
International Journal of Data Informatics and Intelligent Computing (IJDIIC)

Vol.2, No.2, June 2023, pp. 1~10

DOI: 10.59461/ijdiic.v2i2.57

Journal homepage: https://www.ijdiic.com 1

Intepretable Deep Gaussian Naive Bayes Algorithm (Idgnba)

Based Task Offloading Framework for Edge-Cloud Computing

Prabhdeep Singh1
1School of Computer Applications, BBD University, Lucknow, Uttar Pradesh, India

Article Info ABSTRACT

Article history:

Received May 18, 2023

Revised June 14, 2023

Accepted June 16, 2023

 When it comes to Internet of Things (IoT) applications and machine learning

based computing, resource-restricted edge devices are inadequate due to the

exponential growth of mobile information and the massive need for

processing power. An edge offload, the migration of complex tasks from IoT

devices to edge cloud servers, is a distributed computing paradigm that has

the potential to overcome the IoT device resource limits, lessen the

computational load, and increase the effectiveness with which activities are

processed. However, due to the NP-hard nature of the optimum offloading

decision-making issue, an efficient solution using traditional optimization

techniques is difficult. Current deep learning algorithms still have a lot of

problems, such as their slow pace of learning and limited ability to adapt to

new environments. We provide a unique interpretable deep Gaussian naive

Bayes technique (IDGNBA) for extremely fine offloading choices to address

these issues. Through several simulation studies, we assess the efficacy of

IDGNBA and find that it performs better in terms of offloading than

traditional techniques. The model has strong mobility and can quickly adjust

to a fresh MEC working atmosphere while taking offloading decisions in

real-time.

Keywords:

Internet of Things (IoT)

Edge computing

Task offloading

Interpretable deep Gaussian

naive Bayes approach

(IDGNBA)

This is an open-access article under the CC BY-SA license.

Corresponding Author:

Prabhdeep Singh

School of Computer Applications

BBD University

Lucknow, Uttar Pradesh

India

Email: prabhdeepcs@gmail.com

1. INTRODUCTION

Due to its high cost-effectiveness and flexibility, which are made possible by consolidation—the

centralization of processing, storage, and network management—cloud computing has seen significant

development and application over the last several decades [1]. The last ten years have seen tremendous

advancements in cloud computing, which have provided a wide range of advantages. Offloading computation

is a feature of cloud computing that enables customers to move work that is computationally expensive to a

faraway cloud that has a greater supply of resources [2]. The term "cloud computing" refers to a distant data

center that is made up of a collection of supercomputers that collaborate and share resources to provide

intensive resource computation and are managed by intelligent programs that include a software-defined

network (SDN). Cloud computing is used by gadgets that have been unable to finish their computing work

locally. These devices send their computing chores to the cloud. However, since there is a considerable

distance among the cloud and the final devices, the network may have connection delays. This means that it

is not suited for dependent on latency real-time applications. This is additionally to the backlog of traffic,

which may cause the network to become overloaded [3].

https://www.ijdiic.com/
https://creativecommons.org/licenses/by-sa/4.0/

ISSN: 2583-6250 Prisma Publications

Int. J. of DI & IC, Vol. 2, No. 2, June 2023: 1-10 2

Due to the poor connection and the great distance between them, offloading these jobs to faraway

cloud servers causes a significant delay in the task offloading process. Using edge computing as a means to

provide computer services at the peripheries of a network is one potential approach to the problem.

Nevertheless, computing at the edge is inadequate and inefficient on its own to handle the spatially-

temporally variable need for processing power. It is necessary to install a vast number of edge servers in

fixed locations to provide complete geographical coverage with dependable quality provisioning. This will

always result in substantial deployment costs, high operating expenditures, and an enormous amount of

wasted resources [4]. These applications often produce a significant quantity of data and are frequently

dependent on delays.

