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Abstract

Modern safety critical systems require high levels of performance for the
implementation of advanced functionalities, which are not possible with the
simple conventional architectures currently used in them. Embedded Gen-
eral Purpose Graphics Processing Units (GPGPUs) are among the hardware
technologies which can provide the high performance required in these do-
mains. However, their massively parallel nature complicates the verification
of their software and increases its cost because it usually involves code cov-
erage through extensive human-driven testing.

The Ada SPARK language has traditionally been used in highly-critical
environments for its formal verification capabilities and powerful type sys-
tem. The use of such tools, especially those being backed up by theorem
provers, has significantly lowered the amount of effort needed to validate
functionality of safety-critical systems.

In this work, we utilize AdaCore’s CUDA backend for Ada – currently
in closed beta – in conjunction with the SPARK language subset to assess
the state of static verification for GPU kernels. We show how common
programming mistakes in GPU kernels can be prevented, formulate a pattern
for buffer overflow detection, and close with a few GPU case studies.
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1 Introduction

Since the early days of civilization, humans have been creating machines
to aid them in life. The kinds of inventions vary, with some being mere
toys for entertainment, others providing aid in real-world tasks previously
carried out by humans, and —some of them— drastically changing how we
live our lives. While most are considered harmless in use, there are some
(see cars, airplanes and medical equipment) that should they somehow fail
during operation, the consequences are severe — possibly even deadly. All
those inventions have come to be characterized as safety critical systems.

The information technology era has enabled unprecedented rates of in-
novation. There are many, and possibly world-changing ideas stirring up in
R&D laboratories all over the world. While early stages of those systems
might be less safe and secure than later iterations, humans have always
striven to ensure critical failure rates are kept extremely low before their
eventual mass adoption. Consequently, this makes it much harder for insti-
tutions and companies to develop and roll out their safety-critical products.

While traditional safety-critical systems were mechanical, modern sys-
tems are heavily based on computing systems, implementing functionali-
ties "X-by-wire" i.e. drive or fly-by-wire. In particular, current cars or
plane steering systems do not rely on hydraulic systems which transfer
driver’s/pilot’s movement to forces that control mechanical parts, but in-
stead consist of sensors, actuators and computing systems which control the
relevant components by software. Modern low-end cars currently contain
more than 100 million lines of code, creating a major challenge for their
verification [35].

To combat this safety verification bottleneck, automated verification
tools were developed to aid the resource-heavy manual testing and code
reviews. Those verification tools can be divided into two subcategories:
dynamic and static. Dynamic tools are usually easy to apply, but their
effectiveness relies on the tests’ coverage exhaustiveness. Test coverage is
not an easy problem to solve, and even if done properly, it might end up
needing more computation time than what is acceptable. Static verification
tools on the other hand, operate on the semantics of systems, trying to prove
properties that hold for all possible inputs.

1.1 Problem Formulation

Modern safety critical systems require high performance processing power
for the implementation of advanced functionalities such as advanced driver
assistance systems (ADAS) and upcoming fully autonomous systems. Some
of these features, such as automatic emergency breaking, are mandatory for
all vehicles sold in the European Union starting from 2022 [42]. These func-
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tionalities cannot be implemented with traditional processing elements used
in safety critical systems, which are relying on older and simpler process-
ing technologies. As an indication, a modern car contains more than 100
Electronic Control Units (ECUs), while the advanced functionalities require
more complex technologies [35].

Among the candidate processing technologies, Embedded General Pur-
pose Graphics Processing Units (GPUs) are the most promising due to the
fact that they can offer high performance, low power consumption and eas-
ier programmability than other parallel systems. For this reason, they are
considered among all types of safety critical systems such as in the automo-
tive [48], avionics [34, 39] and space [38].

While conventional software systems running on CPUs have long enjoyed
the advantages of the static verification approach [1, 26], GPUs have not
really dived deep into this area. While some research tools do exist as we
describe in the upcoming section, each of them targets a specific problem
area, and are not closely coupled with the underlying programming language.
A unified programming environment would greatly benefit the adoption of
GPGPUs on safety-critical systems, but such a product is surprisingly still
absent.

The best current solution is writing GPU kernels in a non-safe language
like CUDA, and using those tools – possibly aiding them with annotations –
to get the necessary verification results. Due to the tools being targeted at
GPU kernels, interaction with the surrounding CPU code is limited, if not
non-existent. So, not only we do need multiple different tools to achieve a
provably bug-free system, we also have to make additional verification for
the interactions between CPU and GPU code [40].

1.2 Contributions

The contributions of this Bachelor’s thesis are the following:

• First, we evaluate the possibility of programming GPUs for safety
critical systems using the Ada SPARK language subset.

• Next, we examine the strengths and limitation of Ada SPARK’s for-
mal methods for preventing GPU software errors. In particular, we
examine various categories of GPU programming errors and explore
whether Ada SPARK and the current version of its associated tools
are able to find them and prove the code correctness.

• We develop a methodology for writing GPU software in Ada SPARK,
which facilitates the identification of some GPU programming errors
which are not able to be identified simply by using the Ada SPARK
tools.
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• We compile a set of Ada SPARK GPU examples with injected GPU
software errors, demonstrating how they can be detected. Our im-
plementations are released as open source [45], and contribute to the
limited number of publicly available Ada SPARK resources in the lit-
erature.

• We demonstrate the effectiveness of Ada SPARK in an open source
benchmarking suite of a safety critical domain, GPU4S Bench (GPU
for Space) [31]. In particular, we port its benchmarks in the Ada
SPARK benchmarks reaching at least stone level of SPARK adoption.
Our implementations are released as open source [46].

1.3 Thesis Organisation

The rest of this Bachelor’s thesis is organised as follows. Section 2 intro-
duces the necessary background and concepts required to understand the
contribution of this thesis, and positions our work with respect to other
related works in this area. Sections 3 and 4 contain the main outcomes of
this thesis. Section 3 discusses how the use of Ada SPARK for the devel-
opment of GPU code for safety critical systems helps in avoiding several
programming mistakes. Section 4 showcases (through two small case stud-
ies) some stronger Ada SPARK constructs that aid us in verifying kernels,
and mentions our results with a GPU4S benchmarking suite port. Section 5
lays out two common kernel patterns that (in conjunction with strategies we
developed and showcase in previous sections) ensure verification guarantees
on-par with conventional SPARK verification of CPU programs. Finally,
Section 6 provides the conclusions of this thesis, and Section 7 our plans for
future work.
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2 Background and Related Work

2.1 General Purpose GPUs

GPUs (graphics processing units) are specialized hardware devices intro-
duced to accelerate the (highly date-parallel) graphics in our computing
systems. Slowly, their SIMT (single instruction, multiple threads) model
got the attention of the HPC (high-performance computing) industry, lead-
ing to the introduction of general purpose GPU programming. Nowadays,
GPUs hold a significant role in HPC and the industry, being the most ap-
propriate devices to handle massively parallel workloads. This is evident
in the most recent edition of the Top500 Supercomputing List (November
2022), in which the majority of the supercomputers, are based on GPUs,
including the number 1 and the 7 supercomputers in the top 10.

With the introduction of embedded and mobile GPUs, this type of com-
puting devices has dominated also consumer devices. Moreover, as all safety
critical domains require high performance for the implementation of ad-
vanced functionalities, GPUs are considered also for use in these domains.

GPUs are programmed using heterogeneous programming models such
as CUDA and OpenCL, both of which are based on the C programming lan-
guage. GPU are accelerators, which means that are not standalone devices.
Therefore they require the presence of a host processor, ie. a Central Pro-
cessing Unit (CPU). The CPU and the GPU have distinct address spaces,
even in the case where both systems share the same main memory, as it is
the case in embedded GPUs.

GPU programming entails writing two different types of programs, one
targeting the CPU and one targeting the GPU. The CPU code is in charge
of performing the main interaction with the system as well as regular com-
putations. Whenever a heavy computation is required, the CPU can offload
the computation to the GPU. This happens in the form of kernels, which
are functions sent to GPU for the execution. GPU kernels are written in a
kernel programming language, such as CUDA – used in NVIDIA devices –
or OpenCL – a Khronos standard supporting multiple vendors – which is a
subset of the C language.

