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Abstract

Background: Modelling the course of a disease regarding severe events and identifying prognostic factors is of
great clinical relevance. Multistate models (MSM) can be used to describe diseases or processes that change
over time using different states and the transitions between them. Specifically, they are useful to analyse a
disease with an increasing degree of severity, that may precede death. The complexity of these models changes
depending on the number of states and transitions taken into account. Due to that, a web tool has been
developed making easier to work with those models.

Results: MSMpred is a web tool created with the shiny R package that has two main features: 1) to allow to
fit a MSM from specific data; 2) to predict the clinical evolution for a given subject. To fit the model, the data
to be analysed must be upload in a prespecified format. Then, the user has to define the states and transitions
as well as the covariates (e.g., age or gender) involved in each transition. From this information, the app
returns histograms or barplots, as appropriate, to represent the distributions of the selected covariates and
boxplots to show the patient’ length of stay (for uncensored data) in each state. To make predictions, the
values of selected covariates from a new subject at baseline has to be provided. From these inputs, the app
provides some indicators of the subject’s evolution such as the probability of 30-day death or the most likely
state at a fixed time. Furthermore, visual representations (e.g., the stacked transition probabilities plot) are
given to make predictions more understandable.

Conclusions: MSMpred is an intuitive and visual app that eases the work of biostatisticians and facilitates to
the medical personnel the interpretation of MSMs.
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Background
A multistate model (MSM) generalizes the classic sur-
vival modelling allowing the description of complex dy-
namical processes over time. It is defined by a series of
states — which could represent different stages of the
life history of an individual — and the transitions that
connect them — which describe the potential paths
between those states along time [1].
As examples in the context of COVID-19, Ursino

et al. [2] and Mody et al. [3] used MSMs in order to
describe the evolution of patients admitted to the In-
tensive Care Unit (ICU), and hospitalized patients, re-
spectively. They consider several states, such as inpa-
tient floor, ICU and invasive mechanical ventilation.
The conclusions raised from these papers are powerful
because they are able to estimate the factors associ-
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ated to each transition and not only those that focus
on the discharge or death.
Since these type of models are usually complex, dif-

ferent tools have been developed to ease the modelliza-
tion process and to help with the interpretability of the
findings. For instance, the app MSMshiny [4] aims to
fit multistate models. It allows the user to: i) add an
initial state even if it is not included in the uploaded
data; ii) include as many transitions as desired; iii) as-
sign specific covariates to each transition; iv) specify
different models and compare their log-likelihood and
Akaike information criterion (AIC) to help in select-
ing the best one. Furthermore, MSMshiny provides an
interactive visualization of how individuals move be-
tween states over time. Among the main limitations of
this app, we highlight that once a transition has been
defined, it cannot be removed anymore and that the
model cannot be validated through a residual analy-
sis. Despite MSMshiny allows to make predictions, the
outputs are limited and they do not help in the inter-
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pretation of the results. The app MSMplus [5] is in-
tended to offer a wide spectrum of visualizations once
an MSM is fitted outside the application. It provides
a nice friendly interface, which provides various types
of graphics, together with some indications, allowing a
thorough interpretation of the fitted model. MSMplus
allows a deep customization of the returned plots (e.g.,
changing the names of the states) and is complemented
with theoretical explanations on MSMs. A weakness of
the MSMplus app is that the users have to perform the
analyses on their own and upload the outputs to ob-
tain a complete data visualization of the results. In
addition, the app lacks some numerical output, such
as a table with the estimates of the fitted model. The
MSDshiny app [6] has been designed specifically for
clinical trials allowing the user to make simulations
based on MSMs. The total number of states is decided
by the user in the model specification. The simulation
of the time-to-event times is performed using a Weibull
distribution with specific parameters for each transi-
tion. Some of its main limitations are the lack of the
relevant transition probability plots, the restriction to
a maximum of five states and that it does not allow
having transient initial states.
This work presents theMSMpred shiny app (https:

//www.grbio.eu/pubs/MSMpred/) designed to fit a
MSM from specific data and to predict the clinical evo-
lution for a given patient based on the previous model.
We aim to overcome the above mentioned limitations
of the existing apps. Before presenting MSMpred we
provide an overview of MSM.