It is common practice for such services to be prioritized for computation at the edge of the

infrastructure compared to in a distant cloud owing to the stringent latency requirements and high

computation needs. As a result, edge computing and small molecules are compatible entities that have the

potential to cooperate. A competitive approach for the offloading of mobile tasks is the use of small cells that

are equipped with edge servers. Because these servers are located very close to the beginning of the tasks,

they are better able to satisfy the stringent latency requirements [5]. The massive file upload and preliminary

processing of offloading duties, and download processes are both reduced to a minimum by the design of

edge computing, which adds to a shorter amount of time needed for the total service. However, there are

significant issues involved in effectively managing the computational workloads of applications that are

sensitive to latency and edge-cloud resource utilization [6,7]. Interpretable Deep Gaussian Naive Bayes

(IDGNB) is a machine learning algorithm that can be used as a classifier in a system for job offload in edge-

cloud computing. The IDGNB algorithm combines the interpretability of the Gaussian Naive Bayes (GNB)

algorithm with the expressiveness of a deep neural network (DNN). The IDGNB algorithm is a promising

machine learning algorithm for use in a System for job offload in edge-cloud computing. It combines the

interpretability of the GNB algorithm with the expressiveness of a DNN, making it well-suited for handling

high-dimensional feature spaces and providing insights into the decision-making process of the classifier.

The rest of the paper is as follows related works presents in section 2, the method describes in

section 3, section 4 gives results and discussion, and section 5 depicts the conclusion of the paper.

2. RELATED WORKS

In the study [8], a novel compression as well, as security, and resources-aware task offloading

architecture is suggested for the edge-cloud computing (ECC) system architecture to get over the constrained

bandwidth and solve the possible security threats concern. To be more precise, we first add a layer of

effective compression to shrewdly lessen the amount of data being sent across the channel. The goal of the

research is to tackle the complicated issue that has been posed by suggested a low-complexity and dispersed

offload framework. The framework is based on specific network limitations [9]. For an on-demand edge-

cloud system for computing with several users and UAVs, the article developed a powerful resource

distribution and offloading of computations methodology. The suggested solution is expandable and capable

of handling rises in traffic on the network without deteriorating performance [10]. In the study [11], an IoT-

Edge-Cloud computing scheme that uses blockchain with advantages from both mobile-edge computing

(MEC) and mobile cloud computing (MCC) servers is proposed. MEC servers provide reduced latency

services for computing, while MCC servers have more processing capability. In the paper [12], an innovative

task offloading algorithm known as meta reassurance-deep positive reinforcement trying to learn-based

offloading was proposed. It consists of two models: a meta-RL (meta-reinforcement learning) model that

enhances the model's ability to migrate, and a DRL (Deep Reinforcement Learning) model that combines

several level DNNs (Deep Neural Networks) to learn from previous task offloading situations. The paper [13]

suggested the DCC task offloading structure, which has three layers: the device layer, the cloudlet layer, and

the cloud layer. In DCC, the smallest area layer and cloud layer are used to offload jobs with high

computational requirements. To learn the combined task offloading and resource allocation choice while

lowering training costs and limiting privacy leakage during DRL training, a federal deep reinforcement

learning (FDRL) architecture is suggested [14]. In a multi-user context, the article developed a delay-optimal

task offloading strategy for multi-tier edge-cloud computing. To reduce the overall service time of UAVs

(Unmanned Aerial Vehicles), the issue is framed as a model for optimization utilizing Integral Linear

Programming (ILP) methods.

3. METHOD

In this section, we discuss in detail about Interpretable Deep Gaussian Naive Bayes Algorithm

(IDGNBA). To improve performance and reduce latency, a task offloading paradigm for peripheral-cloud

computing comprises the effective allocation of computing jobs between the edge equipment and cloud

servers. The framework involves a set of techniques, protocols, and algorithms that enable seamless and

optimal task offloading. The speed and effectiveness of edge-cloud systems for computing may be

ISSN: 2583-6250 Prisma Publications

Int. J. of DI & IC, Vol. 2, No. 2, June 2023: 1-10 3

considerably increased with a well-designed job-offloading architecture, enabling the deployment of more

complex and resource-intensive applications on edge devices. Task offloading is the process of distributing

computational tasks between edge devices and cloud servers, to maximize performance and minimize

latency. By offloading tasks to the cloud server, edge devices can conserve their limited resources and

execute other local tasks, resulting in increased efficiency and reduced energy consumption.

In this context, a task-offloading framework for edge-cloud computing is essential for the efficient

distribution of computational tasks between edge devices and cloud servers. The framework involves a set of

techniques, protocols, and algorithms that enable seamless and optimal task offloading. The suggested

architecture for offloading tasks for edge-cloud processing seeks to solve the difficulties of performing

computation-intensive applications on edge devices by leveraging the computing resources available on

cloud servers. The framework considers factors such as task partitioning, offloading decision-making,

resource allocation, task scheduling, data management, and quality of service management.