The programmer needs to specify the kernel configuration which de-
scribes how many threads will be used for the kernel execution, as well as
how these threads are organised in blocks within the Grid of threads, as
shown in Figure 1. Threads within the same block are executed in the
same hardware unit in the GPU, known as streaming multiprocessor (SM)
in NVIDIA’s terminology. Moreover, they can communicate through a fast
on-chip memory known as shared memory and synchronise their execution
using barriers. Threads from different blocks can only communicate through
Global Memory, which resides in DRAM. Finally, GPU threads are executed
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CPU code

GPU code

Programming API

GPU Programming Language

Figure 1: GPU Programmer’s view. Image credit Wen-mei W. Hwu (UIUC)
and David Kirk (NVIDIA).

in lockstep groups of 32 threads, known as warps.
Since the CPU and the GPU have different address spaces, it is the

programmer’s responsibility to manually perform memory transfers between
them, before and after a kernel is executed.

2.2 Safety Critical Systems

Contrary to most systems, safety-critical systems value above all their un-
hindered and correct functionality conforming to their predefined specifica-
tions. Such systems include satellites, spacecrafts (both on-earth and outer
space ones), cars, and in general, most systems that interact with the real
world and are either vital to something or dangerous. These systems need
to be developed and demonstrate compliance with functional safety stan-
dards, which consist of a set of rules than need to be followed during their
development and their verification. Different safety critical domains have
different functional safety standards, however all of them are very similar,
and therefore a system developed for a critical domain, can be adopted for
use in another one. In the automotive domain, ISO 26262 [27] is used, while
avionics follows the DO-178C [12] and the aerospace domain uses the ECSS
(European Cooperation for Space Standardization) set of standards [7].
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Common points among all safety critical standards for software devel-
opment include the limited use of pointers and dynamic memory allocation,
as well as extensive code coverage of software during testing, in the form of
Modified Condition/Decision Coverage (MC/DC) [40].

Lately, safety critical systems are in need for very high performance, to
enable the implementation of advanced functionalities. For this reason, the
adoption of massively parallel architectures seems very promising. How-
ever, as discussed in the previous subsection, GPUs are programmed with
low-level programming languages based in C. The C language although it
is portable, very efficient and its use is widespread to almost any type of
system, places an important burden to the programmer in order to write
correct code, as well as to the system verification.

Previous analyses for the use of GPUs in safety critical systems have
shown that existing GPU programming languages violate several of the
guidelines of functional safety standards for software development [28][39].
In particular, the fact that GPU programming requires extensive use of
pointers, dynamic memory allocations and explicit memory transfers be-
tween the CPU and GPU memory spaces, violate these rules, and compli-
cates their verification.

In order to design and ship a safety-critical system in the market, one
has to validate that it respects its specifications, as it is required from the
different functional safety standards. Two options have been prevalent in
achieving this: extensive testing and formal methods. Extensive testing,
complimented by strict work and test methodologies such as MC/DC cov-
erage [40], is still quite prevalent in the industry.

As the systems get increasingly more complicated though, this approach
fails to scale along with them. This has attracted companies and the research
community to turn their attention towards the aforementioned formal meth-
ods. In fact, the avionics domain has a specific variant of DO-178C, which
explicitly deals with the application of formal methods, the DO-333 [13].

2.3 Formal Methods

Formal methods are techniques based on mathematical principles, that aid
in the specification, design and verification of systems. The results of such
techniques can be trusted, and no additional proofs should be needed for
their promises, given that the design and implementation of the program of
the formal method itself is correct.

The advantage of such methods is that the extensive testing is transferred
from multiple target programs to the formal method implementation. Once
the formal method program can be trusted, target programs designed and/or
verified by it can also be trusted, achieving much higher trustworthiness
levels that we could ever hope to reach through sheer extensive testing.
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Traditionally formal methods have been very difficult to use, since they
required deep mathematical knowledge related to the fundamentals of com-
puter science. In particular, this involves knowledge of Hoare and separation
logic, as well as the use of niche programming languages and proof assis-
tants like Coq [19]. In this way, program properties needed to be described
mathematically, in order to prove either that the program adheres to its
specification, or that the generated executable code is equivalent to what
the programmer specified [11, 8].

This rare expertise has prevented the widespread use of formal methods
despite their benefits. However, recent advances in formal methods and
programming languages, such as the ones provided by Ada SPARK and
Frama-C [16], allow their use by non-experts without prior knowledge of
advanced logic methods.

2.4 Ada SPARK

Ada is a programming language (first released in 1980), that at first mainly
targeted embedded and real time systems. With revisions though, it got
higher-level features like object-oriented programming and dynamic dis-
patch. Ada has been used a lot by the safety-critical sector, since it sup-
ports both an extensive pool of safety checks at runtime, and the Design-
by-Contract methodology. SPARK is a formally defined subset of Ada. As
quoted from the Ada Information Clearinghouse (AdaIC) website [49], a ser-
vice of the Ada Resource Association, SPARK provides many advantages,
specifically important for high-integrity, safety critical systems:

The formal, unambiguous, definition of SPARK allows and en-
courages a variety of static analysis techniques to be applied
to SPARK programs. These include information flow analysis,
proof of absence of run-time exceptions, proof of functional cor-
rectness, and proof of safety and security properties. Proof of
termination is now also possible using loop variant contracts.

Ada SPARK has been used in highly critical systems such as the Ship /
Helicopter Operational Limits Instrumentation System (UK Interim Defence
Standard 00-55), and the Lockheed C130J Mission Computer (DO-178B
Level A) [4]. Although initially Ada SPARK was proprietary technology of
Praxis, currently a GPL licensed version for open source projects is offered
by AdaCore, SPARK Community version, while a commercial license is also
provided.

Ada SPARK consists both of an executable subset of the Ada language,
as well as a subset of its specification language. The former means that
Ada SPARK is similar to the MISRA-C [26] subset used for the develop-
ment of safety critical systems using the C language. The latter means that
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SPARK allows the introduction of specification statements about the soft-
ware behaviour such as preconditions, postconditions and invariants. These
statements are not executable, but are converted internally to logic state-
ments known as Verification Conditions (VC) which are used in order to
detect errors or prove the correctness of the code. In fact, the AdaCore
compiler generates additional Verification Conditions from the executable
code, which is combined with the specification statements. These Verifica-
tion Conditions are passed to an automatic theorem prover system which
either proves that all these verification conditions hold, or find a counter
example in which this is not satisfied. In this case, a user friendly message
is provided to the programmer, in order to solve the issue, or to provide
additional information in the specification, in order to make it hold.

However, many times it is not possible to prove all verification conditions.
In this case, SPARK is using testing for these verification conditions. In
fact, specification statements are also converted to dynamic checks, similar
to assertions, which are used for this purpose. However, whenever these
assertions are proven to hold in all cases, these dynamic checks are disabled,
in order to avoid their runtime cost.

SPARK defines 5 adoption levels: Stone, Bronze, Silver, Gold and Plat-
inum [44]. Stone level is achieved when the code is converted to the exe-
cutable subset of SPARK. Bronze level ensures that initialisation and correct
control flow is guaranteed. This is achieved by introducing specifications re-
lated to the use of global data in the code. In Silver level, the absence of
runtime errors is proven. In Gold level key integrity properties of the soft-
ware are proven correct. Finally, in Platinum level there is a full functional
proof of requirements, ie. that the software meets its specification.

Each level of adoption after Stone level requires the introduction of
SPARK specification statements and can be achieved gradually. However,
achieving the next level requires additional cost and effort.

As mentioned earlier, Ada SPARK has been used for several decades for
the development of safety critical systems for conventional CPU systems.
Currently, AdaCore is developing a CUDA backend for its Ada compiler
(GNAT), which can generate code for NVIDIA GPUs. This software is
at the time of the writing of this document in a closed beta phase. This
means that some of the CUDA features are not yet implemented. In this
Bachelor’s thesis we were provided access to this experimental toolchain in
order to evaluate its benefits and current limitations for the development of
GPU code for safety critical systems, as discussed in detail in Section 3.

