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Overview

This master thesis presents the development of a genetic algorithm for optimizing inter-
planetary trajectories using multi-planetary gravity assists while considering time as an
additional objective in the fitness evaluation. The objective of the research is to address
the challenges of designing efficient trajectories that minimize both delta-v and travel dura-
tion. The aim of this thesis is to develop an all-encompassing deep space mission trajec-
tory design tool where a trade-off between the total delta-v used and the arrival time can
be made, in the interest of the overall mission profile. The results obtained highlight the
effectiveness of genetic algorithms in finding optimal multi-planetary gravity assist trajec-
tories and contribute to the advancement of trajectory optimization techniques for future
space missions.
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CHAPTER 1. INTRODUCTION

In the realm of modern space exploration, where missions like BepiColombo[6], New
Horizons[7], and Juno[8] continue to push the boundaries, one crucial challenge remains
constant: designing the spacecraft’s journey to its destination. Gravity assist maneuvers,
integral to interplanetary travel, have been employed extensively to optimize trajectories
and minimize fuel consumption. These maneuvers involve close approaches to celestial
bodies, altering the spacecraft’s speed and direction through gravitational interactions. A
comprehensive exploration of gravity assist maneuvers will be delved into in the following
section.

These maneuvers serve not only to propel spacecraft to distant bodies with prohibitively
high delta-v requirements but also to decelerate them for rendezvous or injection orbits.
Even the illustrious Voyager-I mission relied on gravity assists to reach its ultimate target,
Saturn, due to the limitations of its launch vehicle. Voyager-I’s incredible feat of escaping
the solar system entirely stands as a testament to the power of this technique[9].

While the mechanics of gravity assist maneuvers are relatively understood, the mission de-
sign complexity lies in determining the optimal trajectory, especially when employing multi-
ple gravity assists (MGA). Finding a viable interplanetary path can be achieved with effort,
but attaining the most fuel efficient trajectory—the one with the least overall delta-v re-
quirement—is a challenge. Delta-v, the primary factor driving mission cost and spacecraft
complexity, becomes the cornerstone of trajectory design. In fact, a significant portion of
the work presented here is built on top of the code developed by Iker Diaz Cilleruelo (UPC
alumni), whose work was considering only the delta-V as the single optimizing parame-
ter [3]. Minimizing delta-v translates to smaller launchers and lighter spacecraft, directly
influencing other subsystems. However, the launcher’s inherent limitations impose a cap
on the available delta-v, necessitating careful optimization with other objectives in mind.
Therefore, in this work time, in the form of the arrival time, is added into consideration as
it is a crucial variable in mission design including deep space missions to the outer solar
system. As deep space missions may travel for over a decade to their final destination
as for example Voyager-II[10], a small difference in delta-v can make years difference in
terms of the arrival time at the final destination as will be seen in this thesis.

The search space involved is tremendously vast, encompassing available bodies for flybys
and the corresponding flyby times. To mitigate the complexity of the optimization problem,
certain constraints are imposed. In many instances, the problem is divided into two sub-
problems. The first part entails determining the optimal sequence of planets for flybys,
while the second part focuses on optimizing the timing of each flyby. Although these op-
timizations are distinct, they are interconnected and sometimes referred to as ’outer’ and
’inner’ loop [4]. The first optimization (outer loop) serves as the groundwork for the second
(inner loop). Once the planet sequence has been established, the algorithm proceeds to
optimize the trajectory based on the given sequence. This iterative process continues un-
til convergence is achieved for the best sequence and trajectory [11][12]. The approach
introduces an additional layer of complexity to the problem as it requires a lot of compu-
tations. To mitigate this complexity, simplifications are usually implemented in the form of
constraints by for example limiting the number of planets involved in flybys and their po-
tential arrangements. Moreover, constraints are also imposed on the duration of each leg
in the trajectory. However, it is crucial to not shrink the search space too much with these
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constraints, as they can potentially exclude the optimal trajectory, i.e. avoid pruning out the
optimal solution. Thus, the pruning phase must be done with caution and well-informed
such that the constraints are sufficiently permissive to avoid pruning the optimal trajectory.

Along with the MGA trajectory model, there exists a sub-variant known as MGA-Deep
Space Maneuvers known as ’MGA-DSM’ which considers the utilization of deep space
delta-v maneuvers to enhance spacecraft speed at any point in the trajectory. This is in
contrast to MGA, which introduces a delta-v impulse at the closest approach to the flyby
planet. While this method shows promise to further optimize the trajectory by introducing
greater flexibility, it also introduces additional complexity. This thesis focuses solely on the
MGA model, thereby permitting delta-v impulses exclusively at perigee passages during
flybys. However, more important than fine-tuning the trajectory once a given sequence
has been predefined, it is more beneficial in terms of total delta-v to choose the most
appropriate flyby sequence in the first place [4]. This topic will be further expanded on
in Section 7.1.. In this study, a large variety of potential sequences were tested including
the option of having flybys around the same planet consecutively as well as changing the
number of potential flybys. The sample results for 20 of the potential flyby sequences the
Galileo spacecraft could have potentially taken are shown below:

Table 1.1: Top 20 candidate sequences for MGA Earth to Jupiter mission [4]

No. Sequence Total ∆V, km/s
1 EVVEEJ 3.68
2 EVVEJ 4.72
3 EVVEEEJ 5.24
4 EVVVEJ 5.52
5 EVEJ 5.83
6 EVVEVJ 5.91
7 EEMEJ 5.96
8 EEVEEJ 7.03
9 EEMEEJ 7.38
10 EEEEJ 7.61
11 EEEJ 7.61
12 EEEEEJ 7.67
13 EEVVEEJ 7.77
14 EVVEMEJ 7.80
15 EVVVJ 7.91
16 EVEEJ 7.92
17 EEEVEJ 8.07
18 EVJ 8.14
19 EVVVVJ 8.26
20 EEJ 8.30

As can be seen from Table 1.1, rather than introducing complexities in the ’inner’ loop to fur-
ther optimize the trajectory and flyby times, determining the right sequence is paramount.
Moreover, the actual Galileo mission flew sequence No.16, which requires about twice as
much delta-v compared to the No.1 flyby sequence which included an additional gravity
assist around Venus. However, while mission designers aim to minimize the delta-v as
much as possible, it also has to be balanced with various other factors, most notably the
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travel and arrival time (The difference between the two stemming from the time window of
the launch date, since the launch window can also be spanning over several years, wait-
ing for too many years likely contradicts the point of aiming to collect valuable data to do
science today. Therefore, even a short travel time that necessitates a certain geometric
arrangement of the planets in the solar system that only arises in decades may not be
an acceptable approach. Hence, both, the arrival time and travel time need to be taken
into consideration). Moreover, as the mission profile can vary significantly from one tra-
jectory to another, there are also scientific as well as engineering advantages to targeting
an earlier arrival date compared to the minimum delta-v solution. For example, arriving
when the ‘local’ geometry is appropriate for a given mission that leverages resonance of
moons and planets such as Europa Clipper [13]. With an earlier arrival, data starts be-
ing gathered potentially years before and more may be obtained given the total lifetime of
the spacecraft at the mission destination can be expanded. Additionally, as interplanetary
space is exposed to unprotected solar radiation as the spacecraft is not within another
planet’s magnetic field, it requires a certain amount of radiation hardening, temperature
control systems, battery etc. The size of those may be able to be reduced which means
a reduction in launch mass and hence mission cost, as the spacecraft spends a reduced
time in those harsher regions where it is not in the operating conditions.

Therefore, this work will focus on optimizing in particular the inner loop using specifically
genetic algorithms and further take into account time in order to incorporate realistic deep
space mission planning capability to this interplanetary trajectory design tool. Moreover,
the algorithm developed will structured to allow for smooth incorporation of the outer loop
optimization through the use of the same genetic algorithm. In an effort to not overreach
the scope of this thesis and go into a detailed analysis of the effects of introducing time
at different priority rate (as will be shown in Equation 1.4), the final implementation of
the outer loop optimization is de-prioritized. As the previous work by Iker Diaz Cilleruelo
focused exclusively on the minimization of delta-v of a trajectory with a predefined flyby
sequence, this thesis will add time as a parameter to the objective function to optimize the
inner loop [3]. Moreover, the outer loop may also be optimized using the same genetic
algorithm technique in the future.

The thesis is concentrated on the second problem: determining the trajectory based on
the leg intervals. Consequently, the planet sequence within the trajectory is predetermined
and serves as an input to the problem.

As this is a global optimization problem, it involves variables and constraints, which can be
defined using the variable to be optimized, in our case the time events of the trajectory, ti:

X⃗ = [t1, t2, . . . , tn]. (1.1)

The X⃗ vector comprises all the mission’s time intervals, where t1 denotes the departure
date. Each ti,∀i > 1, signifies the date of a flyby. Finally, tn indicates the arrival date. Utiliz-
ing this vector enables the inference of the trajectory by computing the transfers between
planets at the corresponding times.

The objective function is composed as follows:

C = f (X⃗)+g(X⃗), (1.2)

where g(X⃗ represents the penalty function, f (X⃗) are the delta-v injections during the flybys
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in addition to the departure delta-v and t(X⃗) is the time taken to the final destination. The
hard constraints consist of bounds on the optimized variables:

tmin < ti < tmax. (1.3)

Soft constraints, such as requiring the perigee passage height to be at least 10% above
the radius of the flyby planet, are incorporated through the penalty function.
Solving this optimization problem necessitates leveraging heuristic global optimization al-
gorithms, which are combined with deterministic search space pruning algorithms to re-
duce complexity and enhance performance [14]. Nonetheless, these algorithms are not
straightforward and demand intricate optimization techniques to solve the problem effec-
tively.
In the past, deterministic optimization algorithms were the only viable choice. However,
thanks to advancements in computational power, new algorithms can now be employed for
trajectory optimization such as evolutionary algorithms. Evolutionary algorithms encom-
pass various variants, including genetic algorithms, differential algorithms, particle swarm
optimization, Gaussian adaptation, and others. Despite their differences, these algorithms
share the same fundamental principles of modeling the natural processes of evolution and
selection, converging a given population to an optimal solution through the principle of sur-
vival of the fittest. The ’fitness’ of each individual solution, i.e. a trajectory composed of a
unique time event vector, X⃗ , is then evaluated based on the function:

f itness = α · (deltaV + penalty)+β · s f · time (1.4)

where s f is the scaling factor used to normalize the units of time such that a comparable
value to the delta-v term is obtained. The α and β parameters are introduced to allow the
user to set weights to the delta-v and time terms of the fitness evaluation respectively. This
creates a simple method for mission designers to fine-tune how they want to prioritize the
fuel vs the time taken to the destination of the mission. Moreover, the different penalties
are introduced as an artificial inflation of the delta-v to make the individual trajectories less
fit and hence less likely to be selected for reproduction.

Evolutionary algorithms require greater computational power in comparison to determin-
istic optimization algorithms. However, they offer a less complex approach, as they only
require ”solutions” to the problem, i.e. an initialization of the X⃗ time vector rather than
needing an extensive array of variables, constraints, and accurate modeling of functions
and gradients that are challenging to determine for nonlinear problems.



