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Abstract
Optimal control theory allows finding the optimal input of a mechanical

system modelled as a initial value problem. The resulting minimisation problem
may be solved with known direct and indirect methods. We here propose
time discretisations for both methods, direct midpoint (DMP) and indirect
midpoint (IMP) algorithms, which despite their similarities result in different
convergence orders for the adjoint (or co-state) variables. We additionally
propose a third time-integration scheme, Indirect Hamiltonian Preserving (IHP)
algorithm, which preserves the control Hamiltonian, an integral of the analytical
Euler-Lagrange equations of the optimal control problem.

We test the resulting algorithms to linear and non-linear problems with and
without dissipative forces: a propelled falling mass subjected to gravity and a
drag force, an elastic inverted pendulum, and the locomotion of a worm-like
organism on a frictional substrate. In order to improve the convergence of the
solution process of the discretised equations in non-linear problems, we also
propose a computational simple suboptimal initial guess, and apply a forward-
backward sweep method, which computes each set of variables (state, adjoint
and control) in a staggered manner. We demonstrate in our examples their
practical advantage for computing optimal solutions.

Keywords: Optimal control, Time-discretisation, Hamiltonian preserving,
Mechanical system, Adjoint method, Worm-like locomotion.

1 Introduction

Optimal control theory is a powerful decision-making tool for the controlled
evolution of dynamical systems subject to constraints. This theory has a broad
range of applications in engineering and natural sciences such as pandemic
modelling [1, 15], aeronautics [7], or robotics and multibody systems [25], to
name a few. Since system variables are optimised over a finite time interval,
optimal control theory falls in the class of dynamics optimisation problem [7].

Optimal control problems (OCP) may be posed as the minimisation or
maximisation of a cost functional subjected to an Ordinary Differential Equations
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(ODE), with given initial conditions, i.e. as an initial value problem (IVP). The
direct time discretisation of this IVP results in a Non-Linear Programming
problem which can be solved with well-known numerical techniques [4]. Such
discretisation-optimisation approach is the so-called direct method [31]. Alternatively,
the first-order necessary conditions for stationarity of the original time dependent
input give rise to Euler-Lagrange equations, which also require imposing two-
point end conditions, and thus yields a two-point boundary value problem
(TPBVP). The advantage of the indirect approach resides in the fact that it
shows that the evolution of a dynamical system with optimal control always
extremes the control Hamiltonian, a result known as Pontryagin’s maximum
principle [40]. This optimisation-discretisation process is known as indirect
method [31]. Other solution approaches based on Hamilton-Jacobi-Bellman
equation and dynamic programming have been also popular for solving OCPs
(see [28] for a historical review).

In the literature, direct and indirect approaches have been successfully applied
to model various classes of OCPs [4, 6]. These references and other authors [3, 8]
have also shown that OCP equations have an underlying structure, where the
control Hamiltonian is preserved in autonomous systems, and with a symplectic
structure (i.e. the Hamiltonian flow in the phase space is divergence-free).
Similar symmetries are well-known in Hamiltonian mechanical systems, which
preserve linear momentum, angular momentum, and Hamiltonian/energy, and
time discretisation schemes that preserve some of these quantities have been
proposed. For instance, conservative systems discretised with midpoint rule
preserve angular momenta, while the use of the discrete gradient allows also
preserving the energy-momentum map [11, 35, 37]. Inspired by these results,
second order structure-preserving algorithms have been proposed for solving
OCPs [3, 17, 27]. Symplectic discretisations (symplectic Euler) for modelling
OCPs subject to first order and second order state ODEs have been studied in
[9], where it has been found that the accuracy of the symplectic method depends
on the weight of regularisation parameter for control and symplectic Euler is
unable to preserve the control Hamiltonian exactly.

Motivated by these works, and in order to exploit the underlying structure
of the OCP, we propose in the present paper an Indirect Hamiltonian Preserving
algorithm (IHP). The control Hamiltonian is an integral of the analytical solution,
for linear and non-linear problems, even for dissipative, frictional or forced
systems. We choose a set of simple problems that contain these features, and
show that indeed the numerical solution of our algorithm preserves the control
Hamiltonian in all these problem types. We compare its numerical properties
with midpoint discretisations [3] that we implement in the direct and indirect
approaches, and that we respectively name DMP and IMP algorithms. We
pinpoint their main differences with respect to the IHP algorithm, and we
also compare the order of convergence for simple linear problems with known
analytical solutions.

When solving non-linear OCPs, the performance of all algorithms strongly
depends on the numerical strategy. Gradient-based line search methods (e.g.
Newton-Raphson, Quasi-Newton, Krylov subspace methods), shooting techniques
(single or multiple [6]) and collocation methods (Galerkin, pseudospectral, Gauss-
Lobatto methods) are classical methods to solve non-linear problems [31]. A
major drawback of these methods is that convergence is only achieved with a
good initial guess and no global minima is guaranteed. For these reason, we
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also propose a strategy for computing a suboptimal initial guess, which has a
minimal cost and eases the convergence of iterative processes for solving the
system of non-linear equations.

Moreover, when dealing with large systems, iterative solvers for the sparse
system, such as gradient descent (GD) and conjugate gradient (CG) methods,
are an unavoidable choice [10, 16, 32]. We consequently also implement a
forward-backward sweep method (FBSM), which exploits the structure of the
Euler-Lagrange equations, as frequently used for large scale OCPs [19, 29, 36].
Instead of solving the OCP monolithically for all state, adjoint and control
variables, the FBSM strategy solves at each iteration a forward and a backward
(linear) ODE for respectively computing the state and adjoint variables, and
updates the control variables from these solutions. We show in a non-linear
problem of optimal worm locomotion that indeed, the suboptimal initial guess
and the FSBM strategy allow us to compute optimal solutions in an iterative
manner.

The article is organised as follows. Section 2 presents the mechanical optimisation
problem and the two approaches being compared: direct and indirect approaches,
jointly with the proposed IHP algorithm. Section 3 introduces numerical strategies
for solving the set of non-linear equations to be solved, the initial guess and the
FBSM strategy. In Section 4 we apply the methodology to some illustrative
examples. Section 5 concludes with some final remarks.