2.5 Ada SPARK Resources

Unfortunately there are very limited available resources for learning Ada
SPARK, all of which are only focused on CPU programming. In particular,
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the Ada SPARK books from the SPARK inventor John Barnes [3][5][6] which
mainly cover earlier versions of the language (SPARK 83, 95 and 2014) and
are currently out of print, the Ada SPARK book [22] from McCormick and
Chapin which covers the latest version of the language, Jakub Jedryszek’s
Master’s thesis [21] at KSU, the SPARK by example tutorial [30] from Léo
Creuse et al and very recently the AdaCore’s SPARK website [43].

Publicly available source code related to SPARK is also very rare. This
is typical in safety critical and security critical systems, since their devel-
opment cost is very high and companies developing such systems want to
keep their competitive advantage. Moreover, in certain domains such as
aerospace, software is subject to export control restrictions which prevent
their distribution [38].

Altran, the original company commercialising SPARK before joining
forces with AdaCore, has developed an open source, highly secure biomet-
ric software case study called Tokeneer under contract from NSA [10][9].
Moreover, Codelabs GmbH is developing an open source, formally proven
Separation Kernel for highly critical systems and advanced national security
platforms [20][47].

In order to bridge this gap, this thesis produced examples to show how
Ada SPARK can be applied for GPU code, as well as a set of GPU case
studies in Ada SPARK, which are available as open source [45][46], including
a port of the open source GPU4S Bench benchmarking suite [33].

2.6 Related Work

In this subsection, we examine briefly some related works and their relevance
to our work, as well as how our work compares with them.

Formal Methods in GPUs

As previously mentioned, it is not the first time that static verification has
been applied to GPUs. There exists a handful of research tools developed
for detecting potential coding errors in GPU kernels.

The GPU_Verify [15] and GKLEE [17] tools can be used to find syn-
chronization errors. GPU_Verify, along with VerCors [14] can also detect
data races. ESBMC-GPU [24] and CIVL [23] can mitigate index-out-of-bounds
errors. For functional correctness guarantees, one can use VerCors and
Vericuda [25]. Finally, CIVL can also be used for equivalence checking
among GPU kernels and their serial implementations.

It is worth noting, that to the best of our knowledge, these tools are
aiming to mitigate existing classes of problems, but none of them provides
a complete verification strategy, one living up to the expectations of safety-
critical software. As an example, the MISRA-C specification [26] and the
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Ada SPARK toolchain [1] are able to guarantee absence of integer overflow,
unreachable code and division-by-zero errors. However, these methods have
been only applied so far to CPU systems. To our knowledge, this is the first
first work that evaluates the applicability of Ada SPARK in GPU code.

GPUs in Safety Critical Systems

GPUs have been started only recently to be considered for use in safety
critical systems. Trompouki and Kosmidis [28] analysed for the first time
that all GPU programming models like CUDA and OpenCL, violate several
of the guidelines for software developments found in functional safety stan-
dards. This is because they rely on pointers, dynamic memory allocation
and low level memory operations such as memory transfers. For this reason,
they proposed Brook Auto [28], a high-level, open source programming lan-
guage which prevents some of the issues found in GPU programming. Brook
Auto follows the approach taken by MISRA C in the CPU domain, offering
a safe subset of the language to prevent mistakes by restricting error prone
language features. However, Brook Auto cannot prove the absence of pro-
gramming errors, as we do in this thesis in which we employ Ada SPARK’s
formal features.

BRASIL [32] is an extension of Brook Auto. While Brook Auto [28]
defined a safe GPU language subset and proved that GPU code can be
certified for automotive use using the ISO 26262 safety standard, it did not
cover its tool qualification aspect. All tools used in the development of
safety critical systems, need to be qualified according to the corresponding
functional safety standard, in order to prove that it is safe to be used.
BRASIL has studied which modifications were required in the Brook Auto
compiler, in order to achieve tool qualification for the development of the
highest criticality automotive GPU software according to ISO 26262. To
our knowledge, BRASIL has been the first qualifiable GPU programming
toolchain.

AdaCore’s tools are qualified for use in many safety critical environments,
specifically Ada SPARK ones. While the experimental CUDA backend we
use in this work is not qualified yet, we believe that it will be qualified once
its development is completed, following AdaCore’s long tradition in all safety
critical domains.

In [39], the authors analysed existing and upcoming methods (i.e. Vulkan
SC) for GPU programming in the avionics domain and discussed their certi-
fication aspects according to DO-178C. They concluded that the use of high
level abstractions need to be used to ease programmability and certification.
We believe that Ada SPARK offers this high level abstraction, and its formal
features can assist certification as it has been demonstrated in the past for
CPU software used in this language.
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In [40], the authors discussed the application of MC/DC testing coverage
in GPU code in avionics, and identified some aspects like the consistency
between host and GPU code as very important for the verification of safety
critical GPU code. Moreover, they identified that static analysis and formal
methods can complement GPU software testing. The use of Ada SPARK
which is examined in our work for GPU programming can provide these
checks. In particular, we develop a specific programming pattern that allows
the Ada SPARK tools to check consistency between the CPU and GPU
code. To our knowledge, this is the first work in the literature, including
the GPU formal methods examined in the previous subsection, which offer
this feature. In addition, Ada SPARK formal tools even in CPUs, take into
account all possible values taken by variables, and therefore can complement
MC/DC coverage and help finding errors that might be impossible or very
costly to find with testing.

In addition to the aforementioned scientific literature, some prior Bach-
elor’s and Master’s theses have explored various aspects of the application
of GPUs in safety critical systems.

Marc Benito [29][34] ported an avionics GPU software case study pro-
vided by Airbus Defence and Space in Brook Auto/BRASIL and OpenGL
SC 2.0 and evaluated the programmability and performance obtained by
programming in these GPU languages. Similarly, in this work we use the
GPU4S Bench [31] benchmarking suite, which is representative of aerospace
software accelerated by GPUs, which we port in the Ada SPARK language.

Alvaro Jover Alvarez [37][36] ported GPU4S Bench in OpenMP and
evaluated the performance of embedded CPUs and GPUs, showing that
embedded GPUs can provide higher performance than multicore CPUs for
computationally intensive workloads found in safety critical systems.

Cristina Peralta [41][48] has evaluated the performance and programma-
bility of two high level programming models for GPUs, OpenACC and
SYCL, for use in the development of safety critical GPU software. For
this, she ported GPU4S Bench as well as a pedestrian detection application,
showing that high level programming models like SYCL, can offer a good
trade-off between programmability and performance, and even in some cases
achieve the same performance with hand written GPU code.

Despite that these works ported safety critical-relevant GPU code in new
languages and programming models, they were mainly focused on the evalu-
ation of performance and programmability for safety critical GPU code. On
the other hand, in this work we are focused mainly on software verification,
and making sure that we can detect GPU programming mistakes.
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3 Avoiding Common Mistakes in
GPU Programming using Ada SPARK

In this section, we describe how the use of Ada SPARK helps to eliminate
common programming mistakes. We begin by explaining how Ada can be
used to describe a GPU kernel, using the CUDA backend of the AdaCore
compiler. Next, we examine a series of possible programming mistakes and
we show how the SPARK subset of Ada and its formal methods can help
detecting or preventing their them altogether.

This section is written in the form of a tutorial, providing a step by
step guide of how a GPU program in Ada SPARK can be developed and
its functionality can be formally verified. In particular, we start with small
program examples in which we intentionally inject the type of errors we
want to detect and avoid, and then we show how the Ada SPARK tools can
be used to achieve this goal. All the code examples used in this section are
included in our open source repository [45].

3.1 Writing a Simple GPU Kernel in Ada

The first step of avoiding several programming mistakes in GPU code starts
by using Ada, which has certain advantages over C and C-based languages
like CUDA. Without exaggerating, as we discuss in the subsequent subsec-
tions, some of these mistakes are impossible to make in Ada, so even the
fact of using this language for code development can provide a first level of
protection.