3.1. Problem Formulation and system model

We provide a summary of the system's model in this part, followed by definitions of the time delay

models and the consumption of energy model. The optimization problem of compute offloading is then

defined on this foundation.

3.1.1. System Model

The schematic representation of a system model for IoT-edge-cloud computing systems' work

offloading mechanism may be seen in Figure 1. The suggested architecture is made up of a server in the

cloud an outside server, and several (IoT) devices. The process of the (IOT) devices may be completed

locally or offloaded to a server located in the cloud or edge server.

Figure 1. A system design for IoT-edge-cloud computing systems' work offloading mechanism

Within this architecture, edge cloud servers are located at close range to the various devices and

provide high bandwidth. The device sends workflow information to the edge server, which then uses that

information to make judgments about fine-grained unloading. The software for every device may be broken

down into a series of processes in order of sequence. We will proceed on the assumption that the xth process

is described as follows:

𝐾𝑦 = {𝑎0,1, 𝑐1,𝑙2, 2, 𝑐2, … , 𝑤𝑗 , 𝑎𝑗,𝑖,𝑐𝑖 , … , 𝑙𝑚−1,𝑚,𝑎𝑚−1, 𝑚, 𝑐𝑚,𝑎𝑚 + 1} (1)

where 𝑐𝑖 is the i-th job in the process and 𝑎𝑗,𝑖is an illustration of the collection of information flows

through tasks 𝑐𝑖 and 𝑐𝑗. where 𝑐𝑖 signifies the j-th activity in the procedure.

Each process x can choose whether or not to unload its corresponding task 𝑐𝑖, and the unloading

choice is represented by a variable:

𝑝𝑦,𝑗 ∈ (𝑝0, 𝑝1, 𝑝2), (2)

where a0 = [1 0 0]K denotes the choosing to work x will perform its j-th job local, a1 = [0 1 0]K

denotes the choice that workflow x will offload its i-th work to the edge cloud server, and a2 = [0 0 1]K

denotes the choosing to work x will offload its j-th job to the cloud servers.

ISSN: 2583-6250 Prisma Publications

Int. J. of DI & IC, Vol. 2, No. 2, June 2023: 1-10 4

3.1.2. Delay Model

Both the calculation delay and the process of transmission delay are included in the delay that is

produced by computation offloading. We do not take into account the delay that occurs as a result of

outsourcing decision-making since the amount of time needed to make the choice is quite minimal. As a

result, the amount of time needed to complete job 𝑐𝑗 may be computed as follows:

𝐷𝑗
𝑣 =

{

𝑐𝑗

𝑉0
, 𝑝𝑦,𝑗 = 𝑝0,

𝑐𝑗

𝑉1
, 𝑝𝑦,𝑗 = 𝑝1,

𝑐𝑗

𝑉2
, 𝑝𝑦,𝑗 = 𝑝2,

 (3)

where V0, V1, and V2 correspond, respectively, to the computational capacity of the Internet of

Things, the computational both processing capacity of the cloud servers, and the edge server.

The following is the between task 𝑐𝑖 and 𝑐𝑗, there is a transfer lag:

𝐷𝑗,𝑖
𝑣 =

{

0, 𝑝𝑦,𝑗=𝑝𝑦,𝑖
𝑎𝑗,𝑖

𝑃0,1
, 𝑝𝑦,𝑗=𝑝0 ,𝑝𝑦,𝑖 = 𝑝1𝑜𝑟 𝑝𝑦,𝑗=𝑝1 ,𝑝𝑦,𝑖 = 𝑝0,

𝑎𝑗,𝑖

𝑃1,2
, 𝑝𝑦,𝑗=𝑝1 ,𝑝𝑦,𝑖 = 𝑝2𝑜𝑟 𝑝𝑦,𝑗=𝑝2 ,𝑝𝑦,𝑖 = 𝑝1,

𝑎𝑗,𝑖

𝑃0,2
, 𝑝𝑦,𝑗=𝑝0 ,𝑝𝑦,𝑖 = 𝑝2𝑜𝑟 𝑝𝑦,𝑗=𝑝2 ,𝑝𝑦,𝑖 = 𝑝0,

 (4)

where B0,1 represents the bandwidth that has been allotted to the IoT device's connection to the

edge cloud server. The connectivity allotted for communication among the cloud servers and the edge servers

is denoted by B1,2. Similarly, the bandwidth that an IoT device is given a server in the cloud is denoted by

the notation B0,2.

