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a b s t r a c t 

Robotic manipulation of cloth is a complex task because of the infinite-dimensional shape- 

state space of textiles, which makes their state estimation very difficult. In this paper we 

introduce the dGLI Cloth Coordinates , a finite low-dimensional representation of cloth states 

that allows us to efficiently distinguish a large variety of different folded states, opening 

the door to efficient learning methods for cloth manipulation planning and control. Our 

representation is based on a directional derivative of the Gauss Linking Integral and al- 

lows us to represent spatial as well as planar folded configurations in a consistent and 

unified way. The proposed dGLI Cloth Coordinates are shown to be more accurate in the 

representation of cloth states and significantly more sensitive to changes in grasping af- 

fordances than other classic shape distance methods. Finally, we apply our representation 

to real images of a cloth, showing that with it we can identify the different states using a 

distance-based classifier. 

© 2023 The Authors. Published by Elsevier Inc. 
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1. Introduction 

Textile objects are important and omnipresent in many relevant scenarios of our daily lives, like domestic, healthcare, 

or industrial contexts. However, as opposed to rigid objects, whose pose is fixed with position and orientation, textile ob- 

jects are challenging to handle for robots because they change shape under contact and motion, resulting in an infinite- 

dimensional configuration space (when considered as continuous surfaces in 3D space). This huge dimensional jump makes 

existing perception and manipulation methods difficult to apply to textiles. Recent reviews on cloth manipulation, like [1,2] , 

agree on the need to find a simplified representation that enables more powerful learning methods to solve different prob- 

lems related to cloth manipulation. 

Different representations have been used in the literature of cloth manipulation, e.g. silhouette representations [3] or 

contours [4] , assuming the high-level reasoning on cloth states was given. More modern end-to-end learning approaches 

use RGB-D images directly [5–7] , but only very simple actions can be defined due to the limited state representation. In

addition, these deep-learning based methods need large amounts of real or simulated data (e.g. [8,9] ) that are expensive to
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Fig. 1. Folding sequence of a quadrangular cloth with its associated dGLI cloth coordinates , represented as upper triangular matrices. Each matrix element 

m i j is a geometrical value corresponding to the dGLI between the segments i and j highlighted in red in the corresponding folded state of the cloth. Notice 

how some values of the matrix change sign when corners are folded or cross each other. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

obtain and label, as no underlying previous knowledge is used to understand the geometric relationship between different 

states. Therefore, finding a low-dimensional representation for cloth based on low-level features remains an active open 

problem, while the high-level aspect of understanding cloth deformation is still almost unexplored. 

Furthermore, to enable reasoning, abstraction and planning, rigid object manipulation applies object recognition methods 

in order to link objects to actions [10,11] . Contacts among objects are estimated to recognize states such as “on top of”,

“inside of” [12] . However, when it comes to cloth manipulation, no work has explored the semantic state identification 

that could lead to particular actions depending on the task in mind. For simpler deformable objects like a box with an

articulated lid, the open configuration clearly allows the action of closing the box or picking something from inside. An 

equivalent example for cloth would be to recognize a folded corner that needs to be either flattened back if the task is to

lay the cloth flat on the table, or picked up if the task is folding. In this context, we wish to decompose the configuration

space of a piece of cloth into macro-states (or just states), where each state is the set of cloth configurations that can be

manipulated in the same way, i.e., that have similar grasping affordances. 

In this work, we present a coordinate representation of the configuration of cloth as an upper triangular matrix form 

(see Fig. 1 ). This representation can be computed with a closed-form formula from low-level features of the cloth –the

position of its boundary– and enables the recognition and classification of high-level states, since we can define a distance 

between cloth configurations. This representation allows us to classify different configurations into states that we identify 

as “different”, meaning that they afford different actions. 

The fact that our low-dimensional representation relies only on the position of the cloth’s boundary is supported by the 

result that under certain conditions the boundary curves of a textile determine completely its position in space. Indeed, 

in [13] it is proven that a generic simple, closed, piecewise regular curve in space can be the boundary of only finitely

many developable surfaces (i.e. Gaussian curvature 0) with non-vanishing mean curvature. Since the original state of a 

piece of cloth is unfolded and flat, the set of possible states, if we assume that the textile is inextensible (i.e. constant first

fundamental form in time, see [14] ) is precisely the set of developable surfaces isometric to a fixed one. For problems such

as the study of cloth dynamics it is not necessary for the boundary problem to have a unique solution. It suffices to know

that it will always have a finite set of solutions, because this solution set is then discrete, with different solutions separated

by a nontrivial jump in any tagging energy, local coordinates, etc. This implies that during a continuous cloth motion, the

position of a garment is determined by the location of its boundary. 