2 Direct and indirect approaches of Optimal Control
Problem

2.1 Optimal Control Problem

We will focus on the optimal control of a mechanical system with an input u(t)
and a system state variable x(t) that aims at achieving a final target or desired
value xd. For this, we consider the minimisation of cost functional J(x(t),u(t))
subject to an Initial Value Problem (IVP) in semi-implicit form:

min
u(t), x(t)

J(x(t),u(t)) (1)

subject to,

ẋ(t) = f(x(t),u(t)) (2)

c(x(0)) := x(0)− x̄0 = 0

where a superimposed dot denotes time derivative, x̄0 is the given initial value
of x(t), and function c(x(0)) is used to define the initial condition of the IVP.
The cost function is defined by,

J(x(t),u(t)) =

∫ T

0

(r(x(t)) + q(u(t))) dt+ ϕ(x(T )) (3)
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with T a fixed time of interest, and the following quadratic forms for r(x(t))
and q(u(t))

r(x(t)) =
1

2
(x(t)− xd)

TR(x(t)− xd), (4a)

q(u(t)) =
α

2
u(t)TQu(t), (4b)

ϕ(x(T )) =
β

2
(x(T )− xd)

TS(x(T )− xd) (4c)

Matrices Q, R and S are symmetric, with given constant components, and
generally diagonal for simplicity. Their particular expressions depend on the
problem at hand, and they are introduced to provide measures of the deviation
with respect to the target xd and input control u(t). Parameters α, β ≥ 0
are defined as regularisation factors that control the magnitude of the input
u(t) and terminal cost, respectively. Figure 1 shows an example where the
optimisation problem in (1)-(2) could be applied to, and the meaning of the
variables. However, in order to highlight our proposed methodology, we will
resort to simpler applications with fewer degrees of freedom (dofs).

𝐱 T = 𝐱𝑑

𝐱(0)

𝐱(t)

x

z

u2(T)

u1(T)

u2(0)u1(0)

Initial Configuration
Final Configuration

Optimal Trajectory

Figure 1: Example of optimal control of a mechanical system.

Remark 1. We have used for simplicity a 1st order IVP, but 2nd order IVPs
may be equally represented by the form given in (2) and employed in the
methodology to be presented in this work, with a proper transformation and
extension of the number of states, as it is customary in mechanics.

In order to solve the Optimal Control Problem with non-linear IVPs, we
will next analyse the numerical solution of discretised forms of the minimisation
problem above, resorting to two common strategies: direct and indirect approaches
[27].

2.2 Direct method (Discretise-differentiate)

2.2.1 Discretisation

In the direct approach, we first discretise the cost functional in Eqn. (1) and
the ordinary differential equation (ODE) in the IVP with N + 1 time points
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t0, . . . , tN , and approximated state and control values xn ≈ x(tn), un ≈ u(tn),
n = 0, . . . , N . We will resort to a midpoint integration scheme of the ODE,
although other schemes are also possible [21, 20, 4]. Our choice is motivated by
the subsequent comparison with indirect methods in Section 2.3. After applying
the integration scheme, the time continuous optimisation problem turns into the
following Non-linear Programming problem:

min
u,x

J∆(x,u) (5)

subject to,

xn − xn−1

∆t
= f (n− 1

2 )
, n = 1, . . . , N

c(x0) := x0 − x̄0 = 0

Here and in subsequent expression we use the symbol ∆(•) = (•)n − (•)n−1.
Also, we have introduced the control vector u = {u0, . . . ,uN}T and state vector
x = {x0, . . . ,xN}T , which define the solution of the non-linear problem. The
right hand side of the ODE has been replaced by f (n− 1

2 )
= f(xn− 1

2
,un− 1

2
),

with (•)n− 1
2
= 1

2 ((•)n + (•)n−1), and the cost functional has been replaced by
a discretised counterpart with a rectangular rule,

J∆(x,u) =

N∑
n=1

∆t (r(xn) + q(un)) + ϕ(xN ) (6)

2.2.2 Differentiation

The optimal values of x and u are obtained by building the extended Lagrangian
with a vector of Lagrange multipliers (or co-state/adjoint variables) λ = {λ1 . . .λN}
[26]

L(x,u,λ) = J∆ +

N∑
n=1

λT
n

(
f (n− 1

2 )
− ∆x

∆t

)
(7)

and deriving the optimality conditions from the stationarity of the Lagrangian,
i.e. ∂xn

L = 0, ∂un
L = 0, ∂λn

L = 0, which yields the equations in Box 1. We
will call this algorithm the direct midpoint (DMP). Note that since no Lagrange
multiplier at time tN+1 exist, the DMP algorithm at end time (n = N) is given
by

∆tR(xN − xd) +

(
∂f (N− 1

2 )

∂xN

)T

λN − λN

∆t
+

∂ϕ

∂xN
= 0,

xN − xN−1

∆t
= f (N− 1

2 )
,

∆tαQuN +

(
∂f (N− 1

2 )

∂uN

)T

λN = 0.

The solution of the equations in the DMP algorithm requires in general
resorting to iterative numerical strategies, overall for non-linear forms of f(x,u).
Section 3 discusses some procedures based on conjugate gradient and gradient
descent, and strategies for computing the initial guess.
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Direct midpoint algorithm (DMP)

∆tR(xn − xd) +

(
∂f (n− 1

2 )

∂xn

)T

λn +

(
∂f (n+ 1

2 )

∂xn

)T

λn+1 =
λn − λn+1

∆t
,

xn − xn−1

∆t
= f (n− 1

2 )

∆tαQun +

(
∂f (n− 1

2 )

∂un

)T

λn +

(
∂f (n+ 1

2 )

∂un

)T

λn+1 = 0,

for n = 1, . . . , N − 1, and with

c(x(0)) = 0

Box 1: Direct approach when discretising the ODE with a midpoint scheme.

