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between particles and walls. Particles of different material 

types were used, while multiple rotation speeds were consid- 

ered, and the drum was filled with different amounts of par- 

ticles. The temperature of the granular materials inside the 

rotating drum was monitored using a thermal camera. The 

temperature increases at specific times of each experiment 

are presented in form of tables, along with the average and 

standard deviation of the repetitions of each setup configu- 

ration. The data can be used as a reference to set the oper- 

ating conditions of rotating drums, in addition to calibrating 

numerical models and validating computer simulations. 
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pecifications Table 

Subject Chemical Engineering: Process Chemistry and Technology 

Specific subject area Thermal behaviour of granular flows in rotating drums 

Type of data Tables 

How the data were acquired The temperature of the granular materials inside the rotating drum was measured 

using a thermal camera (FLIR A700-EST – Teledyne Flir LLC, Wilsonville, Oregon, 

USA). A small region of interest was chosen using the camera’s web interface for 

thermal image analysis, and the mean temperature inside this region was taken as 

representative of the flow. 

Data format Raw and analyzed data 

Description of data collection In each experiment, the temperature rise during the granular flow, with respect to 

the initial (room) temperature, was measured every 5 minutes, for a total of 30 

minutes. Monodisperse spherical particles of 4 different materials were used, 3 

rotation speeds were considered, and the drum was filled with 3 different 

amounts of particles. 

Data source location Institution: University of Surrey 

City/Town/Region: Guildford, Surrey 

Country: United Kingdom 

Data accessibility Repository name: Zenodo 

Data identification number (DOI): 10.5281/zenodo.7930954 

Direct URL to data: https://zenodo.org/record/7930954#.ZGH2VHZByUl 

Data is also provided with the article. 

Related research article R.L. Rangel, F. Kisuka, C. Hare, V. Vivacqua, A. Franci, E. Oñate, C.Y. Wu, 

Experimental investigation of heat generation during granular flow in a rotating 

drum using infrared thermography, Powder Technology, 426 (2023), 118619. 

10.1016/j.powtec.2023.118619 

alue of the Data 

• The data assess the relevance of heat generation by energy dissipation during granular

flows in rotating drums and provide information on how the temperature rise of the gran-

ular materials depends on the material type of particles and the operating conditions of

the drum (i.e. the rotation speed and the fill ratio). 

• Chemical process engineers who work on industrial processes such as mixing, drying,

granulation and milling can benefit from the data. The data can also be used by re-

searchers and scientists who develop computer codes for numerical simulation. 

• The data can be used to set the operating conditions of rotating drums when temperature

rises should be avoided, as well as to numerical models of heat generation and to validate

computational simulations of the thermal behavior of granular flows in rotating drums. 

. Objective 

The heat generated from conversion of mechanical energy in granular media, through fric-

ion and collisions between particles and between particles and walls, leads to an increase in

emperature. A typical situation where this can occur is granular flow in rotating drums, which

re common ly used in several industrial applications. However, the relevance of the tempera-

ure increase due to heat generation in these applications is still unclear, as is the sensibility

f temperature increase to the type of particle material and the operating conditions of the

rum, such as rotation speed and fill ratio. Therefore, experiments were carried out focusing on

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.5281/zenodo.7930954
https://zenodo.org/record/7930954#.ZGH2VHZByUl
https://doi.org/10.1016/j.powtec.2023.118619


R.L. Rangel, F. Kisuka and C. Hare et al. / Data in Brief 48 (2023) 109282 3 

 

 

 

 

 

 

 

 

 

 

heat generation in a small-scale rotating drum to quantify the temperature rise by varying the

aforementioned parameters. It is also intended to generate experimental data to support compu-

tational simulations. This paper extends its related research work [1] by providing the raw and

analyzed data of all experiments performed. 

2. Data Description 

A total of 36 sets of experiements were performed by combining 4 materials for the parti-

cles, 3 drum rotation speeds, and 3 particle fill levels. Each of these experiments was repeated 5

times, totaling 180 runs. In each run, the temperature rise during granular flow inside the drum

was measured with respect to the initial temperature of the particles, which was the same as

the room temperature. This measurement was performed every 5 minutes, and the total dura-

tion of each experiment was set as 30 minutes. Tables 1-36 provide the change in temperature

at specific times for the 5 repeated runs of each setup configuration. The average value and

standard deviation of the temperature rises of the 5 repeats are also given in these tables. 
Table 1 

Temperature rises for 400 plastic particles at a drum rotation speed of 15 rpm. 

