
1. Introduction
The local characteristics and spatial distribution of precipitation are changing as a consequence of global warm-
ing (Allen & Ingram, 2002; Trenberth, 2011). These changes include a wettening of high latitude regions and a 
precipitation decrease in some sub-tropical regions, and an intensification of precipitation events in large parts of 
the world (Contractor et al., 2021). This intensification affects in particular the stronger precipitation events, which 
manifests in an increasing frequency and intensity of heavy precipitation extremes (Donat et al., 2016, 2019; 
Westra et al., 2013).

Precipitation changes are typically analyzed from observational data sets or climate model simulations, and both 
types of data have their specific advantages and shortcomings. While observational data sets represent the climate 
trajectory of the real world, the network of high-quality long-term observations is sparse (Donat et al., 2013; Dunn 
et al., 2020), and the uncertainties across different observational precipitation data sets are substantial (Alexander 
et al., 2020; Herold et al., 2016). Climate models, on the other hand, simulate their own specific attractors, and the 
representation of climate variations may not be in phase with the observed climate. Furthermore, state-of-the-art 
climate models (such as those contributing to Coupled Model Intercomparison Project Phase 6, CMIP6; Eyring 
et  al.,  2016) have well-known shortcomings in the simulation of precipitation and relevant processes. These 
shortcomings include that key processes related to cloud formation and the formation of water droplets, or atmos-
pheric convection, happen on spatial scales that are orders of magnitude smaller than the typical grid resolution 
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of global  climate models, and are therefore parameterized. The choice of micro-physics or convection schemes 
represents major uncertainties in the simulation of precipitation (Morrison et al., 2020; O’Gorman, 2012).

In light of these shortcomings and inconsistencies, it is important to evaluate the model-simulated precipitation 
in comparison to observations. Such evaluations have in the past often focused on regional mean values or 
spatial patterns (e.g., Bador et al., 2020; Lorenz et al., 2014; Sillmann et al., 2013), but these are not informative 
about the credibility of simulated changes. Some studies have compared linear trend estimates of precipitation 
between model simulations and observations, and then discuss areas of agreement or disagreement of these trends 
(Knutson & Zeng, 2018; Kumar et al., 2013; Vicente-Serrano et al., 2022). To some extent also interpretable 
as evaluation of simulated against observed changes, detection and attribution studies quantified to what extent 
simulations with specific forcings can explain observed changes (Min et  al.,  2011; Paik et  al.,  2020; Zhang 
et al., 2007). These studies usually focus on larger regional averages to remove noise effects, and detected effects 
from increasing atmospheric greenhouse gas concentrations (and other forcings) in global and regional changes 
in mean and extreme precipitation.

Here we assess how well forced simulations of the historical climate can capture observed precipitation changes, 
using skill metrics typically applied to evaluate climate predictions (e.g., Goddard et  al.,  2012). While these 
metrics are widely used to evaluate (initialized) seasonal to decadal climate predictions (Delgado-Torres 
et al., 2022; Meehl et al., 2021; Smith et al., 2019), we demonstrate here their use for the evaluation of (unini-
tialized) simulations of the historical climate over the past several decades since 1950. Compared to previous 
evaluations of mean values or trend slopes mentioned above, this allows us to obtain quantifiable measures of 
agreement between observed and simulated precipitation changes.

We focus the evaluation on averages over 20-year windows, as this is the temporal aggregation often used when 
analyzing climate change projections (Lee et al., 2021). This is often based on the assumption that the effect of 
internal climate variability is small on these timescales, and the ensemble mean highlights a forced signal (Risbey 
et al., 2022). It is however largely unclear how representative such simulations can be for changes in the climate of 
the real world. In particular for observations and individual ensemble members the impact of internal variability 
on regional precipitation can still be substantial for 20-year averages, which (besides incorrect response to forc-
ing) is why the simulated precipitation may not well represent the climate evolution of the real world. We consider 
different aspects of precipitation, such as annual precipitation totals and indices representing the intensity and 
accumulated amounts of precipitation extremes. We further investigate the effects of ensemble size on the skill of 
simulated precipitation, and discuss the spatial patterns of skill in comparison to global trend patterns.