Multistate models
A MSM is a model for a continuous time stochastic
process allowing individuals to move among a finite
number of states. Within the scope of survival analy-
sis, MSMs allow to describe complex clinical processes
that change over time. Those models are formed by
states and transitions, which represent, for instance,
the different stages of a disease evolution and the pos-
sible paths to move between those states, respectively.
In these models we focus on the transitions between
states and the time until they occur.
Usually those models are represented using a dia-

gram where the nodes of the diagram represent the
states of the model, and the arrows represent the tran-
sitions. The diagrams provide a visualization of the
model allowing a complete understanding of all possi-
ble trajectories.
There are three different types of states: initial states

are the ones where an individual could start the pro-
cess; transient states are those in which individuals can
get in and out of the state; and absorbing states are
the ones where the process ends.

The main goals of MSMs are to characterize the pro-
cess of an individual or a group; to analyse the rela-
tionship between the covariates of interest and the pro-
cess transitions; to identify the risk factors for specific
transitions; and to develop predictive models for new
individuals.

There are three main steps to build a MSM: 1) rep-
resent the clinical process by means of states and tran-
sitions; 2) decide which covariates or factors are con-
sidered in each transition; 3) fit the model. The first
two steps usually require a clinical insight; so, collab-
oration with medical experts is essential.

Characterization

There are different ways to characterize a MSM, re-
lated to each other in such a way that one characteri-
zation can be obtained from any of the others.

Let X = {X(t) : t ≥ 0} be the stochastic pro-
cess where X(t) represents the state in which the
subject is at time t and takes values in the discrete
set of states of the model, R = {1, .., R}. The class
H(t) = {X(s),Z(s), s ≤ t} contains the information
of all the paths of all the individuals up to time t
including the covariates Z(s), which might be time-
dependent.

The Markov property is met when, for any s < t and
l, k ∈ R,

Pr{X(t) = l|X(s) = k;H(s−)}
= Pr{X(t) = l|X(s) = k} (1)

whereH(s−) represents the history of the process prior
to time s. This condition implies that the future path
of a subject only depends on the state where he/she
is at present but not on the past path that he/she
had followed. Under the Markov assumption an MSM
process can be characterized by means of either transi-
tion probabilities, transition intensities and cumulative
transition intensities that we define next [7].

Transition probability, πkl(s, t): the probability
that a subject in state k at time s (s ≤ t) is in state l
at time t, that is,

πkl(s, t) = Pr{X(t) = l|X(s) = k}, ∀k ̸= l ∈ R,

πkk(s, t) = 1−
∑
k ̸=l

πkl(s, t), ∀k ∈ R. (2)

Transition intensity, λkl(t): the transition inten-
sity represents the instantaneous probability of tran-
sition between two states, k and l, at a specific time
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point t and it is defined as

λkl(t) = lim
∆t→0

Pr{X(t+∆t) = l|X(t) = k}
∆t

= lim
∆t→0

πkl(t, t+∆t)

∆t
, ∀k ̸= l ∈ R,

λkk(t) = −
∑
k ̸=l

λkl(t), ∀k ∈ R. (3)

Cumulative transition intensity, Λkl(t): the cu-
mulative transition intensity between states k and l is
defined as

Λkl(t) =

∫ t

0

λkl(s)ds, ∀k, l ∈ R. (4)

Estimation
A non-parametric estimation of the cumulative transi-
tion intensities is given by theNelson-Aalen estima-
tor [7]. This estimator is based on the number of direct
transitions k → l before time t, denoted by Nkl(t), and
the number of individuals in state k just before time
t, denoted by Yk(t). Then, the Nelson-Aalen estimator
for the cumulative transition intensity is given by