Temperature rise (K) 

Time (min) Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Average (K) Std. deviation 

0 0.0 0.0 0.0 0.0 0.0 0.00 0.00 

5 0.1 0.0 0.0 0.1 0.0 0.04 0.05 

10 0.1 0.1 0.2 0.1 0.1 0.12 0.04 

15 0.2 0.1 0.2 0.2 0.1 0.16 0.05 

20 0.2 0.2 0.3 0.2 0.1 0.20 0.07 

25 0.2 0.2 0.4 0.2 0.2 0.24 0.09 

30 0.2 0.2 0.4 0.3 0.2 0.26 0.09 

Table 2 

Temperature rises for 400 plastic particles at a drum rotation speed of 35 rpm. 

Temperature rise (K) 

Time (min) Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Average (K) Std. deviation 

0 0.0 0.0 0.0 0.0 0.0 0.00 0.00 

5 0.1 0.2 0.1 0.1 0.1 0.12 0.04 

10 0.2 0.2 0.2 0.2 0.1 0.18 0.04 

15 0.3 0.3 0.4 0.2 0.2 0.28 0.08 

20 0.4 0.4 0.5 0.3 0.3 0.38 0.08 

25 0.4 0.5 0.6 0.3 0.4 0.44 0.11 

30 0.5 0.6 0.7 0.4 0.4 0.52 0.13 

Table 3 

Temperature rises for 400 plastic particles at a drum rotation speed of 55 rpm. 

Temperature rise (K) 

Time (min) Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Average (K) Std. deviation 

0 0.0 0.0 0.0 0.0 0.0 0.00 0.00 

5 0.2 0.2 0.1 0.2 0.2 0.18 0.04 

10 0.3 0.2 0.3 0.3 0.3 0.28 0.04 

15 0.4 0.4 0.5 0.5 0.5 0.46 0.05 

20 0.6 0.5 0.7 0.6 0.6 0.60 0.07 

25 0.7 0.6 0.9 0.7 0.7 0.72 0.11 

30 0.8 0.7 1.0 0.8 0.9 0.84 0.11 
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Table 4 

Temperature rises for 600 plastic particles at a rotational speed of 15 rpm. 

Temperature rise (K) 

Time (min) Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Average (K) Std. deviation 

0 0.0 0.0 0.0 0.0 0.0 0.00 0.00 

5 0.1 0.1 0.1 0.1 0.0 0.08 0.04 

10 0.2 0.2 0.1 0.1 0.1 0.14 0.05 

15 0.3 0.2 0.2 0.1 0.2 0.20 0.07 

20 0.3 0.3 0.2 0.2 0.2 0.24 0.05 

25 0.4 0.3 0.2 0.2 0.2 0.26 0.09 

30 0.4 0.3 0.3 0.2 0.2 0.28 0.08 

Table 5 

Temperature rises for 600 plastic particles at a drum rotation speed of 35 rpm. 

Temperature rise (K) 

Time (min) Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Average (K) Std. deviation 

0 0.0 0.0 0.0 0.0 0.0 0.00 0.00 

5 0.2 0.2 0.1 0.1 0.1 0.14 0.05 

10 0.3 0.3 0.2 0.2 0.2 0.24 0.05 

15 0.5 0.4 0.4 0.3 0.3 0.38 0.08 

20 0.6 0.4 0.5 0.4 0.4 0.46 0.09 

25 0.8 0.4 0.6 0.5 0.4 0.54 0.17 

30 0.9 0.5 0.6 0.5 0.5 0.60 0.17 

Table 6 

Temperature rises for 600 plastic particles at a drum rotation speed of 55 rpm. 

Temperature rise (K) 

Time (min) Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Average (K) Std. deviation 

0 0.0 0.0 0.0 0.0 0.0 0.00 0.00 

5 0.2 0.2 0.1 0.2 0.2 0.18 0.04 

10 0.4 0.5 0.3 0.3 0.4 0.38 0.08 

15 0.6 0.6 0.5 0.5 0.6 0.56 0.05 

20 0.8 0.8 0.6 0.7 0.7 0.72 0.08 

25 0.9 0.9 0.7 0.9 0.8 0.84 0.09 

30 0.9 1.1 0.8 1.1 0.9 0.96 0.13 

Table 7 

Temperature rises for 800 plastic particles at a drum rotation speed of 15 rpm. 