Our coordinates are based on a topological index, the Gauss Linking Integral ( GLI). This index has been used in the past for

robotic manipulation [15–19] but can only be applied to 3D curves. For a pair of almost co-planar curves, as the boundary

curves of a folded garment, the GLI vanishes and ceases to be informative. In order to consider almost co-planar curves (as

well as 3D curves), we introduce in this work the concept of the directional derivative of the GLI , dGLI , applied to a pair of

curves. The dGLI is symmetric on the curves and it only depends on the relative position between them. We assign the dGLI

Cloth Coordinates to a state of a garment as follows: first select a subset of edges (it may contain the whole of them) from

a discretization of the boundary of the garment; then fix an ordering on these edges and compute the dGLI between any

pair of edges in their spatial position of the current state of the garment; this gives a symmetric matrix from which only

the upper triangular part is taken in order to avoid redundancies; the dGLI cloth coordinates of the state are precisely the

entries of this upper triangular matrix (see Fig. 1 ). Our resulting representation can be computed efficiently and is invariant

under isometric movements of the garment (i.e. rotations and translations), leaving invariant a distinguished direction which 

is normal to a predominant plane in the scene (e.g. a table used as support for the manipulations). 

This article is structured as follows: in the next section we present preliminary concepts used in the paper, such as the

Gauss Linking Integral, and we explain its limitations in a planar setting. Then, in Section 3 we introduce the novel concept

of the directional derivative of the GLI which is also applicable for flat configurations. We derive first an expression for the

GLI of two segments, then we prove that we can perturb the segments slightly to obtain information when they are co-

planar and we explain how to apply this to a full meshed cloth. Next we study some of the properties of this new index by
2 
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applying it to a database of cloth configurations of a napkin taken from simulated folding sequences, to then experimentally 

test the index on real images. We also show that it is possible to apply our representation to garments with non-trivial

topology, such as a pair of shorts. Finally, we discuss the obtained results and draw some conclusions in the last section. 

2. Preliminaries and related work 

Definition 1 (Gauss Linking Integral of two curves) . Given two C 2 non-intersecting 3D-space curves γ1 , γ2 parameterized 

by x (s ) and y (t) , respectively, with s, t ∈ I = [0 , 1] , the Gauss Linking Integral between them, GLI for short, is 

GLI(γ1 , γ2 ) = 

1 

4 π

∫ 
I 

∫ 
I 

(y (t) − x (s )) · (y ′ (t) × x ′ (s )) 

| y (t) − x (s ) | 3 d td s 

or written in a compact way 

GLI(γ1 , γ2 ) = 

1 

4 π

∫ ∫ 
(γ2 − γ1 ) · [ γ ′ 

2 × γ ′ 
1 ] 

‖ γ2 − γ1 ‖ 

3 
. (1) 

This double integral is invariant under re-parameterizations of the curves. In the case that both curves γ1 and γ2 are 

closed and smooth, their GLI is integer valued (due to the chosen normalization factor 1 
4 π ) and it is an invariant of the

topology of the embedded curves (their linking number , see [20] ). 

Historically, the GLI was first introduced by Gauss, presumably related to his works on magnetism (according to [21] ) or

on astronomy (according to [22] ). Considering the GLI(γ , γ ) of twice the same non-self-intersecting smooth curve γ , then

the double integral (taking the domain of integration outside the diagonal of I × I) defines another geometric invariant of 

the curve, known as writhe or writhing number of γ . Despite their resemblance, the GLI and the writhe measure different

quantities: consider a normal vector field v of length ε > 0 on γ , and the curve γv of endpoints of the vector field v , which

is embedded and in one-to-one smooth correspondence with γ for sufficiently small ε. Then the GLI of these two close 

copies of the same γ differs from the writhe in GLI(γ , γv ) − GLI(γ , γ ) equal to the total twist of v . This result is known

as the C ̆alug ̆areanu-White-Fuller theorem (see [23] ). However, both indexes, GLI and writhe, are non-informative for planar 

curves, since they both vanish. 