The overall lag time for workflow x may be determined as follows:

𝐷𝑦 = ∑ (𝐷𝑗
𝑐 + 𝐷𝑗,𝑗+1

𝑑𝑀
𝑗=1), (5)

in which the process x is coupled with N different jobs.

3.1.3. Energy Consumption Model

One possible way to represent the electrical energy usage model of procedure x is as follows:

𝐴𝑦 = 𝐴𝑦
𝑙𝑜𝑐𝑎𝑙 + 𝛼𝐴𝑦

𝑒𝑑𝑔𝑒
+ 𝛽𝐴𝑦 ,

𝑐𝑙𝑜𝑢𝑑 (6)

where a and b are weighted representing the amount of energy used by the edge server and the

server in the cloud, respectively. Only the IoT device's use of energy is taken into account when = = 0 is met.

We are going to overlook the amount of energy that is used during task transmission for the sake of

simplicity.

Calculating the energy needed to complete job v looks like this:

𝐴𝑗 = {

𝑐𝑗 .𝑡𝑙𝑜𝑐𝑎𝑙,𝑝𝑦,𝑗 = 𝑝0,
𝑐𝑗 .𝑡𝑒𝑑𝑔𝑒,𝑝𝑦,𝑗 = 𝑝1,
𝑐𝑗 .𝑡𝑐𝑙𝑜𝑢𝑑,𝑝𝑦,𝑗 = 𝑝2,

 (7)

where dlocal, dedge, and stand for neighborhood electricity per data bit, edge capacity per

information bit, and cloud utilization of resources per communication bit, respectively. Therefore, the energy

utilization design of process y may be stated by the following:

𝐴𝑦 = ∑ [𝐴𝑗, 𝛼𝐴𝑗, 𝛽𝐴𝑗]. 𝑝𝑦,𝑗.
𝑀
𝑗=1 (8)

3.1.4. The Formulation of the Problem

We begin by introducing a system function known as O(y, p), which can be described as a weighted

average of the utilization of energy and delay in completing workflows. This is done to concurrently reduce

both the amount of time it takes to finish all workflows and the amount of energy that is required to do so.

𝑂(𝑦, 𝑝) = ∑(𝐷𝑦 + 𝛿𝐴𝑦)

𝑁

𝑦=1

 =∑ [∑ (𝐷𝑗
𝑣 + 𝐷𝑗,𝑗+1

𝑑) + 𝛿 ∑ [𝐴𝑗, 𝛼𝐴𝑗 , 𝛽𝐴𝑗]𝑝𝑦,𝑗
𝑀
𝑗=1

𝑀
𝑗=1]𝑁

𝑦=1 (9)

ISSN: 2583-6250 Prisma Publications

Int. J. of DI & IC, Vol. 2, No. 2, June 2023: 1-10 5

If there are a total of M processes, where each workflow has N-related jobs, and where represents

the relative significance of utilization of energy and the amount of time it takes to do a task. The optimization

issue may be recast as a a constraint-based reduction issue, denoted by P1, as seen in the following example:

(𝐵1):
𝑚𝑖𝑛
𝑝
 𝑂(𝑦, 𝑝) (10)

𝑔. 𝑑, : 𝑝𝑦,𝑗 ∈ ([
1
0
0
] , [
0
1
0
] , [
0
0
1
]) (11)

3.2. Interpretable Deep Gaussian Naive Bayes

Interpretable Deep Gaussian Naive Bayes (IDGNB) is a machine learning algorithm that can be used

as a classifier in a framework for job dispatching in edge-cloud computing. The IDGNB algorithm combines

the interpretability of the Gaussian Naive Bayes (GNB) algorithm with the expressiveness of a deep neural

network (DNN). The IDGNB algorithm is based on the GNB algorithm, which assumes that the features of a

sample are conditionally independent given the class label. However, the GNB algorithm is limited in its

ability to model complex non-linear relationships between the features and the class label. This is where the

DNN comes into play. The IDGNB algorithm combines the GNB algorithm with a DNN by using the GNB

algorithm to estimate the conditional probabilities of the features given the class label and using a DNN to

model the non-linear relationships between the features and the class label. The DNN is trained to learn the

feature representations that are most useful for predicting the class label.