CHAPTER 2. OBJECTIVES

This thesis embarks on the development of a comprehensive trajectory optimizer that en-
compasses all the essential steps required for modeling an MGA interplanetary trajectory
which are the computation of the planet’s ephemeris (position and velocity at a specific
point in time), the calculation of transfer orbits (Lambert transfer), and the determination
of flybys. Each individual trajectory’s values are subsequently employed in conjunction
with a genetic algorithm to evolve the population and converge to the optimal solution. In
this work, the goal is to minimize the delta-v as well as the travel time (depending on the
prioritization parameters α and β) given by Equation 1.4, hence the one with the lowest
fitness value is the fittest of the population. Similarly, the same evolutionary optimization
approach can be used to find the optimal flyby sequence, therefore having both the inner
and outer loop optimized using genetic algorithms. To facilitate this process, the structure
of the algorithm including the genetic algorithm is aimed to be designed such that it is
reusable and modular. In the future once both loops are completed, the algorithm first de-
termines the best sequence and then we optimize that sequence further and can aim for a
specific arrival time using the prioritization variables α and β seen in Equation 1.4. Overall,
the collection of the various parts shall make for a complete deep space mission trajectory
design tool, which only requires a final destination as an input along with a prioritization
of delta-v vs time through the parameters α and β. However, to not overextend the scope
of this thesis, only the inner loop will be optimized as ellaborated and the sceleton code
architecture for a similar incorporation of the outer loop will be completed.

This thesis aims to demonstrate how genetic algorithms can be employed to discover
near-optimal MGA interplanetary trajectories, albeit at the cost of increased computational
power, offset by the reduced complexity when compared to deterministic optimizers. More-
over, this work intents to highlight the ability to tune the desired trajectory depending on
how delta-v versus time is prioritized. Part of this endeavor entails the study between the
additional fuel cost as a method to arrive at an earlier date to the final destination. To
conclude the analysis, the algorithm is tested using the real-case missions of Voyager-II
and also compared to the previous iteration of the algorith in [3] (only minimizing delta-v)
to illustrate the improvements made.
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CHAPTER 3. INTERPLANETARY TRAJECTORY

Interplanetary trajectory refers to the path followed by a spacecraft as it travels between
different celestial bodies, such as planets. The design of this trajectory plays a crucial role
in optimizing the spacecraft’s delta-v requirements.

3.1. Transfer Orbits

Transfer orbit refers to the trajectory between two celestial bodies. Various types of transfer
orbits exist. The most prominent ones include Hohmann transfers, bi-elliptic Hohmann
transfers, and low-energy transfer orbits. Each type has unique characteristics that make it
suitable for different scenarios. These transfers involve carefully calculated trajectories and
precise engine burns to optimize energy and time requirements. The Hohmann transfer is
known for its efficiency, as it minimizes the required delta-v for the transfer. Another type
of transfer is the bi-elliptic Hohmann transfer, which involves two elliptical orbits to achieve
the desired transfer. This transfer is more efficient when the ratio between the outer and
inner orbit radii is greater than 15.

3.1.1. Hohmann Transfer

This transfer involves a two-impulse maneuver between orbits that share the same focus
point, typically orbiting the same body. The transfer begins with a burn at the perigee of the
departure orbit and concludes with a burn at the apogee of the target orbit. The spacecraft
is boosted into the transfer orbit through these burns, which increase its energy due to the
higher semi-major axis.

The delta-v required for a Hohmann transfer departing from a point D in a planet with a
circular orbital speed V1 is given by the equation:

∆VD =V (v)
D −V1 =

√
µSUN

r

(√
2r′

r+ r′
−1

)
, (3.1)

where µSUN represents the standard gravitational parameter of the Sun, VD and V (v)
D are

the departure velocities in the planet’s and heliocentric frame respectively. Moreover, r
and r′ are the radii of the departure and target orbits respectively, shown in Figure 3.1.

The delta-v required at the arrival orbit is given by:

∆VA =V2 −V (v)
A =

√
µSUN

r′

(
1−
√

2r
r+ r′

)
, (3.2)

where VA and V (v)
A are the arrival velocities in the planet’s and heliocentric frame respec-

tively at r′.

Through this procedure, the original inner circular orbit of radius r is changed into an el-
liptical orbit with the apogee being tangent to the target outer circular orbit using the first
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Figure 3.1: Hohmann transfer orbit (Credit: Hubert Bartkowiak)

delta-v burn. This causes the motion depicted with the yellow line marked ’2’ above. Sec-
ondly, once the spacecraft is at apogee, another burn is performed in order to circularise
the orbit with a new radius of r′, resulting in the final motion shown in red (marked as ’3’)
in Figure 3.1.

Similarly, the procedure for the bi-elliptic Hohmann transfer is detailed in [3].

3.2. Patched conic

Interplanetary trajectories involve complex interactions between spacecraft, the sun, plan-
ets and other celestial bodies. To simplify these trajectories, the patched conic approxima-
tion is commonly employed [1] Sect 8.5 which assumes that when a spacecraft is outside
the sphere of influence rSOI of a planet [1] Sect. 8.4, it is primarily influenced by the Sun’s
gravity, following an unperturbed Keplerian orbit around the Sun. When the spacecraft
enters the sphere of influence, it transitions to an unperturbed Keplerian orbit around the
planet. The sphere of influence represents a region around a celestial body, such as a
planet, where the body’s gravitational force dominates over the Sun’s gravitational force.
In this work the sphere of influence of a planet is calculated as:

rSOI = R

(
mp

ms

) 2
5

. (3.3)

As the radius of the sphere of influence also depends on the force of gravity from the sun,
the planets with larger semi-major axis tend to have larger ones as shown below:

For our purposes, focusing on interplanetary transfers without interactions from other bod-
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Figure 3.2: Sphere of Influence of Planets, constructed using NASA Planetary Fact Sheet

ies (thus treating it as a set of two-body problems), known as the patched conic approxi-
mation, suffices. This allows us to break down the trajectory into three steps: departure,
transfer, and arrival. Heliocentric speeds are defined relative to the planets inside their
spheres of influence, as well as relative to the Sun outside these spheres. By patching
together the relative speeds, we can analyze interplanetary transfers effectively. While
this simplification is generally accurate, it is important to note that in situations where two
bodies are in close proximity or for systems like the Sun-Earth-Moon, the more complex
3-body problem must be considered [15]. See Figure 3.3 for a visual representation of
planetary departure under the sphere of influence of a planet (adapted from [1] Chap. 8,
Figure 8.8).

3.3. Planetary gravity assist flyby

3.3.1. Departure

In this work all departures originate from the earth and by definition, the departure velocity
needs to be larger than the escape velocity. To position the spacecraft into the desired
transfer orbit, its heliocentric velocity at the crossing of the sphere of influence should align
with the asymptote of the departure hyperbola as seen in Figure 3.3. At that point, the
velocity should match the desired hyperbolic velocity beyond the sphere of influence, v∞,
which means we need velocity vp at the perigee of the hyperbola to be:

vp =
h
rp

=

√
v2

∞ +
2µ1

rp
(3.4)
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Figure 3.3: Planetary departure under the sphere of influence of a planet (from [1] Chap.
8, Figure 8.8)

Assuming that the spacecraft is originally in a circular parking orbit defined by vc:

vc =

√
µ1

rp
(3.5)

To achieve this final hyperbolic velocity from a parking orbit as illustrated in Figure 3.3, the
required delta-v is given by [1] (Eq. (8.42)):

∆v = vp − vc = vc

(√
2+
(

v∞

vc

)2

−1

)
(3.6)

3.3.2. Flyby maneuver

Having understood the transfers required as well as the departure of the journey, the in-
dividual legs of the trajectory need to be patched using adequate gravity assists with a
delta-v maneuver at the perigee of the flyby.

In this process, the spacecraft transitions from the Sun’s sphere of influence to the planet’s
and a change of velocity as well as deflection occurs. It is important to note that in the
planet’s reference frame, the speed of the spacecraft remains unchanged, i.e. it enters
and exits its sphere of influence with the same speed. However, when considering the
sun’s perspective there has been a change in the velocity. Typically, the spacecraft en-
ters from the trailing side in order to increase its speed because of the gravitational pull of
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the planet. Subsequently, in the planet’s view, it decreases at an equivalent rate after the
perigee passage (at the planet’s leading side), the only difference being that a deflection
occurs denoted with a turning angle δ. A depiction of a gravity assist is shown in Figure
3.4 below.

Figure 3.4: Trailing-side flyby (from [1] Chap. 8, Figure 8.19)

Here, the planets velocity is V⃗ shown with a red vector whereas v⃗∞1 and v⃗∞2 are the
entry and exit velocity of the spacecraft in the planet’s frame with an angle φ1 and φ2

respectively, creating a turning angle δ = φ2 − φ1. The heliocentric velocities are V⃗ (v)
1

and V⃗ (v)
1 respectively which make an angle to the planets velocity vector V⃗ of α1 and α2

respectively.

In the sun’s view, the spacecraft gains speed from the planet’s motion, meaning the helio-
centric speed has increased due to the flyby around the planet [1]. During this maneuver,
it is important that the perigee passage altitude is sufficiently above the surface of the flyby
planet in order to prevent a potential reduction in velocity due to atmospheric drag. This
is implemented in the form of a delta-v penalty if the distance at perigee is smaller than
1.1rplanet .

As seen in Figure 3.4,⃗V (v)
1 and V⃗ (v)

2 represent the heliocentric velocities at the inbound and
outbound crossing points respectively. v⃗∞1 and v⃗∞2 are the excess velocities with which
the gain in delta-v (in the heliocentric reference frame) can be calculated as follows:

∆V⃗ (v) = V⃗ (v)
2 −V⃗ (v)

1 = (⃗V + v⃗∞2)− (⃗V + v⃗∞1) (3.7)

∆V⃗ (v) = v⃗∞2 − v⃗∞1 = ∆⃗v (3.8)

Note that the delta-v can be positive or negative depending on which side the gravity assist
occurs from. When the flyby maneuver is conducted by entering from the leading side of
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the planet’s rotation, the speed of the spacecraft decreases as it travels in the opposite
direction. Conversely, if both the spacecraft and the planet move in the same direction,
i.e., the spacecraft enters from the trailing side, the delta-v is positive, which is the more
common case.
Considering an unpowered flyby without a delta-v injection at the perigee, the relative
hyperbolic excess velocities are:

v⃗∞1 = V⃗ (v)
1 −V⃗p (3.9)

v⃗∞2 = V⃗ (v)
2 −V⃗p (3.10)

Next, we determine the eccentricity of the flyby parabola and the angular momentum using
the following equations ([1] Eq. 8.83)

e = 1+
rpv2

∞

µ
h = rp

√
v2

∞ +
2µ
rp

. (3.11)

Using the eccentricity the turning angle is calculated as follows:

δ = 2sin−1
(

1
e

)
. (3.12)

In the context of this work, as the turning angle and delta-v requirements from the various
legs of the trajectory (that is the incoming and outgoing velocity) need to be patched, a
delta-v thrust is injected at the perigee of the hyperbolic trajectory around the planet.

3.4. MGA missions - an overview

Multi-gravity assist trajectories have been pivotal in numerous space missions. Notable
examples include NASA’s Voyager program, which utilized Jupiter and Saturn’s gravity to
achieve remarkable speeds and capture stunning images of and from the outer solar sys-
tem. The Galileo mission employed gravity assists to explore Jupiter and its moons, while
the BepiColombo mission is utilizing multiple gravity assists to reach and study Mercury.
Looking ahead, the upcoming Europa Clipper mission by NASA will employ gravity assists
to investigate Jupiter’s moon Europa in search of potentially habitable environments.