Λ̂kl(t) =

∫ t

0

dNkl(s)

Yk(s)
ds, ∀l ̸= k ∈ R

Λ̂kk(t) = −
∑
k ̸=l

Λ̂kl(t), ∀k ∈ R. (5)

Semi-parametric regression models are very conve-
nient to analyse MSMs as they are very flexible. This
version of MSMpred only includes the Cox propor-
tional hazards model. Since a Cox model is fitted for
every transition, different subsets of covariates might
be chosen to indicate their influence on different states
of the model.
The Cox or proportional hazards model allows

to relate the characteristics of an individual (described
by some covariates) and the transition intensities:

λkl(t;Z) = λkl,0(t) exp(β
T
klZ) (6)

where λkl,0(t) is the baseline intensity function for the
transition k → l, βkl is the vector of regression param-
eters, and Z = (Z1, ..., Zp) is the covariate vector.
The association of a covariate Zm with the transition

intensity of a specific transition k → l can be measured
by means of the hazard ratio (HR):

HRkl,q = exp(βkl,q). (7)

The Cox model is built under three assumptions that
need to be validated for each transition after every

preliminary fitting. The assumptions are the following:
first, the continuous covariates must act linearly on the
logarithm of the hazard ratio; second, the final fitted
model must lack influential observations; and third,
the hazard rates between every two values of each co-
variate must be proportional. If any of these assump-
tions does not hold for a specific transition, the corre-
sponding subset of covariates has to be changed and
the model has to be readjusted [8]. MSMpred allows
to make all these validations graphically using several
types of residuals. In this app we have implemented
the following residuals:
Martingale-based residuals in order to validate

the linearity in the continuous covariates. A graph rep-
resenting the martingale-based residuals of the selected
transition and covariate as function of covariate values
is reported. If the smoothed curve along the x axis is
reasonably linear, we can assume the linearity of that
covariate in that specific transition, otherwise, a trans-
formation of the covariate in that specific transition
should be implemented.
Residuals based on the scores to validate the

global fit and to detect influential individuals. The user
can plot the dfbetas residuals versus each covariate
for any specific transition. The dfbetas residuals are
the standardized dfbeta residuals which give a measure
of the approximate change of the coefficients if the
individual i is not taken into account [9]:

rdfi,kl
(t) = β̂kl − β̂kl(i), (8)

where β̂kl represents the estimator obtained when ad-
justing the Cox model for the transition k → l consid-
ering all the individuals, and β̂kl(i) the estimator from
the model without taking into account the individual
i. These graphs help to detect if there is any potential
influential value. Since large values of dfbetas indicate
observations that are influential in estimating a given
parameter, the larger the value of dfbetas the more
influential the observation is.
Schoenfeld residuals to validate the proportional

hazards premise. These residuals show the difference
between the observed value of a covariate for a given
selected transition and for every failure and the ex-
pected value under proportionality of the hazards. A
graph with the scaled residuals over time can be plot-
ted for each covariate. Each of these graphs should be
independently assessed, and if the confidence band of
the smoothed curve covers the line rSCkl,m

= 0, the
proportionality of the hazard of covariate Zm in the
transition k → l is not severely violated.

Prediction
As we will use MSMs to make predictions for new
individuals, a predictive model needs to be specified
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to obtain P̃{X(t1) = x|H(t0)}, where t1 > t0 and
H(t0) = {X (t0),Z(t0)} is the observed history of
states and covariates until time t0. The tilde over P
indicates that this is the predicted probability and not
the observed probability, Pr{X(t1) = x|H(t0)}. Once
the predictive model is obtained, the transition proba-
bilities and hazard functions could be obtained in order
to forecast different aspects of interest (e.g., probabil-
ity of being in each state after time t).
To assess how good are those predictions, we need

to analyse the calibration and sharpness of the pre-
dictive model. Concerning the calibration analysis the
predicted probabilities, P̃, and the true probabilities,
P , are compared, aiming to check how near/far are
from each other. Ultimately systematically biased pre-
dictions can be detected [7]. With the sharpness of the
model we analyse if the baseline information given by
H(t0), has a highly predictive value for the state where
individuals will be later in time.
Some scoring rules, such as the logarithmic score,

combine both aspects, calibration and sharpness, to
analyse the performance of the predictive models. The
logarithmic score for a group of n individuals is com-
puted as