2. Data and Methods
We use precipitation data from a total of 32 global climate models that contributed to CMIP6. Most of these 
models provide several ensemble members, and we included all available simulations at the time of analyses. 
When performing the analyses we were able to include 211 different ensemble members providing monthly 
precipitation rates (used for the analysis of annual totals). For the analysis of precipitation extremes indices 
based on daily precipitation rates we had access to 149 members from 19 different climate models (Table S1 in 
Supporting Information S1).

The CMIP6 models provide daily or monthly average precipitation fluxes, which are converted into daily (for 
the calculation of extremes indices) and monthly (for the calculation of annual precipitation totals) precipitation 
amounts, respectively. We use data from the historical simulations until 2014, and concatenate these with data 
from the SSP2-4.5 scenario (O’Neill et al., 2016) from 2015 onwards to match the temporal coverage of the 
observational data (until 2019 for mean precipitation measures and until 2016 for extreme precipitation measures, 
defined by the availability of observational data to compare against; note that differences between the scenarios 
are very small in these early years).

We use a range of different gridded observational data sets as references for the evaluations. These are monthly 
precipitation provided by the Global Precipitation Climatology Centre (GPCC) Full Data Monthly Product 
Version 2020 (Becker et al., 2013) and the Climate Research Unit CRU TS (Mitchell & Jones, 2005) version 
4.04. We use these monthly precipitation data sets to evaluate annual precipitation accumulations (also referred 
to as mean precipitation in this study). We use the Rainfall Estimates on a Gridded Network (REGEN; Contractor 
et  al.;  2020) data set of gridded daily precipitation fields to calculate extreme precipitation indices. We also 
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use extreme precipitation indices from the HadEX3 data set (Dunn et al., 2020), which was generated by grid-
ding extremes indices calculated from station time series. These two data sets best cover observed precipitation 
extremes over the investigation period from the mid-20th century to the recent past.

We analyze annual totals of precipitation (PR), annual precipitation from very wet days (R95p), and annual maxi-
mum 5-day precipitation amount (Rx5day) (Zhang et al., 2011). PR is simply the annual sum of monthly precipita-
tion totals (which is proportional to the annual mean of average precipitation rates). R95p is defined as the annual 
sum of precipitation on days that exceed the 95th percentile of wet-day precipitation amounts (the percentile was 
calculated over the base period 1981–2010). Rx5day is the annual maximum of 5-day running accumulated precip-
itation. The CMIP6 precipitation indices were further masked to remove ocean grid cells and all latitudes south 
of 60S, focusing the study on land regions excluding Antarctica. These precipitation indices  are calculated at the 
native grid resolution of each model, and then regridded (using first-order conservative remapping) to a common 
2.8° × 2.8° grid (the resolution of the model with the coarsest resolution in this study, CanESM5) for multi-model 
analysis and evaluation against the observational data. The remapped fields are than further masked to match the 
coverage of the observational products, removing those grid cells with more than 50% missing values in the observed 
data sets. Our analysis focuses on the data period 1950 to 2019 (for PR) and 1950 to 2016 (for R95p and Rx5day), 
defined by common temporal coverage and times with reasonable spatial coverage across observational data sets.

Observational data sets of precipitation are subject to substantial uncertainties with regard to the estimated precip-
itation intensities and amounts (Alexander et al., 2020) and may be affected by scaling issues related to the repre-
sentativeness of a grid box value (Avila et al., 2015). To avoid potential biases related to such uncertainties to 
affect those skill measures accounting for bias, we transformed the data of precipitation amounts (PR) and inten-
sities (Rx5day) by dividing each annual value by the climatology for that index during 1981–2010. This results 
in time series of relative anomalies where the value of 1 corresponds to average conditions, values larger than 1 
indicate above-average precipitation in a certain year, and values below 1 indicate below-average precipitation.

Within CMIP6, modeling centers are requested to provide several ensemble members, which sample different 
phases of internal climate variability. In this study we use several ensemble approaches to see how such choices 
may affect the skill of the ensemble. One approach is to use all available simulations and pool them into a large 
multi-model ensemble (211 members for total precipitation and 149 members for extremes indices), which results 
in an ensemble mean where models providing many ensemble members contribute with a higher weight. As an 
alternative approach we construct a multi-model ensemble with equal weight for each model, by first averaging 
all members of any one model before combining these model-specific averages into a multi-model mean or distri-
bution. A third (also equally weighted) approach is to construct a multi-model ensemble using only one run per 
model (typically member r1i1p1f1 when available), resulting in 32 ensemble members for annual precipitation 
totals and 19 ensemble members for precipitation extremes indices.