Writing a simple GPU kernel in Ada is not that different from writing
the equivalent CUDA kernel. We will showcase both the device and host
portions of the code (recall Figure 1), since the interactions between them
are important and are a common source of programming mistakes. The
complete code from the following example can be found in test00 of our
Ada SPARK examples’ repository [45].

Let’s say we want to write a vector addition kernel, which is the simplest
GPU kernel. First, as we do with every Ada procedure, we need to declare
the types we are working with, and then provide the specification of the
kernel, which is equivalent to a function prototype in C-based languages, but
Ada is much more descriptive. This information is provided in a specification
file with extension .ads (Ada specification), similar to the header files used
in C-based languages. However, in Ada these files are not included in the
form of a preprocessor, which prevents several problems like the inclusion of
the same file multiple times.

Ada’s pointers equivalent are access types. They are more powerful,
carrying additional information about the underlying objects, like the size
of an array, known as range in Ada.
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Because the CUDA GPU memory model might differ from the CPU
memory model, we need to specify CUDA.Storage_Models.Model as the
designated storage model for every argument we want to pass to the kernel.
We must add the Cuda_Global aspect in the kernel specification to tell the
compiler that this procedure can be called from both host (CPU) and device
(GPU) code. There is also a Cuda_Device aspect intended for procedures
called only from device code.

1 type Vector i s array ( Natural range <>) o f I n t e g e r ;
2
3 type Vector_Device_Access i s a c c e s s Vector with
4 Designated_Storage_Model => CUDA. Storage_Models . Model ;
5
6 procedure VectorAdd
7 (A : Vector_Device_Access ; B : Vector_Device_Access ;
8 C : Vector_Device_Access ) with
9 Cuda_Global ;

Next, we have to write the body of our kernel, in an Ada implementation
file with extension .adb. There is nothing special about this procedure com-
pared to a conventional Ada procedure, except that it gets run on multiple
GPU threads asynchronously, and has access to Ada’s CUDA Runtime API
procedures and functions. We use them just like we do in CUDA kernels, to
acquire an index for our kernel thread (line 5).

Note that in line 7, we need to check that the index is within the size of
the arrays, in order to make sure that there are no out of bounds accesses.
As we mentioned in Section 2.1, GPU threads are executed in groups of
threads, called blocks. Whenever the programmer launches a kernel, based
on the provided grid configuration, the appropriate number of threads is
created. Since this number is always multiple of the number of threads used
in a block, if the size of the data to be processed is not an exact multiple of
the block size, some thread identifiers can go out of bounds.

In a regular CUDA kernel this information needs to be passed as an
additional kernel argument, however in Ada, as we mentioned earlier, ac-
cess types carry also the size of the array, which is retried using the ’Last
attribute.

1 procedure VectorAdd
2 (A : Vector_Device_Access ; B : Vector_Device_Access ;
3 C : Vector_Device_Access )
4 i s
5 X : I n t e g e r := I n t e g e r ( Block_Dim .X ∗ Block_Idx .X + Thread_Idx .X) ;
6 begin
7 i f X <= A’ Last then
8 C (X) := A (X) + B (X) ;
9 end i f ;

10 end VectorAdd ;
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Moving over to the host side, we have some preliminaries too. Since CPU
and GPUs have different address spaces, we need to have data structures
holding the data for each of these address spaces. We need a separate
access type for the host-allocated vectors, and we also need to construct
de-allocation procedures for both the host and device access types.

1 type Vector_Host_Access i s a c c e s s Vector ;
2
3 procedure Free i s new Ada . Unchecked_Deallocation
4 ( Vector , Vector_Host_Access ) ;
5
6 procedure Free i s new Ada . Unchecked_Deallocation
7 ( Vector , Vector_Device_Access ) ;

Now we can proceed with writing the host code. Just like CUDA, we have
to define CUDA’s block and grid dimensions of our kernel call (lines 6–8).
The call itself is a built-in compiler pragma, where we give it the kernel with
its actual parameters alongside the aforementioned dimensions. The other
notable thing here is the absence of synchronization before the use of H_C in
line 24. In conventional CUDA, the data transfers through cudaMemcpy()
are non-blocking. Line 23 is indeed mapped to a cudaMemcpy() call, but
is presumably calling cudaDeviceSynchronize() too, since documentation
tells us that dependent transfers are actually blocking host execution until
the kernel completes.

1 procedure Main i s
2 Vector_Size : I n t e g e r := 1_024 ;
3 H_A, H_B, H_C : Vector_Host_Access :=
4 new Vector (0 . . Vector_Size − 1) ;
5 D_A, D_B, D_C : Vector_Device_Access :=
6 new Vector (0 . . Vector_Size − 1) ;
7
8 Threads_Per_Block : Dim3 := (256 , 1 , 1) ;
9 Blocks_Per_Grid : Dim3 :=

10 ( ( unsigned ( Vector_Size ) + Threads_Per_Block .X − 1) /
11 Threads_Per_Block .X, 1 , 1) ;
12 begin
13 −− I n i t i a l i z e host v e c t o r s
14 Generate_Vector (H_A. a l l ) ;
15 Generate_Vector (H_B. a l l ) ;
16 −− I n i t i a l i z e dev i ce v e c t o r s by t r a n s f e r r i n g the contents
17 −− of the host v e c t o r s
18 D_A. a l l := H_A. a l l ;
19 D_B. a l l := H_B. a l l ;
20
21 −− Cal l the k e r n e l
22 pragma Cuda_Execute
23 ( VectorAdd (D_A, D_B, D_C) , Threads_Per_Block , Blocks_Per_Grid ) ;
24
25 −− Move the dev i c e output vec to r to the host vec to r and p r i n t i t
26 H_C. a l l := D_C. a l l ;
27 Print_Vector (H_C) ;
28 −− Free a l l host and dev i ce v e c t o r s .
29 ( . . . )
30 end Main ;
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As mentioned in Section 2.2, prior work in the use of GPUs in safety
critical systems such as Trompouki and Kosmidis [28] have identified that
explicit memory transfers between the host and the GPU, and vice versa
are a common source of GPU programming mistakes. In particular, ex-
plicit low-level memory copies and initializations through cudaMemcpy() and
cudaMemset() are very prone to errors due to the fact that the allocation or
memory copy needs to be specified in number of bytes instead of the number
of elements, it has to be consistent with the size of the memory structures
and access is performed using pointers. Note that the use of Ada prevents all
these mistakes, since the access data types make sure that the allocations or
memory transfers take only up to the number of elements available in each
data structure. Moreover, if due to a programming mistake, the size of the
two arrays that are assigned to one another does not match, the program
will not compile.

The example presented in this Section runs smoothly and gives correct
results. Nevertheless, if we add the SPARK_Mode aspect on the specification
and bodies of our procedures and run the code through gnatprove (the tool
responsible for SPARK-compliance), it results in many errors and —because
of some of them— it ends up not analysing the actual kernel code.

Enabling the SPARK_Mode aspect is the first step towards achieving the
stone level of adoption in SPARK, as described in Section 2.4.

3.2 Extending our Kernel with SPARK Verification

The CUDA backend has been an on-going project for AdaCore, and it is
apparent from its state and the limited documentation available that they
have not considered integrating it with SPARK yet. As such, we are forced to
ignore certain warnings and carefully avoid analysing certain procedures to
circumvent unavoidable errors. Once the CUDA backend implementation
is complete and it is fully integrated with the SPARK formal tools, the
work-arounds that we devise and provide in this section, will not be needed
anymore.

In this section, we will showcase a programming pattern that allows us
to check for correctness across the CPU and GPU code. This is an element
which is very important for the validation of GPU software as indicated
by [40], but it is not addressed by any related work in the literature.

We will use as an example the vector addition kernel introduced in the
previous subsection, but we will focus on the CPU code, and the transition
to the GPU. As we will see in Section 3.3, even a simple integer addition
cannot always pass SPARK verification.