2.3 Indirect method (differentiate-Discretised)

2.3.1 Time continuous optimality conditions

In the indirect approach, we first deduce the optimality conditions, which in
fact form a system of ODEs that will be eventually discretised [9, 7]. For this,
we introduce time-varying Lagrangian multipliers (λ(t) and ξ(t)) and define
the augmented Lagrangian functional associated to the optimisation problem in
(1)-(2),

L (x(t),u(t);λ(t), ξ) :=

∫ T

0

(
r(x(t)) + q(u(t)) + λTf(x(t),u(t))

)
dt (8)

−
∫ T

0

λ(t)Tẋdt+ ξTc(x(0)) + ϕ(x(T )).

In control theory, the integrand of left most integral in Eqn. (8) is defined
as control Hamiltonian [38, 23]

H (x(t),u(t),λ(t)) := r(x(t)) + q(u(t)) + λ(t)Tf(x(t),u(t)). (9)

Using integration by parts and the definition of control Hamiltonian, the
functional L can be rewritten as

L(x(t),u(t),λ(t), ξ) =
∫ T

0

(
H(x(t),u(t),λ(t)) + λ̇

T
x
)
dt (10)

− λ(T )Tx(T ) + λ(0)Tx(0) + ξTc(x(0)) + ϕ(x(T ))

The stationarity of the optimal solution requires the solution of the following
set of ODEs [7],

λ̇ = −∇xH (11a)

ẋ = ∇λH (11b)

0 = ∇uH (11c)

where we have used the notation∇(•) =
∂

∂(•) . The differential-algebraic equations

(DAE) in (11) are respectively called adjoint, governing and control equations,
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or Euler-Lagrange equations [38]. These must be solved jointly with the two-
point boundary conditions:

c(x(0)) = 0, λ(T ) =
∂ϕ

∂x(T )
. (12)

In case that the final time T is unknown, this parameter can be treated as an
additional input variable, which can be determined from the addition equations
∂L
∂T = 0 [7]. The system of coupled ODE (11) along with boundary conditions in
(12) forms a two-point boundary value problem (TPBVP). We note that after
defining the variable z(t) = {x(t), λ(t)}, the Euler-Lagrange equations can be
alternatively written as

ż = J∇zH,

0 = ∇uH,

where J is the canonical symplectic matrix:

J =

[
0 I

−I 0

]
.

The form above reveals the symplectic structure of the solution, even in the
presence of a dissipative or forced systems. This has motivated the design of
structure-preserving numerical schemes [9, 3]. In this work we aim to exploit
an integral of the optimal control problem [7, 14]:

Proposition 1. For an autonomous dynamical system (independent of time t),
control Hamiltonian H is a first integral of the motion.

Proof. For an autonomous dynamical system we have that ∂H
∂t = 0, and therefore

the preservation of the total time derivative of the control HamiltonianH (x(t),λ(t),u(t))
follows directly from the Euler-Lagrange equations in (11),

Ḣ = ∇xHTẋ+∇λHTλ̇+∇uHTu̇ = −λ̇
T
ẋ+ ẋT λ̇+ 0Tu̇ = 0.

This result motivates the discretisation proposed in the next Section.

2.3.2 Time discretisation of continuous system

Let us first consider the application of a midpoint rule on the governing and
adjoint equations in (11). This results in the indirect midpoint (IMP) algorithm
indicated in Box 2.

Motivated by the analytical result in Proposition 1, that is, in order to obtain
a discretisation that conserves the discrete counterpart of the Hamiltonain,

Hn = r(xn) + q(un) + λT
nf(xn,un) (13)

the algorithm in Box 2 is modified and transformed in the Indirect Hamiltonian
Preserving algorithm in Box 3. It is based on the definition of a discrete
derivative in [11] for function f(x(t),u(t)) in the governing ODE, similarly
to other energy conserving schemes [3, 17].
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Indirect midpoint algorithm (IMP)

R
(
xn− 1

2
− xd

)
+

(
∂f (n− 1

2 )

∂xn

)T

λn− 1
2
+

λn − λn−1

∆t
= 0

xn − xn−1

∆t
= f (n− 1

2 )

αQun− 1
2
+

(
∂f (n− 1

2 )

∂un

)T

λn− 1
2
= 0

for n = 1, . . . , N − 1, and with

c(x(0)) = 0, λN = ∇xN
ϕ(xN )

Box 2: Discretisation proposed for the Euler-Lagrange equations in the indirect
approach and using a midpoint rule.

Indirect Hamiltonian Preserving (IHP)

R
(
xn− 1

2
− xd

)
+∇xf

Tλn− 1
2
+

λn − λn−1

∆t
= 0

xn − xn−1

∆t
= fn− 1

2

αQun− 1
2
+∇uf

Tλn− 1
2
= 0

αQuN +∇uf
TλN = 0

for n = 1, . . . , N − 1, and with

c(x(0)) = 0, λN = ∇xN
ϕ(xN )

using definitions

∇xf = ∇xf (n− 1
2 )

+∆f ⊗ ∆x

∆xT∆x+∆uT∆u
−

(
∇xf (n− 1

2 )
∆x

)
⊗ ∆x

∆xT∆x

∇uf = ∇uf (n− 1
2 )

+∆f ⊗ ∆u

∆xT∆x+∆uT∆u
−
(
∇uf (n− 1

2 )
∆u

)
⊗ ∆u

∆uT∆u

∆x = xn − xn−1, ∆u = un − un−1, ∆f = fn − fn−1

Box 3: Discretisation proposed for the Euler-Lagrange equations in the indirect
approach and using discrete gradient ∇.

We note that the discrete ∇ gradient has the following important property,

∇xf∆x+∇uf∆u = ∆f , (14)

which will allow us to prove the following result:

Proposition 2. If the input and output cost have the quadratic forms in (4),
and the Euler-Lagrange equations are discretised with scheme in Box 3, then the
discrete control Hamiltonian is algorithmically preserved, i.e. ∆H = 0.

