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 When it comes to Internet of Things (IoT) applications and machine learning 

based computing, resource-restricted edge devices are inadequate due to the 

exponential growth of mobile information and the massive need for 

processing power. An edge offload, the migration of complex tasks from IoT 

devices to edge cloud servers, is a distributed computing paradigm that has 

the potential to overcome the IoT device resource limits, lessen the 

computational load, and increase the effectiveness with which activities are 

processed. However, due to the NP-hard nature of the optimum offloading 

decision-making issue, an efficient solution using traditional optimization 

techniques is difficult. Current deep learning algorithms still have a lot of 

problems, such as their slow pace of learning and limited ability to adapt to 

new environments. We provide a unique interpretable deep Gaussian naive 

Bayes technique (IDGNBA) for extremely fine offloading choices to address 

these issues. Through several simulation studies, we assess the efficacy of 

IDGNBA and find that it performs better in terms of offloading than 

traditional techniques. The model has strong mobility and can quickly adjust 

to a fresh MEC working atmosphere while taking offloading decisions in 

real-time.  
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1. INTRODUCTION  

Due to its high cost-effectiveness and flexibility, which are made possible by consolidation—the 

centralization of processing, storage, and network management—cloud computing has seen significant 

development and application over the last several decades [1]. The last ten years have seen tremendous 

advancements in cloud computing, which have provided a wide range of advantages. Offloading computation 

is a feature of cloud computing that enables customers to move work that is computationally expensive to a 

faraway cloud that has a greater supply of resources [2]. The term "cloud computing" refers to a distant data 

center that is made up of a collection of supercomputers that collaborate and share resources to provide 

intensive resource computation and are managed by intelligent programs that include a software-defined 

network (SDN). Cloud computing is used by gadgets that have been unable to finish their computing work 

locally. These devices send their computing chores to the cloud. However, since there is a considerable 

distance among the cloud and the final devices, the network may have connection delays. This means that it 

is not suited for dependent on latency real-time applications. This is additionally to the backlog of traffic, 

which may cause the network to become overloaded [3].  
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Due to the poor connection and the great distance between them, offloading these jobs to faraway 

cloud servers causes a significant delay in the task offloading process. Using edge computing as a means to 

provide computer services at the peripheries of a network is one potential approach to the problem. 

Nevertheless, computing at the edge is inadequate and inefficient on its own to handle the spatially-

temporally variable need for processing power. It is necessary to install a vast number of edge servers in 

fixed locations to provide complete geographical coverage with dependable quality provisioning. This will 

always result in substantial deployment costs, high operating expenditures, and an enormous amount of 

wasted resources [4]. These applications often produce a significant quantity of data and are frequently 

dependent on delays.  

It is common practice for such services to be prioritized for computation at the edge of the 

infrastructure compared to in a distant cloud owing to the stringent latency requirements and high 

computation needs. As a result, edge computing and small molecules are compatible entities that have the 

potential to cooperate. A competitive approach for the offloading of mobile tasks is the use of small cells that 

are equipped with edge servers. Because these servers are located very close to the beginning of the tasks, 

they are better able to satisfy the stringent latency requirements [5]. The massive file upload and preliminary 

processing of offloading duties, and download processes are both reduced to a minimum by the design of 

edge computing, which adds to a shorter amount of time needed for the total service. However, there are 

significant issues involved in effectively managing the computational workloads of applications that are 

sensitive to latency and edge-cloud resource utilization [6,7]. Interpretable Deep Gaussian Naive Bayes 

(IDGNB) is a machine learning algorithm that can be used as a classifier in a system for job offload in edge-

cloud computing. The IDGNB algorithm combines the interpretability of the Gaussian Naive Bayes (GNB) 

algorithm with the expressiveness of a deep neural network (DNN). The IDGNB algorithm is a promising 

machine learning algorithm for use in a System for job offload in edge-cloud computing. It combines the 

interpretability of the GNB algorithm with the expressiveness of a DNN, making it well-suited for handling 

high-dimensional feature spaces and providing insights into the decision-making process of the classifier. 

The rest of the paper is as follows related works presents in section 2, the method describes in 

section 3, section 4 gives results and discussion, and section 5 depicts the conclusion of the paper. 