Temperature rise (K) 

Time (min) Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Average (K) Std. deviation 

0 0.0 0.0 0.0 0.0 0.0 0.00 0.00 

5 0.2 0.0 0.1 0.1 0.1 0.10 0.07 

10 0.2 0.1 0.2 0.2 0.1 0.16 0.05 

15 0.3 0.1 0.2 0.2 0.3 0.22 0.08 

20 0.5 0.1 0.3 0.3 0.3 0.30 0.14 

25 0.6 0.2 0.3 0.3 0.3 0.34 0.15 

30 0.6 0.2 0.3 0.4 0.3 0.36 0.15 
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Table 8 

Temperature rises for 800 plastic particles at a drum rotation speed of 35 rpm. 

Temperature rise (K) 

Time (min) Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Average (K) Std. deviation 

0 0.0 0.0 0.0 0.0 0.0 0.00 0.00 

5 0.1 0.1 0.1 0.2 0.1 0.12 0.04 

10 0.2 0.3 0.4 0.3 0.2 0.28 0.08 

15 0.3 0.3 0.5 0.3 0.4 0.36 0.09 

20 0.4 0.4 0.5 0.5 0.4 0.44 0.05 

25 0.6 0.6 0.6 0.6 0.4 0.56 0.09 

30 0.7 0.8 0.6 0.7 0.5 0.66 0.11 

Table 9 

Temperature rises for 800 plastic particles at a drum rotation speed of 55 rpm. 

Temperature rise (K) 

Time (min) Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Average (K) Std. deviation 

0 0.0 0.0 0.0 0.0 0.0 0.00 0.00 

5 0.2 0.1 0.2 0.2 0.2 0.18 0.04 

10 0.4 0.3 0.4 0.3 0.5 0.38 0.08 

15 0.7 0.4 0.5 0.4 0.7 0.54 0.15 

20 0.9 0.5 0.6 0.6 0.8 0.68 0.16 

25 1.1 0.7 0.8 0.7 0.9 0.84 0.17 

30 1.2 0.8 0.9 0.8 1.1 0.96 0.18 

Table 10 

Temperature rises for 400 glass particles at a drum rotation speed of 15 rpm. 

Temperature rise (K) 

Time (min) Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Average (K) Std. deviation 

0 0.0 0.0 0.0 0.0 0.0 0.00 0.00 

5 0.1 0.1 0.1 0.0 0.1 0.08 0.04 

10 0.2 0.1 0.1 0.1 0.1 0.12 0.04 

15 0.2 0.2 0.2 0.1 0.2 0.18 0.04 

20 0.2 0.2 0.3 0.2 0.2 0.22 0.04 

25 0.2 0.3 0.3 0.2 0.2 0.24 0.05 

30 0.2 0.3 0.3 0.3 0.2 0.26 0.05 

Table 11 

Temperature rises for 400 glass particles at a drum rotation speed of 35 rpm. 

Temperature rise (K) 

Time (min) Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Average (K) Std. deviation 

0 0.0 0.0 0.0 0.0 0.0 0.00 0.00 

5 0.1 0.2 0.1 0.2 0.1 0.14 0.05 

10 0.2 0.3 0.3 0.2 0.3 0.26 0.05 

15 0.2 0.5 0.4 0.3 0.5 0.38 0.13 

20 0.4 0.6 0.4 0.5 0.6 0.50 0.10 

25 0.6 0.7 0.5 0.6 0.7 0.62 0.08 

30 0.7 0.9 0.6 0.7 0.7 0.72 0.11 
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Table 12 

Temperature rises for 400 glass particles at a drum rotation speed of 55 rpm. 

Temperature rise (K) 

Time (min) Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Average (K) Std. deviation 

0 0.0 0.0 0.0 0.0 0.0 0.00 0.00 

5 0.1 0.2 0.2 0.2 0.2 0.18 0.04 

10 0.3 0.3 0.4 0.4 0.4 0.36 0.05 

15 0.4 0.5 0.5 0.5 0.7 0.52 0.11 

20 0.6 0.7 0.6 0.6 0.9 0.68 0.13 

25 0.7 0.9 0.8 0.7 1.1 0.84 0.17 

30 0.8 1.0 1.0 0.8 1.2 0.96 0.17 

Table 13 

Temperature rises for 600 glass particles at a drum rotation speed of 15 rpm. 