LS(P̃, t1) = − 1

n

n∑
i=1

log P̃{Xi(t1) = xi(t1)|Hi(t0)} (9)

and takes values between 0 and ∞. This score is use-
ful to compare different models, where models with
lower values of LS(P̃, t1) are preferable. The value of
the the logarithmic score by itself is not, however, in-
terpretable.
The article is from now on structured as follows.

It starts with an implementation section introducing
the different tabs of the MSMpred describing their
inputs and outputs, together with some indications
about how to interpret them. For illustrative purposes
the app is accompanied by data from a subset of four
cohorts corresponding to four different Spanish waves
of the COVID-19 pandemic. This dataset (uploaded
on July 28th, 2022) has information about 4,000 hos-
pitalized adult COVID-19 patients from 8 Catalan
hospitals and it is part of the Dynamic evaluation
of COVID-19 clinical states and their prognostic fac-
tors to improve the intra-hospital patient management
project (DIVINE project, 2020PANDE00148, https:
//grbio.upc.edu/en/research/projects/pandemies).
This project was approved by the Ethics Committee
of the Hospital Universitari de Bellvitge. The results
section uses this dataset to illustrate the different ca-
pabilities of the app, which is open to further imple-
mentations outlined in the discussion section. This pa-
per ends by listing the future work of MSMpred and
comparing the app to other web tools related to MSMs.

Implementation
MSMpred is a shiny app with two main goals: 1) to
fit a MSM from specific data; 2) to predict the clinical
evolution for a given individual based on a previously
fitted MSM. The user can upload a new dataset, pro-
vided that it has the required format explained in the
help of the app.
As MSMpred is mainly designed for physicians

or researchers with little knowledge about MSMs or
statisticians that want to analyse data in a quick and
visual way, the app is very friendly, implementing all
the statistical part in an intuitive way and including
interpretations for the different outputs.

Software
This app has been created using shiny (version 1.7.3),
an R package to create interactive web applications.
The user can access this app either using the link
(https://www.grbio.eu/pubs/MSMpred/) or down-
loading the R code that is available in github (https:
//github.com/LeireGarmendia/MSMpred) and locally
running it. Other R packages used to implement the
app and to improve the user interface are shinyBS,
shinyWidgets, shinydashboard, shinydashboardPlus,
shinyalert, shinyMatrix, and shinyjs. For imple-
menting the MSM the app uses the mstate package
following the indications given by Wreede [10]. The
plots are made using the packages ggplot2, bshazard,
cmprsk, DiagrammeR, LoopDetectR, survminer, pals,
and the tables using DT and summarytools. Finally,
another packages for data manipulation, such as
dplyr, stringr, and lubridate are needed. The app
was deployed using the version 4.2.1 of the R statis-
tical software (https://cran.r-project.org/bin/
windows/base/old/4.2.1/).
MSMpred has different sections identified by tabs

where the user defines different aspects of MSMs (e.g.,
selection of the covariates or characteristics of the
new individual) using parameterizable inputs. They
are shortly described below along with their features:

• Home: app explanation, example data descrip-
tion and required format for data.

• Data: dataset upload, state and covariate labels
customization and filters to apply to the dataset.
Descriptive analysis of the covariates.

• Model specification: states and transitions def-
inition and covariate selection for each transition.

• Exploring the data: descriptive and non-parametric
plots related to MSM.