Proof. From the expression of the control Hamiltonian at time tn in (13), its
increment between consecutive times-steps is given by,

∆H = ∆xTR
(
xn− 1

2
− xd

)
+∆uTαQun− 1

2
+∆fTλn− 1

2
+∆λTfn− 1

2
.
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Substituting the discretised adjoint, governing and control equations in Box
3 into the previous expression yields

∆H = λT
n− 1

2

(
∆f −∇xf∆x−∇uf∆u

)
. (15)

From the property of the discrete gradient in (14), the expression in the
parenthesis vanishes and the preservation of the Hamiltonian follows.

Remark 2. The DMP, IMP and IHP algorithms in Boxes 1, 2 and 3, respectively,
differ on the time-stepping considered, but are both consistent, in the sense
that converge to the Euler-Lagrange equations in (11) as ∆t → 0. Moreover,
algorithms IMP and IHP coincide for linear governing ODEs, i.e. for a bilinear
function f(x(t),u(t)), and DMP differs in this case on the first term of the first
(adjoint) equation and end condition for λN , which is missing.

3 Numerical Solution

In linear problems, the discretised Euler-Lagrange equations have the structure
of a sparse saddle-point problem, which can be solved with known iterative
methods [2]. In non-linear problems instead, the equations form a set of non-
linear equations, which require specific iterative techniques and special choice
of an initial guess. We will discuss these issues in the next paragraphs.

3.1 Initial guess

In order to obtain an initial guess that is computationally not too expensive, but
that is also not too far from the exact numerical solution, we propose a partial
optimisation of the direct approach, where at each time tn, only the current
variables xn and un are computed, maintaining all the other variables fixed,
and that minimises the objective functional Jn(xn,un) = ∆t(r(xn) + q(un)).
This is tantamount to solving the following N problems (n = 1, . . . , N):

min
un,xn

Jn (16)

subject to,

xn − xn−1

∆t
= f (n− 1

2 )
,

c(x(0)) = 0

By building the Lagrangian function,

Ln(xn,λn,un) = Jn(xn,un) + fT
(n− 1

2 )
λn (17)

the KKT conditions with respect to unknowns xn, λn and un ( n = 1, . . . , N )
read:

∆tR(xn − xd) +

(
∂f (n− 1

2 )

∂xn

)T

λn − 1

∆t
λn = 0 (18a)

f (n− 1
2 )

=
∆x

∆t
(18b)

∆tQun +

(
∂f (n− 1

2 )

∂un

)T

λn = 0 (18c)

9



Note that they are very similar to those in Box 1, but removing variable
λn+1. Once we solve these set of equations, we will get x, u and λ at all time
points. Of course, such solution is suboptimal, but is has a very minor cost,
and in some of our numerical examples has been a better strategy than using
for instance the initial guess u = 0.

3.2 Iterative solution strategy

For moderate size problems, Newton-Raphson or quasi-Newton methods are
applicable for achieving convergence of the set of non-linear discrete Euler-
Lagrange equations. However, when the time step size ∆t becomes small, the
problem dimensions may increase substantially, resulting in too large systems
that are difficult to converge. In these cases, iterative methods become a useful
choice. We have resorted to the following forward-backward sweep method
(FBSM) [22, 36] to solve the optimal control problem iteratively. The solution
procedure is as follows:

1. Initial guess: Give or compute initial guess u0.

2. Forward time marching: Compute state variables xk+1 from uk and
λk. Solve the discrete governing ODE,

xn − xn−1

∆t
= f(xn− 1

2
,un− 1

2
), n = 1, 2, . . . , N,

with initial condition c(x(0)) = 0. In non-linear problems, function
f(x(t),u(t)) is not bilinear, and therefore a Newton-Raphson procedure
may be employed. In the IHP algorithm, the right hand side should be
replaced by fn− 1

2
.

3. Back substitution: Compute adjoint variables λk+1 from uk and xk+1.
Solve discretised adjoint equation (first equation in Box 1 and 3 for the

DMP and IHP, respectively), with the final condition λN = ∂ϕ(xN )
∂xN

. Since
x has been obtained in the previous step, these equations allow computing
λn−1 from λn. Note that these equations are always linear with respect
to λ. For instance, in the IHP algorithm, the following recursive equation
should be used:

λn−1 = −
(
∇xf

T − 1

∆t
I

)−1 (
R

(
xn− 1

2
− xd

)
+

(
∇xf

T +
1

∆t
I

)
λn

)
.

4. Update control variable: Compute uk+1 from state and adjoint variables
xk+1 and λk+1 computed in Steps 2 and 3. Apply one iteration of
conjugate gradient (CG) or gradient descent (GD) for solving the discrete
control equation ∇uH = 0.

Steps 2 and 3 allow expressing the objective functional solely as function
of (admissible) control values (Ĵ(u) = J(x(u),u)). Therefore, for solving the
control equation in Step 4, we can compute the directional derivative of the
objective functional along u as (δu = ϵp, with p a search direction)

δĴ(u) =
Ĵ(u+ ϵp)− Ĵ(u)

ϵ

∣∣∣∣
ϵ=0

=

∫ T

0

∇uHTδudt.
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Maximum reduction in the functional value can be assured if δu is chosen
opposite to the direction of ∇uH [19, 25, 29]. The control equations (third
equation in Box 1 and 3 for the DMP and IHP algorithms respectively) measure
rn = ∇unH. For instance, in the IHP approach this residual is given by

rn−1 = αQun− 1
2
+∇uf

Tλn− 1
2
, n = 1, 2, . . . , N − 1,

rN = αQuN +∇uf
TλN ,

and we set the residual vector r = {r0, . . . , rN}T . Consequently, in Step 4, and
at each iteration k ,we update the control variable as,

uk+1 = uk + θkpk

with pk a search direction and θk the step length at the k-th iteration. In inexact
line search algorithm, one can use Armijo rule with reducing step length (θk →
θk/2) until acceptance criteria achieved, i.e. J(uk + θkpk) < J(uk)− γθkpT

