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Abstract 33 

 34 

Background: 35 

It is necessary to decompose the intra-muscular EMG signal to extract motor unit action potential 36 

(MUAP) waveforms and their firing times. Some algorithms were proposed in the literature to 37 

resolve superimposed MUAPs, including Peel-Off (PO), branch and bound (BB), genetic 38 

algorithm (GA), and particle swarm optimization (PSO). This study aimed to compare these 39 

algorithms in terms of accuracy and efficiency. 40 

 41 

Methods: 42 

Two sets of two-to-five MUAP templates (set1: a wide range of energies, and set2: a high degree 43 

of similarity) were used. Such templates were time-shifted, and white Gaussian noise was added. 44 

A total of 1000 superpositions were simulated for each template and were resolved using PO (also, 45 

POI: interpolated PO), BB, GA, and PSO algorithms. The overall accuracy and running time of 46 

each resolution were measured. The Generalized Estimating Equation and the overall rank product 47 

were then used. 48 

 49 

Results: 50 

The PSO outperformed the other algorithms following by BB, GA, PO, and POI in the first dataset, 51 

while the ranking of the algorithm was BB, PSO, GA, PO, POI in the second set. The overall 52 

ranking was BB, PSO, GA, PO, and POI in the entire datasets. 53 

 54 

Conclusion: 55 

Although the BB algorithm is generally fast, there are some cases in which the BB algorithm 56 

spends too much time. The BB, PSO, and GA algorithms have a high enough accuracy in full 57 

offline decomposition, but too slow for real-time applications.   58 

 59 

 60 

Keywords— Resolving Superposition; EMG decomposition; Motor unit action potentials;  61 
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Introduction 62 

 63 

 The electrical signal produced in a muscle is known as the electromyogram or the EMG 64 

signal. It is the result of the algebraic summation of motor unit action potentials (MUAP's). EMG 65 

signals can be recorded either by surface or intramuscular electrodes. The former is known as 66 

surface EMG (sEMG), while the latter is known as intramuscular EMG (iEMG). Both sEMG and 67 

iEMG consist of different motor unit action potential trains (MUAPTs) with the firing of motor 68 

units repetitively during muscle contraction (LeFever and De Luca, 1982). EMG signals have a 69 

variety of applications in rehabilitation, sports science, geriatrics, ergonomics, neuromuscular 70 

disorders, and medicine (Gazzoni et al. , 2004). EMG signals can also be used as Human-Machine 71 

interfaces to control external prosthetic devices (Farina and Holobar, 2015, Karimimehr et al., 72 

2017). In some applications, it is necessary to decompose the EMG signal to extract MUAP 73 

waveforms and their firing times (Lateva and McGill, 2001a). There are many algorithms for 74 

iEMG decomposition in the literature (De Luca et al., 1982a, De Luca et al., 1982b, LeFever and 75 

De Luca, 1982, Marateb et al., 2011, McGill et al., 2005). 76 

   77 

 Most of the iEMG decomposition algorithms involve similar signal processing steps 78 

(Marateb et al., 2016). The iEMG signal is first high-pass filtered to remove baseline fluctuations 79 

and to select potentials arising from muscle fibers near the recording electrode. The segments of 80 

the signal that contain potentials that rise significantly above the baseline noise (active segments, 81 

AcS's) are then identified. Then, the AcS's are clustered to identify the similarly shaped MUAPs 82 

that correspond to the discharges of distinct active MUs, and then every AcS is classified as being 83 

a discharge of one or more MU. It is possible that during muscle contraction, two or more MUs 84 

fire at the same time or in close temporal succession, and their action potentials overlap with each 85 
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other to form a superposition (Fang et al., 1999). Some algorithms attempt to resolve 86 

superpositions into their constituent MUAPs (full decomposition). A full decomposition is an 87 

essential tool for the study of muscle architecture (Lateva and McGill, 2001b), MU coordination 88 

(De Luca and Erim, 1994), MU synchronization (Datta and Stephens, 1990) and discharge 89 

irregularities (Lateva et al. , 2002).   90 

 91 

There are some algorithms proposed in the literature to resolve superimposed MUAPs. 92 

They either identify continuous or discrete-time shifts of the involved MUs. One of these 93 

algorithms, the exhaustive search algorithm, considers all of the possible discrete-time shifts. It is 94 

very time-consuming, especially when a large number of MUs are involved in a superposition. 95 

Accordingly, this algorithm is not usually used in practice (Marateb, McGill, 2016). Other sub-96 

optimal algorithms were therefore proposed: Peel-Off (PO) (Christodoulou and Pattichis, 1999, 97 