3.4.1. Time-sensitivity in space missions

While in the scope of [3], multi-gravity assist trajectories can be designed with the mini-
mum delta-v requirement, which essentially just provides one final trajectory. However, in
certain space missions, the timing of arrival becomes a critical factor, surpassing the sole
consideration of fuel efficiency in trajectory planning. This is particularly relevant when
time-sensitive observations or rendezvous with specific celestial bodies are involved.
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3.4.1.1. Past mission examples:

For instance, the Galileo mission to Jupiter required precise timing to study key events
such as the impact of Comet Shoemaker-Levy 9 [16]. Similarly, the BepiColombo mission
to Mercury had to account for the planet’s complex gravitational field and orbital dynamics,
necessitating specific launch windows for optimal arrival [17].

3.4.1.2. Future MGA mission

Future missions like the Europa Clipper also prioritize timing to ensure close flybys of
Jupiter’s moon Europa during favorable conditions for scientific investigations [13].

These examples illustrate how mission objectives and scientific priorities can influence the
choice of multi-gravity assist trajectories, where arriving at the desired destination at the
right time takes precedence over minimizing fuel consumption alone. Therefore in this work
a comparison will be made between the real mission trajectory, the minimum fuel trajectory
and a third trajectory taking time into consideration arriving at a similar date compared to
the actually flown spacecraft.

3.4.2. Voyager II mission

To give an example of what the trajectory and the addition of gravity-assists to the velocity
of a spacecraft looks like, a brief summary of the Voyager-II mission is presented below.

Figure 3.5: Voyager I and II interplanetary trajectories (from [2] Figure 1-4)

A remarkable aspect of the Voyager-II mission is also the number of flybys that were un-
dertaken which allowed it to become one of the first man-made objects to leave the solar
system in November of 2018 [18].
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Time Perigee (km)
Launch 20 Aug. 1977 -

Jupiter Flyby 9 Jul. 1979 721670
Saturn Flyby 26 Aug. 1981 161000
Uranus Flyby 24 Aug. 1986 107000

Neptune Flyby 25 Aug. 1989 29240

Table 3.1: Timeline of Voyager II events [2]

Figure 3.6: Voyager II velocity evolution (from [2] Figure 11-6)



CHAPTER 4. EVOLUTIONARY ALGORITHMS

Evolutionary algorithms (EAs) are heuristic optimization methods which, as the name sug-
gests, aim to replicate the processes of nature such as selection, reproduction, and other
evolutionary mechanisms to optimize problem solutions. By adapting to the problem envi-
ronment over time, individuals (which in our case are trajectories) evolve and improve the
overall optimization process. Although EAs are non-deterministic, they can provide either
the optimal solution or a close approximation.

The study of evolutionary algorithms dates back to the 1950s and 1960s, pioneered by
computer scientists [19]. Although evolutionary algorithms are considered artificial intelli-
gence/machine learning (AI/ML) techniques, they differ significantly from traditional AI/ML
approaches like neural networks. EAs rely on a known problem model instead of using
data to model and solve the problem for new solutions, which means that prior knowledge
of the problem is required for optimization.

In particular, evolutionary algorithms are well-suited for optimizing complex problems with
large search spaces that are impractical to exhaustively search using traditional methods.
In our case, the search spaces are defined by the different time windows allowed for the
legs of the interplanetary trajectory. This abstraction comes at the cost of increased com-
putational requirements and no guarantee of converging to the optimal solution, which
made them hard to implement some time ago when the computational power was sig-
nificantly limited. Nowadays, this approach provides a rather simple way to solve world
problems of high complexity by trialing a population of solutions.

Interplanetary trajectories involve an extremely large search space and are challenging to
model with deterministic algorithms that require gradients and mathematical constraints.
While the optimality of the solution is assumed, different inputs yield nearly the same solu-
tion, as shown in Section 6. Although the computational demands increase, one advantage
of evolutionary algorithms is that certain steps can be parallelized through the use of multi-
threading, which alleviates the computational processing time.

4.1. Genetic algorithms

Genetic algorithms (GAs) are a widely used type of evolutionary algorithms developed by
John Holland in the 1970s [20] to study adaptive behaviours. They aim to mimic natu-
ral selection/evolution in artificial systems [21] and traditionally require individuals to be
represented as bit strings [?] (CITE THIS PROPERLY). While GAs select the fittest solu-
tion from an initial set of random values, their performance, robustness, and convergence
can be improved by incorporating other evolutionary processes which in this case revolve
around ’gene’ mutation, crossover, etc. The fittest individual is determined by maximizing
a user-defined objective function. Although GAs are commonly used for single-objective
optimization, as was done in [3], they can also be extended to handle multi-objective prob-
lems [22]. In astrodynamics multiple objective GAs have been applied already [23], but in

15
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their case delta-v along with the final spacecraft mass was optimized. In this work, both
time and delta-v can be simultaneously minimized by defining an appropriate objective
function as shown in Equation 1.4.

Individuals, which in the scope of this work are the aforementioned X⃗ vector containing the
time events, are represented as strings of bits, known as chromosomes. These chromo-
somes are composed of genes, which influence specific parts of the individual (in this case
the flyby dates) and its corresponding solution. Although this representation simplifies na-
ture, it captures the key processes required for evolution. The individuals are evaluated
based on the objective function:

i : 001011001010 7−→ x⃗
y = f (⃗x),

where y represents fitness and f represents the objective function in Equation 1.4 and x⃗
is the vector of time events mapped into a binary string.

The initialization of individuals involves assigning random values within the predefined
search space. It is crucial to keep the search space large as to not prune out the optimal
solution. Therefore, without proper initialization and diversity, the algorithm may stagnate
and converge to local minima or maxima instead of finding the global minima/maxima.
After initialization, each individual’s fitness is evaluated which is subsequently used to
generate a likelihood to be chosen for selection. Genetic operators (described in Section
4.1.1.) are then applied to generate new individuals, simulating various natural processes
that transmit genetic material and drive population evolution. This process is repeated for
multiple generations until a predetermined number of generations is reached or a given
convergence criterion terminates the algorithm. The evolution is not solely dependent on
the convergence between consecutive runs, but also on the emergence of random values
that enhance individual fitness and subsequently improve the fitness of future generations.

4.1.1. Genetic operators

Genetic operators are the core of GA and distinguish them from random search space
algorithms. These operators facilitate intelligent selection and transmission of beneficial
genetic information between generations, driving the population towards the optimal so-
lution. The main operators used in this work are selection, mutation and recombination
which are described in the following section.

4.1.1.1. Selection

The selection operator is the first one used in GA and models the principle that individuals
with traits that are more favorable for their environment have a higher chance of surviving
and reproducing, thereby passing on their advantageous traits to future generations. In the
context of this work, this concept is applied to the population of individuals (solutions) that
are being evolved to solve for the optimal interplanetary trajectory by leveraging multiple
gravity assists. Two commonly used methods for selection are:
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1. Roulette selection: In this method, the probability of being selected is proportional
to the fitness values of the individuals as follows:

pi =
fi

∑
N pop
j=1 f j

, (4.1)

Here, fi is the fitness of individual i and N pop is the population size used to express
the percentage chance of selection pi. While the fittest individuals have the high-
est probability of being selected, weak individuals still have a small chance of being
selected as well, which is crucial to avoid the algorithm rapidly converging in local
minima [24]. The name ’Roulette Selection’ stems from the selection being analo-
gous to a roulette as shown below with an example population of six individuals:

2. Tournament selection: This method involves an initial selection phase followed by
the tournament. Firstly, multiple individuals are chosen using for example the afore-
mentioned roulette selection. In the subsequent tournament phase, the selected
individuals are compared, and the fittest one is chosen. In Table 4.1 taken from
[3], four individuals were selected using roulette selection, and the third individual is
selected as the fittest in the tournament phase. Note that in the implementation the
fitness is renormalized to be within 0 and 1, such that the comparison is of numbers
with similar magnitude.

Individual Fitness
01011 0.12
10110 0.04
10001 0.23
10101 0.013

Table 4.1: Illustration of the tournament selection method [3]

Tournament selection has the advantage of faster convergence since fitter individu-
als are selected more frequently compared to the roulette selection. However, it can
lead to a loss of diversity within the population due to its greedy nature, potentially
hindering the attainment of the optimal solution.
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4.1.1.2. Elitism

Although not considered a traditional genetic operator, elitism ensures the retention of
highly fit individuals in the population, allowing them to directly pass their genetic material
to the next generation without any modifications. This approach aims to maintain and pro-
tect the best solutions found so far during the evolutionary process as there is potential to
lose the fittest individuals during reproduction or omission in the selection process. Hence,
introducing elitism ensures that the fittest solution of a given generation is at least as good
as the best individual of the previous generation, making the solution always improve or
remain unchanged. Given that there could be various local minima, the number of elites
in a given population is a function of the size itself in order to account for the possibility of
having multiple different individuals that are of similar competitiveness.

4.1.1.3. Reproduction and Crossover

Reproduction and crossover operators dictate how the selected genetic material is trans-
mitted and mixed to the next generation once individuals have already been selected.
They facilitate the exchange and recombination of favorable genetic traits to generate new
chromosomes which represent a new individual.

Reproduction is a straightforward process where the selected parents are directly carried
over to the next generation without any modifications to their chromosomes. It helps main-
tain diversity by preserving the existing genetic material and preventing its loss but does
not add new variations into the population

On the other hand, crossover is the primary operator responsible for altering the chro-
mosomes of the parents to create offspring with a combination of their genetic material
creating a new individual called offspring or children. During crossover, specific points
in the parent chromosomes, called crossover points, are chosen randomly. The genetic
material between these crossover points is exchanged between the parents, resulting in
offspring with a combination of genetic information from both parents. The purpose of
crossover is to explore new areas of the search space by combining favorable traits from
different individuals and potentially generating offspring with improved fitness.

There are different types of crossover methods used in GAs, including:

Single-point crossover: A single crossover point is selected, and the genetic material
beyond that point is exchanged between the parents’ chromosomes. This method creates
two offspring by combining genetic information before and after the crossover point. Here,
an example where the crossover point is the fifth bit.

Parent 1: 11 110 0111 −→ Child 1: 11 111 0110
Parent 2: 11 011 0110 −→ Child 2: 11 010 0111

Two-point crossover: Similar to single-point crossover, but two crossover points are cho-
sen, and the genetic material between these two points is exchanged. In this case, the
children often remain more similar to their parents as more of the genetic material is shared
across them. Similarly, in the following example, the crossover starts at the fifth bit and
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ends after the 7th bit.

Parent 1: 11 110 0111 −→ Child 1: 11 111 0111
Parent 2: 11 011 0110 −→ Child 2: 11 010 0110

Uniform crossover: Each bit or gene in the offspring is randomly selected from either
parent with a 50% chance. This method provides a more diverse recombination of genetic
material. A coin is flipped whenever the bits at the same positions are different from the
two parents. An example would be as follows:

Parent 1: 11 110 0111 −→ Child 1: 11 010 0110
Parent 2: 11 011 0110 −→ Child 2: 11 111 0111

In this case, the third, fifth and ninth bit are different and the coin flips for those positions
was ”heads - tails - heads”, as the bit in fifth location did not flip since ”tail” was chosen.

Single gene uniform crossover: Similar to uniform crossover, this approach operates on
a single gene rather than the entire chromosome. A specific gene, such as a range of
bits, is selected, and the coin flip method is applied to determine the inherited gene. An
example of this method is illustrated in [3].