• Model output: selection of the type of model to
be fitted, model output by means of tables and
forest-plots, model validation and model compar-
ison.

• Predictions: predictions for new individuals
based on their characteristics.

https://grbio.upc.edu/en/research/projects/pandemies
https://grbio.upc.edu/en/research/projects/pandemies
https://www.grbio.eu/pubs/MSMpred/
https://github.com/LeireGarmendia/MSMpred
https://github.com/LeireGarmendia/MSMpred
https://cran.r-project.org/bin/windows/base/old/4.2.1/
https://cran.r-project.org/bin/windows/base/old/4.2.1/
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Results
Hereafter we explain a case study using the exam-
ple dataset with the aim of showing the capability of
MSMpred. Our goal is to show how the app works and
its potential, not to reach conclusions from the results.
The example data consists of 3,984 hospitalized adult

COVID-19 patients from 8 Catalan hospitals during
4 different waves (1st, 2nd, 3rd and 5th) of the pan-
demic in Spain. The default MSM consists of 7 states
and 14 transitions (Figure 1). Those states are: 1)
No severe pneumonia (nopneum): patients with-
out severe pneumonia and without mechanical ven-
tilation; 2) Severe pneumonia (pneum): patients
with severe pneumonia defined as Fi02 requirements
> 35% but no need for mechanical ventilation; 3)
Recovery (reco): patients recovered but still hospi-
talized; 4) Non-invasive mechanical ventilation
(nimv): patients with non-invasive mechanical ventila-
tion (i.e. Optiflow and/or Bilevel positive airway pres-
sure dispositives); 5) Invasive mechanical ventila-
tion (imv): patients with invasive mechanical venti-
lation (i.e., endotracheal intubation); 6) Discharge
(dcharg): patients that go home or to another hospital
after recovering from COVID-19; 7) Death (death):
patients that die in the hospital due to COVID-
19. The covariates used in this example are wave
(with categories 1, 2, 3 and 5); sex (Man/Woman);
age (age in years at hospital admission); cardiovas-
cular diseases (card vasc) (No/Yes); immuno-
suppressed (immune) (No/Yes); vaccinated (va-
cany) (No/Yes); Charlson index (charlson) (co-
morbidity index at hospital admission: it ranges from
0 to 24) [11]; PaO2/FiO2 (safi); severity score
for community-acquired pneumonia (curb65);
pneumonia severity index (psi) (index to mea-
sure the mortality for adults with community-acquired
pneumonia); C-reactive protein (crprot) (it checks
for inflammation in the body, usually caused by an in-
fection. Normal values range from 0.8 to 3.0 mg/L);
and lymphocytes (lympho) (number of 103 lympho-
cytes per mm3: in normal conditions it ranges from 1
to 4.8 cells/mm3).

Data
The user can upload a new dataset, provided that it
has the required format. The app allows to filter the
data by some covariates and to work with a subset
of the original data. An example dataset from the
DIVINE project is available and for our case study,
we filter the data to only consider patients from the
fifth Spanish wave of the pandemic (July-August 2021,
n = 690).
The names of the states and covariates can be cus-

tomized in the numerical and graphical outputs. To

check if the data has been imported correctly and as
a first exploration of the data, descriptive plots and
tables of the covariates are shown to observe their dis-
tribution and their main summary statistics.