Etawil and Stashuk, 1996, Fang, Agarwal, 1999, LeFever and De Luca, 1982), branch and bound 98 

(BB) (Lateva, McGill, 2002), genetic algorithm (GA) (Florestal et al., 2007a), and particle swarm 99 

optimization (PSO) (Marateb and McGill, 2009a).  100 

The PO algorithm is a primary and suboptimal algorithm that uses the correlation between 101 

the MUAP templates and the superimposed signal to find the best match (supplementary 102 

material; Fig. s1). Partial superpositions, in which the MUAPs overlap without peaks being 103 

obscured, can be efficiently resolved using this algorithm.  104 

The other algorithms are based on the minimization of a cost function, e.g., the squared 105 

error of the residual between the given superposition and the reconstructed waveform based on the 106 

estimated time shifts of the involved MUAPs. The BB algorithm is a constructive exact 107 

optimization algorithm that smartly considers all possible discrete time-shift cases 108 
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(supplementary material; Fig. s2). After finding the best discrete-time shifts, it then uses 109 

interpolation, and Newton's algorithm to find the best continuous-time shifts. On the other hand, 110 

GA and PSO are population-based probabilistic meta-heuristic optimization solution algorithms. 111 

These two algorithms are inspired by nature. GA is inspired by the process of natural selection in 112 

Genetics (Florestal et al., 2007b) (supplementary material; Fig. s3), while PSO simulates the 113 

social behavior of a flock of birds (Marateb and McGill, 2009b) (supplementary material; Fig. 114 

s4). These algorithms were used in the literature to minimize the superposition cost function.  115 

In this manuscript, we aimed to compare these algorithms in terms of accuracy and 116 

efficiency. We focused on the known-constituent case, in which the MUAPs involved in the 117 

superposition are assumed to be known a-priori. We simulated a large number of partial, 118 

constructive, and destructive superpositions and resolved them using the PO, POI (Peel-Off with 119 

Interpolation factor of 10), BB, GA, and PSO algorithms. We then used proper statistical tests to 120 

analyze and compare their performances rigorously. 121 

 122 

Materials and Methods  123 

The performance of the algorithms was evaluated using simulated superpositions. Two sets 124 

of MUAP templates were used. The templates were taken from iEMG signals from the public 125 

domain database at www.emglab.net.  The templates were sampled at 10 kHz and high-pass 126 

filtered at 10 kHz. Set 1 consisted of ten templates with a wide range of energies (338-1624), while 127 

set 2 consisted of six templates with a high degree of similarity (correlation coefficients 128 

0.59±0.28). 129 

Each superposition was involved from N=2 to N=5 templates. The appropriate number of 130 

templates were chosen at random from one of the two sets. Each template was time-shifted by a 131 

http://www.emglab.net/
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continuous random amount within ± 1.0 ms using a high-resolution alignment algorithm (McGill 132 

and Dorfman, 1984). Then the time-shifted templates were added together along with white 133 

Gaussian noise with the standard deviation equal to 0.05 times the mean peak-to-peak template 134 

amplitude (Marateb and McGill, 2009b). A total of 1000 superpositions were formed for each 135 

value of N for each template set, for a total of 8000 superpositions in all. The simulated datasets 136 

and also the MATLAB code of the BB algorithm is available (supplementary material; 137 

data_code s1). Figs. 1 and 2 show the templates of the sets 1 and 2 with some examples of 138 

superpositions. 139 

 140 

[Figs 1 and 2 are included here]. 141 

 142 

Each superposition was resolved using the PO, BB, GA, and PSO algorithms. Also, in 143 

order to test whether the PO algorithm would be improved by interpolation, it was also resolved 144 

using the PO algorithm after up-sampling the waveforms by a factor of 10, which we will refer to 145 

as the POI algorithm. In each case, it was assumed that the identities of the templates involved in 146 

the superposition were known. For each resolution, the time shifts estimated by the algorithm were 147 

compared with the actual time shifts, and the offset errors were stratified into three classes:  < ± 148 

0.1 ms (essentially correct), ≤ ± 0.5 ms (close), > ± 0.5 ms (incorrect). The accuracy of each 149 

resolution was measured by the overall accuracy (𝐼𝑑 =
𝑛𝑐

𝑛𝑖+𝑁
, where 𝑛𝑐 is the number of essentially 150 

correct time shifts, ni is the number of incorrect time shifts, and 𝑁 is the total number of templates 151 

involved in the superposition). 152 

Also, the average and maximum running time of the superposition resolving algorithms 153 

was recorded. The simulations were performed on an Intel dual-core 1.83 GHz CPU with 2 GB of 154 
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RAM. To identify the rank of the analyzed algorithms on the entire datasets, and number of 155 

templates based on the performance indices 𝐼𝑑 and running time, the rank of each protocol was 156 

identified and then combined using the Rank Product (RP) (Breitling et al. , 2004). Each criterion 157 

was considered as a ranker (𝑘 = 2). The overall RP for each superimposed MUAP resolution 158 

method (g) was estimated as below: 159 

( )
1/

,

1

k
k

g i

i

RP g r
=

 
=  
 
  (Eq.1) 