The GLI has been used for many applications after a version of the above formula for polygonal curves appeared in the

context of DNA protein structures [24] , with additional efficient formulations given in [25] from which we have chosen the

following: given two piece-wise linear curves of N and M segments, that is, γ1 = { γP i P i +1 
, i = 1 , . . . , N} and γ2 = { γQ i Q i +1 

, i =
1 , . . . , M} , where each segment is parameterized as γAB (s ) = A + s � AB for s ∈ [0 , 1] , then the GLI between both curves is 

GLI(γ1 , γ2 ) = 

1 

4 π

N ∑ 

i =1 

M ∑ 

j=1 

GLI(γP i P i +1 
, γQ i Q i +1 

) (2) 

where the GLI between a pair of segments γAB and γCD is computed as 

GLI(γAB , γCD ) = arcsin ( � n A � n D ) + arcsin ( � n D � n B ) 

+ arcsin ( � n B � n C ) + arcsin ( � n C � n A ) (3) 

with 

→ 

n A = ‖ 

→ 

AC ×
→ 

AD ‖ , 
→ 

n B = ‖ 

→ 

BD ×
→ 

BC ‖ , 
→ 

n C = ‖ 

→ 

BC ×
→ 

AC ‖ , and 

→ 

n D = ‖ 

→ 

AD ×
→ 

BD ‖ . 

Remark 1. The above formula is not an approximation in the sense that it is the exact value of the integral (1) when applied

to piece-wise linear curves. 

The discrete formula (3) was used by Ho [26] to identify and synthesize animated characters in intertwined positions 

[26,27] . In the context of robotics, the GLI has been applied to representative curves of the workspace to guide path planning

through holes [15,19] , for guiding caging grasps in [16–18] , and for planning humanoid robot motions using the GLI to guide

reinforcement learning [28] . In this work, for the first time, we develop a further analysis of the notion to be able to apply

it to planar or almost planar curves, which opens the door to a wider spectrum of applications. 

3. Derivation of the cloth coordinates 

As we have mentioned above, the GLI of two coplanar curves vanishes; so for many configurations of robotic interest —

configurations where the cloth is nearly flat on a table, ready to be folded or already folded— the GLI does not provide much

information. Our aim in this section is therefore to develop a similar index which is able to distinguish planar configurations.

We shall see that a natural index to consider is in fact a directional derivative of the GLI, but to arrive at such an index we

must first make a few observations about the GLI when applied to pairs of segments as in Equation (3) , since the class of

curves we will be working with computationally are piece-wise linear. 
3 
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3.1. GLI of two segments 

Since two segments AB and CD are uniquely defined by the four endpoints A, B, C, D ∈ R 

3 , the GLI of two segments com-

puted in Equation (3) can be viewed as a function from (R 

3 ) 4 ≡ R 

12 to R . To emphasize that from now on we are consid-

ering segments we define G : R 

12 → R as 

G(A, B, C, D ) = GLI(γAB , γCD ) = 

1 

4 π

∫ ∫ 
(γCD − γAB ) · [ γ ′ 

CD × γ ′ 
AB ] 

‖ γCD − γAB ‖ 

3 
. (4) 

Note that technically G is not defined in the whole of R 

12 , since it is not defined when γAB and γCD intersect. 

Lemma 1. Given two non-intersecting segments AB and CD with endpoints A, B, C, D ∈ R 

3 , let γCD and γAB denote a parametriza-

tion of them. Then 

G(A, B, C, D ) = V(A, B, C, D ) · I(A, B, C, D ) 

where V(A, B, C, D ) = det ( � AB , � AC , � AD ) is the signed volume of the tetrahedron ABCD multiplied by 6 and 

I(A, B, C, D ) = 

1 

4 π

∫ ∫ 
1 

‖ γCD − γAB ‖ 

3 
. 

Proof. This is a straightforward computation: notice that the numerator in the integral expression of the GLI in 

Equation (1) is constant (for any t and s ) because the curves are segments and equals 

(γCD − γAB ) · [ γ ′ 
CD × γ ′ 

AB ] = 

= ( � AC + t � CD − s � AB ) · [ � CD × �
 AB ] = 

= 

�
 AC · [ � CD × �

 AB ] = 

= 

�
 AC · [( � CA + 

�
 AD ) × �

 AB ] = 

= 

�
 AC · [ � AD × �

 AB ] = 

�
 AB · [ � AC × �

 AD ] = 

= det ( � AB , � AC , � AD ) 

the signed volume of the tetrahedron ABCD multiplied by 6. By writing 

V(A, B, C, D ) = det ( � AB , � AC , � AD ) 

and 

I(A, B, C, D ) = 

1 

4 π

∫ ∫ 
1 

‖ γCD − γAB ‖ 

3 

we have 

G = V · I . (5) 

�

Remark 2. When two segments are co-planar their GLI vanishes since the tetrahedron they span has volume 0. 