Temperature rise (K) 

Time (min) Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Average (K) Std. deviation 

0 0.0 0.0 0.0 0.0 0.0 0.00 0.00 

5 0.2 0.1 0.1 0.2 0.1 0.14 0.05 

10 0.2 0.2 0.2 0.2 0.2 0.20 0.00 

15 0.3 0.2 0.2 0.3 0.3 0.26 0.05 

20 0.3 0.3 0.3 0.4 0.3 0.32 0.04 

25 0.3 0.3 0.3 0.4 0.4 0.34 0.05 

30 0.4 0.3 0.4 0.5 0.4 0.40 0.07 

Table 14 

Temperature rises for 600 glass particles at a drum rotation speed of 35 rpm. 

Temperature rise (K) 

Time (min) Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Average (K) Std. deviation 

0 0.0 0.0 0.0 0.0 0.0 0.00 0.00 

5 0.2 0.3 0.3 0.3 0.2 0.26 0.05 

10 0.4 0.4 0.4 0.5 0.3 0.40 0.07 

15 0.5 0.5 0.5 0.6 0.4 0.50 0.07 

20 0.6 0.7 0.7 0.9 0.5 0.68 0.15 

25 0.7 0.8 0.7 1.1 0.6 0.78 0.19 

30 0.8 1.1 0.9 1.2 0.6 0.92 0.24 

Table 15 

Temperature rises for 600 glass particles at a drum rotation speed of 55 rpm. 

Temperature rise (K) 

Time (min) Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Average (K) Std. deviation 

0 0.0 0.0 0.0 0.0 0.0 0.00 0.00 

5 0.2 0.2 0.3 0.3 0.2 0.24 0.05 

10 0.5 0.4 0.4 0.4 0.4 0.42 0.04 

15 0.6 0.8 0.6 0.6 0.6 0.64 0.09 

20 0.7 1.0 0.8 0.8 0.7 0.80 0.12 

25 0.8 1.1 0.9 0.9 0.9 0.92 0.11 

30 0.9 1.1 1.0 1.0 1.0 1.00 0.07 
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Table 16 

Temperature rises for 800 glass particles at a drum rotation speed of 15 rpm. 

Temperature rise (K) 

Time (min) Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Average (K) Std. deviation 

0 0.0 0.0 0.0 0.0 0.0 0.00 0.00 

5 0.1 0.2 0.2 0.1 0.2 0.16 0.05 

10 0.1 0.3 0.3 0.2 0.3 0.24 0.09 

15 0.2 0.4 0.5 0.4 0.3 0.36 0.11 

20 0.3 0.4 0.6 0.4 0.4 0.42 0.11 

25 0.3 0.5 0.6 0.4 0.4 0.44 0.11 

30 0.4 0.5 0.7 0.4 0.4 0.48 0.13 

Table 17 

Temperature rises for 800 glass particles at a drum rotation speed of 35 rpm. 

Temperature rise (K) 

Time (min) Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Average (K) Std. deviation 

0 0.0 0.0 0.0 0.0 0.0 0.00 0.00 

5 0.2 0.2 0.3 0.3 0.3 0.26 0.05 

10 0.5 0.4 0.6 0.4 0.4 0.46 0.09 

15 0.6 0.8 0.7 0.4 0.4 0.58 0.18 

20 0.7 0.8 0.8 0.5 0.6 0.68 0.13 

25 0.8 1.0 0.9 0.6 0.8 0.82 0.15 

30 1.0 1.1 1.0 0.7 0.9 0.94 0.15 

Table 18 

Temperature rises for 800 glass particles at a drum rotation speed of 55 rpm. 

Temperature rise (K) 

Time (min) Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Average (K) Std. deviation 

0 0.0 0.0 0.0 0.0 0.0 0.00 0.00 

5 0.4 0.4 0.3 0.3 0.3 0.34 0.05 

10 0.6 0.6 0.3 0.4 0.5 0.48 0.13 

15 0.9 1.0 0.6 0.6 0.7 0.76 0.18 

20 1.1 1.3 0.8 0.7 0.9 0.96 0.24 

25 1.3 1.5 0.9 0.9 1.0 1.12 0.27 

30 1.5 1.6 1.0 1.1 1.2 1.28 0.26 

Table 19 

Temperature rises for 400 steel particles at a drum rotation speed of 15 rpm. 