kr
k,

γ ∈ (10−4, 0.5). To avoid too many backtracking/bisection during line search,
Armijo rule with curvature conditions (|pT

kr
k+1| ≤ σ|pT

kr
k|, σ ∈ (10−4, 0.1))

results in optimum step length (Wolfe conditions) [26]. Although the selection
of γ and σ combination depends on the optimisation problem, one must ensure
that there is a desired decrease in the cost functional with iterations and that
the step length is not too small or big to avoid convergence problems in time
integration of ODE (step 2) [16]. When using θmax = 1

||pk||
as the initial estimate

of θk along pk, the rate of convergence is faster than using unit step size. In
case that line search algorithm results in no suitable step length, we move on
by taking a small step length (θk = θmin) along pk. Search direction has been
used to update according to (with the initial search direction p0 = −r0)

pk+1 = −rk+1 + β̃pk,

using the Fletcher-Ribier parameter β̃ = ||rk+1||
||rk|| for CG [10] and β̃ = 0 for GD.

4 Numerical Examples

In this section we compare the behaviour of the DMP and IHP algorithms in
mechanical systems governed by linear and non-linear ODEs. The first example
under consideration analyses the optimal control of a particle in linear and non-
linear viscous medium. In the second example, we will study the motion of
a two-particle system with a non-linear elastic spring. Finally, we model the
optimal locomotion of planar worm (flexible body system) subjected to elastic
forces and viscous friction. In all algorithms, we use β = 0 in the definition of
ϕ(x(T )) in (4), unless stated otherwise. Convergence is assumed when the L2

norm of the error in the global residual and the primary field iterative changes
fall below the tolerance of 10−10.

4.1 Falling particle in viscous medium

4.1.1 Linear problem

We consider the rectilinear motion of a particle with mass m and subjected to
a drag force proportional and antiparallel to the velocity v along z direction.
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During the motion, particle is under influence of the gravitational acceleration
with intensity a and a controlling vertical force u. Velocity v is our state variable,
and thus has the role of variable x in our previous derivations. Consequently, a
cost functional

J(v, u) =

∫ T

0

(r(v) + q(u))dt, (19a)

will be minimised with

r(v) =
1

2
(v − vd)

2, q(u) =
α

2
u2 (19b)

and vd ∈ R a target velocity. Gravitational potential energy of the particle is
given by U(z) = maz and Rayleigh dissipation induces an external force equal
to −bv. Equation of motion is then given by the following balance equation,

v̇ = f(v, u), (20)

with

f(v, u) = − b

m
v − a+

u

m
,

and (α,m, b, a) ∈ R+, and initial state v(0) = vo.
The analytical solution can be deduced from the Euler-Lagrange equations

in (11) with the control Hamiltonian H (v, λ, u) = r(v) + q(u) + f(v, u)λ,

λ̇+
∂H
∂v

= 0 ⇒ λ̇+ v − b

m
λ− vd = 0, (21a)

v̇ − ∂H
∂λ

= 0 ⇒ v̇ +
b

m
v + a− u

m
= 0, (21b)

∂H
∂u

= 0 ⇒ u = − λ

αm
, (21c)

with boundary conditions v(0) = vo and λ(T ) = 0. Substituting Eqn. (21c) into
Eqn. (21b), the following system of coupled linear first-order non-homogeneous
differential equations is derived,

λ̇− b

m
λ+ v − vd = 0, (22a)

v̇ +
b

m
v +

λ

αm2
+ a = 0. (22b)

Solution of Eqn. (22) can be written as a linear combination of eigenvectors
corresponding to eigenvalues ±γ. Finally, state, co-state and optimal control
trajectories take the form

v(t) = C1

(
b

m
− γ

)
eγt + C2

(
b

m
+ γ

)
e−γt + vp (23a)

λ(t) = C1e
γt + C2e

−γt + λp (23b)

u(t) = −λ(t)

αm
(23c)

12



where

γ =
1

m

√
1

α
+ b2; vp =

vd − αbma

αm2γ2
; λp = −bvd +ma

mγ2
,

C1 =
m (vo − vp) e

−γT + (b+mγ)λp

(b−mγ) e−γT − (b+mγ) eγT
; C2 =

m (vo − vp)− (b−mγ)C1

b+mγ

In this study, system dynamics is analysed with parameters ∆t = 0.1 s,
T = 10 s, m = 1 kg, b = 1 Ns/m, a = 1 m/s2, vo = 0 m/s, vd = 20 m/s and α
values are varied from 10−2 to 102. It can be seen that the particular solution
(vp, λp) is the equilibrium/stationary point of the dynamical system in Eqn.
(22). Since stationary point is a saddle point (and is unstable), particle spends
significant amount of total time near this point. From analytical solution, we
can also deduce that as α increases, (vp, λp) approaches (vo, λo), while for lower
α we have that (vp, λp) approaches (vd, λT ). The results in Fig 2a-2b confirm
also this behaviour.

0 2 4 6 8 10

t (s)

-5

0

5

10

15

20

 
v
 (

m
/s

)

(a)

0 2 4 6 8 10

t (s)

-25

-20

-15

-10

-5

0

5

(b)

0 2 4 6 8 10

t (s)

0

50

100

150

200

 
u

 (
N

)

(c)

0 2 4 6 8 10

t (s)

-15

-10

-5

0

lo
g

1
0
 |
H

n
 -

 H
n

-1
|

(d)

Figure 2: Particle with linear viscosity: DMP algorithm. Time evolution of (a)
velocity, (b) co-state, (c) control force (d), control Hamiltonian.

Results of DMP algorithm are in agreement with the analytical solution
(overlapped with dots in Fig. 2). Since this approach results in an initial value
problem with no restriction on the final condition of the Lagrange multiplier,
the Hamiltonian fluctuates near the boundaries. Although these effects vanish
quickly as we move away from both boundaries (see Fig. 2), and results are
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close to analytical solution, it can be observed that DMP discretisation does
not preserve Hamiltonian exactly in general, irrespective of α values. As the α
value decreases, error in Hamiltonian values decreases and with α=10−2, DMP
approach nearly conserves Hamiltonian in the domain sufficiently far from the
boundaries.
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Figure 3: Particle with linear viscosity: IHP algorithm. Time evolution of (a)
velocity, (b) co-state, (c) control force, (d) control Hamiltonian.