For a more systematic analysis of how the skill measures depend on the ensemble size, we also sub-sampled 
ensembles for all possible ensemble sizes that can be constructed out of the available members. For each ensem-
ble size between one and the total available simulations, we randomly sampled 1,000 possible ensembles that 
could be constructed based on the available simulations. We used a resampling without replacement, to ensure 
that each simulation cannot be included more than once in any resampled ensemble. Repetition is, however, 
allowed between the different random samples of a given ensemble size (and occurs in particular for large ensem-
ble sizes).

For evaluating regional precipitation averages, we mask the data to the IPCC reference regions as defined for the 
Working Group I 6th Assessment Report (Iturbide et al., 2020, see also Figure S1 in Supporting Information S1). 
Regional averages are calculated as area-weighted averages given the different grid cell sizes.

We consider three different measures typically used for forecast evaluation to assess different aspects of the 
degree of agreement between the CMIP6 simulated precipitation and observations. These are the Spearman rank 
correlation (Spearman, 1904), the Root-Mean-Squared Skill Score (RMSSS; Murphy, 1988), and the Ranked 
Probability Skill Score (RPSS; Wilks, 2011). Please refer to Text S1 in Supporting Information S1 for a more 
detailed description of which aspects of forecast quality these measure and how they are calculated.

We quantify temporal trends by fitting a linear least-squares regression to the annual data points. The trend 
significance is estimated using a modified Mann-Kendall test for serially correlated data following the variance 
correction approach by Hamed and Ramachandra Rao (1998).
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3. Results
The historical simulations show skill in reproducing the observed PR evolution, indicated by positive correla-
tions, in large parts of western and Northern Europe (NEU), northern and central Asia, northeastern North Amer-
ica, southern and eastern South America and western part of Australia (Figure 1a), indicating that variations of 
precipitation are realistically simulated in these regions. Positive significant RMSSS values are found in similar 
regions (Figure 1d), indicating that also the magnitude of the relative precipitation measures is simulated with 
some skill. The RPSS also shows significant positive values in similar regions where correlations and RMSSS 
values are positive and significant (Figure 1g), indicating that specific parts of the distribution can be predicted 
based on external forcing, in particular in northern parts of Eurasia, northeastern North America, southern South 
America, the Tibetan Plateau and western Australia. In turn, the CMIP6 simulations show a lack of skill (appar-
ent in most of the skill measures) for large areas in western North America, northern and central parts of South 
America, parts of Africa and Southeast Asia.

Also the indices of precipitation extremes show positive correlations in large parts of central and NEU, parts 
of Asia, northeastern North America, South America, western Australia, and northwestern parts of Africa 
(Figures 1b and 1c). Overall these correlation maps appear more heterogeneous for R95p and Rx5day than for PR 
while indicating skill in similar regions, however in particular R95p shows larger areas with positive correlation 
than PR, in particular in northwestern Africa (the area of Algeria and Morocco), southern central Africa and also 
parts of eastern Australia. RMSSS and RPSS indicate, respectively, more deterministic and probabilistic skill 
than the climatology for R95p and Rx5day most prominently in NEU, but also in parts of Asia, central Europe, 
and northwestern Africa.

The other approaches to construct an equally-weighted multi-model result in largely similar patterns of skill, 
showing agreement with observations in similar regions (Figures S2 and S4 in Supporting Information  S1, 