Model specification
The first step is to define the model by specifying the
states and transitions of the desired MSM. From the
names of the columns of the dataset, the app iden-
tifies what are the states, and by drop-downs menus
the user can select the transitions between them. It is
important to only include those transitions relevants
for the problem and with enough individuals passing
through them so that the estimation of the associated
parameters is feasible. In general, at least 5 events per
covariate are needed in each transition, otherwise it is
not possible to estimate the corresponding parameters
[12]. On the other hand, if one specific state does not
need to be in the model, it is enough not to include it
as part of any transition.
In the proposed model there are four transitions

that have less than five individuals: nopneum → death,
pneum → death, reco → death and nimv → death. Due
to their small sample size we will not consider those
transitions and we removed them from the model.
Figure 1 shows the diagram of the defined model

where there are two orange initial states (nopneum,
pneum), three non-initial blue transient states (reco,
nimv, imv) and two purple absorbing states (death,
dcharg). The colors help to distinguish the different
roles that each state plays into the model. Figure 2
reveals the number of events for each transition, which
is helpful to decide whether or not a specific transition
should be included and to know how many covariates
could be included in each transition [13]. The number
of events and individuals per transition are the same
because MSMpred does not allow the inclusion of
loops into the model that would permit an individual
to pass twice through the same transition.
The covariates/time specification tab contains a ta-

ble to be filled with potential covariates in columns
and the transitions in rows to specify covariates for
each transition. In this same tab, the follow-up time
to be considered in the graphical representations and
in the predictions can be specified. In our example, the
follow-up time is fixed to 30 days, the period for which
we are interested in the patient’s evolution.
Once all the model specification is finished, it is

mandatory to click on the save model specification but-
ton to be applied in subsequent sections of the app.

Exploring the data (EDA)
Box plots representing the length of stay in the ini-
tial or transient states of the model are a convenient



Garmendia Bergés et al. Page 6 of 9

tool, for uncensored data, to describe the distribu-
tion of these stays and to identify possible outliers
before fitting the model. In Figure 3, we can observe
that the state with the highest median length of stay
(Med = 14 days) is imv, while the other four ini-
tial/transient states (nimv, nopneum, pneum, reco)
have lower and similar medians between them, all of
them below 5. In our setting, it seems reasonable since
imv is applied to patients in a critical situation that
need longer times in that state to recover. Regarding
to the outlier analysis, there are some patients that
deserve more attention (e.g., a patient that has been
in reco almost 100 days without being discharged).
In reference to the absorbing states the cumulative

incidence plot is provided. It is useful to visualize
the rate at which patients enter those states and the
chances of reaching them in a given time. We observe
that in the fifth wave approximately 5% of the hospi-
talized COVID-19 patients died.
Finally, a plot with a non-parametric estimation of

the instantaneous hazards of the transitions is pre-
sented, where data can be stratified by a single co-
variate (e.g.,sex, Figure 4). For the transitions start-
ing from the state no severe pneumonia, we can ob-
serve that women have an increasing risk of going from
nopneum to dcharg, while they have a decreasing risk
for transition nopneum → pneum. In the case of men,
they have a decreasing risk for transition nopneum →
pneum, but the risk for transition nopneum → dcharg
changes over time. So, we conclude that there are not
relevant differences according to the sex, and the more
marked one is associated to the transition nopneum →
dcharg, particularly after the seventh day.

Model output
Markovian Cox models [1] can be selected from the
drop-down menu within the fitted model subsection.
Other models are postponed for future releases. The
model is fitted including all the previously selected
transition specific covariates. The transition specific
covariate selection was done based on background
knowledge. After fitting the model three tables are re-
turned giving different information of the model (Fig-
ure 5).
1) Table of model coefficients. Each row repre-

sents a transition for a given covariate named in the
first column of the table as covar (k → l) where co-
var indicates the name of the covariate and k → l the
transition of interest. For each covariate and transition
the estimated coefficient (coef ), the estimated hazard
ratio, its confidence interval (HR (95%CI)), and the
p-value (p-value) to test βkl = 0 for the corresponding
covariate are provided. Those values indicate which is
the association level of the covariate covar on the risk
of having a specific transition.