160 

where 𝑟𝑔,𝑖 is the rank of the method g of the 𝑖 − 𝑡ℎ ranker. RP values were then ordered in the 161 

ascending order. 162 

 163 

Statistical Methods  164 

 Continuous variables were reported as MEAN±SD. Generalized Estimating Equation 165 

(GEE) method was used for modeling factors associated with repeated responses (i.e., 1000 166 

random realizations of superpositions) (Hardin and Hilbe, 2007). GEE was used to find significant 167 

factors (MUAP set and the number of constituent templates) affecting the performance/efficiency 168 

of the superposition resolution algorithms. Also, Friedman Post hoc statistical test was used to 169 

identify which algorithm significantly outperformed the others. The level of statistical significance 170 

of p =0.05 was used in our study. The statistical analysis was performed using SPSS Statistics for 171 

Windows version 22 (IBM Corp. Released 2013. Armonk, NY: IBM Corp.).  172 

 173 
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Results 174 

 The performance of the algorithms (BB, GA, PSO, PO, and POI) was assessed on sets 1 175 

and 2 with superpositions involving 𝑁 = 2 to 𝑁 = 5 constituent templates) (Table 1). 176 

[Table 1 is included here]. 177 

𝐼𝑑 analysis: 178 

 Data set, algorithm, and the number of templates were statistically significant (𝑝 < 0.05). 179 

PSO algorithm was statistically better than the other algorithms (𝑝 <  0.05) followed by BB, GA, 180 

POI, and finally, PO. 181 

 182 

Running Time Analysis: 183 

Data set and algorithm were statistically significant (𝑝 < 0.05). The PO algorithm was 184 

significantly better than the other algorithms(𝑝 <  0.05) followed by POI, GA, BB, and finally 185 

PSO.  186 

 To better analyze the algorithms, the cases in which the PO was not successful (𝐼𝑑<30%), 187 

i.e., cases involving constructive or destructive superposition, were re-analyzed separately (which 188 

we will refer to as the hard set). The results for BB, GA, PSO are shown in Table 2. 189 

 190 

[Table 2 is included here]. 191 

 192 

𝐼𝑑analysis on the hard set: 193 

 Data set, algorithms, and the number of templates were statistically significant. BB 194 

algorithm was statistically better than others (𝑝 <  0.05), followed by PSO, GA. 195 

 196 



9 
 

Running Time analysis on the hard set: 197 

 Data set, algorithm, and the number of templates were statistically significant. The POI 198 

algorithm was significantly better than the other algorithms (𝑝 <  0.05) followed by GA, BB, and 199 

finally PSO.  200 

 201 

The overall results using Rank Product: 202 

When combining the 𝐼𝑑and running time based on the Rank Product formula (Eq. 1), the 203 

PSO outperformed the other algorithms following by BB, GA, PO, and POI in the first dataset.  204 

For the second dataset, the ranking of the algorithm was BB, PSO, GA, PO, POI. In the first hard 205 

dataset, the ranking was PSO, BB, and GA, while in the second hard dataset, the ranking was BB, 206 

PSO, GA. 207 

Combining the results of the first and second datasets, the overall ranking was BB, PSO, 208 

GA, PO, and POI. In the hard datasets, the ranking was BB, PSO, and GA.  Thus, we conclude 209 

that the BB algorithm outperformed the other algorithms, considering different normal/hard 210 

datasets. 211 

 It was shown in the literature that the alignment error is affected by the SNR of the 212 

superposition. Thus, the overall identification of the BB algorithm for superpositions involving 2 213 

constituent templates of the first set at different noise levels is shown in Fig. 3. The performance 214 

of the algorithm was identical from the no-noise condition to the noise level of 0.05, which was 215 

used in the current study. The identification rate was higher than 90% when the noise level was 216 

0.1 or less. 217 

 218 

[Fig. 3 is included here]. 219 

 220 

 221 

 222 
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Discussion 223 

 In this article, we analyze the most important and popular algorithms that are used for 224 

resolving superposition in iEMG decomposition. This study aimed to compare all of these 225 

algorithms in hard conditions in terms of both accuracy and computation time.  226 