The choice between reproduction and crossover for two parents is determined by a random
number generated between 0 and 1. Fundamentally, it is important that crossover is as-
signed a higher probability as it introduces new genetic material. Moreover, over-reliance
on reproduction can significantly slow down the convergence of the algorithm as crossover
between fit individuals plays a vital role in driving evolution and convergence towards the
optimal solution. It enables the transmission of shared genes from fit individuals to new
individuals while generating new genetic combinations from differing genes. This process
promotes the prevalence of ”good” genes present in many fit individuals, leading to their
eventual dominance in the population. For instance, if the most fit individuals consistently
have the first bit of a 5-bit chromosome set to 1, indicating a decoded departure date
above 32 (since 25), it suggests that the optimal date is likely to be higher than this value.
Consequently, this gene tends to become dominant, with the entire population inheriting it
through the crossover operation.

4.1.1.4. Mutation

Mutation is the final genetic operator in the evolutionary process of genetic algorithms
and involves modifying a portion of randomly chosen individuals’ genetic material (chro-
mosome), after the reproduction and crossover stages have been completed. While its
effects may not be immediately noticeable in a single generation, it plays a significant
role in the long-term evolution of the population by ensuring diversity. As the population
evolves, it tends to lose diversity and become more homogeneous, through the process de-
scribed in Section 4.1.1.3.. This phenomenon is a consequence of the selection operator,
as the fittest individuals are more likely to be selected, and their genetic material domi-
nates the population, which slows down further evolution. By introducing new mutations
and changes to the chromosomes, new genetic material can be generated, increasing the
diversity of the population. Morover, mutation also serves to get a population unstuck from
local maxima or minima by changing a bit that is commonly shared amongst the fittest
individuals.
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There are four main types of mutation methods:

Flip Bit mutation: Here a randomly chosen bit is flipped.

11 011 0110 Bit 5−−→ 11 110 0110

Boundary mutation: In this method, a sequence of n bits (a single gene) is randomly
flipped entirely to 0 or 1 using a coin flip.

11 011 0110 Gene 3 to 5−−−−−−→ 11 111 0110

Uniform mutation: In this case, each bit within a randomly selected gene is determined
by individual coin flips while the other remains untouched. This method is similar to uniform
crossover but applies to the bits within a gene rather than the entire gene.

11 011 0110 Gene 3 to 5−−−−−−→ 11 001 0110

Inversion mutation: Here, a gene is selected and the bits are flipped.

11 011 0110 Gene 3 to 5−−−−−−→ 11 100 0110

These four mutation methods contribute to the creation of new genetic material and main-
tain diversity within the population. By introducing random changes to the chromosomes,
mutation allows for the exploration of different regions of the search space and helps over-
come stagnation. The selective application of mutation ensures that the population contin-
ues to evolve and avoids premature convergence to suboptimal solutions.



CHAPTER 5. ALGORITHM IMPLEMENTATION

5.1. Overview

This section presents the algorithm developed to optimize interplanetary spacecraft trajec-
tories within the solar system which has been original developed by [3] primarily using C++
and then modified. Some non-core visual components were coded in Python. C++ was
chosen for its optimization, efficiency, standard library support, compilation benefits (faster
execution), and multithreading capabilities which are particularly useful since genetic al-
gorithms are computationally expensive.

The algorithm can be decomposed into two main parts: the trajectory solver itself, involv-
ing the design and computation of the interplanetary trajectory, and the genetic algorithm
used to optimize the trajectory. Although both parts are incorporated into the algorithm,
they can be used separately, allowing the reuse of the genetic algorithm independently
from the problem to optimize. This enables the use of the same genetic algorithm for the
optimization of the flyby sequence which is used to optimize the order of planetary flybys
that will be used.

The overall diagram of the code can be summed up as follows:

Figure 5.1: Code diagram

21
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5.2. Process Chronology

The first step of the algorithm is in charge of initiating as many individuals as specified
by the GA parameters NPOP, meaning a vector X⃗ is created for each individual containing
randomly generated flight times within the prespecified time intervals for each leg as de-
scribed in Section 1. Then, the genetic algorithm solves the trajectory for each individual
and before evaluating the delta-v cost of the obtained solution. Initially, using the specific
fly-by dates that are computed using X⃗ , the position and velocity of the planets at those
time events are calculated, which is known as the planet’s ephemeris. This information is
then used to solve for the transfer from one planet to another, which is conducted using
a Lambert solver. Finally, as each leg now has a specified entry and exit velocity, those
two need to be patched with the appropriate gravity assist and delta-v thrust. Finally, this
delta-v is taken as the cost along with the time taken since the first day of the departure
window to obtain a fitness for each trajectory. As opposed to the previous iteration of the
code which directly used the delta-v as the fitness of the individual, thus making the one
with the least delta-v teh fittest individual, in this case the ’units’ of the objective function
may be in delta-v but it is composed of multiple terms. At this step, the user of this tra-
jectory design tool can specify the weights of importance set to delta-v and time (through
α and β respectively), in order to find a family of solutions rather than being limited to the
minimum delta-v trajectory. This fitness is used to evolve the algorithm until a specific num-
ber of generations is reached. The global problem is defined at the beginning, along with
parameters for the genetic operators to modify their behavior and tweak the algorithm’s
performance, through the processes described in Section 4.1.

5.3. Trajectory Design

5.3.1. Ephemeris

The ephemeris of a planet is the two state vectors R⃗ and V⃗ representing the position and
velocity in a heliocentric ecliptic frame of a planet at a given time [1] Sect. 8.10. Those
vectors are used to determine the location of the planet at the flyby time in the trajectory,
as well as its velocity. The heliocentric velocity of the planet is required to compute the
flyby maneuver and subsequently patch the conics.
The ephemeris are computed using the orbital parameters of the planets and their rate of
change which are measured and determined by the space agencies like NASA. The six
elements, shown in Table 5.1 below, are the Keplerian orbital elements of each planet:

• a: semi-major axis [au].

• e: eccentricity.

• i: inclination to elliptic plane [degrees].

• L: mean longitude [degrees].

• w: longitude of perihelion [degrees].

• Ω: longitude of the ascending node [degrees].
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Using these six elements, R⃗ can be calculated. Moreover, the elements with a dot (ȧ,
ė,...) are the rate of change of each element per Julian century, with which V⃗ is computed.
However, these are only accurate for a given time period, as the values of the orbital
parameter and in particular their rate of change are not constant. Therefore, after some
time they need to be calibrated again with new observations. For the scope of this work the
Table 5.1 of orbital elements from 1850 to 2050 is used, as it provides sufficiently accurate
values. It is important to note that for dates beyond 2050, other tables must be used with
less accuracy. However, none of the missions discussed in this paper go beyond that year.

a [au, au/Cy] e [rad, rad/Cy] i [deg, deg/Cy] L [deg, deg/Cy] w [deg, deg/Cy] Ω [deg, deg/Cy]

Mercury
0.38709927 0.20563593 7.00497902 252.25032350 77.45779628 48.33076593
0.00000037 0.00001906 -0.00594749 149472.67411175 0.16047689 -0.12534081

Venus
0.72333566 0.00677672 3.39467605 181.97909950 131.60246718 76.67984255
0.00000390 -0.00004107 -0.00078890 58517.81538729 0.00268329 -0.27769418

Earth
1.00000261 0.01671123 -0.00001531 100.46457166 102.93768193 0.0
0.00000562 -0.00004392 -0.01294668 35999.37244981 0.32327364 0.0

Mars
1.52371034 0.09339410 1.84969142 -4.55343205 -23.94362959 49.55953891
0.00001847 0.00007882 -0.00813131 19140.30268499 0.44441088 -0.29257343

Jupiter
5.20288700 0.04838624 1.30439695 34.39644051 14.72847983 100.47390909
-0.00011607 -0.00013253 -0.00183714 3034.74612775 0.21252668 0.20469106

Saturn
9.53667594 0.05386179 2.48599187 49.95424423 92.59887831 113.66242448
-0.00125060 -0.00050991 0.00193609 1222.49362201 -0.41897216 -0.28867794

Uranus
19.18916464 0.04725744 0.77263783 313.23810451 170.95427630 74.01692503
-0.00196176 -0.00004397 -0.00242939 428.48202785 0.40805281 0.04240589

Neptune
30.06992276 0.00859048 1.77004347 -55.12002969 44.96476227 131.78422574
0.00026291 0.00005105 0.00035372 218.45945325 -0.32241464 -0.00508664

Table 5.1: Keplerian elements and rates (valid from 1800 - 2500). Table from [5]

Note, that it is commonly assumed that all the planets are in the same plane in the solar
system. However, that is not accurate as the heliocentric ecliptic is defined as the orbital
plane of the earth. Hence, other planets like Mercury can have an inclination i of up to 7
degrees as seen in the first row of Figure 5.1. A planet’s orbit in the heliocentric reference
frame is illustrated in Figure 5.2 with the orbital parameters introduced above.

Figure 5.2: Planetary orbit in heliocentric frame reference (from [1] Fig. 8.25)
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The algorithm used to obtain the state vectors R⃗ and V⃗ are described step-by-step on
NASA website in [25]. Moreover, as the implementation of these steps have been covered
by [3], they will not be repeated here.

5.3.2. Interplanetary Transfer Orbit - Lambert Solver

At this stage, the state vectors R⃗ and V⃗ of the two planets composing a transfer leg have
been obtained, hence, the transfer orbit between them has to be determined, which is
known as Lambert’s problem. This problem was first posed by J. H. Lambert in the 18th
century and states that the transfer time of a body moving between two points on a conic
trajectory is solely dependent on the sum of the distances of the points from the origin of
force, the linear distances between the points, and the semi-major axis of the conic [26].
While this is an assumption as we are ignoring the influence of all other objects in the
solar system, for the purposes of this work, the perturbations caused by tertiary bodies
are negligible.

Lambert’s problem can be formulated as follows:

E =
1
2

V 2 − µ
r
, (5.1)

where E represents the energy/mass of the body (called the specific orbital energy), r is
the distance from the Sun to the center of the body, and V is the velocity of the body at r.
By determining the time of flight T between two given points P1 and P2, Lambert’s prob-
lem aims to compute the trajectory connecting these points. This trajectory is determined
by finding the departure velocity from point P1, as the position and velocity at any point
along the orbit can be inferred from the initial values [1] Sect 5.3. Note that the planets
are not confined on the same 2-dimensional ecliptic plane of Earth, but rather have a third
dimension above/below the plane. Nonetheless, the interplanetary transfer orbit will still
be confined in a 2-dimensional plane that usually differs from the ecliptic.

Moreover, the sign of the specific orbital energy E in Equation 5.1 also serves to classify
the orbit as bound or unbound:

E < 0 −→ Elliptical orbit (bound)

E = 0 −→ Parabolic orbit (unbound)

E > 0 −→ Hyperbolic orbit (unbound)

Equation 5.1 can also be used to determine the departure speed required for parabolic and
hyperbolic transfer between orbits P1 and P2, as it is the formula for the escape velocity:

V1 ≥
√

2µ
r1

. (5.2)

In this case, the equality is the velocity required for a parabolic transfer whereas any ve-
locity above is the excess hyperbolic velocity.

As this problem has already been established for centuries, in this work a Lambert solver
from the European Space Agency (ESA) was implemented [27]. This solver, available in
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the Pykep repository1, utilizes advanced techniques for accurate and efficient computation
of hyperbolic velocities v1 and v2 required to connect the initial points r1 and r2 within a
specified time of flight T .

The solver implementation involves the following key components:

• Selection of an iterative variable to invert the time of flight curve.

• Iteration method for solving the problem.