Temperature rise (K) 

Time (min) Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Average (K) Std. deviation 

0 0.0 0.0 0.0 0.0 0.0 0.00 0.00 

5 0.3 0.4 0.4 0.4 0.4 0.38 0.04 

10 0.6 0.6 0.5 0.8 0.7 0.64 0.11 

15 0.8 0.8 0.8 0.9 0.9 0.84 0.05 

20 0.9 0.9 1.1 1.1 1.1 1.02 0.11 

25 1.0 1.1 1.2 1.2 1.3 1.16 0.11 

30 1.1 1.2 1.3 1.2 1.3 1.22 0.08 
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Table 20 

Temperature rises for 400 steel particles at a drum rotation speed of 35 rpm. 

Temperature rise (K) 

Time (min) Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Average (K) Std. deviation 

0 0.0 0.0 0.0 0.0 0.0 0.00 0.00 

5 0.7 0.8 1.0 0.9 0.9 0.86 0.11 

10 1.3 1.6 1.4 1.3 1.4 1.40 0.12 

15 1.9 2.0 1.9 1.8 1.7 1.86 0.11 

20 2.0 2.3 2.4 2.1 1.9 2.14 0.21 

25 2.2 2.5 2.6 2.3 2.2 2.36 0.18 

30 2.3 2.5 2.8 2.4 2.3 2.46 0.21 

Table 21 

Temperature rises for 400 steel particles at a drum rotation speed of 55 rpm. 

Temperature rise (K) 

Time (min) Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Average (K) Std. deviation 

0 0.0 0.0 0.0 0.0 0.0 0.00 0.00 

5 1.0 1.1 0.9 1.1 1.3 1.08 0.15 

10 1.8 1.8 1.7 1.9 2.0 1.84 0.11 

15 2.3 2.3 2.1 2.3 2.8 2.36 0.26 

20 2.7 2.7 2.5 2.6 3.1 2.72 0.23 

25 2.9 3.0 2.8 2.9 3.4 3.00 0.23 

30 3.1 3.2 3.0 3.2 3.5 3.20 0.19 

Table 22 

Temperature rises for 600 steel particles at a drum rotation speed of 15 rpm. 

Temperature rise (K) 

Time (min) Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Average (K) Std. deviation 

0 0.0 0.0 0.0 0.0 0.0 0.00 0.00 

5 0.3 0.3 0.4 0.4 0.3 0.34 0.05 

10 0.6 0.6 0.7 0.7 0.6 0.64 0.05 

15 0.7 0.8 1.0 1.0 0.9 0.88 0.13 

20 0.8 1.0 1.2 1.1 1.0 1.02 0.15 

25 1.0 1.2 1.2 1.2 1.1 1.14 0.09 

30 1.2 1.4 1.3 1.3 1.2 1.28 0.08 

Table 23 

Temperature rises for 600 steel particles at a drum rotation speed of 35 rpm. 

Temperature rise (K) 

Time (min) Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Average (K) Std. deviation 

0 0.0 0.0 0.0 0.0 0.0 0.00 0.00 

5 0.8 0.7 0.9 1.0 0.9 0.86 0.11 

10 1.3 1.3 1.5 1.6 1.4 1.42 0.13 

15 1.8 1.7 2.0 1.9 1.8 1.84 0.11 

20 2.3 2.1 2.3 2.4 2.1 2.24 0.13 

25 2.5 2.6 2.7 2.6 2.5 2.58 0.08 

30 2.8 2.7 3.0 2.9 2.8 2.84 0.11 
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Table 24 

Temperature rises for 600 steel particles at a drum rotation speed of 55 rpm. 

Temperature rise (K) 

Time (min) Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Average (K) Std. deviation 

0 0.0 0.0 0.0 0.0 0.0 0.00 0.00 

5 1.1 1.2 0.8 1.1 1.2 1.08 0.16 

10 1.9 2.0 1.4 1.8 2.0 1.82 0.25 

15 2.7 2.6 2.1 2.5 2.5 2.48 0.23 

20 3.0 3.0 2.5 2.9 2.9 2.86 0.21 

25 3.4 3.3 2.9 3.2 3.0 3.16 0.21 

30 3.8 3.6 3.1 3.4 3.2 3.42 0.29 

Table 25 

Temperature rises for 800 steel particles at a drum rotation speed of 15 rpm. 

Temperature rise (K) 

Time (min) Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Average (K) Std. deviation 

0 0.0 0.0 0.0 0.0 0.0 0.00 0.00 

5 0.3 0.3 0.3 0.4 0.4 0.34 0.05 

10 0.5 0.8 0.6 0.7 0.6 0.64 0.11 

15 0.8 1.0 0.9 0.9 0.9 0.90 0.07 

20 0.9 1.1 1.1 1.2 1.1 1.08 0.11 

25 1.0 1.2 1.3 1.3 1.2 1.20 0.12 

30 1.3 1.4 1.4 1.4 1.3 1.36 0.05 

Table 26 

Temperature rises for 800 steel particles at a drum rotation speed of 35 rpm. 