 

2. RELATED WORKS 

In the study [8], a novel compression as well, as security, and resources-aware task offloading 

architecture is suggested for the edge-cloud computing (ECC) system architecture to get over the constrained 

bandwidth and solve the possible security threats concern. To be more precise, we first add a layer of 

effective compression to shrewdly lessen the amount of data being sent across the channel. The goal of the 

research is to tackle the complicated issue that has been posed by suggested a low-complexity and dispersed 

offload framework. The framework is based on specific network limitations [9]. For an on-demand edge-

cloud system for computing with several users and UAVs, the article developed a powerful resource 

distribution and offloading of computations methodology. The suggested solution is expandable and capable 

of handling rises in traffic on the network without deteriorating performance [10]. In the study [11], an IoT-

Edge-Cloud computing scheme that uses blockchain with advantages from both mobile-edge computing 

(MEC) and mobile cloud computing (MCC) servers is proposed. MEC servers provide reduced latency 

services for computing, while MCC servers have more processing capability. In the paper [12], an innovative 

task offloading algorithm known as meta reassurance-deep positive reinforcement trying to learn-based 

offloading was proposed. It consists of two models: a meta-RL (meta-reinforcement learning) model that 

enhances the model's ability to migrate, and a DRL (Deep Reinforcement Learning) model that combines 

several level DNNs (Deep Neural Networks) to learn from previous task offloading situations. The paper [13] 

suggested the DCC task offloading structure, which has three layers: the device layer, the cloudlet layer, and 

the cloud layer. In DCC, the smallest area layer and cloud layer are used to offload jobs with high 

computational requirements. To learn the combined task offloading and resource allocation choice while 

lowering training costs and limiting privacy leakage during DRL training, a federal deep reinforcement 

learning (FDRL) architecture is suggested [14]. In a multi-user context, the article developed a delay-optimal 

task offloading strategy for multi-tier edge-cloud computing. To reduce the overall service time of UAVs 

(Unmanned Aerial Vehicles), the issue is framed as a model for optimization utilizing Integral Linear 

Programming (ILP) methods. 

 

3. METHOD  

In this section, we discuss in detail about Interpretable Deep Gaussian Naive Bayes Algorithm 

(IDGNBA). To improve performance and reduce latency, a task offloading paradigm for peripheral-cloud 

computing comprises the effective allocation of computing jobs between the edge equipment and cloud 

servers. The framework involves a set of techniques, protocols, and algorithms that enable seamless and 

optimal task offloading. The speed and effectiveness of edge-cloud systems for computing may be 
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considerably increased with a well-designed job-offloading architecture, enabling the deployment of more 

complex and resource-intensive applications on edge devices. Task offloading is the process of distributing 

computational tasks between edge devices and cloud servers, to maximize performance and minimize 

latency. By offloading tasks to the cloud server, edge devices can conserve their limited resources and 

execute other local tasks, resulting in increased efficiency and reduced energy consumption. 

In this context, a task-offloading framework for edge-cloud computing is essential for the efficient 

distribution of computational tasks between edge devices and cloud servers. The framework involves a set of 

techniques, protocols, and algorithms that enable seamless and optimal task offloading. The suggested 

architecture for offloading tasks for edge-cloud processing seeks to solve the difficulties of performing 

computation-intensive applications on edge devices by leveraging the computing resources available on 

cloud servers. The framework considers factors such as task partitioning, offloading decision-making, 

resource allocation, task scheduling, data management, and quality of service management. 

 

3.1. Problem Formulation and system model 

We provide a summary of the system's model in this part, followed by definitions of the time delay 

models and the consumption of energy model. The optimization problem of compute offloading is then 

defined on this foundation. 

3.1.1. System Model 

The schematic representation of a system model for IoT-edge-cloud computing systems' work 

offloading mechanism may be seen in Figure 1. The suggested architecture is made up of a server in the 

cloud an outside server, and several (IoT) devices. The process of the (IOT) devices may be completed 

locally or offloaded to a server located in the cloud or edge server. 

 

 

 
 

Figure 1. A system design for IoT-edge-cloud computing systems' work offloading mechanism 

 

Within this architecture, edge cloud servers are located at close range to the various devices and 

provide high bandwidth. The device sends workflow information to the edge server, which then uses that 

information to make judgments about fine-grained unloading. The software for every device may be broken 

down into a series of processes in order of sequence. We will proceed on the assumption that the xth process 

is described as follows: 

𝐾𝑦 = {𝑎0,1, 𝑐1,𝑙2, 2, 𝑐2, … , 𝑤𝑗 , 𝑎𝑗,𝑖,𝑐𝑖 , … , 𝑙𝑚−1,𝑚,𝑎𝑚−1, 𝑚, 𝑐𝑚,𝑎𝑚 + 1}                (1) 

 

where 𝑐𝑖 is the i-th job in the process and 𝑎𝑗,𝑖is an illustration of the collection of information flows 

through tasks 𝑐𝑖 and 𝑐𝑗. where 𝑐𝑖 signifies the j-th activity in the procedure. 