Corollary 1. The function G(A, B, C, D ) = GLI(γAB , γCD ) is the product of two differentiable functions and hence differentiable with

respect to A, B, C, D . 

3.2. Directional derivative of G

In this section we discuss how to perturb G in order to make it informative in planar settings. 

Definition 2 (Directional derivative of. G) Let v A , v B , v C , v D ∈ R 

3 be arbitrary directions and AB , CD two non-intersecting

segments. The directional derivative of G at the point (A, B, C, D ) in the direction of v = (v A , v B , v C , v D ) is defined as the limit

∂ v G(A, B, C, D ) = lim 

ε→ 0 

G((A, B, C, D ) + ε(v A , v B , v C , v D )) − G(A, B, C, D ) 

ε 
. 

Remark 3. Notice that this limit always exists since we have shown that G is a differentiable function with respect to

A, B, C, D . Moreover, ∂ v G can be equivalently written as 

lim 

ε→ 0 

GLI(γA ∗B ∗ , γC ∗D ∗ ) − GLI(γAB , γCD ) 

ε 
, 

where A 

∗ = A + εv A , B ∗ = B + εv B , C ∗ = C + εv C , D 

∗ = D + εv D and ε is sufficiently small so that A 

∗B ∗ and C ∗D 

∗ do not inter-

sect. Also, from Equation (5) and by the product rule 

∂ v G = ∂ v (V ) I + V ∂ v (I) , 
4 
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hence ∂ v G = ∂ v (V) I when the segments γAB and γCD are coplanar. 

Properties of ∂ v G. By definition ∂ v G is invariant under translations, rotations and scalings if v is rotated and scaled

accordingly. These properties are a consequence of the fact that the GLI is invariant under such transformations. However, 

for a fixed choice of v , ∂ v G will not be invariant under rotations or scalings in general. For instance, no fixed choice of v can

make ∂ v G invariant under scalings, since scaling by a factor of λ scales I by 1 
λ3 and ∇V by λ2 , and similarly scales ∇I by 1 

λ4 

and V by λ3 , resulting in scaling ∇G by 1 
λ

. Depending on what this index is used for, one must keep this scaling relationship

in mind or alternatively choose v depending on the segments. However, the distance we will use to compare different cloth

states only depends on the correlation of values of the coordinates more than on the magnitude. That is why we can ignore

the scaling factor that would appear when comparing two garments of different sizes (e.g. because of different meshings). 

Choice of v . This is highly task-specific, but given the nature of our task –classifying planar cloth configurations based on

affordances– it is natural to perturb the vertices in the direction normal to the table plane. Making such a choice of v does

in fact make ∂ v G invariant under rotations and translations of the XY plane, which is desirable for our purposes since such

movements of a cloth configuration have the same affordances. Furthermore, to conserve the symmetry ∂ v G(A, B, C, D ) =
∂ v G(C, D, A, B ) , we must perturb A and C by the same amount and direction, and the same is the case with B and D . Finally,

it is easy to see that in fact perturbing A and C both by the same amount normal to the plane yields the same result as

perturbing B and D by the same amount in the opposite direction, so it really only makes sense to perturb A and C, or B

and D , but not both pairs, and doing one or the other is equivalent except for a sign change. In summary, the most natural

choice of v in our case is 

v := ( � 0 , e 3 , � 0 , e 3 ) (6) 

(or v = (e 3 , � 0 , e 3 , � 0 ) , which is equivalent except for a sign change) where e 3 = (0 , 0 , 1) is the normal to the plane of the

table on which the cloth lies. 

3.3. Practical computation of dGLI 

We summarize the discussion of the previous section in the following definition. 

Definition 3 (dGLI of two segments) . Given two non-intersecting segments γAB and γCD , we define 

dGLI(γAB , γCD ) := lim 

ε→ 0 

GLI(γAB ∗ , γCD ∗ ) − GLI(γAB , γCD ) 

ε 
, (7) 

where B ∗ = B + εe 3 , D 

∗ = D + εe 3 , e 3 = (0 , 0 , 1) and each GLI function can be computed using Equation (3) . This index is

invariant under rotations and translations of the XY plane and moreover dGLI(γCD , γAB ) = dGLI(γAB , γCD ) . 