The IDGNB algorithm has several advantages in the context of a task-unloading framework for edge

computing. First, the algorithm is interpretable, which means that it can provide insights into the decision-

making process of the classifier. This is important in scenarios where it is necessary to explain the reasons

behind the decision to delegate a job to the cloud server. Second, the IDGNB algorithm can handle high-

dimensional feature spaces, which is important in the context of edge-cloud computing, where there may be

many features that need to be considered while choosing to transfer a job to a cloud server. Finally, the

IDGNB algorithm can be trained on small datasets, which is important in the context of edge devices, where

the amount of training data may be limited due to the limited storage capacity.

The Naive Bayes Classifier, sometimes known as the GNB, is a straightforward critical classifier

that utilizes Bayes' theory. It does this by constructing a plausibility model based on the category definition

for every feature vector that is included in the training set. Make your classifications utilizing the Maximum

A Posteriori judgment rule as you are putting the test to the test.

3.2.1. The Model

The purpose of any deterministic classifier is to, given a set of features ranging from x1 to xn and a

set of classes ranging from c1 to ck, estimate the possibility that the features will appear in every class and

then provide the class that is most likely to include those characteristics. Because of this, we need to be able

to compute P(ci |x0,..., xn) for each class individually. The Bayes rule is what we make use of when trying to

do this. To refresh your memory, the Bayes rule is as follows:

𝑂(𝐸|𝑃) =
𝑂(𝑃|𝐸)𝑂(𝐸)

𝑂(𝑃)
 (12)

(𝑋 = 𝑉|𝑌) =
𝑜(𝑌|𝑋 =𝑉)𝑜(𝑋=𝑉)

∑ 𝑜
|𝑉|
𝑟=1 (𝑌|𝑋 =𝑉𝑟)𝑜(𝑋=𝑉𝑟)

 (13)

Both the numerator and the denominator have the potential to become rather tiny. This is often the

case because might be quite near to the null value and we calculate several of them with one another. One

needs just to take the record of the operator to stop underflows from occurring. Because of this, the following

should be done to avoid underflows: Using the MAP (maximum a posteriori) selection rule, we do not need

to calculate the by value if our sole concern is to determine to which class (y) the input (y = y1,..., yn). In this

scenario, we just consider it important to know what category the data being provided belongs to. To avoid

underflows in the numerator, we may easily prevent them by taking the logarithm of the expression

log(𝑜(𝑦| 𝑋 = 𝑉)𝑜(𝑋 = 𝑉)).

𝑥̂ =
𝑎𝑟𝑔𝑚𝑎𝑥 𝑜(𝑉𝑟|𝑦1,……..𝑦𝑚)

𝑟 ∈ {1, …… |𝑉|}
 (14)

𝑎𝑟𝑔𝑚𝑎𝑥 𝑜(𝑉𝑟)∏ 𝑜𝑚

𝑗=1 (𝑦𝑗|𝑉𝑟)

𝑟 ∈ {1, …… |𝑉|}
 (15)

ISSN: 2583-6250 Prisma Publications

Int. J. of DI & IC, Vol. 2, No. 2, June 2023: 1-10 6

which changes when the log is taken:

𝑥̂ =
𝑎𝑟𝑔𝑚𝑎𝑥 𝑙𝑜𝑔(𝑜(𝑉𝑟|𝑦1,……..𝑦𝑚))

𝑟 ∈ {1, …… |𝑉|}
 (16)

𝑎𝑟𝑔𝑚𝑎𝑥 𝑙𝑜𝑔(𝑜(𝑉𝑟)∏ 𝑜𝑚
𝑗=1 (𝑦𝑗|𝑉𝑟))

𝑟 ∈ {1, …… |𝑉|}
 (15)

𝑎𝑟𝑔𝑚𝑎𝑥

𝑟 ∈ {1, … , |𝑉|} ((log (𝑜(𝑉𝑟)) + ∑ log (𝑜(𝑦𝑗|𝑉𝑟))
𝑚
𝑗=1)

 (17)