• Initial guess to start the iteration process.

• Reconstruction methodology to compute v1 and v2 from the iteration results.

5.3.3. Patched conic

Now that the position of the planets at the fly by time are known and the transfers between
are computed the trajectory segments need to be connected. More precisely, the arrival
velocities from the transfer orbits to the departure velocities obtained from the Lambert
solver need to be matched.

To accomplish this, we employ the patched conic approximation meaning that within the
sphere of influence of each planet, the spacecraft follows a hyperbolic planetocentric tra-
jectory and the influence of the Sun’s gravitational pull is neglected during this phase [28].
The matching process yields the difference in velocity from incoming and outgoing which
will be the delta-v impulse, required to connect the trajectory segments (since the veloci-
ties are with respect to the planet, applying no thrust would entail no difference in delta-v
in the frame of the planet due to conservation of energy). It is important to note that the
delta-v maneuver in this work is performed at the perigee passage, where it is most effi-
cient. Nonetheless, there might be additional delta-v impulses done in one of the trajectory
segments, known as deep space maneuvers which are not included in this work. In fact,
the Cassini made use of deep space maneuver twice in between the Earth-Venus and
Jupiter-Saturn legs [29].

To match the incoming and outgoing velocities, we find the required turning angle and
perigee radius. We begin by converting the velocities relative to the planet, considering
the heliocentric velocities provided by the Lambert solution and the planet’s velocity [30].

v⃗∞−in = V⃗in −V⃗p (5.3)

v⃗∞−out = V⃗out −V⃗p, (5.4)

where v⃗∞ are the incoming and outgoing velocities in the planet’s frame, V⃗ the heliocentric
velocities respectively and V⃗p the planet’s velocity.

The perigee radius of the hyperbolic trajectory can then be determined by computing the
semi-major axes of the pre- and post-perigee passages ain and aout respectively [30] along

1https://github.com/esa/pykep/

https://github.com/esa/pykep/
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with the respective eccentricities ein and eout .

rp = ain(1− ein) = aout(1− eout), (5.5)

After a couple more manipulation steps, for which the exact procedure can be found in [30]
and in [3], the final expression for the delta-v thrust required at the perigee is:

∆V =

∣∣∣∣∣
√

v2
∞−in +

2µp

rp
−

√
v2

∞−out +
2µp

rp

∣∣∣∣∣. (5.6)

It is important to note that the perigee radius and turning angle are unconstrained, mean-
ing that in some cases, they may lead to physically impossible configurations, such as the
perigee radius passing through the planet’s interior. After the full trajectory is calculated,
these cases are handled in the algorithm using a penalty function.

Having completed these calculations the entire trajectory of an individual is now well de-
fined and all the required values are available to be used as inputs for the genetic algo-
rithms. With each set of dates defining events in the trajectory, the full trajectory can be
computed, allowing for the determination of the total delta-v required. This total delta-v
includes the cumulative sum of the departure delta-v and the delta-v for each flyby.

5.4. Genetic algorithm

This section provides a detailed explanation of the genetic algorithm part of the code used
in this study shown in Figure 5.1.

5.4.1. Objective function

Unlike previously where the objective of the program was to minimize the delta-v cost for
an interplanetary trajectory with multiple gravity assist maneuvers, now we are looking for
a more nuanced solution where we also consider time as part of the equation as previously
shown in Section 1:

C = f (X⃗)+g(X⃗)+ t(X⃗) (5.7)

The objective function in this case is the sum of f (X⃗), which represents the sum of the
departure and flyby delta-v values, and t(X⃗), which is a measure of the time taken to
the final destination. Both of these terms are a function of a vector of time events X⃗ =
[t0, t1, . . . , tn], where t0 is the departure date and tn the date of the nth flyby. C is the
objective function that we aim to minimize using the evolution of the individuals in the
population through the genetic algorithm. Since, the function f (X⃗) is just the sum of the
departure and flybys delta-v, it is already well defined:

f (X⃗) = ∆dep(t0)+∆ f b(t1)+ · · ·+∆ f b(tn). (5.8)

where ∆dep(t0) is the initial delta-v cost of the departure.



Algorithm implementation 27

In order to be able to compare and weigh an arrival time to a total delta-v cost of a mission
several steps had to be completed.

Firstly, it has to be decided how time is taken into consideration as there are multiple ways
that can be done. In this work, the ’quantity’ of time that will be considered is the days
taken to the final destination from the first date of the departure window. This is done to
assist with the interests of space mission development phases, in particular, the aspect of
having a satellite ready but the code for example finding a trajectory that only departs over
half a decade after the satellite is constructed. Therefore, only having a short time of flight
is not a good measure of time as that flight may be scheduled deep into the future. Hence,
using the number of days since the first day of the departure window was chosen to be
able to target a specific arrival date with the right calibration of β, which is also what is
important to mission designers beyond having a low thrust consumption as mentioned in
Section 3.4.. The calculation of the time taken since the first day of the departure window
is simple, due to the way it has been implemented in the algorithm, which is simple the
sum of the X⃗ = [t0, t1, . . . , tn]:

ttotal =
n

∑
i=0

(ti) (5.9)

where ttotal is the number of days since the start of the departure window.

Secondly, once an adeqaute way of measuring time has been established it needs to be
non-dimensionalized appropriately. Since the proper way to compare time with delta-v in
a meaningful way, the two terms have to be of similar magnitude which also allows α and
β to be in more palatable dimensions between 0 and 1. While this redimensionalization is
the most challenging part, it is worth noting that there are multiple ways to do it and there
is no single correct answer as it can be adjusted with the prioritizing weights α and β later.
In this work, the sum of the mean time of each time interval was used to make the time
term dimensionless:

n

∑
i=0

mean (Ti) (5.10)

where Ti is the ith time window and example may be as follows:

Ti = [250,750] → mean Ti =
750+250

2
= 500 (5.11)

here the units of time intervals are in days. Now, the term can become dimensionless
through simple division:

Πtime =
ttotal

∑
n
i=0 mean (Ti)

(5.12)

Here, the Πtime term is the dimensionless time component, which was named in reference
to the Buckingham Pi theorem that revolves around creating groups of non-dimensional
variables (CITE Dimensional Analysis and Numerical Experiments for a Rotating Disc or
Buckingham pdf)

Thirdly, as the unitless term has to be compared to the delta-v term, which is in units
of m/s, Πtime will be multiplied with the value of the missions minimum delta-v cost, Vmin.
That is to say that first the code will be run using α = 1 and β = 0 to have a delta-v quantity
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of adequate proportion. This is important since using just a fixed delta-v scaling parameter
for all different types of missions will not have the same scaling effect as some missions
require in the order 7000m/s while others require almost 15000m/s as will be seen in
the following sections of the thesis. Therefore, this ensures that the scaling of Πtime to a
”delta-v-like” term is tailored for each specific mission trajectory. The final term that makes
up the second part of the objective function, t(X⃗), is now well defined as follows:

t(X⃗) =VminΠtime =Vmin
∑

n
i=0 (ti)

∑
n
i=0 mean (Ti)

(5.13)

It is important to note that Vmin is not required to be the minimum possible delta-v trajectory,
instead, it suffices to be close to it which means the code can be run for a smaller number
of generations in a shorter time frame. Hence, now Equation 1.4 can be presented in more
detail as:

C = α ·
(
∆dep(t0)+∆ f b(t1)+ · · ·+∆ f b(tn)+ penalty

)
+β ·

(
Vmin ∗

∑
n
i=0 (ti)

∑
n
i=0 mean (Ti)

)
(5.14)

Moreover, to make this interplanetary design tool particularly user friendly, the prioritization
variables α and beta are related as follows:

1 = α+β (5.15)

Hence, the two can be utilized in a practical fashion by assigning them percentages that
add up to 100%.

5.4.2. Trajectory constraints

At this point, the penalty term, g(X⃗), needs to be addressed as it serves to eliminate non-
physical solutions by making the affected individuals appear extremely unfit through the
artificial inflation of the total delta-v. Two main constraints are considered.

The first constraint prevents physically unrealistic scenarios where the perigee radius
passes through the interior of a planet during a gravity assist maneuver. To address this, a
piece-wise function is employed, assigning a large constant penalty if the perigee radius is
smaller than 110% of the planet’s radius. The condition implemented in the code is when
rp > 1.1rpl , where the penalty cost g(x) is a large constant value of 1010m/s.

g(x) =

{
0 rp ≥ 1.1rpl

1e10 rp < 1.1rpl.

The penalizing value is chosen very high on purpose, as the delta-v maneuver usually is
in the order of 0 to 10 m/s for the optimal values and it even has a significant effect on
the overall cost for cases where time is heavily prioritized over delta-v for example when
α = 0.05 and β = 0.95. This ensures that solutions with excessively low perigee radii are
discarded in all cases. To further emphasize this point, the only case where the penalty will
not be part of the cost function is in the ’invalid’ case when α = 0 and β = 1. However, this
case when interpreted in terms of a mission design means getting to the final destination
as fast as possible irrespective of the cost. In such a scenario gravity-assist trajectories
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are not used but rather direct transfers to the final destination through a massive initial
departure delta-v.

The second constraint prevents low-velocity flybys between the same planet, as it could
result in the spacecraft being captured by the planet’s gravity. This is for a similar reason
to the first constraint as a planet’s atmosphere which is usually not included in the radius
of a planet, causes drag on the spacecraft and hence slowing it down. To enforce this
constraint, a penalty function based on the excess energy (E) of the spacecraft after the
flyby is used as follows (taken from [31]):

E =
v2

∞−in

2
−

Gmpl

rSOI
, (5.16)

where

rSOI ≈
(

mpl

msun

) 2
5

rpl,sun. (5.17)

and the implemented penalty function is

g(x) =

{
0 E ≥ 0

1
v∞−in

E < 0.

A penalty is applied to the solution if the excess energy is negative, as it indicates a po-
tential capture. This penalty guarantees that the spacecraft’s velocity remains sufficiently
high to avoid capture. It is also worth noting that the sphere of influence is assumed to
be ’spherical’ which is technically not the case as the far side of the planet experiences
a weaker gravitational pull from the Sun compared to the Sun-facing side. However, this
effect is minor and is therefore neglected in this work.

Now, individuals violating either of these constraints receive high cost and fitness values,
making them unlikely to be selected for reproduction and crossover in the genetic algo-
rithm. Therefore, over time these individuals that represent non-physical trajectories will
be driven out of the population.

5.4.3. Genetic evolution structure

The genetic algorithm is defined by the various parameters discussed in Section4.1.. The
main ones are the population size and number of generations but also important are the
operator methods, and probabilities. These values can be adjusted to modify the algo-
rithm’s behavior, and changing the population size and number of generations significantly
affects the output. The structure of the genetic algorithm used in this study is illustrated in
Figure 5.3 [3].