Each process x can choose whether or not to unload its corresponding task 𝑐𝑖, and the unloading 

choice is represented by a variable: 

 

𝑝𝑦,𝑗 ∈    (𝑝0, 𝑝1, 𝑝2),                    (2) 

 

where a0 = [1 0 0]K denotes the choosing to work x will perform its j-th job local, a1 = [0 1 0]K 

denotes the choice that workflow x will offload its i-th work to the edge cloud server, and a2 = [0 0 1]K 

denotes the choosing to work x will offload its j-th job to the cloud servers. 
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3.1.2. Delay Model 

Both the calculation delay and the process of transmission delay are included in the delay that is 

produced by computation offloading. We do not take into account the delay that occurs as a result of 

outsourcing decision-making since the amount of time needed to make the choice is quite minimal. As a 

result, the amount of time needed to complete job 𝑐𝑗 may be computed as follows: 

𝐷𝑗
𝑣 =

{
 
 

 
 
𝑐𝑗

𝑉0
, 𝑝𝑦,𝑗 = 𝑝0,

𝑐𝑗

𝑉1
, 𝑝𝑦,𝑗 = 𝑝1,

𝑐𝑗

𝑉2
, 𝑝𝑦,𝑗 = 𝑝2,

                     (3) 

 

where V0, V1, and V2 correspond, respectively, to the computational capacity of the Internet of 

Things, the computational both processing capacity of the cloud servers, and the edge server. 

The following is the between task 𝑐𝑖 and 𝑐𝑗, there is a transfer lag: 

 

𝐷𝑗,𝑖
𝑣 =

{
 
 

 
 

0, 𝑝𝑦,𝑗=𝑝𝑦,𝑖
𝑎𝑗,𝑖

𝑃0,1
, 𝑝𝑦,𝑗=𝑝0 ,𝑝𝑦,𝑖 = 𝑝1𝑜𝑟 𝑝𝑦,𝑗=𝑝1 ,𝑝𝑦,𝑖 = 𝑝0,

𝑎𝑗,𝑖

𝑃1,2
, 𝑝𝑦,𝑗=𝑝1 ,𝑝𝑦,𝑖 = 𝑝2𝑜𝑟 𝑝𝑦,𝑗=𝑝2 ,𝑝𝑦,𝑖 = 𝑝1,

𝑎𝑗,𝑖

𝑃0,2
, 𝑝𝑦,𝑗=𝑝0 ,𝑝𝑦,𝑖 = 𝑝2𝑜𝑟 𝑝𝑦,𝑗=𝑝2 ,𝑝𝑦,𝑖 = 𝑝0,

                  (4) 

 

where B0,1 represents the bandwidth that has been allotted to the IoT device's connection to the 

edge cloud server. The connectivity allotted for communication among the cloud servers and the edge servers 

is denoted by B1,2. Similarly, the bandwidth that an IoT device is given a server in the cloud is denoted by 

the notation B0,2. 

 

The overall lag time for workflow x may be determined as follows: 

𝐷𝑦 = ∑ (𝐷𝑗
𝑐 + 𝐷𝑗,𝑗+1

𝑑𝑀
𝑗=1 ),                     (5) 

in which the process x is coupled with N different jobs. 

3.1.3. Energy Consumption Model 

One possible way to represent the electrical energy usage model of procedure x is as follows: 

𝐴𝑦 = 𝐴𝑦
𝑙𝑜𝑐𝑎𝑙 + 𝛼𝐴𝑦

𝑒𝑑𝑔𝑒
+ 𝛽𝐴𝑦          ,

𝑐𝑙𝑜𝑢𝑑                     (6) 

 

where a and b are weighted representing the amount of energy used by the edge server and the 

server in the cloud, respectively. Only the IoT device's use of energy is taken into account when = = 0 is met. 

We are going to overlook the amount of energy that is used during task transmission for the sake of 

simplicity. 