Figure 1. Forecast quality measures for different aspects of precipitation using all available ensemble members: (a, d, g) total annual precipitation, (b, e, h) R95p, (c, f, 
i) Rx5day. First row (a, b, c) shows the correlation, second row (d, e, f) Root-Mean-Squared Skill Score (RMSSS) and third row (g, h, i) Probability Skill Score (RPSS). 
RMSSS and RPSS are calculated against climatology as reference. Dots indicate grid cells where the skill measures are statistically significant (p ≤ 0.05; see Section 2). 
Observational reference data sets: Global Precipitation Climatology Centre (PR) and Rainfall Estimates on a Gridded Network (R95p, Rx5day).
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compare to Figure  1). Some regional differences are found in the southern USA or the Middle East, where 
calculating model-specific averages first results in slightly higher correlations (Figure S3 in Supporting Infor-
mation S1); and eastern parts of Africa or western Australia, where pooling all members results in higher skill. 
A direct comparison of the skill differences between the all-member and one-member ensembles highlights in 
particular western Australia, central Europe, parts of Asia and North America as regions where including all 
ensemble members is beneficial, for example, in terms of improved correlations (Figure S5 in Supporting Infor-
mation S1). In turn, the one-member ensemble shows slightly higher skill than the all-member ensemble in a 
few regions such as the Middle East, southern Africa and southeastern Australia. Some of these differences may 
be due to the different weighting of models in the all-member (models are weighted according to the number 
of members they provide) compared to the one-member ensembles or averaging all members of each model 
first (all models are equally weighted)—in particular those common differences between Figures S3 and S5 in 
Supporting Information S1 suggest these would be due to model weighting, for example, in the southern USA, 
the Middle East and western Australia. We will investigate the sensitivity of the skill measures to ensemble size 
more systematically further down.

There is substantial uncertainty across different precipitation data sets which can affect the skill estimates. We 
therefore perform the skill evaluations also using alternative precipitation data sets (Figure S6 in Supporting 
Information S1). This analysis confirms that the CMIP6 ensemble captures the observed PR, R95p and Rx5day 
in large parts of Europe (in particular NEU), Asia, eastern North America, southern and eastern South America 
and western Australia. Please note that the spatial coverage of HadEX3 (providing R95p and Rx5day) is limited, 
with large gaps in particular over Africa, the Amazon and high northern latitudes.

We next investigate the sensitivity of the skill metrics to the ensemble size at regional scale, by resampling 1,000 
ensembles (based on all available simulations) for ensemble sizes between 1 and the total available number of 
simulations for each index (see Section 2).

In Northern Europe (NEU) as a region of generally high skill, all three skill metrics converge relatively quickly to 
the respective maximum value (see Figures 2a–2c; Figures S7a–S7c and S8a–S8c in Supporting Information S1). 
The median of the 1,000 different ensembles reaches the asymptotic value already for ensemble sizes below 20 
members and does not increase further for larger ensemble sizes. The spread of skill values (e.g., inter-quartile 
range across all 1,000 ensembles for each size) shows only relatively small deviations from the median value. Due 
to the high correlation threshold to reach significance in this region, still relatively large ensembles are needed 
for 95% of the possible ensembles to have significant skill: for example, 69 members for PR, 136 for Rx5day and 
70 for R95p.

In regions with lower (but in most cases still positive) skill score values, their dependence on ensemble size 
can be larger. For example, for precipitation averages over the Mediterranean region (MED; Figures 2d–2f), the 
median correlation value requires an ensemble size of approximately 60 members for PR and Rx5day to reach the 
quasi-asymptotic values (for PR reaching the threshold for significance). For PR, 95% of possible ensembles reach 
significant correlation for ensemble sizes of 123 and larger, whereas the significance threshold is not reached for 
the extremes indicators. Similar results are found for Eastern Asia (EAS), although in that case relatively small 
ensemble sizes of below 15 (for Rx5day) and 26 (for PR) are sufficient to reach significant correlations in 95% 
of the ensembles—associated with a relatively low threshold for correlations to be significant (Figures 2g–2i).