The proposed Hamiltonian preserving scheme (IHP) has been employed also
for the same five values of α. The results for ∆t = 0.1s are also very close to the
analytical solution, and unless the DMP algorithm, they preserve the boundary
end condition λN = 0 (overlapped with dots in Fig. 3). As expected, the control
Hamiltonian is preserved up to machine accuracy, regardless of the value of α.

The two algorithms, DMP and IHP have been compared with the analytical
solution, and discrete L2 norm has been used for quantifying the error. Note that
due to the different discretisation of the adjoint equations in both algorithms,
λ in DMP is divided by ∆t for comparing the co-state variables. It can be
seen in Fig. 4 that for the IHP approach, the error in primal or dual variables
varies quadratically with the time step size ∆t, i.e., ∥ · ∥L2 ∼ O(∆t2). Instead,
DMP approach exhibits linear rate of convergence for the co-state and control
trajectories, but quadratic for the primal variable v. Indeed, the governing
equation is discretised with a second order midpoint rule (see Fig. 4), but the
adjoint equation (first equation in Box 1) does not use a second order scheme,
even if the cost function J∆ in (6) would be approximated with a midpoint
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Figure 4: Particle with linear viscosity: convergence analysis of L2 error with
α = 102.

rectangular rule. Therefore, the resulting time discretisation of the adjoint
equation and the missing boundary condition for λ are responsible of the linear
rate of convergence.

4.1.2 Non-linear problem

Linear drag law is applicable in low Reynold´s number flow (Stokes flow) and
appropriate to study the optimum swimming strategies of micro-swimmers (micro-
robots, bacteria, etc.) [30]. Instead, for moderately high Reynold’s number
flow, quadratic variation of drag force with particle velocity is more adequate
and covers a broad range of engineering problems, such as skydiver motion or
car motion [41].

In this example we replace the linear drag of the previous example with the
quadratic drag law −bv2, and study the evolution of system optimal state and
co-state trajectories. The same cost functional J(u, v) and form of the governing
equation in (19)-(20) is employed, but with f(u, v) taking the expression,

f(v, u) = − b

m
v2 − a+

u

m
(24)

with (α,m, b, a) ∈ R+.
Optimality principles along with Euler-Lagrange equations result in system

of non-linear first-order ODE and a close form solution may not exist. The
resulting system of equations is solved using IMP and IHP algorithms. In
both cases, a high value of α results in insufficient control and particle starts
descending, while a decrement in α enhances the system controllability. With
a sufficiently small value, α = 10−5, particle attains the target velocity in an
oscillatory manner. Although the state, co-state and control trajectories of both
schemes are quite similar, the IMP algorithm does not preserve the Hamiltonian
exactly (see Fig. 5), whereas IHP approach does (see Fig. 6).

For the validation of iterative solver, the non-linear particle problem is solved
with Armijo line search algorithm (γ = 0.1, θmax = 1

||pk|| , θmin = 0.01). A

constant initial guess u(t) = 15N (10N and 5N furnish the same results); α =
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Figure 5: Particle with non-linear viscosity: IMP algorithm. Time evolution
of (a) velocity, (b) co-state, (c) control force, and (d) control Hamiltonian
increment.

10−5 and convergence criteria,

max(|∇uJ |, |δu|) ≤ 10−3.

After 200 iterations, GD did not converge, while conjugate gradient (CG)
and Newton-Raphson (NR) did (see Fig. 7). The latter exhibits higher oscillatory
response than CG, but a slightly lower value of the cost functional, and achieved
convergence in seven iterations (value of J is plotted for reference in Fig. 7d).

Figures 5-7 also show that for small values of α, the response may exhibit
oscillations. As shown by the authors in another publication [5], the source of
these numerical artifacts is due to the numerical discretisation, and may appear
for high values of ∆t and small optimisaation parameter α, even in implicit
numerical discretisations of the ODEs.

4.2 Inverted elastic pendulum

Inverted elastic pendulum system is often used to model the self-stabilising
characteristics of locomotion in humans, animals and biped robots [33, 34]. In
this section, we study the non-linear self-stabilising behaviour of inverted elastic
pendulum system in the framework of optimal control theory. For the sake of
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Figure 6: Particle with non-linear viscosity: IHP algorithm. Time evolution
of (a) velocity, (b) co-state, (c) control force, and (d) control Hamiltonian
increment.

brevity, two particle system has been analysed, although the extension to multi-
particle system is formally straightforward.

We simulate two masses m1 and m2 linked by an elastic spring and subjected
to gravitational field with acceleration a along the z direction (see Fig. 8).
Generalized coordinates and velocities of the two particles are x = {x1,x2} =
{x1 . . . x6} and v = {v1,v2} = {v1 . . . v6}, respectively. The initial and strain
free separation between the two particles is equal to lo, and the elastic potential
energy function takes the form Ue(x) =

ks

2 (l(x)− lo)
2
, with ks ∈ R+ the spring

stiffness. Gravitational potential energy is given by Uc(x) =
∑2

i=1 mia
T
i xi, and

potential energy of the system is the sum of elastic and force field potential
energies, i.e. U(x) = Ue(x)+Uc(x). Equation of motion of two particle system
is given by Euler-Lagrange equation,

Mẍ+∇xU = 0 (25)

where M = diag(m1,m1,m1,m2,m2,m2). From the definition of U(x), we have

that ∇xU = ks (l − lo)∇xl +Ma, with ê = (x2 − x1)/l, ∇xl = {−ê, ê}T, and
a = {0, 0, a, 0, 0, a}. Since equation (25) is a second order ODE, we transformed
the governing equations in a first order ODE doubling the number of state and
co-state variables. We then chose to control the horizontal velocity of the first
mass m1, so that u(t) ≡ v1(t).
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Figure 7: Non-linear falling particle problem with IMP (α = 10−5). Time
evolution of (a) velocity, (b) co-state, and (c) control variable. (d) Evolution
of cost-functional as a function of number of iterations. NR=Newton-Raphson,
CG=Conjugate gradient, GD=Gradient descent.

