vector extracted leveraging our 

earned joint embedding as input to the LSTM for each frame. We 

rained this model for both datasets, using 700 quantized poses 

or the upper body and 100 for the lower body, as in [7] . We also

dapted and trained from scratch the 3D human pose estimation 

aseline method proposed in [10] 4 , DeconvNet , that adds decon- 

olutional layers to ResNet. We altered the output space for 3D 

oints and minimized the mean-squared error on the training set. 

e found this off-the-shelf deep pose method extremely effective 

or ego-pose estimation, especially on our First2Third-Pose dataset 

hat, being large scale, is well suited for end-to-end learning. 

Evaluation metric. Each skeleton is rotated so the shoulder is 

arallel to the yz plane and the body centre is at the origin. The 

rror is then computed as the Euclidean distance between the pre- 

icted 3D joints and the ground truth, averaged over the full se- 

uence and scaled to centimetres based on a reference shoulder 

istance of 30 cm. 

Results. In Tables 3 and 4 we show the average error per joint 

nd for all joints (in cm) obtained on the test set of our dataset 

nd on the dataset [4] respectively. We denote by MotionGraph-SS, 

ou2me-SS and Deconvnet-SS our Self-supervised approach based 

n the methods MotionGraph [4] , you2me [7] and DeconvNet [10] , 

espectively. In addition, following competitive methods [4,7] , we 

resent results in terms of errors averaged separately for the upper 

ody (Neck, Head, Thorax, Spine, Shoulders, Elbows, Wrists, Hands) 

nd lower body joints (Hips, Knees, Ankles, Feet). Overall, these 

ables show that leveraging features extracted from the common 

epresentation space learnt with our proposed dataset consistently 

ives better results over existing supervised methods for 3D ego- 

ose estimation. The fact that our approach results effectively also 

n the dataset [4] , demonstrates that the features extracted relying 

n the learned joint embedding space can be efficiently transferred 

o arbitrary egocentric videos, without the need for domain adap- 

ation. 

http://www.hao-jiang.net/egopose/index.html
https://github.com/facebookresearch/you2me
https://github.com/una-dinosauria/3d-pose-baseline
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Table 3 

Average joint error in the First2Third Dataset, in cm. 

First2Third Dataset 

Hip Neck Head Shoulders Elbows Wrists Thorax Knees Feet UppBody LowBody Avg 

MotionGraph [4] 3.40 8.03 12.40 7.74 20.93 39.13 10.73 32.50 53.81 16.98 25.63 20.54 

MotionGraph-SS 3.37 5.96 9.57 6.23 18.86 31.09 8.38 28.66 45.14 13.89 22.04 17.25 

you2me [7] 2.96 10.45 15.31 9.81 20.15 34.52 13.13 26.31 48.25 17.78 23.16 20.00 

you2me-SS 2.99 8.66 13.26 8.23 18.90 33.61 11.34 27.08 47.74 15.63 21.33 18.03 

Deconvnet [10] 3.15 5.72 8.96 5.77 17.13 31.26 7.81 27.84 45.48 13.35 21.85 16.85 

Deconvnet-SS 3.12 5.69 9.30 5.71 14.89 27.10 8.03 24.00 40.09 12.09 18.64 14.78 

Table 4 

Average joint error in the Invisible Poses Dataset [4] , in cm. 

Invisible Poses Dataset [4] 

Hip Neck Head Shoulders Elbows Wrists Hands Knees Ankle Feet UppBody LowBody Avg 

MotionGraph [4] 2.24 19.40 21.60 16.23 17.06 24.02 27.27 24.78 32.29 34.13 22.09 20.76 21.61 

MotionGraph-SS [4] 2.14 17.20 19.50 14.23 14.81 21.29 24.32 23.32 30.43 32.29 19.65 19.60 19.64 

you2me [7] 2.14 15.50 17.10 15.17 19.34 28.54 32.23 22.48 33.94 36.63 24.53 21.55 23.38 

you2me-SS 1.97 15.00 17.00 13.87 16.19 24.04 27.19 23.27 32.80 35.37 20.94 20.75 20.87 

Deconvnet [10] 2.58 17.70 21.30 12.65 13.81 20.87 23.46 22.00 27.30 29.04 18.46 17.98 18.29 

Deconvnet-SS 2.64 16.00 18.80 12.48 13.59 20.31 22.82 21.49 26.20 27.74 18.07 17.31 17.85 

Fig. 5. Visual comparisons of predicted skeletons for three different activities. GT: ground truth. DeconvNet-SS: proposed method. MotionGraph: state-of-the-art [4] . Decon- 

vNet: end-to-end baseline [10] . you2me: [7] baseline. Test videos are from the First2Third-Pose dataset test split. 