 For creating a hard condition, we used two datasets, one of which included MUAPs with a 227 

variety of energies and one of which included MUAPs with similar shapes. We simulated 8000 228 

superpositions that covered all of the possible types of superpositions (constructive, destructive, 229 

and partial).   230 

 The PO algorithm is the fastest and easiest algorithm for resolving superpositions, but 231 

because it is based on finding the highest similarity between the templates and the superposition, 232 

it does not do well when it encounters constructive and destructive superpositions. The 233 

performance did not improve when signals were upsampled by a factor of 10 (POI), showing that 234 

the difficulty is not merely a result of time quantization, but reflects the difficulty of resolving 235 

superpositions in which none of the constituent templates are immediately recognizable. PSO and 236 

GA algorithms are population-based algorithms, and there is no guarantee that they can reach the 237 

global minimum. Also, their speed is not fast enough for real-time applications. The BB algorithm 238 

intelligently searches for the global minimum and, in many cases, finds it quickly.  However, 239 

because resolving a superposition is a non-convex problem and because the search space may be 240 

quite large, it sometimes takes many iterations to find the global minimum and prove that it is 241 

indeed the global minimum.   242 
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 Because the PO algorithm was not able to resolve many of the constructive and destructive 243 

superpositions, we decided to look at those cases more closely (hard set).  The analysis showed 244 

that all the other algorithms had a higher 𝐼𝑑 on the hard set than on the full set. It seems that BB, 245 

PSO, and GA also have some problems in resolving the partial superpositions, and when these 246 

cases were removed, the accuracy of these algorithms increased.  247 

 Although the BB algorithm is fast in some cases, there are other cases in which the BB 248 

algorithm spends too much time. For example, for 5 constituent templates from set number 2, the 249 

BB algorithm had a maximum computation time of 21.88 s, which is a massive time for resolving 250 

superpositions of MUAPs. 251 

 The BB, PSO, and GA algorithms have a high enough accuracy to be suitable for 252 

applications that require accurate full decomposition. However, at present, their use is limited to 253 

offline applications, since they are too slow for real-time use.   254 
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Table I: The performance of the analyzed MUAP superimposed resolution algorithms on sets 1 336 

and 2 in MEAN±SD [minimum,maximum]. 337 

  Set 1 Set 2 

Number of 

Templates (N) 

algorithm 𝐼𝑑% + std 

[max] 

Time(ms) + std 

[max] 

𝐼𝑑%+ std [max] Time(ms) + std 

[max] 

2 BB 0.99±0.02 

[1.00] 

17 ± 3 

 [35] 

1.00±0.00 

[1.00] 

19±4  

[35] 

GA 0.99±0.08 
[1.00] 

43.11 ± 40.31 
[930.51] 

1.00±0.03 
[1.00] 

41±48 
 [672] 

PSO 1.00±0.00 

[1.00] 

1564 ± 236  

[5565] 

1.00±0.00 

[1.00] 

1561±196 

 [4018] 

PO 0.49±0.32 

[1.00] 

0.23±0.09 [1.99] 0.47±0.37 

[1.00] 

0.15±0.05 [0.51] 

POI 0.52±0.34 

[1.00] 

1.80±0.15 [4.07] 0.49±0.38 

[,1.00] 

1.80±0.15 [3.03] 

3 BB 0.99±0.07 
[1.00] 

43 ± 18  
[166] 

1.00±0.00 
[1.00] 

67 ± 25  
[189] 

GA 0.97±0.12 

[1.00] 

157 ± 142  

[1294] 

0.99±0.11 

[1.00] 

108 ±131  

[1476] 

PSO 0.99±0.05 

[1.00] 

3070 ± 488 

 [6598] 

1.00±0.00 

[1.00] 

3078 ± 496  

6523] 

PO 0.32±0.21 

[1.00] 

0.23±0.09 [1.11] 0.30±0.23 

[1.00] 

0.19±0.06 [0.56] 

POI 0.33±0.22 

[1.00] 

2.57±0.48 [6.42] 0.32±0.25 

[1.00] 

2.32±0.14 [,3.38] 

4 BB 0.98±0.10 

[1.00] 

144 ± 107  

[1317] 

1.00±0.02 

[1.00] 

384 ±230 

 [1724] 

GA 0.93±0.17 

[1.00] 

272 ± 268  

[3346] 

0.97±0.14 1.00] 198 ±182  

[2119] 

PSO 0.98±0.10 

[1.00] 

7113 ± 557  

[10076] 

0.99±0.07 

[1.00] 

7210 ± 591  

[12663] 