𝑂(𝑦𝑗|𝑉𝑟) =
1

√2𝜋𝜎𝑉𝑟
2
𝑎 −

(𝑦𝑗−𝜇𝑉 𝑟)

2𝜋𝜎𝑉𝑟
2 (18)

∗ 𝜎 = 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛, 𝜇 = 𝑚𝑒𝑎𝑛

3.2.2. Training

Assume for the moment that he has a database in which each line details the class to which an item

belongs as well as the characteristics of that entity. To train the algorithm based on this data collection, we

need to compute the value of all attributes of every class, the variation of every variable of every class, and

the prior terms. Only then can we begin. Therefore, we are in a position to compute the Gaussian Bayes

Probability since we now have all of the required data. Furthermore, to prevent numerous accesses on the

informational array, which is not the best choice for deploying hardware, to calculate variance, we use a

method that is presented below.

𝜎2 =
∑(𝑌−𝜇)2

𝑀
=
∑𝑌2

𝑀
− 𝜇2 (19)

3.2.3. Classification

Now that we've established a method for estimating the chance that a certain data point belongs to a

particular category, we have to be able to utilize this information to make classifications. This is handled in a

relatively straightforward way by the Naive Bayes algorithm; all that is required is to choose the ci that, given

the characteristics of the data points, has the highest probability. The name for this kind of decision-making

principle is the PDR (Posteriori decision rule). This is because, when we formulate the Bayes rule, we only

utilize the likelihood and prior value, which are denoted by the words Q(A|B) and Q(B), respectively. This is

the reason why this is the case.

4. RESULTS AND DISCUSSION

The theoretical analysis presented above is supported in this part by simulations and experiments.

We suppose that every device is dispersed at random across a 100 by 100 m2 circular region. Interpretable

deep Gaussian naive Bayes technique is a type of probabilistic classification algorithm that can be used in

machine learning applications. It is commonly used for text classification and other types of data analysis.

Task offloading framework is a technique used in edge-cloud computing, where tasks are distributed

between edge devices and cloud servers to optimize resource usage and reduce latency. By combining the

two techniques, researchers may have been able to develop a more efficient and effective method for task

allocation in edge-cloud computing. The existing methods for comparing are the optimal matching algorithm

[15], Greedy algorithm [16], and Fast matching algorithm [17]. Tasks may be transferred to the cloud, where

there are abundant computer resources, and less energy is used during job execution. The performance of job

execution under various offloading mechanisms is analyzed and contrasted in Figures 2 and 3. The vertical

dimension in Figure 2 energy-saving rate depicts the ratio of the decrease in overall task execution

consumption of energy under this offloading approach when compared to the local performance of all tasks.

ISSN: 2583-6250 Prisma Publications

Int. J. of DI & IC, Vol. 2, No. 2, June 2023: 1-10 7

Figure 2. Energy saving ratio

Table 1.Results of energy saving rate

 Methods Methods Values

Optimal matching 0.492

Greedy algorithm 0.464

Fast matching 0.487

IDGNB (proposed) 0.495

The system's energy usage for ED will reduce as their number grows. The edge cloud platform will

have more idle devices as more devices are added, offering the ED more possibilities to save energy

consumption while doing the function. Along the vertical axis of Figure 3, the quantity of tasks that are not

completed inside the time-delayed restriction is shown.

Figure 3. Overdue task for the user

ISSN: 2583-6250 Prisma Publications

Int. J. of DI & IC, Vol. 2, No. 2, June 2023: 1-10 8

Table 2. Results for overdue task

 Methods Methods Values

Optimal matching 20

Greedy algorithm 8

Fast matching 2

IDGNB (proposed) 1

Figure 4. Algorithm’s running time

Table 3. Results of running time

 Methods Methods Values

Optimal matching 250

Fast matching 140

IDGNB (proposed) 10

When compared to many alternative methods, the optimum matching algorithm and the quick

matching algorithm may successfully guarantee that the work is performed during the time delay restriction,

as illustrated in Figure 3. The suggested method running times are simulated in Figure 4. The suggested

approach may achieve almost ideal offloading performance with less complexity, as shown in the picture.

This study mimics the impact of probabilistic generating tasks on task offloading performance. We presume

that there are 150 devices in the system.