Table 5 

Comparison of time complexity (FLOPS) and actual run-times for training one epoch on the 

First2Third-Pose dataset and for inference on a single image. 

Method Tr. time (h/epoch) Inf. time (sec/image) FLOPS (GMac) 

MotionGraph [4] 0.10 0.01 0.45 

You2me [7] 2.50 0.17 12.74 

DeconvNet [10] 1.24 0.28 9.95 

MotionGraph-SS 0.25 0.01 0.65 

You2me-SS 26.06 0.30 12.74 

DeconvNet-SS 13.00 0.49 9.95 

Siamese component 40.33 0.06 9.82 (Tr.)/4.91 (Inf.) 
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Figure 5 shows qualitatively that using features extracted by 

everaging the learned joint embedding space indeed gives better 

esults. 

In Table 5 , we also considered the time complexity of the pro- 

osed approach with respect to the methods we compare to, mea- 

ured in terms of Floating Point Operations per Second (FLOPS) 

omputed by using a dedicated PyTorch library 5 for the neural net- 

ork based models. For the Motion graph, whose dynamic pro- 

ramming code released by the authors only includes vector-to- 

ector operations, we report the FLOPS corresponding to the sum 

f these operations during the execution of the program. As it is 

tandard when computing FLOPS, we assume that all input fea- 
5 https://pypi.org/project/ptflops/ 

o

r

a

7 
ures have been pre-computed and loaded. As the size of the self- 

upervised features z is relatively small compared to the rest of the 

nput features, its effect on the FLOPS counting is negligible for the 

onsidered methods. However, given that precisely the same num- 

er of FLOPS may have radically different run times, we also re- 

ort the run times for training and inference. We performed all 

he experiments on a single workstation equipped with an In- 

el(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz, 128GB RAM 2133 MHz, 

VIDIA Tesla K40c with 2880 CUDA core and operating system 

buntu 14.04. It can be observed that, for the methods based on 

eural networks, while the run time at training time is signifi- 

antly increased, at inference time only a very little increment is 

bserved for getting the projection of the ego-view on the shared 

epresentation space. Therefore, at inference time, the proposed 

pproach can be considered suitable for real-time applications. 

https://pypi.org/project/ptflops/
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Fig. 6. Examples of activities captured in the two datasets: First2Third-Pose (top) and Invisible Pose Dataset [4] (bottom). 

Fig. 7. Top: Ground truth 3D body pose for three different activities. Middle: 3D body pose estimated by using our self-supervised approach based on the method you2me, 

denoted as you2me-SS. Bottom: Scatter plots of embedding features obtained by using with you2me-SS, Similar body poses have similar features. 
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Insights on the joint embedded space. To verify that the fea- 

ures obtained using our embedded space, say embedded features, 

re discriminative for 3D egopose estimation, we first apply PCA 

o the feature matrix to reduce the feature dimension to two, and 

hen we visualized the features of videos corresponding to differ- 

nt activities via a scatter plot (each dot is a frame). In Fig. 7 we

how example poses for three different activities (ground truth and 

rediction) together with the scatter plot of corresponding em- 

edding features for the surrounding 1-second video segment. The 

D skeleton corresponding to the activity typing differs from both 
8 
owling and kneeling , while those of bowling and kneeling are more 

imilar. This is also reflected by the corresponding features. 

. Model interpretation 

To shed light on the structure of the learned embedded space, 

e evaluated numerically the distance between corresponding first 

nd third view embeddings of the same action. In addition, we vi- 

ualized the embedding vectors corresponding to different activi- 

ies captured from the same point of view (first-or third). In Fig. 8 
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Fig. 8. t-SNE of four different activities captured from first- (a) and third-person (b) views in the joint space (each dot is a video). 

Table 6 

Average CCA coefficient among first and third view pairs of embeddings for four different 

classes of activities. 