Calculating the energy needed to complete job v looks like this: 

𝐴𝑗 = {

𝑐𝑗 .𝑡𝑙𝑜𝑐𝑎𝑙,𝑝𝑦,𝑗 = 𝑝0,
𝑐𝑗 .𝑡𝑒𝑑𝑔𝑒,𝑝𝑦,𝑗 = 𝑝1,
𝑐𝑗 .𝑡𝑐𝑙𝑜𝑢𝑑,𝑝𝑦,𝑗 = 𝑝2,

                     (7) 

 

where dlocal, dedge, and stand for neighborhood electricity per data bit, edge capacity per 

information bit, and cloud utilization of resources per communication bit, respectively. Therefore, the energy 

utilization design of process y may be stated by the following: 

 

𝐴𝑦 = ∑ [𝐴𝑗, 𝛼𝐴𝑗, 𝛽𝐴𝑗]. 𝑝𝑦,𝑗.
𝑀
𝑗=1                     (8) 

3.1.4. The Formulation of the Problem 

We begin by introducing a system function known as O(y, p), which can be described as a weighted 

average of the utilization of energy and delay in completing workflows. This is done to concurrently reduce 

both the amount of time it takes to finish all workflows and the amount of energy that is required to do so. 

𝑂(𝑦, 𝑝) = ∑(𝐷𝑦 + 𝛿𝐴𝑦)

𝑁

𝑦=1

 

               =∑ [∑ (𝐷𝑗
𝑣 + 𝐷𝑗,𝑗+1

𝑑 ) + 𝛿 ∑ [𝐴𝑗, 𝛼𝐴𝑗 , 𝛽𝐴𝑗]𝑝𝑦,𝑗
𝑀
𝑗=1

𝑀
𝑗=1 ]𝑁

𝑦=1                 (9) 
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If there are a total of M processes, where each workflow has N-related jobs, and where represents 

the relative significance of utilization of energy and the amount of time it takes to do a task. The optimization 

issue may be recast as a a constraint-based reduction issue, denoted by P1, as seen in the following example: 

(𝐵1 ): 
𝑚𝑖𝑛
𝑝
 𝑂(𝑦, 𝑝)                   (10) 

𝑔. 𝑑, : 𝑝𝑦,𝑗 ∈  ([
1
0
0
] , [
0
1
0
] , [
0
0
1
])                  (11) 

 

3.2. Interpretable Deep Gaussian Naive Bayes  

Interpretable Deep Gaussian Naive Bayes (IDGNB) is a machine learning algorithm that can be used 

as a classifier in a framework for job dispatching in edge-cloud computing. The IDGNB algorithm combines 

the interpretability of the Gaussian Naive Bayes (GNB) algorithm with the expressiveness of a deep neural 

network (DNN). The IDGNB algorithm is based on the GNB algorithm, which assumes that the features of a 

sample are conditionally independent given the class label. However, the GNB algorithm is limited in its 

ability to model complex non-linear relationships between the features and the class label. This is where the 

DNN comes into play. The IDGNB algorithm combines the GNB algorithm with a DNN by using the GNB 

algorithm to estimate the conditional probabilities of the features given the class label and using a DNN to 

model the non-linear relationships between the features and the class label. The DNN is trained to learn the 

feature representations that are most useful for predicting the class label. 

The IDGNB algorithm has several advantages in the context of a task-unloading framework for edge 

computing. First, the algorithm is interpretable, which means that it can provide insights into the decision-

making process of the classifier. This is important in scenarios where it is necessary to explain the reasons 

behind the decision to delegate a job to the cloud server. Second, the IDGNB algorithm can handle high-

dimensional feature spaces, which is important in the context of edge-cloud computing, where there may be 

many features that need to be considered while choosing to transfer a job to a cloud server. Finally, the 

IDGNB algorithm can be trained on small datasets, which is important in the context of edge devices, where 

the amount of training data may be limited due to the limited storage capacity. 

The Naive Bayes Classifier, sometimes known as the GNB, is a straightforward critical classifier 

that utilizes Bayes' theory. It does this by constructing a plausibility model based on the category definition 

for every feature vector that is included in the training set. Make your classifications utilizing the Maximum 

A Posteriori judgment rule as you are putting the test to the test. 