Remark 4. We have analyzed numerically the limit defined in Equation (7) , and have found that it is sufficiently stable to

be computed as 

dGLI (γAB , γCD ) � 

GLI (γAB ∗ , γCD ∗ ) − GLI(γAB , γCD ) 

ε 

for a sufficiently small ε. Since we work with double precision floats (which amount for a precision of around 14–15 dec-

imals), it is known (see [29] ) that when approximating derivatives numerically, one obtains better results when choosing 

perturbations which only affect 7 or 8 decimal places, for instance ε ≈ 10 −8 . This is the value taken in our experiments. 

Remark 5. In practical implementations, we may well be computing the dGLI between segments γAB and γCD that are very 

close to intersecting (but not intersecting since the cloth has thickness), and then dGLI(γAB , γCD ) becomes very large. As

having such big quantities can dominate values of metrics and distances in a non-representative way, in practice we set a

maximum value to the dGLI once it surpasses a fixed threshold. 

3.4. Definition of the dGLI Cloth Coordinates 

Since we are now equipped with a geometric index for pairs of segments, we are ready to introduce our cloth coor-

dinates, which will parametrize the shape-state space of a piece of cloth. We assign the dGLI Cloth Coordinates to a cloth

configuration C of a garment as follows: 

Definition 4 (dGLI of a cloth surface. C) Given a discretization of the boundary of the garment surface C as a polygonal

curve, select an ordered subset of edges of it S C = { S i : i = 1 , . . . , m } . Then, the dGLI Cloth Coordinates of configuration C is

the upper triangular matrix 

dGLI (C) = 

(
dGLI(S i , S j ) 

)
S i ,S j ∈S C ,i> j . (8) 

To get an intuitive sense of what these upper triangular matrices look like for some cloth configurations, see the exam-

ples in Fig. 1 . If we were interested in a general direction v , we would take the dGLI v Cloth Coordinates 

dGLI v (C) = 

(
∂ v G(S i , S j ) 

)
S i ,S j ∈S C ,i> j . 
5 
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Fig. 2. The subset of chosen segments are marked red. For the shorts, four of the selected boundary edges on the back are not visible in the figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note that the full matrix when taking all the edges of the discretization is the equivalent rationale to computing the GLI of

a polynomial curve used in [24,26] , where the GLI of all pairs of segments of the curves where first assembled in what was

there called the GLI matrix [26] . 

Choice of edges . The subset S C of edges chosen in the discretization depends on the task one wants to carry out; tasks

that demand finer distinctions between configurations of a similar class would require a greater subset of segments. For our 

task of classifying the configurations into relatively broad classes, we found experimentally that a good choice of segments 

for a rectangular piece of cloth are the eight segments adjacent to the corner segments, marked red in the left panel of

Fig. 2 . In the case of a garment with a more complicated topology, more edges must be chosen, e.g. for a pair of short

pants we choose the twelve boundary edges shown in red in the right panel of Fig. 2 . In both cases, this small subset is

nevertheless enough to provide an accurate affordance-based classification of near-to-flat configurations. 

The upper triangular matrix in Equation (8) , sorted as a vector, is a coordinate system that reduces the infinite di-

mensionality of the configuration space of cloth states to a mere m (m −1) 
2 dimensional space. For instance, for a rectangular 

cloth m = 8 , so this comes out to 28 dimensions. This reduction in dimensionality is well-suited and informative enough for

practical purposes, as the validation results in next section will show. 

4. Results 

In this section we study the ability of the cloth coordinates previously defined to tell apart different cloth states. First, we

analyze 4 folding sequences (see Fig. 3 ). We will show that our representation is capable of distinguishing different relevant

cloth configurations (e.g. one folded corner vs two folded corners). Then, we will apply our method to a full database with

12 cloth classes (shown in Fig. 4 ), and we will compare it to 4 alternative representations, proving that ours is more capable

of distinguishing between cloth states. All data in this section was simulated using the inextensible cloth model described 

in [14] . All simulations are performed with a square cloth of dimensions 1 m × 1 m and a computational mesh of 400 nodes;

except for the short pants (whose shape is taken from the UC Berkeley Garment Library) which consist of 537 nodes (see

Fig. 2 , right). Finally, we will apply a simple classification method using our representation to real images of folded cloth

states. 