Temperature rise (K) 

Time (min) Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Average (K) Std. deviation 

0 0.0 0.0 0.0 0.0 0.0 0.00 0.00 

5 0.8 0.9 0.8 0.9 0.9 0.86 0.05 

10 1.5 1.5 1.9 1.5 1.6 1.60 0.17 

15 2.1 2.1 2.2 2.1 2.2 2.14 0.05 

20 2.4 2.5 2.6 2.4 2.5 2.48 0.08 

25 2.7 2.9 3.1 2.9 2.9 2.90 0.14 

30 3.3 3.3 3.4 3.1 3.3 3.28 0.11 

Table 27 

Temperature rises for 800 steel particles at a drum rotation speed of 55 rpm. 

Temperature rise (K) 

Time (min) Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Average (K) Std. deviation 

0 0.0 0.0 0.0 0.0 0.0 0.00 0.00 

5 1.3 1.3 1.2 1.0 1.2 1.20 0.12 

10 1.9 2.1 2.0 1.8 2.1 1.98 0.13 

15 2.4 3.1 2.5 2.3 2.7 2.60 0.32 

20 3.0 3.5 3.1 2.8 3.2 3.12 0.26 

25 3.6 4.0 3.5 3.3 3.7 3.62 0.26 

30 4.1 4.4 3.9 3.6 4.1 4.02 0.29 
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Table 28 

Temperature rises for 400 lead particles at a drum rotation speed of 15 rpm. 

Temperature rise (K) 

Time (min) Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Average (K) Std. deviation 

0 0.0 0.0 0.0 0.0 0.0 0.00 0.00 

5 0.8 0.9 0.9 0.8 0.9 0.86 0.05 

10 1.0 1.1 1.2 1.0 1.2 1.10 0.10 

15 1.1 1.3 1.4 1.1 1.4 1.26 0.15 

20 1.2 1.4 1.5 1.2 1.5 1.36 0.15 

25 1.2 1.6 1.5 1.3 1.7 1.46 0.21 

30 1.3 1.7 1.6 1.3 1.7 1.52 0.20 

Table 29 

Temperature rises for 400 lead particles at a drum rotation speed of 35 rpm. 

Temperature rise (K) 

Time (min) Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Average (K) Std. deviation 

0 0.0 0.0 0.0 0.0 0.0 0.00 0.00 

5 1.8 1.7 1.8 1.7 1.8 1.76 0.05 

10 2.5 2.2 2.3 2.2 2.5 2.34 0.15 

15 2.8 2.6 2.6 2.6 2.8 2.68 0.11 

20 3.0 2.7 2.9 2.7 3.0 2.86 0.15 

25 3.1 2.9 3.1 2.9 3.2 3.04 0.13 

30 3.3 3.1 3.2 3.1 3.3 3.20 0.10 

Table 30 

Temperature rises for 400 lead particles at a drum rotation speed of 55 rpm. 

Temperature rise (K) 

Time (min) Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Average (K) Std. deviation 

0 0.0 0.0 0.0 0.0 0.0 0.00 0.00 

5 2.7 2.5 2.4 2.4 2.7 2.54 0.15 

10 3.3 3.4 3.1 3.1 3.4 3.26 0.15 

15 3.8 3.8 3.7 3.7 3.8 3.76 0.05 

20 4.3 4.2 4.1 4.1 4.3 4.20 0.10 

25 4.6 4.6 4.3 4.3 4.7 4.50 0.19 

30 4.9 4.9 4.7 4.7 5.0 4.84 0.13 

Table 31 

Temperature rises for 600 lead particles at a drum rotation speed of 15 rpm. 

Temperature rise (K) 

Time (min) Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Average (K) Std. deviation 

0 0.0 0.0 0.0 0.0 0.0 0.00 0.00 

5 1.1 0.9 1.0 0.8 1.1 0.98 0.13 

10 1.3 1.3 1.2 1.2 1.4 1.28 0.08 

15 1.4 1.4 1.3 1.4 1.5 1.40 0.07 

20 1.6 1.5 1.5 1.6 1.7 1.58 0.08 

25 1.7 1.6 1.6 1.8 1.8 1.70 0.10 

30 1.8 1.6 1.7 1.8 1.9 1.76 0.11 
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Table 32 

Temperature rises for 600 lead particles at a drum rotation speed of 35 rpm. 