One of the problems we cannot work around is that SPARK does not
allow access types with storage pools. Our best option here is to comment
out the Designated_Storage_Model attribute entirely from our device ac-
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cess types every time we wish to run the prover on our code:
type Vector_Device_Access i s a c c e s s Vector ;

−−with Designated_Storage_Model => CUDA. Storage_Models . Model ;

The same action can be applied to omit the Cuda_Global aspect from
the specification of our kernel, but since it is reflected as a simple warning
and does not hinder analysis, we leave it as is in our complete repository
examples.

Moving on, the other thing we have to fix in our kernel (that is not part
of its data computation), is the construction of the index in the CUDA code.
Because the Block_Dim, Block_Idx and Thread_Idx API functions return
an unsigned integer from Ada’s C interface, the conversion to our vectors’
index type (that is, Ada’s Natural type) is unsafe, let alone the arithmetic
overflows that might arise, as the prover indicates:

We make the reasonable assumption that our kernel’s call dimensions
will not exceed the upper bound of Ada’s Natural type, and hence we use
a function that will not get analyzed for the conversion:

1 f u n c t i o n Cuda_Index
2 ( Block_Dim , Block_Idx , Thread_Idx : unsigned ) re turn Natural with
3 SPARK_Mode => Off
4 i s
5 begin
6 r e turn Natural ( Block_Dim ∗ Block_Idx + Thread_Idx ) ;
7 end Cuda_Index ;

The last thing we must attend to, is assuring that the constructed index
never points outside our vectors’ bounds. A possible solution would basically
alleviate all buffer overflow errors inside our code. Should we try to invoke
the prover at this stage, we would get errors like the following:
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To combat this issue, we propose the following three-stage pattern:

1. Construct a wrapper for the CUDA kernel invocation and the data
transfers before and after it. Importantly, the wrapper’s parameters
include both the input/output vectors and the desired CUDA block
and grid dimensions. The body of the wrapper will not get analyzed
for SPARK verification.

2. Add preconditions in the wrapper’s specification that dictate invari-
ants among the vectors’ ranges and the given CUDA block and grid di-
mensions. The wrapper’s specification will get analyzed for SPARK
verification.

3. In the declaration part of our kernel’s body, reflect the wrapper’s
preconditions with Ada assumptions to properly inform the prover.
Here is where we also construct the CUDA index with the predefined
Cuda_Index() function. Due to the underlying GPU architecture, we
might get more threads than we expect. Specifically, the dimensions
of our CUDA index will probably get rounded up to a multiple of the
architecture’s warp size, and hence we need one more Ada assump-
tion for this. Both the specification and body of our kernel will get
analyzed for SPARK verification.

The best way to apply this pattern mechanically in practice, is to make
any assumptions in the declaration part of the kernel’s body you need to
achieve verification, and then reflect them at the wrapper’s specification
with preconditions. Here is an example showcasing that pattern:

1 procedure VectorAddWrapper
2 ( Threads_Per_Block , Blocks_Per_Grid : Pos3 ;
3 A, B : Vector ; C : out Vector ) with
4 Pre =>
5 Threads_Per_Block .X ∗ Blocks_Per_Grid .X in Pos i t i ve ’ Range and then
6 (A’ F i r s t = 0 and B’ F i r s t = 0 and C’ F i r s t = 0 and
7 A’ Last = ( Threads_Per_Block .X ∗ Blocks_Per_Grid .X) − 1 and
8 B’ Last = ( Threads_Per_Block .X ∗ Blocks_Per_Grid .X) − 1 and
9 C’ Last = ( Threads_Per_Block .X ∗ Blocks_Per_Grid .X) − 1) ,

10 SPARK_Mode => On;

Listing 1: wrapper specification
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1 procedure VectorAddWrapper
2 ( Threads_Per_Block : Pos3 ; Blocks_Per_Grid : Pos3 ;
3 A, B : Vector ; C : out Vector ) with
4 SPARK_Mode => Off
5 i s
6 procedure Free i s new Ada . Unchecked_Deallocation
7 ( Vector , Vector_Device_Access ) ;
8
9 D_A : Vector_Device_Access := new Vector (A’ Range ) ;

10 D_B : Vector_Device_Access := new Vector (B’ Range ) ;
11 D_C : Vector_Device_Access := new Vector (C’ Range ) ;
12 begin
13 D_A. a l l := A;
14 D_B. a l l := B;
15
16 pragma Cuda_Execute
17 ( VectorAdd (D_A, D_B, D_C) ,
18 ( Threads_Per_Block .X, Threads_Per_Block .Y, Threads_Per_Block . Z) ,
19 ( Blocks_Per_Grid .X, Blocks_Per_Grid .Y, Blocks_Per_Grid . Z) ) ;
20
21 C := D_C. a l l ;
22
23 Free (D_A) ;
24 Free (D_B) ;
25 Free (D_C) ;
26 end VectorAddWrapper ;

Listing 2: wrapper body

1 procedure VectorAdd (A, B, C : not n u l l Vector_Device_Access ) with
2 Pre => A /= n u l l and then B /= n u l l and then C /= nul l ,
3 SPARK_Mode => On,
4 Cuda_Global ;

Listing 3: kernel specification

1 procedure VectorAdd (A, B, C : not n u l l Vector_Device_Access ) with
2 SPARK_Mode => On
3 i s
4 −− Mirror wrapper ’ s p r e c o n d i t i o n semant ics with assumptions
5 X : Natural := Cuda_Index ( Block_Dim .X, Block_Idx .X, Thread_Idx .X) ;
6
7 pragma Assume (A’ F i r s t = 0 and B’ F i r s t = 0 and C’ F i r s t = 0) ;
8 pragma Assume (A’ Last = B’ Last and then B’ Last = C’ Last ) ;
9 pragma Assume (A’ Last <= Integer ’ Last − 31) ;

10
11 Max_X : I n t e g e r := ( (A’ Last + 31) / 32) ∗ 32 ;
12 pragma Assume (X in 0 . . Max_X) ;
13 begin
14 i f X <= A’ Last then
15 −− Kernel data computation
16 ( . . . )
17 end i f ;
18 end VectorAdd ;

Listing 4: kernel body
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It is worth mentioning how both the Cuda_Index function and the wrap-
per’s body have a seemingly mechanical implementation. That is important,
since those are the two entities that do not get analyzed for SPARK verifi-
cation. This allows to replace this manual task in the future with automatic
code generation.

A complete example showcasing the aforementioned pattern can be found
in test01 of our Ada SPARK examples’ repository [45]. With it, we are
able to minimize the errors reported by the prover to just 1:

We have not found a way to get rid of this error. It seems to come from
an inability to deduct that the vectors we pass to VectorAddWrapper() are
initialized, even though we initialize them with random values. We tried to
get rid of it by initializing them in our Main’s elaboration stage, but the error
persisted. We concluded that because it does not hinder further analysis of
our host and device code, it was insignificant enough to ignore.

The safety of this pattern is pretty robust. Should you make a mistake
in the kernel’s specification preconditions, leaving room for buffer overflow
errors, any potential buffer overflow will get reported on the code written
inside the kernel’s body. Should you make a mistake in the host code, like
giving incorrect dimensions to the wrapper, the error will get reported on
the wrapper’s preconditions. The only way to get a buffer overflow on our
vectors is to either deviate from the given Cuda_Index function, make a
mistake in the body of the wrapper, or to improperly reflect the wrapper’s
precondition semantics in the kernel’s assumptions section.

Unfortunately, even though we are currently passing a SPARK verifica-
tion stage that would guarantee us lack of runtime errors, it is important to
note this is not the case here. The prover lacks the semantics of a CUDA
kernel launch, namely, the multiple asynchronous executions of the kernel
instructed by the invocation’s dimensions. Those semantics are important
for detection of data races and synchronization errors. We should note here
that the current version of the AdaCore’s CUDA backend does not support
writing Ada kernels using features that introduce data races, like shared
memory and synchronisation among threads. Those features will be avail-
able in future versions of the tools.