Particles 1 and 2 are initially placed at positions (0, 0, 0) and (0.3, 0, 1)m,
respectively. Numerical values of spring parameter ks = 10 N/m and force
field intensity a = 0.1 m/s2 are assumed constant throughout the motion.
In addition, at all time instant motion is confined on z-x plane and particle
1 is constrained to move only horizontally according to our control variable
u(t). System of DAEs resulting from DMP, IMP and IHP approaches are
solved with ∆t = 0.05 s, xd = {0, 0, 0, 0, 0, 2}T, R = diag(0, 0, 0, 0, 0, 1), Q =
diag(1, 0, 0, 0, 0, 0), and α = 10−5. We point out that in this case the initial
guess described in Section 3.1 allowed us to attain convergence with DMP, IMP
and IHP algorithm in 7, 6 and 7 iterations respectively using a fully Newton-
Raphson procedure in all variables. Without the initial guess, convergence was
not achieved.

It can be observed in Fig. 8 that the optimal trajectories and control
predicted from the three algorithms, DMP, IMP and IHP are similar. Initially,
particle 1 horizontal position rapidly changes from 0 m to 0.3, and then varies
coherently with the particle 2 horizontal translation. In order to attain a
vertical alignment of the segment joining particles 1 and 2, without a oscillatory
response, this coherent horizontal translation of both particles is essential. Moreover,
with the horizontal movement of both particles, particle 2 keeps on its free
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Figure 8: Inverted elastic pendulum. Time evolution of (a) control, (b) particle
2 vertical position, (c) particle 2 horizontal position, and (d) Hamiltonian
increment.

oscillation about equilibrium vertical position of 1.034. All algorithms show
small variation of control Hamiltonian over time between 0 and 4 seconds,
although the only one that exactly preserves H, up to machine accuracy, is
the IHP algorithm (see Fig. 8).

4.3 Optimal locomotion of worm-like organism

Let us consider an undeformed elongated body with length L resting along the
x-axis. We aim at simulating the motion of a worm-like organism due to bending
active internal movements, such as C. elegans nematode or similar organism on
an assumed rigid substrate. The locomotion of C. elegans has been extensively
used as model organism in biomedical research [39, 12], where the displacement
is thought to be a result of coordinated function of the dorsal and ventral muscle
system [13, 18] and non-isotropic frictional forces [24].

The worm is modelled as planar elastic rod subjected to finite stretching and
bending deformations only. Worm is discretised into n+ 1 discrete nodes with
position vector/state (at time t) x = {x0,x1, . . . ,xn} and n straight segments
oriented with respect to each other e0, e1, . . . , en such that ei = xi−xi−1, êi =
ei

||ei|| , p̂i =
ei−1+ei

||ei−1+ei|| and p̂T
i n̂

i = 0, as depicted in Fig. 9a. The worm mechanics

is defined by the following discrete form of stretching (Us) and bending strain
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energy (Ub),

Us(x) =
ks
2

∫ L

0

(
ds

dS
− 1

)2

dS ≈ ks
2

n∑
i=1

1

l̃i

(
li − l̃i

)2

Ub(x) =
kb
2

∫ L

0

κ2dS ≈ kb
2

n−1∑
i=1

1

qi
(1− cos2 θi)

where dS and ds are differential arc lengths in the underformed and deformed
configuration, respectively. Parameter κ is elastic curve curvature, ks is stretching
modulus, kb is bending modulus, l̃i and li = ||ei−1|| are respectively the undeformed
and deformed length of the ith segment, qi = (l̃i + l̃i+1)/2 is a Voronoi length
region associated with each node, and θi = cos−1(êi−1 · êi) is the bending angle
at node i.

Following resistive force theory, anisotropic friction model has been chosen
with fixed value of tangential (µt) and normal (µn) coefficient of friction [12].
At time t, drag force generated at the ith node due to crawling over substrate
is assumed directly proportional to the nodal velocity, so that the following
frictional forces are applied at each node i:

fv
i =−

(
µtI+ (µn − µt)

(
n̂i ⊗ n̂i

))
ẋi

where I is the identity second rank tensor. The assembling of all the nodal
contributions gives rise to the following global frictional force vector,

fv =

n+1⋃
i=0

fv
i = −Bẋ (26)

with B is a deformation dependent anisotropic friction tensor.
Worm muscle system has been modelled as self equilibrated active force

system producing pure bending effects as described in [24]. Internal bending
moment at node i, denoted by ui, induces three nodal forces,

f
i−1

=
ui

ai
n̂i,

f
i

= −f
i−1 − f

i+1
,

f
i+1

=
ui

bi
n̂i,

at i− 1th, ith, and i+ 1th nodes, respectively. Resultant external force due to

internal moment is given by fu(u) =
⋃n−1

i=1 {f
i−1

,f
i
,f

i+1}T . At time t, input
moment vector/control is defined as u = {u1, u2, . . . , un−1]. Neglecting inertial
effects, linear momentum balance gives

Bẋ = f(x,u) (27)

where f(x,u) = fu(u)−∇xUs(x)−∇xUb(x).
First, we validate the discrete form of elastic strain energy and active force

model with the elastica theory. Consider the worm motion on a frictionless
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Figure 9: Wom-like organism model: (a) Geometry of deformation (b) tethered
worm coiling on a frictionless substrate

substrate with the anchored tail. We are interested in the evolution of the
worm centre of mass (xcm) with arbitrary time-varying bending moment (u(t)).
During motion, worm exhibits insignificant stretching strains compared to bending
strain, hence worm is modelled as nearly inextensible rod (length L) with
ks ≈ 500kb. If the bending moment is a function of time only (u = u(t)1), then
during the motion each point of worm resides on the circle of radius r(t). Using
moment-curvature relation (r(t) = kb

u(t) ), close-form solution for xcm trajectories

can be expressed as

xcm(t) = r(t)k̂ + r(t)d̂(t)

where r(t) = 2r(t)2

L sin
(

L
2r(t)