2) Table of likelihood. It contains the values of
the log-likelihood of the fitted and the null model. If a
null model is fitted, the values of both log-likelihoods
match. This table also provides the Akaike Information
Criteria (AIC) [14] that allows to compare non-nested
models.
3) Table of goodness of fit. The likelihood ratio,

Wald, and score tests (test) are implemented to as-
sess the goodness of fit of the proposed model versus
the null model. For each test, the value of the statis-
tic, the degrees of freedom (df ) and the p-value are
reported. These tests indicate whether or not the pro-
posed model is more likely than the null model.
The estimated hazard ratios and their 95% confi-

dence intervals are represented by forest plots to facili-
tate the interpretation of the risks associated with the
different covariates in each transition. As the MSMs
usually have too many coefficients, only the hazard
ratios of the covariates related with a specific selected
transition are shown. To accommodate covariates mea-
sured in different units, the user can scale the effect of
any numerical covariate, for instance, by representing
the risk related to 10-units change instead of 1 unit.
Figure 6 reveals that psi and immune are the covari-

ates that have an effect on transition imv → death: the
risk of transitioning from invasive mechanical ventila-
tion to dying increases 1.25 times when the pneumonia
severity index of the patient increases 10 units, and
it increases 3.32 times for immunosuppressed patients
compared to non-immunosuppressed patients. There
is no evidence to claim that the other covariates have
an influence among those patients that transition from
invasive mechanical ventilation to dying.
Some assumptions are made when fitting the Cox

model and they should be evaluated for each transition
after every preliminary fitting.
Linearity of the numerical covariates is the first as-

sumption to be assessed using martingale-based resid-
uals. The blue smoothed curve represents a non-
parametric estimate of the trajectory of the points
along the covariate values indicating whether it is rea-
sonably linear or not. In the case of the covariate psi
and transition imv → death (Figure 7), this premise
can be assumed.
The second assumption, absence of influential obser-

vations, is analysed by the dfbetas residuals. When
there are no points quite far from the others, it sug-
gest the lack of influential observations(see transition
imv → death in Figure 8).
The last assumption, proportionality of the hazards,

is assessed through the Schoenfeld residuals: the confi-
dence bands of the smoothed curves should completely
cover the line at 0. In Figure 9, we see that this premise
holds for transition imv → death.
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As all the assumptions hold for transition imv →
death, it is not necessary to go back and redefine the
model fitting for this transition. But, before drawing
conclusions or making predictions based on that model
it is necessary to analyse every transition of the model.
As the fitted model will be used to predict, it is im-

portant to evaluate its global predictive performance.
As the involved calculation has a high computational
cost, this is only done on request by clicking the pre-
dictive performance button. Then, two tables will be
showed: the first one returns the logarithmic score
of the fitted model, while the second one represents
the confusion matrix, containing the absolute frequen-
cies according to the real (columns) and predicted
(rows) states for a given follow-up time. Furthermore, a
barplot representing the proportion of correct guesses
for each state is provided.
In the model comparison subsection, the informa-

tion of each fitted model is stored in order to make
possible their comparison. In addition, this informa-
tion can be saved to be subsequently loaded in other
session.

Predictions
Predictions on new subjects as well as comparison of
two subjects with different profiles are implemented
in MSMpred. For instance, we want to contrast the
evolution at 30 days of two hospitalized patients with
non-invasive mechanical ventilation. They are both fe-
males, 80 years old, with a Charlson index and CURB-
65 of 2, with a pneumonia severity index of 100, a
C-reactive protein of 90 ng/ml and a safi and lym-
phocytes of 428.571 mmHg and 0.93× 103 cells/mm3,
respectively. The first woman has cardiovascular as
well as autoimmune diseases and she is not vaccinated
against COVID-19. The second woman is vaccinated
and does not have neither cardiovascular nor autoim-
mune diseases.
Once the profiles have been defined, we obtain the

probability of being in each state after 30 days for each
patient (Figure 10), regardless of previously visited
states. We can observe that the evolution of first pa-
tient is less optimistic with 65.1% probability of having
left the hospital before day 30 and 32.2% probability
of dying, while the second one has a better prognosis
with a probability of discharge before day 30 of 77.3%.
Graphically, Figure 11 shows those percentages

via transition probability plots, in a non-stacked or
stacked way. Both versions give the probability of be-
ing in each state in a specific time point. In the case of
the stacked plot, that probability is the height of the
coloured section corresponding to the state of interest,
while in the case of the non-stacked plot, it is directly
the value of the curve of the state of interest.