Regardless the missing support for those features, there are certain kernel
patterns, as we’ll see in Section 5, that can guarantee freedom of those errors,
too. Those patterns enable a holistic verification strategy.
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3.3 Integer Underflow/Overflow

One might notice that we restrained from applying the simple addition inside
the body of our VectorAdd() kernel in the previous section. That was on
purpose; two of the possible runtime errors that SPARK verification can
prove their absence are integer overflows and underflows.

The addition of two elements of the Integer type will non always fit
inside an Integer. Letting such an addition slip, the prover understandably
complains:

We have two options to alleviate this hindrance:

• Add assertions after the generation of the input vectors that constrain
them to a range that can be multiplied by 2 and not exceed Ada’s
Integer range. Those assertions would unfortunately have to get
reflected as assumptions in the beginning of our kernel’s body.

• Make use of Ada’s powerful type system, and create two new Integer
subtypes for our input and output vectors respectively. The input
vectors’ subtype should be able to get multiplied by 2 and still be
inside the output vector’s subtype range.

Here is an example approach following the second option, which we find
more appropriate:

1 type Int_10 i s new I n t e g e r range −10 . . 10 ;
2 type Int_20 i s new I n t e g e r range −20 . . 20 ;
3
4 type Vector i s array ( Natural range <>) o f Int_10 ;
5 type Fat_Vector i s array ( Natural range <>) o f Int_20 ;
6
7 type Vector_Device_Access i s a c c e s s Vector with
8 Designated_Storage_Model => CUDA. Storage_Models . Model ;
9

10 type Vector_Device_Constant_Access i s a c c e s s constant Vector ;
11
12 type Fat_Vector_Device_Access i s a c c e s s Fat_Vector with
13 Designated_Storage_Model => CUDA. Storage_Models . Model ;
14
15 procedure VectorAdd
16 (A, B : not n u l l Vector_Device_Constant_Access ;
17 C : not n u l l Fat_Vector_Device_Access ) with
18 Pre => A /= n u l l and then B /= n u l l and then C /= nul l , Cuda_Global ;

Listing 5: kernel specification package
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1 i f X <= A’ Last then
2 C (X) := Int_20 (A (X) + B (X) ) ;
3 end i f ;

Listing 6: computation inside the kernel’s body

A showcase of the above strategy can be found in test02 of our Ada
SPARK examples’ repository [45].

3.4 Division by Zero

Divisions are commonplace in GPU kernels, but the possibility of dividing
with zero is frequently left unchecked. However, in a safety critical system
this might result in a hazard if the outcome of such undefined operation is
used. SPARK’s silver level guarantees freedom of all runtime errors, includ-
ing this. Lets stay with the previous kernel structure, where we have two
input vectors and one output vector. The output will include the division
of the elements from the first vector with the second one:

1 procedure VectorDiv (A, B, C : not n u l l Vector_Device_Access ) with
2 SPARK_Mode => On
3 i s
4 −− Mirror wrapper ’ s p r e c o n d i t i o n semant ics with assumptions
5 X : Natural := Cuda_Index ( Block_Dim .X, Block_Idx .X, Thread_Idx .X) ;
6
7 pragma Assume (A’ F i r s t = 0 and B’ F i r s t = 0 and C’ F i r s t = 0) ;
8 pragma Assume (A’ Last = B’ Last and then B’ Last = C’ Last ) ;
9 pragma Assume (A’ Last <= Integer ’ Last − 31) ;

10
11 Max_X : I n t e g e r := ( (A’ Last + 31) / 32) ∗ 32 ;
12 pragma Assume (X in 0 . . Max_X) ;
13 begin
14 i f X <= A’ Last then
15 C (X) := A (X) / B (X) ;
16 end i f ;
17 end VectorDiv ;

Listing 7: kernel body

The above code snippet would generate the following errors:

We can see that the prover detects the possibility of a 0-value divisor.
To circumvent that, we can make sure such a division never happens in any
of our possible control flow paths, so that the prover’s flow analysis pass can
detect this property.
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The second error we get is a familiar scalar overflow. The erroneous case
here is when we have Integer’First / -1, where because of the underly-
ing architecture (that is, conventional signed integers), its result would be
Integer’Last + 1. The solution here, just like in Section 3.3, is to create
a new type for our vectors’ items.

Putting it all together, we no longer get any errors reported for our
kernel. Here is an example of the aforementioned mitigations:

1 type Safe_Div_Int i s
2 new I n t e g e r range Integer ’ F i r s t + 1 . . Integer ’ Last ;
3
4 type Vector i s array ( Natural range <>) o f Safe_Div_Int ;
5
6 type Vector_Device_Access i s a c c e s s Vector with
7 Designated_Storage_Model => CUDA. Storage_Models . Model ;
8
9 procedure VectorDiv

10 (A, B, C : not n u l l Vector_Device_Access ) with
11 Pre => A /= n u l l and then B /= n u l l and then C /= nul l , Cuda_Global ;

Listing 8: kernel specification package

1 procedure VectorDiv (A, B, C : not n u l l Vector_Device_Access ) with
2 SPARK_Mode => On
3 i s
4 −− Mirror wrapper ’ s p r e c o n d i t i o n semant ics with assumptions
5 ( . . . )
6 begin
7 i f X <= A’ Last and then B (X) /= 0 then
8 C (X) := A (X) / B (X) ;
9 e l s i f X <= A’ Last then

10 case A (X) i s
11 when 0 =>
12 C (X) := 0 ;
13 when 1 . . Safe_Div_Int ’ Last =>
14 C (X) := Safe_Div_Int ’ Last ;
15 when Safe_Div_Int ’ F i r s t . . −1 =>
16 C (X) := Safe_Div_Int ’ F i r s t ;
17 end case ;
18 end i f ;
19 end VectorDiv ;

Listing 9: kernel body

A complete example showcasing the division-by-zero error can be found
in test03 of our Ada SPARK examples’ repository [45].
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3.5 Use of Uninitialized Variables

Uninitialized variables, can lead to runtime errors when they are used. Most
programmers that have suffered a NULL-pointer deference understand that
very well. Here, SPARK guarantees that for every spot in our code, every
variable that gets used has valid content — that is, we cannot ever use an
uninitialized variable.

If, for example, we forget to generate random variables for one of our
input kernels, say vector A, the error we would get looks like the following
one:

3.6 Ineffectual Statements

Even though ineffectual statements (statements that do not have an effect
on our program) might not classify as a runtime error, in clean codebases
(like presumably those of safety critical systems) their detection can hint
at probable logical errors. Ada SPARK’s prover can assist here too. Even
though it will not guarantee their total absence, it can detect a good amount
of them.

As an example, let’s say that in the vector addition kernel, we want to
make the addition for the first 100 elements of our output vector, and we
want to set the rest to 0, but we make a mistake inside the kernel:

1 i f X <= A’ Last and X < 100 then
2 C (X) := Int_20 (A (X) + B (X) ) ;
3 e l s i f X <= A’ Last then
4 X := 0 ; −− We ment to wr i t e C (X) i n s t e a d o f X.
5 end i f ;

Listing 10: kernel body

We get back a nice error directing us towards the unfortunate typo:

A showcase of the errors that can be prevented here and on Section 3.5
can be found in test04 of our Ada SPARK examples’ repository [45].
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3.7 Fixed-Point Arithmetic

On February 25, 1991, during the Gulf War, there was a failed attempt
from an American Patriot missile to intercept and exterminate the threat
of an incoming Iraqi Scud missile, resulting in the death of 28 soldiers. In
a U.S. Government Accountability Office report published in 1992 [2], the
cause of the failure was attributed to a flawed time measurement technique
that involved an error accumulation coming from the use of floating point
numbers, and their inexact representation.

As we saw, floating point arithmetic can be a source of critical errors
due to its inexact representation of numbers like 0.1. As a language tar-
geted at safety critical systems, Ada provides support for fixed-point types
too. Those types can represent only exact values. The underlying arith-
metic operations’ implementation uses conventional integer operations with
scaling, and so we should be able to run them on GPU hardware.