Class based Activities 

Top backslash Front Complex Hands & Feet Vertical Movement Whole Body 

Complex 0.58 0.15 -0.07 0.01 

Hands & Feet 0.11 0.62 -0.01 0.00 

Vertical Movement -0.06 -0.08 0.43 -0.01 

Whole Body 0.04 -0.06 0.07 0.52 

Fig. 9. Examples of transversal for the activities sit to ground, jogging , and crouching . The endpoints are highlighted in green. 
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e visualize via t-SNE the 1st- and 3rd-views embedding relative 

o 4 different actions in the joint space (each dot is a video). In

oth domains, the embedding of different activities are well sepa- 

ated, meaning they are discriminative for activity recognition. This 

lso suggests that the embedded space can be useful for egocentric 

ction recognition. 

Furthermore, we examined the relationship between first-view 

nd third-view feature projections in our embedding space by us- 

ng Canonical Correlation Analysis (CCA) [51] . To make the results 

ore easily interpretable, we grouped the set of activities cap- 

ured by our dataset into four classes, depending on the type of 

ody movement: 1) short actions involving the whole body (rotat- 

ng, walking, jogging, etc.); 2) actions requiring a vertical move- 

ent of the body or body parts (crouching, sit on the ground, 

ick object right, etc.); 3) short actions requiring mainly the move- 

ent of hands or feet (throwing, bowling, etc.); 4) activities made 

f a sequence of several short actions (basketball, exercise, etc.). 

able 6 reports the CCA coefficient among first-third view pairs 

f embeddings for each of these four classes. The correlation be- 
9 
ween first- and third-view embedding is strong, meaning that the 

eatures encode relevant geometrical information linking the two 

iews. 

Finally, to get insights into the smoothness of the shared rep- 

esentation space, we analyzed several straight Euclidean transver- 

als. As endpoints, we considered two frames of the same video, 

 i and x j and computed their projection onto the joint space, say 

 i and z j . We then obtained the corresponding skeletons p i and 

p j by using a supervised 3D egopose method (DeconvNet) pre- 

rained on the same dataset ( First2Third-Pose ). Afterwards, we ob- 

ained points on the same line in the joint embedded space by in- 

erpolating between the two endpoint’s corresponding latent vec- 

ors as z t = z i + (z j − z i ) β , where β is a real number corresponding

o the slope of the line. The input features for the 3D egopose su- 

ervised model, say �(x t ) , are also obtained as an interpolation 

rom �(x i ) and �(x j ) , and fed to the network together with the

atent features z t . In Fig. 9 , we present some illustrations. The first 

nd last skeletons, highlighted in green, represent the endpoints. 

he visualizations of the corresponding skeletons lying on such Eu- 
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lidean transversal, obtained by incrementing β from zero to one 

ith step 0.1, clearly show that the learned latent space can be 

onsidered to a large extent smooth. 

. Conclusion 

In this paper, we explored for the first time how to exploit the 

ink between first- and third-view perspectives for the task of ego- 

entric 3D pose estimation. We proposed a versatile framework 

o build image features that help to discriminate different 3D hu- 

an poses from egocentric videos even in a target dataset different 

rom the source dataset used to obtain the joint embedded space. 

dditionally, we built and made publicly available First2Third-Pose , 

 large and synchronized dataset of first- and third-view videos 

apturing 14 people performing overall 40 different activities. Cur- 

ently, this is the only 3D pose dataset with synchronized first and 

hird-views videos. 

To bridge the heterogeneity gap between the two views, we 

roposed a self-supervised representation learning approach that 

earns to transform data samples from different views into a com- 

on embedding space, which is subsequently employed to ex- 

ract features from unpaired and unseen egocentric videos. We 

rovided insights into the structure of the joint learned feature 

pace, through both data visualization and data analytical tools. 

hese insights suggest that the learned feature space well sepa- 

ates different actions and may be therefore potentially useful also 

or skeleton-based action recognition. We tested our approach on 

hree state-of-the-art methods and two real datasets. Experimen- 

al results demonstrated that the joint embedding space learned 

ith First2Third-Pose can be used to enhance supervised state-of- 

he-art egopose estimation methods on different datasets, without 

he need for domain adaptation or knowledge of camera parame- 

ers. Further research will investigate how to further close the gap 

etween first- and third-view, and how to benefit both first- and 

hird-view domains. 
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