Temperature rise (K) 

Time (min) Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Average (K) Std. deviation 

0 0.0 0.0 0.0 0.0 0.0 0.00 0.00 

5 2.0 2.1 2.1 2.3 1.9 2.08 0.15 

10 2.8 2.9 2.8 3.0 2.7 2.84 0.11 

15 3.3 3.5 3.3 3.6 3.2 3.38 0.16 

20 3.6 3.9 3.8 4.0 3.5 3.76 0.21 

25 3.9 4.2 4.1 4.3 3.8 4.06 0.21 

30 4.0 4.4 4.3 4.5 4.0 4.24 0.23 

Table 33 

Temperature rises for 600 lead particles at a drum rotation speed of 55 rpm. 

Temperature rise (K) 

Time (min) Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Average (K) Std. deviation 

0 0.0 0.0 0.0 0.0 0.0 0.00 0.00 

5 2.6 2.7 2.6 2.5 2.8 2.64 0.11 

10 3.4 3.3 3.4 3.2 3.6 3.38 0.15 

15 3.9 3.8 3.9 3.7 4.1 3.88 0.15 

20 4.2 4.2 4.4 4.1 4.5 4.28 0.16 

25 4.5 4.4 4.7 4.4 4.8 4.56 0.18 

30 4.8 4.7 5.1 4.6 5.2 4.88 0.26 

Table 34 

Temperature rises for 800 lead particles at a drum rotation speed of 15 rpm. 

Temperature rise (K) 

Time (min) Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Average (K) Std. deviation 

0 0.0 0.0 0.0 0.0 0.0 0.00 0.00 

5 1.0 0.8 1.0 1.1 0.8 0.94 0.13 

10 1.4 1.2 1.3 1.4 1.2 1.30 0.10 

15 1.5 1.4 1.5 1.6 1.4 1.48 0.08 

20 1.7 1.6 1.6 1.8 1.5 1.64 0.11 

25 1.8 1.7 1.8 2.0 1.6 1.78 0.15 

30 1.9 1.8 1.9 2.0 1.8 1.88 0.08 

Table 35 

Temperature rises for 800 lead particles at a drum rotation speed of 35 rpm. 

Temperature rise (K) 

Time (min) Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Average (K) Std. deviation 

0 0.0 0.0 0.0 0.0 0.0 0.00 0.00 

5 2.1 2.3 2.2 2.1 2.3 2.20 0.10 

10 3.0 3.2 3.1 3.0 3.2 3.10 0.10 

15 3.6 3.8 3.6 3.5 3.9 3.68 0.16 

20 3.8 4.3 3.9 3.7 4.3 4.00 0.28 

25 4.1 4.5 4.2 4.1 4.5 4.28 0.20 

30 4.2 4.7 4.5 4.2 4.8 4.48 0.28 
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Table 36 

Temperature rises for 800 lead particles at a drum rotation speed of 55 rpm. 

Temperature rise (K) 

Time (min) Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Average (K) Std. deviation 

0 0.0 0.0 0.0 0.0 0.0 0.00 0.00 

5 2.8 2.6 2.6 2.8 2.6 2.68 0.11 

10 3.4 3.3 3.4 3.5 3.3 3.38 0.08 

15 4.0 3.8 4.0 4.1 3.8 3.94 0.13 

20 4.3 4.2 4.4 4.4 4.2 4.30 0.10 

25 4.5 4.6 4.7 4.8 4.5 4.62 0.13 

30 4.9 4.9 5.0 5.1 4.8 4.94 0.11 
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The dataset is also publicly available in an online repository [2] , where the datasets are sep-

rated into 4 .xlsl files, one for each material, as indicated in the file name. Each file has 3 tabs,

ne for each fill level considered (i.e. number of particles used). Each file tab, in turn, contains

 tables, one for each drum rotation speed. 

. Experimental Design, Materials and Methods 

.1. Setup Configurations Tested 

• Particle materials: Polyoxymethylene (POM) acetal plastic, soda-lime glass type S, 420

stainless steel, and lead. 

• Drum rotation speeds: 15 rpm, 35 rpm, and 55 rpm. 

• Number of particles to fill the drum: 400, 600, and 800. 

.2. Rotating Drum Specifications 

The drum was positioned horizontally above two free-rotating cylinders connected to a mo-

or. 