As a demonstration of Ada’s capabilities to run fixed-point arithmetic
operations on CUDA GPUs, we constructed a kernel (test05 in our Ada
SPARK examples’ repository [45]) with two input vectors (A & B) and one
output vector (C), where C (I) = (A (I) + B (I)) / 2:

1 type Grade i s d e l t a 0 .1 d i g i t s 3 range 0 .0 . . 1 0 . 0 ;
2
3 type Grade_Vector i s array ( Natural range <>) o f Grade ;
4
5 type Grade_Vector_Device_Access i s a c c e s s Grade_Vector
6 with Designated_Storage_Model => CUDA. Storage_Models . Model ;
7
8 procedure AvgGrades
9 (A, B, C : Grade_Vector_Device_Access ) with

10 Pre =>
11 A /= n u l l and then B /= n u l l and then C /= nul l ,
12 Cuda_Global ;

Listing 11: kernel specification package

1 procedure AvgGrades (A, B, C : Grade_Vector_Device_Access ) with
2 SPARK_Mode => On
3 i s
4 −− Mirror wrapper ’ s p r e c o n d i t i o n semant ics with assumptions
5 ( . . . )
6
7 type Grade_20 i s d e l t a 0 .1 d i g i t s 3 range 0 .0 . . 2 0 . 0 ;
8 tmp : Grade_20 ;
9 begin

10 i f X <= A’ Last then
11 tmp := Grade_20 (A (X) + B (X) ) ;
12 tmp := tmp / 2 ;
13 C (X) := Grade (tmp) ;
14 end i f ;
15 end GradesAvg ;

Listing 12: kernel body
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Type Grade is declared to have a delta precision of 0.1, and a range of
0.0–10.0. This means that the Grade type can represent the exact values
0.0, 0.1, 0.2, ..., 10.0. As you can see, we need to declare another type,
Grade_20, with double the range. It is needed for the intermediate states
of our computation, since the A (X) + B (X) addition cannot fit inside the
Grade type. The prover can deduct that after the division, the tmp variable
contains a value inside the range of the Grade type. If we add 0.1 to it before
its division, we will get this error:
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4 Case Studies

In this section we will present two small case studies showcasing more ad-
vanced capabilities with the SPARK verification prover and our three-stage
pattern for buffer overflows. After those, in Section 4.3, we briefly report
our results from the porting of the GPU4S benchmark suite [33], a suite
targeted at safety critical GPU kernels for space. The code of the first two
case studies can be found in our Ada SPARK examples repository [45], while
the ports can be found in our GPU4S Ada benchmarks repository [46].

4.1 Histogram

In this case study, we will demonstrate the power and generality of our
three-stage pattern proposed in Section 3.2. The desired result is to have
a kernel that takes an input vector of arbitrary size, and counts how many
times each of the possible values its elements occurs inside it. The output of
this vector will be another vector of the same range as the type of the input
vector’s elements. Therefore, each of the output vector’s cells will represent
how many times a certain value occurs inside the input array.

To achieve this, we utilize both Ada’s strong type system, and – as
mentioned earlier – the generality of Section 3.2’s pattern. Firstly, its quite
intuitive to use specialized types for the input and output vectors:

1 type Int_1000 i s new I n t e g e r range 0 . . 1_000 ;
2
3 type Vector i s array ( Natural range <>) o f Int_1000 ;
4
5 type Counter_Array i s array ( Int_1000 ’ Range ) o f Natural ;
6
7 type Vector_Device_Access i s a c c e s s Vector
8 with Designated_Storage_Model => CUDA. Storage_Models . Model ;
9

10 type Counter_Array_Device_Access i s a c c e s s Counter_Array ;
11 with Designated_Storage_Model => CUDA. Storage_Models . Model ;
12
13 procedure VectorCount
14 (A : not n u l l Vector_Device_Access ;
15 B : not n u l l Counter_Array_Device_Access ) with
16 Pre => A /= n u l l and then B /= nul l , Cuda_Global ;

Listing 13: kernel specification package

The other important place to check here is the wrapper’s specification:
1 procedure VectorCountWrapper
2 ( Threads_Per_Block : Pos3 ; Blocks_Per_Grid : Pos3 ;
3 A : Vector ; B : out Counter_Array ; Vector_Size : P o s i t i v e ) with
4 Pre =>
5 Threads_Per_Block .X ∗ Blocks_Per_Grid .X in Pos i t i ve ’ Range and then
6 (A’ F i r s t = 0 and B’ F i r s t = 0 and A’ Last = Vector_Size − 1) ;

Listing 14: wrapper specification
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We see that, unlike the example in Section 3.2, we do not need to specify
all of the vectors’ Range attributes. B’s range is statically defined in its type.
Nevertheless, we assert that this range starts at 0, since we know that we
are going to index our output vector with the result of the Cuda_Index
function. It is important to remind here, that even if we miss this or any
other semantics for the vectors’ range relations, the prover will report errors
if we end up going over or under the vectors’ ranges inside the kernel.

Moving to the body of our kernel, things get a little bit more complicated:
1 procedure VectorCount
2 (A : not n u l l Vector_Device_Access ;
3 B : not n u l l Counter_Array_Device_Access )
4 i s
5 −− Mirror wrapper ’ s p r e c o n d i t i o n semant ics with assumptions
6 ( . . . )
7 Idx : Int_1000 ;
8 Sum : Natural := 0 ;
9 begin

10 i f X <= I n t e g e r (B’ Last ) then
11 Idx := Int_1000 (X) ;
12 f o r I in A’ Range loop
13 pragma Loop_Invariant (Sum <= Sum’ Loop_Entry + I ) ;
14 i f A ( I ) = Idx then
15 Sum := Sum + 1 ;
16 end i f ;
17 end loop ;
18 B ( Idx ) := Sum;
19 end i f ;
20 end VectorCount ;

Listing 15: kernel body

We need a valid type to index B in line 23, and hence we declare Idx, and
cast X in line 12 to it. This cast is safe because we are inside a condition that
implicitly limits X to Int_1000’s true range (remember, from the vectors’
type declarations: Int_1000’Last = B’Last).

The last unfamiliar thing here is the loop invariant pragma in line 15.
Its purpose is to aid the prover in deducting absence of a possible inte-
ger overflow in line 17. The invariant can be proved inductively, since
at the loop entry Sum = 0. Each iteration we add at most 1 to it, and
hence the invariant can inductively be proven. With this invariant informa-
tion, the prover can deduct that Sum has basically an upper bound equal to
A’Range’s upper bound. Now we can understand why in the preconditions
of the wrapper we assured A’Last <= Natural’Last -1. Should we assure
A’Last <= Natural’Last instead, we will get an error like this:
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4.2 Max Value

This kernel case study emphasizes another powerful verification strategy
pattern specifically targeted at GPU code. Until now, we could only verify
functional correctness in our kernel for one cell at a time. That is, we
could not assert properties on the whole range of the output vector. To
achieve such a thing, we will need to use another one of Ada SPARK’s
powerful features: ghost procedures and ghost variables. Constructs with
the ghost aspect in Ada have the property that do not get compiled to run
on the executable, but are taken into account for verification proofs. More
importantly, their specification disallows them to have an effect on non-ghost
constructs.