3.2.1. The Model 

The purpose of any deterministic classifier is to, given a set of features ranging from x1 to xn and a 

set of classes ranging from c1 to ck, estimate the possibility that the features will appear in every class and 

then provide the class that is most likely to include those characteristics. Because of this, we need to be able 

to compute P(ci |x0,..., xn) for each class individually. The Bayes rule is what we make use of when trying to 

do this. To refresh your memory, the Bayes rule is as follows: 

 

𝑂(𝐸|𝑃) =
𝑂(𝑃|𝐸)𝑂(𝐸)

𝑂(𝑃)
                   (12) 

(𝑋 = 𝑉|𝑌) =
𝑜(𝑌|𝑋 =𝑉)𝑜(𝑋=𝑉)

∑ 𝑜
|𝑉|
𝑟=1 (𝑌|𝑋 =𝑉𝑟)𝑜(𝑋=𝑉𝑟)

                  (13) 

 

Both the numerator and the denominator have the potential to become rather tiny. This is often the 

case because might be quite near to the null value and we calculate several of them with one another. One 

needs just to take the record of the operator to stop underflows from occurring. Because of this, the following 

should be done to avoid underflows: Using the MAP (maximum a posteriori) selection rule, we do not need 

to calculate the by value if our sole concern is to determine to which class (y) the input (y = y1,..., yn). In this 

scenario, we just consider it important to know what category the data being provided belongs to. To avoid 

underflows in the numerator, we may easily prevent them by taking the logarithm of the expression 

log(𝑜(𝑦| 𝑋 = 𝑉)𝑜(𝑋 = 𝑉)).  

𝑥̂ =
𝑎𝑟𝑔𝑚𝑎𝑥  𝑜(𝑉𝑟|𝑦1,……..𝑦𝑚)

𝑟 ∈ {1, …… |𝑉|}
                  (14) 

 
𝑎𝑟𝑔𝑚𝑎𝑥  𝑜(𝑉𝑟)∏ 𝑜𝑚

𝑗=1 (𝑦𝑗|𝑉𝑟)

𝑟 ∈ {1, …… |𝑉|}
                  (15) 
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which changes when the log is taken: 

 

𝑥̂ =
𝑎𝑟𝑔𝑚𝑎𝑥 𝑙𝑜𝑔(𝑜(𝑉𝑟|𝑦1,……..𝑦𝑚))

𝑟 ∈ {1, …… |𝑉|}
                  (16) 

 

𝑎𝑟𝑔𝑚𝑎𝑥 𝑙𝑜𝑔(𝑜(𝑉𝑟)∏ 𝑜𝑚
𝑗=1 (𝑦𝑗|𝑉𝑟))

𝑟 ∈ {1, …… |𝑉|}
                               (15) 

 
𝑎𝑟𝑔𝑚𝑎𝑥                                                                           

𝑟 ∈ {1, … , |𝑉|} ((log (𝑜(𝑉𝑟)) + ∑ log (𝑜(𝑦𝑗|𝑉𝑟))
𝑚
𝑗=1 )

                (17) 

 

𝑂(𝑦𝑗|𝑉𝑟) =
1

√2𝜋𝜎𝑉𝑟
2
𝑎 − 

(𝑦𝑗−𝜇𝑉 𝑟)

2𝜋𝜎𝑉𝑟
2                   (18) 

 

∗ 𝜎 = 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛, 𝜇 = 𝑚𝑒𝑎𝑛 

 

3.2.2. Training 

Assume for the moment that he has a database in which each line details the class to which an item 

belongs as well as the characteristics of that entity. To train the algorithm based on this data collection, we 

need to compute the value of all attributes of every class, the variation of every variable of every class, and 

the prior terms. Only then can we begin. Therefore, we are in a position to compute the Gaussian Bayes 

Probability since we now have all of the required data. Furthermore, to prevent numerous accesses on the 

informational array, which is not the best choice for deploying hardware, to calculate variance, we use a 

method that is presented below. 

 

𝜎2 =
∑(𝑌−𝜇)2

𝑀
=
∑𝑌2

𝑀
− 𝜇2                                                            (19) 

 

3.2.3. Classification 

Now that we've established a method for estimating the chance that a certain data point belongs to a 

particular category, we have to be able to utilize this information to make classifications. This is handled in a 

relatively straightforward way by the Naive Bayes algorithm; all that is required is to choose the ci that, given 

the characteristics of the data points, has the highest probability. The name for this kind of decision-making 

principle is the PDR (Posteriori decision rule). This is because, when we formulate the Bayes rule, we only 

utilize the likelihood and prior value, which are denoted by the words Q(A|B) and Q(B), respectively. This is 

the reason why this is the case. 

 

4. RESULTS AND DISCUSSION  

The theoretical analysis presented above is supported in this part by simulations and experiments. 

We suppose that every device is dispersed at random across a 100 by 100 m2 circular region. Interpretable 

deep Gaussian naive Bayes technique is a type of probabilistic classification algorithm that can be used in 

machine learning applications. It is commonly used for text classification and other types of data analysis. 