Discussion
MSMpred is a powerful tool to address a wide spec-
trum of problems. MSMpred can be used for mod-
elling the course of any disease by means of MSM
models (e.g., cancer, Alzheimer, fertility, chronic dia-
betic complications) with different degrees of severity.
MSMpred is also appropriate in other fields outside
the biomedical setting, for instance in multistate reli-
ability assessment.
MSMpred allows to fit an MSM and to make pre-

dictions for new individuals in a friendly way providing
several graphics that help interpreting those results.
Although other apps and packages to work with

MSM exist, there are some unique characteristics of
our app that make the difference. Regarding to the
model definition, MSMpred does not limit the num-
ber of states or transitions: Furthermore, a diagram
of the model is depicted while it is being specified. In
order to build this diagram the number of states and
transitions need to be taken into account. In addition,
the user can delete transitions if by error a transition
has been included or a transition is not needed. As
seen, the covariates can be specified for each transi-
tion allowing a maximum level of detail in the model
specification. Regarding visualization, several points
are noteworthy. The instantaneous hazard plot, albeit
common in this type of models, can be instantly ob-
tained by specifying the ending/starting state of in-
terest and also stratifying by some covariate. Further-
more, MSMpred shows the forest plot of the covari-
ates related to the transition of interest. In relation to
predictive performance, MSMpred provides outputs
of the overall performance both for comparing models
to each other (e.g., the logarithmic score) and more
interpretable measures of accuracy for a single model
(e.g., the confusion matrix). Finally, obtaining the val-
idation graphics automatically allows the user to speed
up model fitting with the corresponding saving of time
in research work.
MSMpred is being constantly updated. In particu-

lar we are working on a new dataset including censored
observations. We would also like to implement the op-
tion of including time-dependent covariates into the
model, as well as allowing to fit other type of MSMs
(e.g., non-Markov Cox models, semi-Markov models,
parametric models). Finally, we are working in the de-
velopment of a formal methodology to compare the
goodness of fit of different MSMs.

Conclusions
MSMpred is an R shiny app presenting useful tools
for description, analysis, prediction and visualization
of the different stages of a disease. MSMpred facili-
tates, in an interactive way, a better understanding of
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the potential paths along the states, of the risks associ-
ated to each transition and on the prognosis for a new
subject. Non-experienced users might use MSMpred
because is an intuitive and visual app and does not re-
quire neither programming skills nor advanced statis-
tical knowledge. If needed, basic statistical knowledge
on survival analysis can be obtained in classic refer-
ences such as Klein [15]. For a thorough monograph
on Cox Model we suggest [8].

Availability and Requirements

Project name: MSMpred.

Project home page: https://www.grbio.eu/pubs/MSMpred/

Operating system(s): Platform independent.

Programming language: R.

Other requirements: Any web browser.

License: published under the GNU General Public License Version 2.

Any restrictions to use by non-academics: Commercial organizations are

welcome to contact the author prior to use.
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Figure 5 Tables of the fitted model

Figure 6 Forest plot of the covariates related with the
transition imv → death

Figure 7 Validation of the assumption of linearity of the psi
continuous covariate in the transition imv → death

Figure 8 Validation of the assumption of absence of
influential observations of covariates related with the
transition imv → death

Figure 9 Validation of the assumption of proportionality of the
hazards of covariates related with the transition imv → death

Figure 10 Predictions of the probability of being in each state
after 30 days for the two new patients

Figure 11 Transition probability plots for the two new
patients, the first in a non-stacked way and the second in a
stacked way
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