The kernel we demonstrate with this pattern is simple. We have the
familiar two-input one-output vector kernel, with all vectors having the same
range. We want each cell of the output vector to contain the biggest value
from the respective input cells, and we want to assert that this holds with
a statically-proven assertion at the end of our kernel:

pragma Assert
( f o r a l l X in C’ Range =>

C (X) >= A (X) and C (X) >= B (X) ) ;
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Everything new to us is inside the kernel’s body:
1 procedure VectorMax
2 (A : Vector_Device_Access ; B : Vector_Device_Access ;
3 C : Vector_Device_Access )
4 i s
5 −− Mirror wrapper ’ s p r e c o n d i t i o n semant ics with assumptions
6 ( . . . )
7
8 procedure Max_Apply_All (A, B : Vector ; C : in out Vector ) with
9 Ghost ,

10 Pre =>
11 (A’ F i r s t = 0 and B’ F i r s t = 0 and C’ F i r s t = 0)
12 and then (A’ Last = B’ Last and A’ Last = C’ Last ) ,
13 Post => ( f o r a l l I in C’ Range =>
14 C ( I ) >= A ( I ) and C ( I ) >= B ( I ) )
15 i s
16 begin
17 f o r I in C’ Range loop
18 C ( I ) := Integer ’Max (A ( I ) , B ( I ) ) ;
19 pragma Loop_Invariant
20 ( f o r a l l Idx in C’ F i r s t . . I =>
21 C ( Idx ) = Integer ’Max (A ( Idx ) , B ( Idx ) ) ) ;
22 end loop ;
23 end Max_Apply_All ;
24
25 C_Ghost : Vector := C. a l l with Ghost ;
26 begin
27
28 i f X <= A’ Last then
29 C (X) := Integer ’Max (A (X) , B (X) ) ;
30 pragma Assert (C (X) >= A (X) and C (X) >= B (X) ) ;
31 end i f ;
32
33 Max_Apply_All (A. a l l , B. a l l , C_Ghost) ;
34 pragma Assert
35 ( f o r a l l X in C_Ghost ’ Range =>
36 C_Ghost (X) >= A (X) and C_Ghost (X) >= B (X) ) ;
37
38 end VectorMax ;

Listing 16: kernel body

We can see the conventional assertion for one cell in lines 28–31. To achieve
full-range assertion on the output vector we must somehow inform the prover
with semantics that the kernel’s computation will get executed as many
times as the number of our threads, and with the respective indices.

The pattern we have developed is not as mechanical as the previous one
from Section 3.2, but nonetheless it is equally effective. We use the ghost
procedure Max_Apply_All() to simulate the effect of line 29, and use a
loop invariant pragma to aid the verification of its postcondition. After we
call it in line 33, it is trivial for the prover to match the ghost function’s
postcondition with the assertion in lines 34–36.

The ghost variable C_Ghost is necessary since, as we said earlier, ghost
constructs cannot have an effect on non-ghost ones (in this case, ghost pro-
cedure Max_Apply_All cannot effect C).
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4.3 GPU4S Benchmarks

Aside from the examples and the two case studies we presented so far and
are included in our Ada SPARK examples repository [45], we also ported
the GPU4S Bench benchmarking suite [31]. GPU4S Bench has been de-
veloped within the GPU4S (GPU for Space) ESA funded project, and it
is representative of computationally intensive algorithmic building blocks
used in multiple domains of the aerospace sector. Our implementation is
also released as open source, in the GPU4S Ada SPARK repository [46].

In particular, we ported the benchmarks to Ada SPARK, achieving Stone
level SPARK adoption. Moreover, we extended the integer implementation
of matrix_multiplication_bench, achieving bronze level of SPARK veri-
fication. The kernels ported are the following ones:

• matrix_multiplication_bench (int + float implementations)

• convolution_2D_bench (int + float implementations)

• max_pooling_bench (int + float implementations)

• relu_bench (int + float implementations)

• softmax_bench (int + float implementations)

• correlation_2D (int + float implementations)

• fast_fourier_transform (float implementation)

As expected, all ported benchmarks work properly and provide identi-
cal results with their CUDA counterparts. Our work, demonstrates that
porting actual GPU programming software from CUDA to Ada SPARK’s
GPU backend is possible, and opens the door of gradually increasing the
confidence of its correctness.
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5 Kernel Patterns that can be Fully Verified

As we previously mentioned, because the prover lacks the semantics of the
kernel’s true execution path, SPARK verification, at least in the current ver-
sion of the tools, it cannot guarantee use freedom of data races and synchro-
nization errors. The work of this thesis focuses on trying to formally verify
GPU code through Ada SPARK, and hence we find it useful to mention a
few common kernel patterns that, in conjunction with the two patterns we
created for buffer overflow detection and all-thread output verification, give
us verification guarantees on-par with conventional CPU SPARK verifica-
tion. We argue such guarantees for two specific (and quite common) kernel
patterns:

1. A kernel that takes arbitrary constant inputs, one write-only output
vector, and within each thread writes a single and unique output cell.
The kernel must not make use of the GPU’s shared memory.

2. A kernel that takes arbitrary constant inputs, and has either one write-
only scalar, or one write-only non-scalar output that gets updated
exclusively through atomic operations. The kernel must not make use
of the GPU’s shared memory.

Take note that all of our example kernels from Section 3 fit into the first
pattern, as does our Max_Value and Histogram case studies.

Synchronization problems arise when we either have kernels with phases
that need to get synchronized at the block level, and data race issues arise
when different threads can write at the same output location without some
sort of synchronization. The former case is covered by the write-only nature
of our output arrays. The single and unique-cell writes on the first pattern,
and the atomics on the second guarantee us freedom of data races.

Even though these restrictive patterns discourage use of advanced GPU
features that provide great speedups, it is worth keeping in mind that a
safety-critical system’s first goal is safety. Furthermore, we should keep in
mind that even without advanced techniques, the use of a GPGPU can yield
significant performance gains over a conventional CPU implementation.
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6 Conclusions

In this Bachelor’s thesis, we have evaluated the effectiveness of the Ada
SPARK language and its formal methods for the development of General
Purpose GPU software for safety critical systems. For this work, we have
relied on an experimental CUDA backend for Ada SPARK which is currently
under development at AdaCore.

We have shown how CUDA kernels can be programmed in the Ada
SPARK subset and we have examined several types of common programming
mistakes arising in GPU programming, and how these can be prevented.
We have noticed that GPU programming in Ada is not very different from
CUDA, although its syntax is more verbose. We observed and discussed that
even the use of Ada alone can prevent some of the common GPU program-
ming mistakes, and we have shown that GPU programming in the SPARK
subset of the language is also possible and further helps preventing more
GPU programming mistakes.

Moreover, we have explored some of the formal verification capabilities
offered by the specification aspects of the SPARK language subset, in order
to prove the absence of certain errors in GPU code. However, we have
noticed that since the CUDA backend is currently under development and
has loose integration with the SPARK formal tools, the detection of certain
types of errors is not possible at this point. This includes the use of incorrect
use of shared memory, data races and wrong thread synchronisation within
a kernel, as well as consistency checks between the CPU and GPU code.

Besides these limitations, we come up with a programming pattern which
can allow the use of SPARK’s formal checks to verify the consistency between
CPU and GPU code, and detect any possible buffer overflow errors. We also
proposed two common kernel patterns that guarantee us freedom of both
data races and synchronization errors. Following these two contributions,
one can have verification guarantees for his GPU code at a level on-par with
conventional SPARK verification on the CPU.

As part of this work, we have ported a space-relevant open source GPU
benchmarking suite, GPU4S Bench [31], achieving bronze-level SPARK ver-
ification in one of the benchmarks, and stone level in the rest of them.

All the Ada SPARK code developments of this thesis [45][46] are released
as open source, contributing to the wider adoption of Ada SPARK and
specifically for GPU development and verification.
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7 Future Work

This Bachelor’s thesis was performed within the "Formal Methods for GPU
Software Development and Verification" ESA-funded activity, which explores
the use of formal methods in GPU software. Our work will be extended in
this project in order to cover cases which we have identified that can be
automated. This includes the implementation of the programming pattern
we proposed in Section 3.2 in a GPU source code translator, which can
relieve the programmer from this mechanical task, and ensure that it is
implemented without introducing any programming mistake in the process.

Moreover, as new features will become available by AdaCore, such as
support for shared memory or synchronization in CUDA kernels, we will
explore the effectiveness of formal SPARK tools to find them.

In addition, this thesis contributed to the METASAT Horizon Europe
project, funded by the European Commission. METASAT is focused on
model-based design software development for high performance space sys-
tems, based on multi-cores and GPUs. Existing model-based design tools
used in the development of space systems like the open source TASTE [18]
framework have the capability of generating Ada SPARK code for CPUs,
therefore the possibility to generate Ada SPARK code for GPUs will be
explored, as well as the application of our methodologies.

These extensions, are planned to be performed as part of a Master’s and
a PhD thesis.
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