Task offloading framework is a technique used in edge-cloud computing, where tasks are distributed 

between edge devices and cloud servers to optimize resource usage and reduce latency. By combining the 

two techniques, researchers may have been able to develop a more efficient and effective method for task 

allocation in edge-cloud computing. The existing methods for comparing are the optimal matching algorithm 

[15], Greedy algorithm [16], and Fast matching algorithm [17]. Tasks may be transferred to the cloud, where 

there are abundant computer resources, and less energy is used during job execution. The performance of job 

execution under various offloading mechanisms is analyzed and contrasted in Figures 2 and 3. The vertical 

dimension in Figure 2 energy-saving rate depicts the ratio of the decrease in overall task execution 

consumption of energy under this offloading approach when compared to the local performance of all tasks.  
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Figure 2. Energy saving ratio 

 

Table 1.Results of energy saving rate 

 

 Methods Methods Values 

Optimal matching 0.492 

Greedy algorithm 0.464 

Fast matching 0.487 

IDGNB (proposed) 0.495 

 

The system's energy usage for ED will reduce as their number grows. The edge cloud platform will 

have more idle devices as more devices are added, offering the ED more possibilities to save energy 

consumption while doing the function. Along the vertical axis of Figure 3, the quantity of tasks that are not 

completed inside the time-delayed restriction is shown. 

 

 

 
Figure 3. Overdue task for the user 
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Table 2. Results for overdue task 

 

 Methods Methods Values 

Optimal matching 20 

Greedy algorithm 8 

Fast matching 2 

IDGNB (proposed) 1 

 

 
 

Figure 4. Algorithm’s running time 

 

Table 3. Results of running time 

 

 Methods Methods Values 

Optimal matching 250 

Fast matching 140 

IDGNB (proposed) 10 

 

When compared to many alternative methods, the optimum matching algorithm and the quick 

matching algorithm may successfully guarantee that the work is performed during the time delay restriction, 

as illustrated in Figure 3. The suggested method running times are simulated in Figure 4. The suggested 

approach may achieve almost ideal offloading performance with less complexity, as shown in the picture. 

This study mimics the impact of probabilistic generating tasks on task offloading performance. We presume 

that there are 150 devices in the system.  

 

 
 

Figure 5. Task Generation for energy saving 
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Table 4. Energy saving ratio 

 

 Methods Methods Values 

Optimal matching 0.392 

Greedy algorithm 0.381 

Fast matching 0.351 

IDGNB (proposed) 0.473 

 

The energy savings rate of the system will drop when task generation frequency rises, as illustrated 

in Figure 5 since there are fewer idle resources available in the edge and cloud. This makes it more 

challenging for task consumers to offload jobs sequentially for execution. As a result when compared to 

existing methods our proposed method is more efficient than existing methods. 

 

5. CONCLUSION  

 In general, the benefits of offloading framework could include improved performance, reduced 

latency, and better resource utilization. Offloading certain tasks to more powerful or specialized computing 

resources can help improve overall system efficiency and responsiveness. However, the effectiveness of the 

offloading framework would depend on the specific implementation, the nature of the computing tasks being 

offloaded, and the characteristics of the computing resources involved. This research has suggested a unique 

IDGNB framework to address the task offload decision-making issue in heterogeneous edge and cloud 

collaborative computing environments. The problem of neural networks' inflexibility to change has been 

solved. It includes a task offload judgment model that is based on distributive GNB as well as a deep meta-

learning-based training initial variable model. Both of these models can manage the challenge of making 

decisions regarding offloading tasks for corner-cloud computation and quickly adjust to a changing MEC 

environment. 

IDGNB has a more positive impact on task offloading choices than binary offloading systems and 

traditional GNB-based partial offloading schemes, according to experimental data. Additionally, the model 

has improved portability and a quicker rate of environment learning thanks to the usage of meta parameters. 

The model may rapidly converge as the MEC environment evolves, and only a few learning steps are needed 

to determine the best offloading options at reasonable prices. Future studies will focus on improving the 

meta-learning method, specifically the starting parameters' ability to be adjusted automatically in response to 

environmental factors so that it is more capable of adapting to task offloading choices in large-scale MEC 

contexts. We will also concentrate on problems like resource distribution and bandwidth adjustment using 

serverless computing edge computing frameworks. The offloading model may also offer the relevant resource 

scheduling plans in addition to the results of task offloading decisions. 
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