In order to compare different cloth configurations, once they are represented with our cloth coordinates dGLI (C) ∈ R 

28 , it

is important to use a proper distance. Due to the scaling factor that we analyzed in the previous section, the most suitable

distance was the Spearman’s distance . Given two vectors x, y it is defined as 

d(x, y ) = 1 − ρ( R (x ) , R (y ) ) , (9) 

where ρ is the Pearson correlation coefficient, and R (x ) is the rank variable of x (i.e. ordering the coordinates of x from

lowest to greatest and then assigning to each coordinate its position in the ranking). This distance assesses how well the

relationship between two vectors x, y can be described using any monotonic function (not only a line). We found this dis-

tance to be more sensitive to changes of the cloth configuration than the euclidean distance. This may be due to the fact

that this distance focuses on the ranking order between coordinates (with sign) rather than comparing their magnitudes, 

which is most relevant in our representation. Note that the Spearman’s distance is bounded with values between 0 and 2

and ignores scaling factors between different clothes. 

4.1. Analysis of folding sequences 

The first test compares different cloth states inside a folding sequence. Given the motion of the cloth {C 1 , . . . , C m 

} ,
where m is the number of discrete frames and C i is the state of the cloth at t i , we compute the confusion matrix

M i j = d( dGLI (C i ) , dGLI (C j )) . The 4 folding sequences, shown at the left side of Fig. 3 are: folding two opposite corners,

folding 4 corners inwards, folding the cloth in half and folding a pair of shorts in half dynamically. The results can be seen
6 
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Fig. 3. Study of the index during 4 folding sequences. In the left column we show a representation of the cloth frames, and in the right column the 

confusion matrix of all of them. In red we highlight the class changes that can be identified. 

 

 

 

 

 

 

 

on the right side of the figure. Notice how our representation detects changes during the sequence that are meaningful.

For example, in Seq. 1, folding two opposite corners, at frame 7, there is an important change, since a corner changes the

orientation from flat to folded, even before it is released. This can be seen in the confusion matrix (first two blue squares).

This is also clear in Seq. 2, where four corners are folded inwards. Moreover, our method also detects when edges of the

cloth cross (Seq. 1, frame 24, Seq. 3, frame 23). These changes are also meaningful from the manipulation point of view, as

they afford different possible graspings or actions. Especial mention deserves Seq. 4 since the cloth has non-trivial topology 

and the garment hangs and is non-flat during a significant part of the folding. In this sequence our representation detects

correctly the moment in which the shorts touch the table (frame 14), when the top two controlled corners start to descend

(frame 19) and the moment in which the fold is completed (frame 32). 
7 
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Fig. 4. Confusion matrix of all the distances between the states shown in the top table. 

 

 

 

 

 

 

 

4.2. Confusion matrix of the full database 

We now analyze a complete database consisting of 120 examples classified in 12 different classes of states, shown in 

Fig. 4 . Most of them are self-explanatory. Note that in the class 10 the upper left corner is folded under the cloth (likewise

for class 11). Each class has 10 samples corresponding to the final state of the cloth during a folding sequence simulation.

We manually identified samples that we considered to belong to the same state. We want to emphasize that once we

fix an ordering of the corners, our method distinguishes, for example, between different folded corners and this does not 

contradict the rotational invariance previously shown. 

Again we compute the confusion matrix M i j = d( dGLI (C i ) , dGLI (C j )) where C k is the k th example of the database. We

order the samples, so that the samples from the same classes are consecutive. This way, the plot is more easily interpretable.

In Fig. 4 we can see how the classes group without confusion: i.e. the distance between members of a class tends to be

smaller (color blue) than the distance to examples outside the class (color yellow). 

The confusion matrix shows us interesting insights about our representation. For instance, we can see that the two 

classes 01 and 04 are relatively closer than others. That is because the relative position of all edges is indeed the same in
8 
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Table 1 

Comparison between different shape representations ∗ . 