PO 0.26±0.17 

[1.00] 

0.21±0.06 [0.48] 0.25±0.18 

[1.00] 

0.23±0.06 [0.45] 

POI 0.27±0.17 

[1.00] 

3.02±0.42 [6.94] 0.26±0.19 

[1.00] 

2.86±0.16 [3.92] 

5 BB 0.94±0.16 

[1.00] 

748 ± 1092 [18307] 0.99±0.06 

[1.00] 

3633 ± 3001  

[21888] 

GA 0.84±0.25 

[1.00] 

326 ± 169  

[2375] 

0.87±0.28 

[1.00] 

328 ± 179  

[1785] 

PSO 0.95±0.15 

[1.00] 

10940 ± 1132 

[16762] 

0.94±0.20 

[1.00] 

11012 ± 1002 

[16405] 

PO 0.21±0.14 

[1.00] 

0.24±0.06 [0.56] 0.21±0.14 

[0.80] 

0.24±0.07 [,0.50] 

POI 0.21±0.15 

[1.00] 

3.47±0.29 [6.49] 0.21±0.15 

[0.80] 

3.41±0.27 [8.38] 

BB: Branch and Bound; GA: Genetic Algorithm; PSO: Particle Swarm Optimization; PO: Peel-Off; POI: The 338 

interpolation of the signals by the factor of 10 and then running Peel-off. 339 

 340 
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Table II: The performance of the analyzed MUAP superimposed resolution algorithms on 341 

selected hard sets 1 and 2 where the Peel-off algorithm was not successful in MEAN±SD 342 

[minimum,maximum]. 343 

  Hard Set 1 Hard Set 2 

Number of 

Templates (N) 

algorithm 𝐼𝑑% + std 

[max] 

Time(ms) + std 

[max] 

𝐼𝑑%+ std [max] Time(ms) + std 

[max] 

2 BB 1.00±0.00 

[1.00] 

17 ± 4 

[35] 

1.00±0.00 

[1.00] 

19 ± 4 

 [33] 

GA 1.00±0.00 
[1.00] 

26 ± 10 
 [82] 

0.99±0.06 
[1.00] 

31 ± 34 
 [495] 

PSO 1.00±0.00 

[1.00] 

1553 ± 150  

[2485] 

1.00±0.00 

[1.00] 

1568 ± 221  

[3825] 

3 BB 0.99±0.05 
[1.00] 

41 ± 17  
[166] 

1.00±0.00 
[1.00] 

65 ± 25  
[189] 

GA 0.98±0.11 

[1.00] 

146 ± 138  

[1294] 

0.99±0.11 

[1.00] 

93 ± 93  

[1237] 

PSO 1.00±0.03 

[1.00] 

3079 ± 504  

[5620] 

1.00±0.00 

[1.00] 

3089 ± 496  

[6482] 

4 BB 0.98±0.09 

[1.00] 

141 ± 109  

[1317] 

1.00±0.00 

[1.00] 

390 ± 237  

[1724] 

GA 0.94±0.16 

[1.00] 

274 ± 260  

[2717] 

0.97±0.14 

[1.00] 

188 ± 164  

[2119] 

PSO 0.99±0.08 

[1.00] 

7120 ± 577 

 [9882] 

0.99±0.08 

[1.00] 

7200 ± 579  

[9805] 

5 BB 0.94±0.16 

[1.00] 

723 ± 1144  

[18307] 

0.99±0.06 

[1.00] 

3626 ± 2970  

[21888] 

GA 0.85±0.25 

[1.00] 

320 ± 164  

[2375] 

0.88±0.27 

[1.00] 

314 ± 139  

[1600] 

PSO 0.95±0.16 

[1.00] 

10938 ± 1148 

[16762] 

0.95±0.20 

[1.00] 

11011 ± 1019 

[16405] 

BB: Branch and Bound; GA: Genetic Algorithm; PSO: Particle Swarm Optimization. 344 
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Captions to illustrations  355 

 356 

Fig. 1: Ten MUAP templates in set 1 (top) and some examples of superpositions with 2-5 357 

constituent MUAPs (bottom).  358 

 359 

 360 

 361 

Fig. 2: Six MUAP templates in set 2 (top) and some examples of superpositions with 2-5 362 

constituent MUAPs (bottom). 363 

 364 

 365 

Fig. 3: The overall identification of the BB algorithm for 2-constituent superpositions from the 366 

first set at different noise levels. The standard deviation of the added noise was the noise level 367 

multiplied by the peak-to-peak of the superimposed signal. 368 

 369 
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Fig.1 382 
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Fig.2 390 
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Fig. 3 404 
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