The algorithm begins with population initialization where each individual is represented by
a list of time events:

X⃗ = [t0, t1, . . . , tn]. (5.18)

For each leg of the trajectory, there is a prespecified minimum and maximum time. To
increase the input resolution, the dates are cumulative and converted to real dates using
the provided bounds. In the scope of this work Bayesian Julian Date convention was used
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Figure 5.3: Genetic algorithm diagram

to also match the ephemeris data seen in Table 5.1 before. One example for the time
boundaries for t0 (the departure) date is:

T0 = [2440587.5 ≤ t0 ≤ 2441317.5] (5.19)

where T0 is a range of two calendar dates. Note that for T1 to Tn the time ranges are days,
as shown in Equation 5.11 and not dates. Nonetheless, in the Bayesian Julian calendar
system you can subtract the two dates to obtain the number of days between. In the case
above that would be:

δt0 = 2441317.5−2440587.5 = 730 (5.20)

which means the departure window δt0 starts on 2440587.5 (which represents January
1st, 1970) and is open for 2 years (730 days). For t0, a random value between [0,730] will
be chosen and added to the first date of the arrival window. For the other time events, a
random number within the time range is assigned to each ti in the vector. To calculate the
date of the flyby, required to compute the ephemeris, the following equation is used:

tn = t0,min +
n

∑
i=0

ti. (5.21)

These tis which compose X⃗ are then used to calculate the trajectory. The first step after
initialization (from the genetic algorithm perspective) is therefore the evaluation of the fit-
ness of every individual in the population. Each individual’s trajectory, encoded by their
dates, is evaluated using the objective function (Equation 5.14) to derive a fitness value.
Now, the fitness values are normalized, considering it is a minimization problem. First, we
conduct a step to calculate the adjusted fitness of an individual:

a(i) =
1

1+ s(i)
, (5.22)
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where i is an individual with a raw fitness s(i) and a(i) is the adjusted fitness. The fitness
will now lay between 0 and 1. Next, the fitness for the whole population is normalized such
that the sum of all fitness values is 1:

n(i) =
a(i)

∑
n
j a( j)

. (5.23)

After this step, each individual i will have normalized fitness value n(i) and the fittest
individuals also have higher normalized fitness values. Now, the population is sorted from
the fittest to the weakest individual using the inbuilt C++ std :: sort function. In order to
run a genetic algorithm the various time events need to be converted into a binary string
to follow the procedures described in Section 4.1.. The detailed breakdown of the number
of bits used for the integral and decimal part of a number can be found in [3]. The various
genetic algorithm operators shown in the yellow box in Figure 5.3 are now applied:

1. As described before, a predefined number of ”elite” individual directly survives to
the next generation in order to preserve the best genetic material of the current
generation.

2. Selection is performed next, using one of the implemented methods chosen by the
user. One of the specific selection methods discussed in Section 4.1.1.1. is chosen
by the user at the start. Selected individuals are copied to the new population vector
until it reaches its maximum size, which is the predefined population size NPOP.

3. Reproduction and crossover operations are then performed on the new population
vector. Pairs of consecutive individuals are crossed using the user-chosen method,
and the offspring replace their parents.

4. The last operator, mutation, is applied to each individual using the selected mutation
method. Note that here the elite individuals are excluded in order to maintain them
unchanged. Once completed, each new individual’s trajectory is calculated again
and the process recommences.

This loop continues until the maximum number of generations is reached and the program
displays the exact trajectory details of the best trajectory that was found.

5.4.4. Multithreading

To enhance the algorithm’s execution time, multithreading was implemented which allows
parallel execution of independent operations that consume significant time. Choosing the
code’s language as C++ in order to allow for multithreading was also deliberate as other
programming languages such as Python, which are perhaps easier to work with, do not
support it.

For this thesis, multithreading is utilized by computing multiple (at the moment ten) trajecto-
ries in parallel instead of sequentially. This is down by splitting the population of individuals
into ten groups of size NPOP/10, and solving each of those concurrently. As a means to
also optimize the outer loop optimization mentioned in Section 1, multithreading has also
been implement there for future application, to test different sequences at once.
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Parallely computing is only feasible during the computation of the fitness because it de-
pends solely on X⃗ and is an independent operation for each member of the population.
However, multithreading is not applicable to other parts of the genetic algorithm, such as
the crossover operation, which involves interdependencies among individuals and is time-
consuming. The mutation operation, although independent, is already fast and inexpen-
sive, so multithreading is not considered to avoid unnecessary code complexity. However,
in the case of trying different sequences at once as the code is written for, then the interde-
pendencies do not go beyond a single sequence, meaning that multithreading can indeed
be used for the GA part of the algorithm. Note that the speed-up might be smaller in this
application, as there is already multithreading used within each sequence and using even
more threads is applicable only to computers with many cores that are designed to handle
the high computational load at once.

The impact of multithreading is not noticeable for short trajectories or small population
sizes. For missions with more complex trajectories involving multiple planets and a larger
search space, such as Galileo or Voyager II, multithreading reduces execution time by
approximately 50%. For these missions, the execution time for fitness computation and
other operations was reduced from 7 to 8 minutes using a single thread to around 4 min-
utes with multithreading given the same parameters used for the genetic algorithm. The
convergence to an optimal value depends mainly on the number of individuals and gen-
erations, and substantial gains and stability are achieved when both are sufficiently large
for lengthy missions. Moreover, as the objective function has become more complex, the
required dimensions of the number of generations and the population size in order to con-
verge has also increased.

At this stage, it is tempting to create a relation looking at the time efficiency of a code to
reach an optimal trajectory as a function of the total number of computations. This may
look as follows:

Figure 5.4: Fitness convergence as a function of computations

Here, the three curves all represent a total civilization of 10,000 individuals (counting up
all the generations). One would expect that on average, when running each of the three
variants (50x200, 25x400 and 10x1000) multiple times, the lowest starting fitness is likely
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the one with most initializations, meaning 10x1000. Remember that since we aim to min-
imize the total delta-v quantity a lower fitness score is better in the illustration above. As
the genetic algorithm evolves 50x200 the most, it is probable that it will find the best opti-
mal trajectory after a high number of computations. However, not every computation has
the same ’costs’ in terms of the time taken to complete it. As mentioned before, for every
evolution that occurs all the individuals are needed at the same time, meaning that only
one computation can occur at a given moment. On the other hand, in the case of 10x1000
it may take more computations to reach the same level of fitness, but more of those com-
putations can be done in parallel. As seen in Figure 5.3, the multithreading allows for the
computation of 10 individuals’ trajectories at once. Therefore, when looking at how fast the
fitness convergences as a factor of time, it is possible for the optimal solution to be found
faster using a higher ratio of NPOP/NGEN given a fixed civilization size.





CHAPTER 6. TEST CASES AND RESULTS

The complete algorithm has undergone validation at various stages, specifically focusing
on three key components: ephemeris, Lambert solver, and patched conic computations.
The accuracy of the ephemeris and Lambert solver results was confirmed by compar-
ing them with the Pykep library, a standard and easily verifiable source. Additionally, the
patched conic computations were cross-checked with data from [30]. While the individual
parts of the algorithm align with expected outcomes, it is important to acknowledge that
the computation of the entire trajectory relies on the Lambert solver and flyby technique
employed. Therefore, it should be noted that while our algorithm produces optimal so-
lutions, they may differ from those obtained by other heuristic or deterministic trajectory
optimizers.

As this thesis is built as an adaptation and extension to the previously constructed inter-
planetary trajectory design algorithm by [3], the test case trialed will aim to use the same
or similar genetic algorithm parameters in order to achieve a holistic comparison between
the real mission versus the minimum delta-v solution (α = 1 case) versus a time prioritized
trajectory (where β ̸= 0). Moreover, as there is only limited data known on the exact flybys
and delta-v injections performed by the real missions, the flyby dates are used as means
to construct the equivalent delta-v costs using this thesis’ algorithm. This means that in-
stead of the actual delta-v used in for example Voyager-II, the delta-v calculated using the
real flyby dates of the mission will be used to ensure a just comparison by converting the
real data into the predictions of the deep space mission trajectory design tool presented in
this work. That way a fair and direct comparison can be made across the three without an
inherent bias in comparing ’observations’ to ’predictions’.

6.1. Established scaling relationships

In this section, some of the analysis that was conducted in [3] is summarized to demon-
strate the scrutiny that this algorithm has already gone through. Thanks to the previous
work, it has already been established which genetic operators are considered to be favor-
able for selection, reproduction and mutation. Moreover, an analysis of the run time of the
algorithm as well as the progression of the delta-v over the course of the evolutions have
been studied and are summarized below.

6.1.1. Population and Generations

The population size and number of generations play a crucial role in optimizing interplane-
tary trajectories using genetic algorithms. Larger search spaces require bigger populations
and more generations for effective evolution. Figure 6.1 compares the convergence of 20
algorithm solutions with population sizes of 1500 and 15000 for the first three time events.
Those time events correspond to the optimal departure, first and second flyby dates after
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Figure 6.1: Comparison of 20 run solutions: 25 generations with 1500 individuals in the
left and 15000 in the right [3]

evolving for 25 generations.

Moreover, if the population size is insufficient, convergence to a local minimum may occur.
In such cases, solutions that reached a local minimum in early generations dominate the
population, hindering diversity. To overcome this, larger populations and more generations
are necessary to foster diversity and guide the population towards the global minimum.
This can be seen in Figure 6.2, where small population may be stuck in a local minimum
like the green or red line which are composed of 1,000 and 500 individuals respectively.
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Figure 6.2: Convergence of Voyager-I’s mission for different population sizes [3]

As can be seen in Figure 6.2, runs with 15000 to 10000 individuals find optimal values
around the 10th generation, whereas a population of 500 individuals converges around
the 30th generation. Naturally, the population size and number of generations also impact
the algorithm’s speed as will be discussed in further detail later.
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6.1.2. Genetic Operators

The following genetic operators were tested in the optimization process in [3]:

• Elitism: A value of ten was set for every mission, meaning that only the fittest ten
will survive from one generation to another. While its impact on overall performance
is minimal with large populations as found by [3], it does have noticeable impact on
the run time of the code as will be seen later.

• Selection: In order to understand which selection is more efficient a comparison of
the two was made. Looking at Figure 6.3, the tournament selection was employed as

Figure 6.3: Comparison of selection methods for Voyager-I [3]

the selection operator. This ”greedy” operator, as it always chooses the fitter of two
individuals being compared, accelerates convergence. Due to the large populations
used in the missions, tournament selection maintains diversity adequately.

• Reproduction/Crossover: Different crossover methods were compared in the opti-
mization process and specifically their run time was analyzed. It was found that all
the methods except Uniform crossover are quick and viable options.

6.2. Case Study - Voyager-II mission

6.2.1. Initial conditions overview

Voyager-II, the sister mission of Voyager-I, extended its trajectory beyond Saturn towards
Uranus and Neptune, resulting in a larger search space and a greater number of potential
solutions. To accommodate the increased search space, the population size and num-
ber of generations were increased to 50000 and 500, respectively. Although this leads
to longer execution times, it ensures convergence to the optimal value and consistency
across different runs. The GA parameters used for this test are the same ones used in [3]
and are presented in Table 6.1. Moreover, the original time intervals for the various legs of
the trajectory are presented in Table 6.2.
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GA parameters
Population 50000

Generations 500
Elitism 10

Selection Tournament
Crossover Double Point (P = 0.9)
Mutation Flip Bit (P = 0.2)

Table 6.1: Genetic Algorithm Parameters
Voyager-II

Trajectory parameters
T0, min 2443145

T0 (Earth) 01−01−1977
T1 (Jupiter) [0,1095]
T2 (Saturn) [50,2000]
T3 (Uranus) [500,2500]

T4 (Neptune) [250,2500]

Table 6.2: Trajectory Parameters:
Voyager-II

6.2.2. Performance comparison

A side-by-side comparison of the real mission data versus the minimum delta-trajectory
versus the α = 0.7 and β = 0.3 case is presented below to demonstrate the difference
across the three:

As seen in Table 6.3, the lowest delta-v is of course the α = 1 trajectory whose single ob-
jective in the fitness evaluation is the minimization of the delta-v. Naturally, this also comes
with the longest time to reach Neptune being required out of the three cases since there
is the least thrusting involved. In this case, the mission arrives over two years behind the
mission that was actually flown and almost 2.5 years after the α = 0.7 trajectory. While
the real mission departed ten days before the α = 0.7 case, it already required more initial
departure delta-v and even took longer to reach Jupiter. This can be traced back to not
conducting the most efficient interplanetary transfer and arriving at Jupiter over two months
after the α = 0.7 case.