Database Seq. I Seq. II Seq. III Seq. IV 

dGLI 0.73 0.27 0.18 0.21 0.52 

Edges 1.60 0.68 0.77 0.51 1.91 

Corners 2.49 0.98 1.61 3.14 1.86 

Fréchet 0.99 0.69 0.76 0.48 0.90 

Hausdorff 1.45 0.71 0.84 0.49 0.90 

∗Each number is the Davies-Bouldin index introduced in Eq. 10 , that measures cluster separation quality. A 

smaller value means a better separation. We mark in bold the smallest values in each column. 
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these classes, resulting in a smaller distance in our representation. The same phenomenon can be seen between classes 05 

and 12 in some cases, as they are indeed classes with similarities (in 05 the two corners do not cross, whereas in 12 they

do). However, classes 03 and 11, which differ on whether or not the folding makes one side of the cloth hide its opposite,

are perfectly separated. The borderline cases, that is, the fourth element in class 03 and the first element in class 11 are

very similar, but our method distinguishes them because of the relative geometric position between edges (i.e. in these two 

cases, they are flipped). A similar thing occurs between classes 02 and 10. It is also worth mentioning that some classes

that we have labeled as the same class have clear sub-classes shown in the confusion matrix. That is the case for classes 05,

07 and 08. These are folded corners with different orientations. It is possible, using our representation, to induce a partition

of the space in order to separate this type of class into two. 

4.3. Comparison with other shape representations 

In this subsection we perform a more quantitative comparison of our state representation with other competing methods 

in representing shapes. To evaluate a representation, we use the standard Davies-Bouldin index to measure cluster separation 

[30] : 

DB = 

1 

n 

n ∑ 

i =1 

max 
j 
 = i 

(
σi + σ j 

d(c i , c j ) 

)
(10) 

where n is the number of classes (e.g. in the database is 12), c i is the centroid of class i (the average of the coordinates of

members of class i ), σi is a dispersion measure computed as the average distance of all elements in class i to the centroid c i 
and d(c i , c j ) is the distance between centroids c i and c j . With the classification given in Figs. 3 and 4 taken as ground truth,

we want a representation that gives a small dispersion inside a class and high distance between the classes, resulting in a

low index. The representation and distance with the smallest DB is considered the one that better separates these clusters, 

and therefore, the best representation to identify different cloth states. 

First, we use two simple cloth shape representations using similar low-level features like the ones we used: 

(i) Edges : for a given mesh we select the edges shown in Fig. 2 and compute their pairwise minimal distance. This results in

a representation vector of length just like that of the dGLI coordinates (notice that unlike the dGLI, the coordinates of this

vector are always non-negative). We use the Spearman’s distance to compare two different samples. This representation 

is invariant under rigid motions of the plane. 

ii) Corners : for a given rectangular mesh we compute the pairwise distance between its 4 corners. In the case of the shorts,

we take the 6 nodes shown in Fig. 2 . These are 6 or 15 non-negative numbers that can be computed for any cloth, they

are invariant by rigid motions and they give a trivial representation of the state of the cloth. We also use Spearman’s

distance to compare different samples. 

In addition, we compare with two classic methods to measure distance between curves and polygons [31,32] , taking the

full discrete boundary curve of the garments as the state representation: 

ii) Fréchet : to compare two different samples we compute the (discrete) Fréchet distance [33] between the curves. This is

a distance that takes into account the location and ordering of the points along the curves. Since this distance is not

invariant by rigid motions, special care must be taken to center and align the samples before comparing them. In order

to do so we center the curves at the origin and perform a rigid alignment by computing the rotation that minimizes the

distance between the curves’ points. 

v) Hausdorff: to compare two different samples we compute the (discrete) Hausdorff distance between the points of the 

curves [34] . Informally, two curves are close in the Hausdorff sense if every point of either curve is close to some other

point of the other one. This distance disregards the fact that the sets it is comparing are curves and therefore is expected

to be less sensitive than the Fréchet distance. As before, since this distance is not invariant by rigid motions, we center

and align the samples before comparing them. 

In Table 1 , we display the computation of the DB index for our dGLI coordinates and the four discussed methods, using

as testing scenarios the full database and the 4 folding sequences presented before. As seen in the table, our method results
9 
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Fig. 5. Synthetic representatives chosen for each class. When only one is chosen, it is the closest to the centroid of the class. When a class has more 

sparsity, additional representatives are chosen to represent the subgrups in the class. 

Fig. 6. Results of the real image classification using the simulated database presented in Fig. 4 as reference. The first column shows the ground truth class 

of the images, and at the bottom of every image the classified class. 
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in the lowest overall DB in all 5 scenarios, indicating that our method is the one among those studied that best represents

the different folded states of the textiles. 