The dependence of skill on ensemble size is particularly strong in Central North America (CNA, Figures 2j–2l) 
and Central Australia (CAU, Figures 2m–2o)—both regions where the ensemble using all available members 
showed higher skill than the ensemble based on only one simulation per model (Figure S2 in Supporting Infor-
mation S1). For these regions the median correlation value still increases for ensemble sizes well above 100, and 
in particular for PR and R95p does not clearly converge to a maximum value based on the available ensemble 
size. In CAU significant correlation values for 95% of the resampled ensembles are reached for ensemble sizes of 
above 201 members (PR) and ensembles larger than 114 members (R95p). Also the range of correlation values 
is substantial for these regions, and there is a non-negligible probability for negative correlation values still for 
100-member ensembles, while the correlation for PR reaches 0.6 (in CNA) and 0.7 (in CAU) for ensemble sizes 
of more than 200 members. This large range reflects a substantial uncertainty of skill across the different ensem-
ble members, which is likely indicative of an important contribution of internal climate variability to the local 
precipitation changes.
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Figure 2. Correlation as function of ensemble size for precipitation averaged over selected IPCC AR6 regions. (a, b, c) Northern Europe, (d, e, f) Mediterranean 
region, (g, h, i) Eastern Asia, (j, k, l) Central North America, (m, n, o) Central Australia. Correlation is shown for (left column) PR, (middle) R95p and (right) Rx5day. 
For each ensemble size the range of correlation values is estimated from randomly resampling 1,000 sub-ensembles (see Section 2). The blue line represents the 
median across the 1,000 realizations, dark blue shading indicates the interquartile range (25th to 75th percentile) and light blue the full range across all iterations. The 
horizontal dashed black line indicates the value above which correlations are statistically significant (p ≤ 0.05). The vertical dashed black line indicates the ensemble 
size for which at least 95% of correlation coefficients are statistically significant.
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In NEU, where high correlation values are reached already for small ensemble sizes, the observed increase of 
precipitation is relatively monotonic and exhibits little variability on decadal to multi-decadal scales (Figure S9 
in Supporting Information S1). In contrast, in CNA and CAU, where correlations continue to increase for large 
ensemble sizes, the observed time series exhibit more pronounced multi-decadal variations. These variations are 
not captured by the CMIP6 ensemble mean, suggesting they are not a response to forcing and may be related to 
internal climate variability. This illustrates how large ensembles can be particularly beneficial in cases where 
a predictable signal (in this case the response to external forcing) occurs in combination with non-predictable 
“noise” (in this case the multi-decadal variations cannot be predicted by the forcing).

RMSSS and RPSS generally converge faster to their respective maximum value compared to correlations. For all 
examples shown the asymptotic values are reached for ensemble sizes below 40 (Figures S7 and S8 in Supporting 
Information S1). This indicates that the benefit of larger ensembles is seen in particular when correlation is the 
skill measure of interest.

To understand the characteristics of precipitation changes that are or are not coherent between simulations and 
observations, we compare the spatial patterns of long-term trends between the CMIP6 ensemble mean and obser-
vations (Figure 3) and the patterns of the skill metrics (Figure 1). This comparison shows that significant skill (in 
particular correlations and RPSS) is typically found in regions where trends toward more or stronger precipitation 
are observed (e.g., NEU, midlatitude parts of Asia and the Himalaya region, eastern North America, southern 
South America, western Australia). The CMIP6 ensemble simulates upward trends in larger regions globally 
compared to the observations, and this includes most regions with observed increases. Only in a few cases posi-
tive skill values are associated with decreasing precipitation, for example, PR in the Mediterranean region (in 
particular the Iberian Peninsula) and eastern South America or R95p in the central Amazon region of South 
America. A lack of skill is generally found in regions where observed precipitation is characterized by negative 
trends but the CMIP6 ensemble simulates positive trends (e.g., western North America, western sub-Saharan and 
western tropical Africa, southeastern Australia).

4. Summary, Discussion and Conclusions
This study evaluates to what extent the simulations with historical forcings (and scenario SSP2-4.5 for the last 
part of the evaluation period) agree with observed changes in precipitation since 1950. We find that measures 
of both mean and extreme precipitation are realistically simulated in large parts of Europe and Asia, as well as 
some areas in (eastern) North America, (southern and eastern) South America and (western) Australia. The level 

Figure 3. Trend maps of 20-year averages of (a, d) PR, (b, e) R95p, (c, f) Rx5day. (Top row) observations (Global Precipitation Climatology Centre for PR, Rainfall 
Estimates on a Gridded Network for R95p and Rx5day), (bottom row) Coupled Model Intercomparison Project Phase 6 ensemble mean based on all available ensemble 
members. Dots indicate grid cells where trends are statistically significant (p ≤ 0.05).
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of agreement is assessed with skill measures typically used to verify forecast accuracy. The skill can show some 
dependence on the ensemble size. In particular for some regions with moderate agreement with observations the 
availability of very large ensembles (>100 members) can be beneficial to achieve statistically significant skill 
metrics, which are indicative of a good agreement between the forced signal in CMIP6 and observed precipita-
tion changes. Whereas in other regions (e.g., those with highest skill) quasi-asymptotic skill values are already 
reached for relatively smaller ensembles.