In the next phase, the first flyby occurs around Jupiter which was similar in terms of the
turning angle for the real and α = 0.7 case, where both turned at around δ ≈ 97◦. This
turn can also be seen in Figure 6.4, but note that this trajectory is a 2-dimensional repre-
sentation of patched conics that are 3-dimensional when put together. Here, the incoming
velocity of the real mission is slower than for α = 0.7, which can be explained as it aims at
a meeting with Jupiter further along in the planet’s trajectory. Therefore, it has been going
against the gravitational pull of the Sun for a longer period meaning work has been done
on the spacecraft by the Sun to reduce its kinetic energy. This has occurred only to a lesser
degree for in the α = 0.7 trajectory, which is why it is seen to interact with Jupiter earlier
in its path (further clockwise in Jupiter’s trajectory as the planets move counterclockwise
around the Sun) as seen in Figure 6.4.
Already in this phase, it is clear where a lot of the time will be gained with respect to the
minimum ∆V case. While the departure velocity is only 4.7% higher when leaving Earth,
the incoming velocity at Jupiter is over 40% larger when entering its sphere of influence.
Moreover, the perigee passage of α = 0.7 is less than half the distance compared to the
α = 1 case, at rp = 4.8026× 108m as compared to rp = 1.1118× 109m respectively.
Nonetheless, as the two trajectories arrive at a different time and hence a different geom-
etry of the planets, the delta-v thrust injected in this point is very small for both a factor of
57 times smaller than the real mission for the same flyby planet.

By the time the flyby around Saturn occurs in the different scenarios, there is already more
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Trajectory Result
Real minimum ∆V (α = 1) ∆V and Time Tradeoff (α = 0.7)

Earth Departure
20−08−1977 04−09−1977 01−09−1977

Date T0 2443375.5 2443391 2443388
Departure ∆v[ m/s] 10230.7 9413.34 9855.66

Jupiter Flyby
09−07−1979 17−10−1979 03−05−1979

Date T1 2444063.5 2444163.5 2444000
v∞−in[ km/s] 7901.55 6563.52 9298.66
v∞− out [km/s] 7757.95 6559.38 9295.96

δ[deg] 96.9863 93.0884 97.7442
rp[ m] 7.058×108 1.1118×109 4.8026×108

∆v[ m/s] 57.844 0.34356 1.01265
Saturn Flyby

26−08−1981 24−04−1982 18−03−1981
Date T2 2444842.5 2445084.125 2444680

v∞−in[ km/s] 10790.6 8254.31 13088.7
v∞− out [km/s] 9052.45 8255.15 13090.4

δ[deg] 85.656 83.3468 85.269
rp[ m] 2.18×108 2.805×108 1.05455×108

∆v[ m/s] 815.66 0.378272 0.758372
Uranus Flyby

24−08−1986 26−05−1987 19−02−1985
Date T3 2446666.5 2446942.125 2446120

v∞− in [ km/s] 12877.1 11900.2 17378.6
v∞-out [ km/s] 17661.6 11900.2 17379.4

δ[deg] 22.164 18.1143 26.0872
rp[ m] 9.21×107 2.583×108 7.76536×107

∆v[ m/s] 3728.92 0.025 0.654346
Neptune Arrival

25−08−1989 15−09−1991 25−04−1989
Date T4 2447763.5 2448484.125 2447277

Arrival Vin[ m/s] 21551.0 15349.0 21862.2
Result

Total cost [∆v] 14830.12 9414.075 9856.34

Table 6.3: Voyager-II Results Comparison
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than a year’s difference across them. Here, again the delta-v injections for the α = 0.7
and α = 1 is below 1m/s, whereas for the real mission it is δv = 815.66m/s. The turn-
ing angle is similar for the real and α = 0.7 trajectory as those are closer in date com-
pared to the α = 1 case, with δ = 85.656◦, δ = 85.269◦ and δ = 83.3468◦ respectively.
There is also a stark difference noticeable in the incoming and outgoing velocity across the
three cases. As expected the velocities can be sorted from lowest to highest as follows:
α = 1 < real < α = 0.7. Interestingly, the velocity that α = 0.7 carries is over 20% higher
compared to the actual Voyager-II spacecraft.

This velocity differential also explains the increasing gap in arrival time for the final flyby
around Uranus, as α = 0.7 arrives six months ahead of the real mission. At this perigee
passage, the real Voyager-II conducted a massive maneuver of ∆v = 3728.92m/s, which
of course is very expensive fuel-wise, but allows it to have a faster outgoing velocity com-
pared to α = 0.7. In fact, the outgoing speed differential between the two is 282.2m/s,
which means it is ’catching up’ but at a high fuel cost.

Finally, the arrival at Neptune occurs and the results may be summarized as follows:

M/D/Y total ∆V[m/s] extra days∗ % less thrust vs real
Voyager-II 8/25/89 14830.12 751 -

minimum ∆V 9/15/91 9414.075 - −36.5%
Tradeoff 4/25/89 9856.34 873 −33.5%

Table 6.4: Voyager-II Results Summary; ∗the extra days at the final destination are calcu-
lated compared to the minimum ∆V solution

An interesting aspect that may be non-intuitive is that the α = 0.7 mission arrives at Nep-
tune at a higher incoming velocity than the real spacecraft, despite having left with a big
velocity differential from Uranus’ sphere of influence. However, this can be explained due
to the different trajectories that the two cases take in order to reach the final destination as
seen in Figure 6.4. In the case of the real mission the motion after departing from Uranus
is much more radial with respect to the sun compared to its α = 0.7 counterpart. This is
also reflected by the larger turn angle that α = 0.7 took compared to the real mission at
δ= 26.0872◦ and δ= 22.164◦ respectively. As seen in Figure 6.4, the α= 0.7 trajectory is
more circularized with respect to the sun (meaning it moves more counterclockwise) com-
pared to the real mission which has a higher eccentricity for its final transfer to Neptune
(meaning it more work is done to reduce its kinetic energy as it moves more radially). This
effect causes the real mission to arrive at a slower velocity, despite having cut the time
differential from a maximum of six months down to four.

Overall, the implementation of time as a consideration has caused massive changes in
the ultimate trajectory of the spacecraft. Using a balance of priorities distributed as 70%
(α = 0.7) on delta-v and 30% on time, a similar trajectory to the real mission flown, in
terms of overall arrival time, has been designed. It is obvious that simply minimizing the
overall delta-v and thereby having flybys with practically no thrust injection, leaves a lot
of mission potential untapped and should, therefore, not be the design strategy of deep
space missions.Moreover, the total ∆V cost in order to arrive four months ahead of the
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real mission, and almost 2.5 years ahead of the minimum ∆V solution, is less than 2/3 of
the true Voyager-II ∆V requirement. Additionally, this massive increase in time available
at the final destination compared to the results obtained in [3] comes only at an additional
cost of about 4.7% of the minimum total ∆V .

The complete trajectories of all three cases are illustrated here:

Figure 6.4: Voyager-II trajectories: real vs α = 1 (minimum ∆V ) vs α = 0.7 (Tradeoff)

In Figure 6.4, the Earth’s orbit is only the small gray circle with a radius of 1AU right around
the Sun. The order of flyby planets is naturally Jupiter, Saturn, Uranus and finally Neptune,
which are the circles with increasing radii illustrated above. As analyzed using the Table
6.3, the minimum ∆V trajectory can be seen to be the slowest at every stage as it arrives
always further down counter-clockwise to every planet, as they circle around the Sun in
that orientation. Here, the difference between the α = 0.7 and the real mission can be
most notably seen in the second and third flyby as it causes large differences in the arrival
to the third and fourth planet respectively. The maximum time difference between the two
of six months is also evident by the difference in where they arrive to Uranus (the second
largest circle depicted). The massive delta-v injection in the real mission to reach Neptune
and shorten the gap is also visible as the location of Neptune at the arrival of those two
cases is almost the same. Note also the that the angle between the two cases for the final
leg, is a reflection of the eccentricity of their conic around the Sun.
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6.2.2.1. Speed Evolution

Finally, to get a complete picture of the gravity assists and their addition to the speed of
the spacecraft at minimal fuel cost, a comparison of the minimum ∆V trajectory speed
evolution, α = 1, and the α = 0.7 trajectory speed evolution is shown in Figure 6.5.
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Figure 6.5: Speed Evolution: α = 1 (minimum ∆V ) vs α = 0.7 (Tradeoff)

Each vertical spike in Figure 6.5 is the effect of the gravity assist allowing the spacecraft
to utilize the energy of the planet (instead of its own fuel) in order to accelerate. It can be
seen that the α = 1 trajectory already prefers to depart with a slightly lower speed, which
due to the large distance to Jupiter, accounts for a massive time difference in arrival to the
first planet. As the α = 0.7 trajectory arrives earlier at the final destination of Neptune, the
orange line indicating its speed evolution also stops significantly before the blue line which
represents the speed of the α = 1 trajectory. The arrival speed at Neptune is also signifi-
cantly higher for the α = 0.7 trajectory, as can be seen by the vertical difference at the end
of the orange and blue line in Figure 6.5. However, using the right entry angle, atmospheric
drag can be used (without spending fuel) to slow down the spacecraft if needed. All of this
additional time was gained using just 4.7% additional fuel across the two, which is a very
small fraction of the delta-v cost of the real mission flown.

6.2.3. Sensitivity of weighting parameters

While prior to this, the only cases analyzed have been α = 0.7 and α = 1 in the context
of the Voyager-II mission, now a spectrum of αs will be analyzed to study the effect on the
optimal trajectory found.

To remain familiar with the overall mission this analysis is also conducted using the Voyager-
II mission as the trial case. A range of α = [1.0,0.5] has been used in conjunction with the
same GA parameter and trajectory parameters found in Table 6.1 and Table 6.2 in order
to complete this analysis. A particular focus is given to the number of days prior to the
arrival of the minimum delta-v solution as well as the additional fuel spent as those are key
factors taken into account by mission designers. The results in Table 6.5 were obtained.
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alpha Date total ∆V extra days additional fuel %
1.0 4/28/91 9415.35 - -
0.9 9/16/90 9433.63 224 0.19%
0.8 2/25/90 9482.86 427 0.72%
0.7 4/25/89 9856.34 733 4.68%
0.6 8/31/87 10136.6 1336 7.66%
0.5 5/1/87 10533.5 1458 11.88%

Table 6.5: Overall trajectory performance at different levels of α

Using these results, two plots are created to visualize the evolution of the trajectory as a
function of α.
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Figure 6.6: Total Delta-V vs Arrival Date

In Figure 6.6, the plot ”Total Delta-V vs Arrival Date” shows the relationship between the
total delta-v and the arrival date for different alpha values. The color map represents
the alpha values where darker colors indicate smaller alpha values. As shown in the
figure, a lower alpha value indicates a lower prioritization of minimizing the delta-v (higher
prioritization of an earlier time of arrival), resulting in a higher total delta-v requirement.