Figure 5. Task Generation for energy saving

ISSN: 2583-6250 Prisma Publications

Int. J. of DI & IC, Vol. 2, No. 2, June 2023: 1-10 9

Table 4. Energy saving ratio

 Methods Methods Values

Optimal matching 0.392

Greedy algorithm 0.381

Fast matching 0.351

IDGNB (proposed) 0.473

The energy savings rate of the system will drop when task generation frequency rises, as illustrated

in Figure 5 since there are fewer idle resources available in the edge and cloud. This makes it more

challenging for task consumers to offload jobs sequentially for execution. As a result when compared to

existing methods our proposed method is more efficient than existing methods.

5. CONCLUSION

 In general, the benefits of offloading framework could include improved performance, reduced

latency, and better resource utilization. Offloading certain tasks to more powerful or specialized computing

resources can help improve overall system efficiency and responsiveness. However, the effectiveness of the

offloading framework would depend on the specific implementation, the nature of the computing tasks being

offloaded, and the characteristics of the computing resources involved. This research has suggested a unique

IDGNB framework to address the task offload decision-making issue in heterogeneous edge and cloud

collaborative computing environments. The problem of neural networks' inflexibility to change has been

solved. It includes a task offload judgment model that is based on distributive GNB as well as a deep meta-

learning-based training initial variable model. Both of these models can manage the challenge of making

decisions regarding offloading tasks for corner-cloud computation and quickly adjust to a changing MEC

environment.

IDGNB has a more positive impact on task offloading choices than binary offloading systems and

traditional GNB-based partial offloading schemes, according to experimental data. Additionally, the model

has improved portability and a quicker rate of environment learning thanks to the usage of meta parameters.

The model may rapidly converge as the MEC environment evolves, and only a few learning steps are needed

to determine the best offloading options at reasonable prices. Future studies will focus on improving the

meta-learning method, specifically the starting parameters' ability to be adjusted automatically in response to

environmental factors so that it is more capable of adapting to task offloading choices in large-scale MEC

contexts. We will also concentrate on problems like resource distribution and bandwidth adjustment using

serverless computing edge computing frameworks. The offloading model may also offer the relevant resource

scheduling plans in addition to the results of task offloading decisions.

REFERENCES

[1] Y. Ai, M. Peng, and K. Zhang, “Edge computing technologies for Internet of Things: a primer,” Digit. Commun.

Networks, vol. 4, no. 2, pp. 77–86, Apr. 2018, doi: 10.1016/J.DCAN.2017.07.001.

[2] D. Wu, G. Shen, Z. Huang, Y. Cao, and T. Du, “A Trust-Aware Task Offloading Framework in Mobile Edge

Computing,” IEEE Access, vol. 7, pp. 150105–150119, 2019, doi: 10.1109/ACCESS.2019.2947306.

[3] A. Naouri, H. Wu, N. A. Nouri, S. Dhelim, and H. Ning, “A Novel Framework for Mobile-Edge Computing by

Optimizing Task Offloading,” IEEE Internet Things J., vol. 8, no. 16, pp. 13065–13076, Aug. 2021, doi:

10.1109/JIOT.2021.3064225.

[4] H. Liao, Y. Mu, Z. Zhou, M. Sun, Z. Wang, and C. Pan, “Blockchain and Learning-Based Secure and Intelligent

Task Offloading for Vehicular Fog Computing,” IEEE Trans. Intell. Transp. Syst., vol. 22, no. 7, pp. 4051–4063,

Jul. 2021, doi: 10.1109/TITS.2020.3007770.

[5] A. K. Shukla and V. Suresh Kumar, “Cloud Computing with Artificial Intelligence Techniques for Effective

Disease Detection,” Int. J. Data Informatics Intell. Comput., vol. 2, no. 1, pp. 32–41, Mar. 2023, doi:

10.59461/ijdiic.v2i1.45.

[6] X. Zhang, R. Zhou, Z. Zhou, J. C. S. C. S. Lui, and Z. Li, “An Online Learning-Based Task Offloading

Framework for 5G Small Cell Networks,” in 49th International Conference on Parallel Processing - ICPP, New

York, NY, USA: ACM, Aug. 2020, pp. 1–11. doi: 10.1145/3404397.3404417.

[7] M. Gali and A. Mahamkali, “A Distributed Deep Meta Learning based Task Offloading Framework for Smart

City Internet of Things with Edge-Cloud Computing,” J. Internet Serv. Inf. Secur., vol. 12, no. 4, pp. 224–237,

Nov. 2022, doi: 10.58346/JISIS.2022.I4.016.