)
, d̂(t) = sin

(
L

2r(t)

)
î − cos

(
L

2r(t)

)
k̂, î and k̂ are

unit vector along x and z direction, respectively.
Following, material and physiological parameters has been used in the simulation:

kb = 1, L = 1 mm, µn = µt = 0, m(t) = π t
T , T = 4 s, ∆t = 0.01 s and

body is uniformly discretised into 20 segments (n = 20). It can be observed
that the trajectories of xcm are in good agreement with the theoretical results.
Furthermore, with the application of constant bending moment (= π), the unit
length worm should deform into a semi-circular arc, and present discrete strain
energy form, as we obtained in the simulation shown in see Fig. 9b.

We next used the developed model to investigate the optimal locomotion.
We are interested in optimal internal moment distribution u(t) such that the
worm centre of mass attains the prescribed target (xd) in a given amount of
time (T). We consider the motion which minimises the cost functional in Eqn.
(3) with

r(x) =
1

2
(xcm − xd)

T(xcm − xd)

q(u) =
α

2
uTQu

ϕ(xcm(T )) =
β

2
(xcm(T )− xd)

T(xcm(T )− xd)
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Since worm has limited internal energy, we restrict nodal bending moment
(ui) to an admissible control set U ∈ [−2, 2]. To the best of our knowledge,
no optimal locomotion study in the control Hamiltonian framework has been
attempted in the literature.

The problem has been solved using IMP algorithm, and FBSM strategy with
CG solver using these parameters: L = 1 mm; kb = 1;µn = 1;µt = 0.1,∆t =
0.01s; T = 4s; n = 20; xd = [1.05, 0] mm; β = 1, α = {10−5, 10−2, 10−1},
Qij = δij (kronecker delta). Wolfe line search algorithm has been used with
γ = σ = 0.1, θmin = 0.005 (minimum value) (see Section 3). Half bending
moment pulse with amplitude 1 has been used as an initial guess to start the
FBSM algorithm (see Fig. 10(a)).

It can be observed that in order to attain the target position optimally, the
worm initially generates a series of full sinusoidal moment pulse for short time
duration, followed by long term half moment pulses. With the reduction of α,
point xcm starts advancing towards target xd, and as α decreases to 10−5, worm
reached the prescribed target in the given amount of time of T = 4s (see Fig.
10).

The IHP algorithm has been discarded in this example due to the additional
non-linearities and the moderate relative gain in the previous example, despite
the advantageous theoretical preserving properties. More importantly, the balance
equation in (27) has the form Bẋ = f(x,u), with matrix B depending on x.
This fact poses additionally complexities and non-linearities in the implementation
of the IHP algorithm. We are currently investigating on how to extend the
IHP to this type of governing ODEs. For completeness we plot in Figure 10d
the evolution of the control Hamiltonian H, which is oscillatory but remains
bounded.

This example also numerically demonstrates the performance of the IMP
FBSM strategy for a system with 41303 dof (including state, adjoint and control
variables for all time-steps), which is much larger than the 303 dofs employed in
the previous example. When attempting to solve the IMP algorithm with a full
monolithic Newton-Rapshon (NR) method, no converge was achieved. Instead,
the FBSM converged after 200 iterations, with a computational time that was
similar to the time of one iteration in the NR process.

5 Conclusions

We have presented three different algorithms that use different time discretisations
of the governing and adjoint ODEs found in optimal control theory. The direct
midpoint (DMP) resorts to the direct approach, while the indirect midpoint
(IMP) and Indirect Hamiltonian Preserving (IHP) are derived from the indirect
approach. We have highlighted the differences in the resulting algorithms with
the two approaches. Mainly, DMP omits the final boundary condition, and
consequently, as shown in Figure 4, has a lower order of convergence in the
adjoint ODEs, unless specific modifications are employed.

We have proposed an algorithm, IHP, that preserves an integral of the Euler-
Lagrange equations, the control Hamiltonian. In the examples that we have used
so far though, no substantial difference has been detected in the robustness of
the resulting algorithm, i.e. IMP and IHP algorithms converged or failed to
converge for the same parameters and problems. Indeed, the solution of the
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Figure 10: Worm-like organism optimal locomotion: (a) Optimal moment
distribution (α = 10−5) (b) Optimal locomotion (α = 10−5) (c) Centre of
mass trajectories with α (d) Evolution of increments of control Hamiltonian in
the IMP algorithm.

two point BVP in non-linear systems poses numerical challenges, which must
be surmounted before the preservation of the Hamiltonian can make a clear
difference.

In this paper we have also suggested and employed some iterative strategies
for the solution of the non-linear equations. The use of conjugate gradient and
gradient descent techniques are attractive, due to the fact that the size of the
global system increases with the number of time-steps, and thus a reduction
of the time-step may become a drawback for the numerical solutions with
monolithic Newton-Raphson or quasi-Newton strategies. The proposed forward-
backward sweep method allows reducing the impact of this computational cost
when smaller time-steps are employed. It is easy to implement, for it only
involves the solution of a standard forward problem, and a backward (linear)
problem, in addition to an update stage of the control variables. However,
its convergence is problem dependent. Further investigation of convergence
properties for non-linear problems visited here is under progress. We also have
left for future investigations the combination of structure preserving discretisations
with strategies that yield a constant control Hamiltonian.

The proposed algorithms have been applied to linear and non-linear problems,
and also used in practical biological applications that aim at deciphering optimal

23



mechanical strategies for propulsion of active bodies. The optimal locomotion
of worm-like organisms or soft robots poses modelling and numerical challenges.
We have detected that the optimal input strongly depends on the initial guess,
and that consequently, the algorithms capture local minima. The search of
global minima with different initial frequencies and wavelengths is beyond the
scope of this article, but we believe it has important implications.
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