Figure 6.7 displays the ”Trade-off between Extra Days and Fuel Cost.” which illustrates the
relationship between the extra days spent at the final destination and the extra fuel cost
relative to the minimum delta-v for different alpha values. This is done to show how the use
of marginal extra fuel can lead to significantly earlier arrival dates at the final destination.
As seen in Figure 6.7, a lower alpha value represents a higher priority to reaching the
destination earlier, resulting in increased extra fuel costs. It can be seen that the α = 0.7
case is slightly above the general trend which shows that there full convergence is not yet
achieved, as there is no physical reason for the trend not to be smooth and monotonic.
This will be more evident in Figure 6.8, where different fitting curves are applied.

These figures demonstrate the trade-off between the time of arrival and the delta-v cost
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Figure 6.7: Trade-off between Extra Days and Fuel Cost

in space mission planning. By assigning lower alpha values, spacecraft can prioritize an
earlier time of arrival but at the expense of increased fuel consumption. Mission planners
must carefully consider this trade-off to achieve scientific objectives within resource con-
straints. In fact, when looking at a potential linear and quadratic fit, there seems to be a
point of diminishing returns as illustrated by the blue curve in Figure 6.8. However, at what
stage increasing the prioritization weight of β has diminishing returns is a subjective matter
that each mission designer has to consider.

However, since both correlations are considerably strong, as seen by the respective R2

values of R2
quadratic = 0.940 and R2

linear = 0.936, this trend of diminishing returns should
be analyzed with caution. Moreover, as all this data has been generated using the GA
parameters from Table 6.1 before in order to match the same inputs used by [3], in real-
ity, the algorithm with the increased complexity in the objective function is not as stable
when α ̸= 1 as compared to when α = 1. This is to say that while a population size and
number of generations of 50000 and 500 respectively were sufficient to continuously con-
verge to practically the same optimal trajectory when only minimizing delta-v, in the case
where time is also considered the parameters of the genetic algorithm need to be further
increased.
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Figure 6.8: Linear vs Quadratic best fit

6.3. Analysis of genetic algorithm behaviour

6.3.1. Convergence of population

The following analysis will consist in studying the stability of convergence in the case for
α = 0.7, which is the value used to achieve a similar arrival date to the real Voyager-II
mission given the aforementioned algorithm inputs. This time around the size of NPOP,
NGEN and elitism will be increased and the spread of the optimal trajectory arrival date of
different runs will be studied.

Seeing the different spread of arrival times, it can be seen that the trend of earlier arrival
time to increasing delta-v cost appears to be linear when looking at a short time frame
of arrivals. As expected the higher variety of results comes from the runs with a smaller
civilization size, that is roughly NPOP×NGEN . Clearly, this convergence, which is achieved
at 50,000 individuals and 50 generations for the minimum delta-v trajectory, is not present
using those GA parameters. This is related to the increased complexity of the objective
function detailed in Equation 5.14. While on average the runs with higher population size
and larger number of evolutions are more clumped up, some of the lowest delta-v has been
found even using just 50,000 individuals and 200 generations.

It is worth noting that since this is a mission that departs on 1/9/1977, having an arrival
window of several months in 1980 is not that large considering the overall journey is well
over a decade long. Moreover using 75,000 individuals and 500 generations the range of
arrival months was just from mid-May of 88’ to August of 88’. Interestingly, when increasing
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Figure 6.9: Arrival Date Convergence at different NPOP, NGEN and elitism sizes

the number of elite individuals which are maintained across generations, the arrival window
is shrunk further from May to July, which is less than 2% of the overall travel time. The
specific range of delta-v required for the mission given different GA parameters is summed
up below:

Population Generations Elitism Delta-V Range (m/s)
50k 200 20 [9767.13, 9923.52]
50k 500 20 [9757.26, 9974.25]
75k 500 20 [9755.04, 9843.07]
75k 500 75 [9774.80, 9845.87]

Table 6.6: Delta-V Range for Different GA Parameter Set-ups

Moreover, changing the number of elites has another effect beyond simply shrinking the
arrival window. As seen in Figure 6.10 as the number of elites is increased the run time
required to complete the algorithm is reduced. This is because a significant lower number
of computations are conducted as the elite individuals are always simply copied to the next
generation.

Here, it is also seen that the scaling of the number of generations and the run time to
complete the algorithm is approximately linear (see first and second bar of Figure 6.10).

Moreover, it is noticeable that increasing the number of individuals in a population in-
creases the run time at a rate faster than linear (see second and third bar of Figure 6.10).
However, this can be deduced logically as with increasing population size the algorithm not
only has to spend more time creating new individuals through reproduction etc., but also
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Figure 6.10: Algorithm run time at different NPOP, NGEN and elitism sizes

has to compute many more trajectories which are computationally expensive (this is per
generation). On the other hand, increasing the number of generations does not increase
the number of trajectories that need to be calculated in each generation. Therefore, the
run time is increased more when scaling up the population size.

Nonetheless, considering the complexity of the Voyager-II mission, the convergence to an
optimal solution given a user-defined α can be achieved with significantly more ease in
missions that do not require as many gravity assists or take as long.
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CHAPTER 7. CONCLUSION

In this master thesis, an alternative approach to optimizing multi-gravity assist (MGA) inter-
planetary trajectories was investigated and developed. Previous methods focused solely
on minimizing delta-v without considering time, whereas this study incorporates time as
a factor in the objective function. This is of particular importance as merely optimizing
delta-v has shown to prolong the time taken to reach the final destination by up to several
years. As this can be considered a valuable time for space agencies and mission de-
signers, finding a more nuanced solution considering the arrival time entails an improved
mission design approach. Through the utilization of evolutionary algorithms, particularly
genetic algorithms, the effectiveness of this approach in finding near-optimal solutions for
interplanetary trajectories was demonstrated.

By extensively validating and testing against the Voyager-II mission (as well as Voyager 1
for the α = 1 case), which followed an MGA trajectory, it was shown that this approach can
generate trajectories that closely match the expected results and convergence criteria. No-
tably, the choice of genetic operators had minimal impact on the algorithm’s performance,
while the population size and number of generations emerged as critical factors influencing
the outcomes. With respect to run time, the population size, number of generations as well
as elites was found to be relevant. Moreover, selecting large values for these compared to
the previous study [3] was necessary to ensure convergence to the optimal solution and
avoid local minima.

Overall, the total ∆V cost in order to arrive four months ahead of the real mission, and
over two years ahead of the minimum ∆V solution, was found to be only 2/3 of the true
Voyager-II ∆V requirement. The comparison of trajectories for flybys at Jupiter, Saturn,
and Uranus reveals the significant impact of trajectory choices (different levels of α) on
arrival times, delta-v injections, and spacecraft velocities. While deviations from the actual
Voyager-II trajectory result in variations in arrival times, it is shown that even small changes
in departure and flyby conditions can lead to substantial differences in trajectory outcomes.
Additionally, the massive increase in time available at the final destination compared to the
results obtained in [3] comes only at an additional cost of about 4.7% of the minimum total
∆V .

At this stage, it is clear that a willingness to spend more on fuel to push the spacecraft with
a higher delta-v can have significant returns and is ”well worth the time”. Therefore, the ob-
jectives that were discussed in Section 2 have been achieved with the expected outcome
that tradeoffs in terms of small additional delta-v costs can bring significant advantages in
terms of the overall mission profile by arriving at a much earlier date As mentioned before,
this new capability to target a particular arrival window allows users to plan their arrival and
thus design missions that take advantage of the local geometry such as Europa-Clipper.
In many cases, such as the Rosetta mission the time of intercept of an asteroid also has
to be planned precisely which cannot be made when solely focusing on minimizing delta-v.
Either way, additional time at the target destination, along with a reduced travel time, im-
plies that data can be collected earlier as well as for an extended period since the lifetime
of the spacecraft at the destination is prolonged. Therefore, this mission design tool may
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potentially permit a change in the structural composition of future satellite missions as the
priority on shielding and batteries, which are required during the interplanetary journey,
can be reduced.

By incorporating time as a factor in trajectory optimization, it becomes possible to explore
trajectories that minimize delta-v while meeting specific mission duration requirements.
This allows for the identification of trade-off solutions that achieve a balance between fuel
efficiency and shorter travel durations, in the interest of improving the overall mission in
terms of scientific potential and economic investment.

7.1. Future work

While this master thesis has made significant progress in optimizing interplanetary trajecto-
ries using genetic algorithms, there are several avenues for future research and expansion
of the work.

One interesting area of exploration is the potential to utilize multiple gravity assists around
the same planet by leveraging the planet’s moons. By considering the gravitational in-
fluence of a planet’s moons, it becomes possible to perform sequential gravity assists,
utilizing each moon’s gravitational field to further optimize the trajectory. However, it is im-
portant to note that the moons typically have smaller masses compared to the planet itself.
This would also require a high-fidelity simulation as the positions of the moons needs to be
known with very good precision. While they can contribute to trajectory optimization, other
factors such as the perturbations caused by the planet (e.g., Jupiter) in the interplanetary
trajectory are likely to have a more significant impact. This would imply converting the
interplanetary transfer from a 2-body to a 3-body problem, making it considerably more
complicated while becoming more accurate.

From a technical/computational standpoint, the multithreading aspect of this tool can be
expanded in order to further shorten the execution time. More details on how the GPU
processing may be used are also discussed in [3].

As mentioned in Section 1, the use of Deep Space Maneuvers (DSMs) also present an
interesting addition to interplanetary trajectory optimization. The inclusion of DSMs in tra-
jectory design models offers increased flexibility and optimization possibilities to the algo-
rithm. DSMs involve performing delta-v maneuvers at any points in the trajectory, not just
at the perigee passage as it is currently implemented in this work. This allows for adjust-
ments and corrections to be made along various legs of the trajectory. By enabling delta-v
maneuvers at any point in the trajectory, the algorithm can explore a broader search space
and potentially discover more efficient trajectories with improved mission performance and
fuel efficiency.

Probably the most applicable and beneficial add-on to the current algorithm would be the
optimization of the flyby sequence itself, which can be accomplished using the same ge-
netic algorithm framework described in previous sections. Optimizing the flyby sequence
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entails finding the most advantageous order and timing of planetary encounters to mini-
mize delta-v and mission duration. By incorporating the flyby sequence optimization into
the genetic algorithm framework, more efficient overall trajectories can be discovered,
which can lead to even greater reductions in delta-v and mission duration as shown in
Table 1.1.

To implement flyby sequence optimization, the genetic algorithm would be first applied on
the outer loop, where each individual represents a flyby sequence. Then each ’outer in-
dividual’ will then run itself a genetic algorithm of ’inner individual’s, which are described
using X⃗ as was seen throughout this thesis. Since the outer loop genetic algorithm con-
tinuously generates inner loop genetic algorithms, the parameters used for the outer and
inner GA operators will be different. In fact, the backbone to implement this new and im-
proved algorithm has already been coded for the most part, but was not included in the
scope of this work to contain the scope the work of this thesis as mentioned in Section 2.
Once completed, this makes for a user-friendly end-to-end deep space mission trajectory
design tool, which only requires a final destination as an input along with a prioritization of
delta-v vs time through the parameters α and β. It is also worth noting that a future study
shall also take a deeper dive into analyzing the relationship between the complexity of the
objective function and the resultant number of generations and population size required to
reach convergence.

By expanding on these future directions and addressing the optimization of the flyby se-
quence, refining genetic algorithm parameters, incorporating additional constraints and
objectives, leveraging computing advancements, and considering mission-specific factors,
further advancements can be made in the field of interplanetary trajectory optimization.
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