[8] J. Almutairi and M. Aldossary, “A novel approach for IoT tasks offloading in edge-cloud environments,” J.

Cloud Comput., vol. 10, no. 1, p. 28, Apr. 2021, doi: 10.1186/s13677-021-00243-9.

[9] H. A. Alharbi, M. Aldossary, J. Almutairi, and I. A. Elgendy, “Energy-Aware and Secure Task Offloading for

Multi-Tier Edge-Cloud Computing Systems,” Sensors, vol. 23, no. 6, p. 3254, Mar. 2023, doi:

10.3390/s23063254.

ISSN: 2583-6250 Prisma Publications

Int. J. of DI & IC, Vol. 2, No. 2, June 2023: 1-10 10

[10] K. I. Jones and S. R, “Information Security: A Coordinated Strategy to Guarantee Data Security in Cloud

Computing,” Int. J. Data Informatics Intell. Comput., vol. 2, no. 1, pp. 11–31, Mar. 2023, doi:

10.59461/ijdiic.v2i1.34.

[11] S. Alhelaly, A. Muthanna, and I. A. Elgendy, “Optimizing Task Offloading Energy in Multi-User Multi-UAV-

Enabled Mobile Edge-Cloud Computing Systems,” Appl. Sci., vol. 12, no. 13, p. 6566, Jun. 2022, doi:

10.3390/app12136566.

[12] H. Wu, K. Wolter, P. Jiao, Y. Deng, Y. Zhao, and M. Xu, “EEDTO: An Energy-Efficient Dynamic Task

Offloading Algorithm for Blockchain-Enabled IoT-Edge-Cloud Orchestrated Computing,” IEEE Internet Things

J., vol. 8, no. 4, pp. 2163–2176, Feb. 2021, doi: 10.1109/JIOT.2020.3033521.

[13] Z. Zhang, N. Wang, H. Wu, C. Tang, and R. Li, “MR-DRO: A Fast and Efficient Task Offloading Algorithm in

Heterogeneous Edge/Cloud Computing Environments,” IEEE Internet Things J., vol. 10, no. 4, pp. 3165–3178,

Feb. 2023, doi: 10.1109/JIOT.2021.3126101.

[14] A. M and S. M, “Dynamic Mobile Cloud Eco System Security - A Review,” Int. J. Data Informatics Intell.

Comput., vol. 2, no. 1, pp. 62–69, Mar. 2023, doi: 10.59461/ijdiic.v2i1.44.

[15] Z. Cheng, Z. Gao, M. Liwang, L. Huang, X. Du, and M. Guizani, “Intelligent Task Offloading and Energy

Allocation in the UAV-Aided Mobile Edge-Cloud Continuum,” IEEE Netw., vol. 35, no. 5, pp. 42–49, Sep.

2021, doi: 10.1109/MNET.010.2100025.

[16] J. Almutairi, M. Aldossary, H. A. Alharbi, B. A. Yosuf, and J. M. H. Elmirghani, “Delay-Optimal Task

Offloading for UAV-Enabled Edge-Cloud Computing Systems,” IEEE Access, vol. 10, pp. 51575–51586, 2022,

doi: 10.1109/ACCESS.2022.3174127.

[17] X. Zhang, H. Zhang, X. Zhou, and D. Yuan, “Energy Minimization Task Offloading Mechanism with Edge-

Cloud Collaboration in IoT Networks,” in 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-

Spring), IEEE, Apr. 2021, pp. 1–7. doi: 10.1109/VTC2021-Spring51267.2021.9449054.

BIOGRAPHIES OF AUTHORS

Prabhdeep Singh is an assistant Professor at School of Computer Applications

department, Babu Banarasi Das University, Lucknow. He pursued B.Tech from Saroj

Institute of Technology and Management, Lucknow (U.P.T.U.) and M.Tech CMJ

University , Shillong. He is also pursuing Ph.D. (Part Time) from Amity School of

Engineering & Technology, Lucknow. He has over 13 years of experience in

technical education inclusive one year as a software engineer. He has published

numerous research papers in international journals. He has also published two

patents. He can be contacted at email: prabhdeepcs@gmail.com