• Inner diameter: 250 mm. 

• Depth: 12.7 mm. 

• Rear wall material: Acrylic plastic. 

• Front wall material: Metallic mesh with a grid size of 420 μm (the same mesh used in

granulometry sieve no. 40). 

• Circumferential wall material: Wood coated with sandpaper on the inner face. 

.3. Thermal Camera Specifications 

The camera was positioned at a distance of 1.0 m from the front face of the drum. 

• Model: FLIR A700-EST (Teledyne Flir LLC, Wilsonville, Oregon, United States). 

• Lens: 24 o . 

• Resolution: 640 × 480 pixel. 

• Thermal sensitivity: ≤ 40 mK. 

• Accuracy: ± 0.3 K. 



R.L. Rangel, F. Kisuka and C. Hare et al. / Data in Brief 48 (2023) 109282 13 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4. Particle Properties 

Monodisperse spherical particles, approximately 6.3 mm in diameter, of a single mate-

rial were used in each experimental test. In total, four different material types were em-

ployed during experiments: plastic, glass, steel, and lead. These materials can be considered

non-porous and non-cohesive, and their thermomechanical properties (i.e. Young’s modulus, 

density, heat capacity and thermal conductivity) were obtained from online databases [3–6] .

The emissivity of the particle bed of each material was measured following the procedure

described below. 

3.5. Thermal Image Parameters 

The two parameters that need to be set in the thermal camera settings to make accurate

temperature measurements are the reflected apparent temperature of the setup and the emis-

sivity of the target (in this case, the particles). They were determined as described below. 

• Reflected apparent temperature of the setup: The reflector method was employed as spec-

ified in ISO 18434-1:2008 [7] . With the setup prepared for the experiments, this method

starts by setting the target emissivity and distance to 1.0 and 0.0, respectively, in the cam-

era settings. Then, a crumpled and re-flattened piece of aluminum foil is used to cover the

front wall of the drum with the shiny side facing the camera. From the camera’s web in-

terface, a region of interest is drawn inside the area covered by the aluminum foil (the

same region used to measure the temperature of the granular flow during experiments).

The mean temperature of this region is the reflected apparent temperature of the setup.

This value, as well as the correct values of the target emissivity (determined as described

in the method below) and distance, must be specified in the camera settings and the alu-

minum foil must be removed from the front of the drum before running experiments.

This procedure of determining the reflected apparent temperature was repeated once a

day, before running the experiments. 

• Emissivity of particles: The reference emissivity material method was employed as speci-

fied in ISO 18434-1:2008 [7] . In this method, the particles are heated to a known con-

stant temperature. This was done by laying the particles on a hot plate, which is used

to control the temperature of the particles. A thermometer was also used to measure the

temperature of the particles and ensure that the desired value was reached. At this point,

the reflected apparent temperature for this setup should have been properly determined

and set in the thermal camera settings, according to the method described above. Then,

from the camera’s web interface, a region of interest, the same size as the region used

to measure the temperature of the granular flow during experiments, is drawn over an

area covered by particles and its temperature is read. The target emissivity in the camera

settings is adjusted until the indicated temperature for the region of interest is the same

as the real temperature of the particles measured with the thermometer. This emissiv-

ity value is the raw emissivity of the particle surfaces. In addition, an adjusted emissivity

was estimated to account for the presence of the metallic mesh that covers the particles

inside the drum during the experiments. This was done in a similar way to the estima-

tion of the raw emissivity, but placing the metallic mesh above, and in contact with, the

particles. These procedures of estimating both raw and adjusted emissivity values were

performed once for each of the four particle materials. Different temperature values, from

the room temperature (18 °C) to 40 °C, were used to heat the particles and ensure that

the estimated emissivity values are constant for the temperature range considered in this

work. 



14 R.L. Rangel, F. Kisuka and C. Hare et al. / Data in Brief 48 (2023) 109282 

3

 

c  

m  

c  

c

E

 

B  

s

D

 

t

D

 

o

C

 

W  

a  

v  

i  

W  

v

A

 

M  

p  

F  

e  

k  

M

.6. Data Acquisition Methodology 

During the experiments, a small rectangular region of interest was defined, using the thermal

amera’s web interface, within an area of the flow that is constantly covered by particles. The

ean value of the temperature inside the region of interest was recorded right after the periodic

alibration of the camera, which was automatically carried out every 5 minutes. This value was

onsidered to be the average temperature of the particle flow inside the drum. 
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