Comparing the spatial patterns of skill and long-term trends highlights that high skill is typically found in regions 
where both observations and simulations show trends towards wetter (i.e., more intense and more accumulated rain), 
and in a few regions where both observations and simulations show trends towards drier conditions (i.e., less intense 
and smaller precipitation amounts, such as the Mediterranean or eastern South America). We find lack of skill 
primarily in regions where observations show trends towards drier conditions but CMIP6 simu lates precipitation 
increases. The exact regions of trend discrepancies differ between the different precipitation indices, but most of 
these regions are located in low-to-mid latitudes of the tropics and sub-tropics (Figure 3), similar also to earlier trend 
comparisons based on CMIP5 for annual mean precipitation (Knutson & Zeng, 2018). These regions include (based 
on the different precipitation indices) parts of tropical and sub-tropical Africa, tropical South America, and the 
western United States. Most of these regions are affected by seasonal dry or wet regimes, and one possible avenue to 
better understand these discrepancies could focus in the representation of these seasonal regimes. In general, as the 
ensemble of CMIP6 historical simulations represents the precipitation response to (historical) forcing, this regional 
lack of skill might be due to dominating effects of internal climate variability on the observed precipitation time 
series, or model errors in simulating precipitation responses to the forcing, or erroneous observations. Also the qual-
ity of the observational data needs to be taken into account. In particular for the extreme precipitation indices, while 
we find relatively similar results in the regions where both data sets have coverage, some of the regions with low skill 
(e.g., parts of Africa) are only covered by one data set—and even here are not part of the regions with high-quality 
data (Contractor et al., 2020). Overall the CMIP6 ensemble mean shows more widespread increases in precipitation 
compared to observations, and does not capture several of the regional decreases found in the observations.

The evaluation presented in this study corresponds to the “forcing skill” discussed by Risbey et al. (2022), and 
does not take other drivers (e.g., related to internal variability) into account. Based on the evaluations presented, 
the CMIP6 ensemble is relatively trustworthy in simulating (mean and extreme) precipitation changes in large 
parts of Europe and Asia, northeastern North America, parts of South America and western Australia. However, 
in the regions where a lack of agreement has been highlighted (e.g., western North America and substantial parts 
of Africa), the CMIP6 ensemble may not be a credible prediction system (due to missing either regional variabil-
ity effects or forcing response)—and also future projections may need to be considered with particular caution.

We suggest that evaluations similar to the ones presented here can also be useful to test potential improvements 
related to model developments, for example, to test whether models at higher resolution simulate more realistic 
precipitation changes (Bador et al., 2020; Moreno-Chamarro et al., 2021). Similar assessments can also be useful 
to test the efficacy of post-processing methods aiming to obtain more realistic information about climate changes 
in the coming decades, for example, by constraining projections based on specific characteristics (e.g., Brunner 
et al., 2020; Hegerl et al., 2021; Mahmood et al., 2021, 2022), or by applying calibration techniques aiming to 
correct model biases and improve the reliability of the simulations (Bellprat et al., 2019; Doblas-Reyes et al., 2005).

In conclusion, current climate models provide credible simulations of observed changes in both mean and 
extreme precipitation for some land regions in the northern hemisphere extra-tropics, including large parts of 
Europe and Asia and some parts of other continents. However, substantial regions of the globe also show a lack 
of skill, in particular regions where precipitation measures have been observed to decrease but CMIP6 simulates 
increases. This lack of skill in some regions highlights the need to better understand the relative roles of forcing 
and internal variability in the observed precipitation changes. Improving the models to more realistically capture 
observed precipitation changes over the past decades will be essential to increase their credibility to inform about 
precipitation changes in the decades to come.

Data Availability Statement
CMIP6 data is available through the Earth System Grid Federation system (ESGF; https://esgf-node.llnl.
gov/search/cmip6/), the models and ensemble members used in this study are listed in Table S1 in Support-
ing Information  S1. GPCC at https://www.dwd.de/EN/ourservices/gpcc/gpcc.html, CRU precipitation: 
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https://crudata.uea.ac.uk/cru/data/hrg/, REGEN at https://doi.org/10.25914/5ca4c380b0d44, HadEX3 at https://
www.metoffice.gov.uk/hadobs/hadex3/. Extreme precipitation indices have been calculated with the climpact 
package: https://github.com/ARCCSS-extremes/climpact/.
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