4.4. Real images classification 

Once checked that our method was able to represent folded states of cloth accurately, we implemented a simple classifier 

of real folded cloth states to asses its applicability. In order to do so, a synthetic representative element of each class in the

database shown in Fig. 4 is chosen, and we estimate the class of a new real unclassified sample by choosing its closest

representative, using Spearman’s distance. 

The real images are taken from a zenital position at 52 cm from the table using a Microsoft Azure Kinect DK 3D camera.

A single napkin is used with 3 colored stickers attached along each edge, close to a corner and on both sides. We first use

color segmentation to detect the center of each sticker and get the corresponding 3D point from the depth image. Once all

markers are detected, with our combinations of colors on each edge, we can identify each individual corner of the cloth

(there are four stickers of the same color around each corner), and its corresponding edge positions, following the same 

edge selection as in Fig. 2 . The obtained size of the observed edges is more than 400 times larger than the edges of the

samples of the simulated database, but thanks to the Spearman’s distance used, this does not affect the distance values 

when comparing shapes of different sizes. 

As we can see in the confusion matrix in Fig. 4 , some classes have a larger dispersion in distance because of the variation

in orientations of the corners. For these classes, we have chosen 3 different representatives, corresponding to the three 

subgroups that can be clearly seen in the confusion matrix. We show the silhouette of the representatives chosen for each

class in Fig. 5 . The table in Fig. 6 shows the results of the classification. 

The only miss-classification is that of the last image in class 04. However, note that this is a very extreme case where

the edges of the cloth are in a relative position very similar to the flat unfolded case, and therefore, it is classified in class

01. This is a reasonable mistake, as this cloth can be considered flat enough. 

Notice that we can only perceive those textiles with all the stickers visible, therefore, classes with hidden edges, like for

instance classes from 09 to 12 where the folding is under the cloth, are not present in the real set of samples. However, the

classifier still used all 12 classes of the simulated database. This shows that the missing classes don’t create confusion in

the classification process. 

5. Conclusions 

We have proposed the dGLI Cloth Coordinates , a representation for cloth configurations based on a directional deriva- 

tive of a topological index that greatly reduces the dimensionality of the cloth configuration space, going from a full cloth

surface to a vector of dimension 28 (for a rectangular cloth). This reduced representation nevertheless preserves enough in- 

formation about the configurations to be able to distinguish them according to their grasping affordances using Spearman’s 

distance. The fact that using our representation we can successfully classify real configurations of cloth from synthetic gen- 

erated samples as seen in Fig. 6 shows great promise for applications in planning for cloth manipulation. Furthermore, our 

representation allows for different choices of v , the perturbation direction, and S , the subset of edges chosen, so that one

can fine-tune the representation to the specific task at hand to boost results. Moreover, we evaluated successfully the ex- 

pressive power of our representation during a folding sequence of a garment with non-trivial topology (a pair of shorts). 

Lastly, since our method is not learning-based, it does not require any training data, it is completely explainable, and it is

robust against possible configurations that are not in the training set. 

In summary, the dGLI Cloth Coordinates bridge the gap between low-level features of different cloth configurations, 

such as the location of corners and edges, to high-level semantic identification of cloth states, associated to their possible 

affordances. 

6. Limitations and further work 

Although a strong assumption is made in this work, that is, that we know the full border of the cloth, perception algo-

rithms are starting to show solutions to overcome this problem. For instance, in [35] a method is developed to detect parts

of clothes suitable for grasping and more recently, the deep-learning approach presented in [36] can identify corners and 

edges, but does not yet identify the full border. Our group is working on different deep-learning and mathematical methods 

to hallucinate the full boundary given an image (or point-cloud) of the cloth to overcome this limitation. 

Meanwhile, our representation can be fully used in simulation with several important applications, such as building 

datasets where automatic segmentation of the cloth states is required (see e.g. [37] ), monitor cloth manipulation and guide 

planning methods. We are looking forward to pursue all these lines of research that the present work opens the door to. 

Future work also concerns an in-depth analysis of the configuration space defined by our coordinates. In particular, we 

would like to identify a partition of the space that corresponds to a partition of configurations by grasping affordance, 

which states are neighbors in this partition, and what the shortest paths from one state to another are. This line of research

is expected to be especially complex and rich for garments with non-trivial topology. We look forward to carrying out this
11 
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study analytically as well as through learning methods, which we believe will give better results when the data is enriched

and given structure through our representation. 
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