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Abstract
In this paper, we study the three-dimensional porous elastic problem in the case that three
dissipative mechanisms act on the three porosity structures (one in each component). It
is important to remark that we consider the case when the material is not centrosymmetric,
and therefore, some coupling, not previously considered in the literature concerning the time
decay of solutions in porous elasticity, can appear in the system of field equations. The new
couplings provided in this situation show a strong relationship between the elastic and the
porous components of the material. In this situation, we obtain an existence and uniqueness
result for the solutions to the problem using the Lumer-Phillips corollary to the Hille-Yosida
theorem. Later, assuming a certain condition determining a “very strong” coupling between
the material components, we can use the well-known arguments for dissipative semigroups
to prove the exponential stability of the solutions to the problem. It is worth emphasizing
that the proposed condition allows bringing the decay of the dissipative porous structure of
the problem to the macroscopic elastic structure.
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1 Introduction

Much has been written in the last fifty years on the time decay of solutions to different prob-
lems in thermomechanics. These types of studies are relevant both from the mathematical
and mechanical points of view. Perhaps the starting point was the contributions of Dafermos
(1976) regarding thermoelasticity as well as other mechanical situations.

In general, it is not easy to find coupling mechanisms damping the elastic vibrations
in dimension greater than one exponentially, but we can recall the recent contribution by
Magaña and Quintanilla (2018).
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In this article, we will focus on the study of the temporal decay of the solutions to an elas-
tic problem with voids. We can remember that this theory was proposed by Cowin (1985),
Cowin and Nunziato (1983), Nunziato and Cowin (1979). Some basic results can be found
in De Cicco and Nappa (2000), Ieşan (1986), Svanadze and De Cicco (2005). It is appropri-
ate to remember that the study of the temporal decay of solutions for this type of materials
was initiated about twenty years ago in the contributions (Casas and Quintanilla 2005a,b;
Magaña and Quintanilla 2006a,b). Since then, we have been able to see how many contri-
butions aim to study different situations related to elasticity with voids. We can say that the
coupling between elasticity and porosity is weak if we restrict ourselves to isotropic materi-
als. Therefore, we always need some special conditions to be able to obtain an exponential
decay (Apalara 2017a,b; Bazarra et al. 2022; Feng and Apalara 2019; Fernández et al. 2019;
Leseduarte et al. 2010; Pamplona et al. 2011, 2012) since, generally, we will need the pres-
ence of two dissipation mechanisms (always well chosen) or the equality of the speed of
propagation of the different waves. Even more, despite a large number of contributions, we
have to say that the great immensity of them refers to the one-dimensional problem, al-
though we can remember the contributions (Bazarra et al. 2022; Nicaise and Valein 2012)
for a dimension greater than one.

In the recent contributions referring to thermoelasticity with various dissipation mecha-
nisms, we have been able to observe that if we work with anisotropic or chiral materials,
quite strong coupling mechanisms can appear and that they can allow us to obtain the expo-
nential decay of solutions in a dimension greater than one (Fernández and Quintanilla 2022,
2023a,b,c). Inspired by this fact, we have raised the question of how we can achieve the ex-
ponential decay of solutions for elastic materials with voids in dimension greater than one,
even though we have to restrict ourselves to chiral materials. Certainly, in this case, we find
ourselves with new couplings not contemplated in the chiral case that will allow us to obtain
quite interesting decay rates. At the same time, it is pertinent to remember that the study
of elasticity with two porous mechanisms (Ieşan and Quintanilla 2014, 2019) was the start-
ing point of many other contributions where the problem of elasticity with several porous
mechanisms is considered (Bazarra et al. 2019, 2020, 2022; Mosconi 2005; Scarpetta and
Svanadze 2015).

In this article, we study the three-dimensional elasticity problem with three porous mech-
anisms. We will assume that each of the porous mechanisms is affected by dissipative mech-
anisms and see that, under adequate hypotheses on the coupling mechanisms, we can obtain
the exponential decay of the solutions. It is important to highlight that the conditions that we
impose require that the material (its couplings) is not centrosymmetric. At the same time, it
is worth noting that we only need a number of couplings equal to the dimension of the do-
main. This is relevant in comparison with the results provided in Fernández and Quintanilla
(2022, 2023a,b). These couplings are more efficient than the ones produced by the heat type.

To compare our approach with other recent works in the literature, we should say that (as
far as we know) there are no contributions similar to this one for the porous elasticity since
the majority of the contributions on this topic refer to the centrosymmetric case, where the
coupling between the elastic and porous components of the material is “weak”. Here, we use
in a relevant way the coupling provided when the material is not centrosymmetric. In fact,
in this situation, the different components of the material could be provided with a stronger
coupling than the chiral case. At the same time, our approach also needs a number greater
than one of the porous components because we are working in a multidimensional setting.
In this sense, our approach recalls the contributions recently obtained for thermoelasticity
with several dissipation mechanisms (see Fernández and Quintanilla 2022, 2023a,b,c).

The plan of this paper is the following. The basic equations of the model and the assump-
tions to prove the results are described in the next section. Then, this problem is written as
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a Cauchy one in Sect. 3, including also the description of the functional framework and the
construction of the main operator which defines the problem. An existence result is proved
in Sect. 4 by using Lax-Milgram lemma and the Lumer-Phillips corollary. Finally, in Sect. 5,
we obtain the exponential energy decay of these solutions, imposing additional assumptions
on the coupling tensors and applying the theory of linear semigroups.

2 Basic equations

In this paper, we will consider a chiral elastic solid, with three porous structures, which
occupies a three-dimensional domain B ⊂R

3. We will assume that, in the reference config-
uration, this domain has a boundary ∂B smooth enough to apply the divergence theorem.

The evolution equations are

ρüi = tij,j ,

Jlj ϕ̈j = �l
i,i − σ l for l = 1,2,3.

(1)

Here, ρ is the material density, ui represents the displacement field, tij is the stress tensor,
Jlj is the matrix of equilibrated inertia, ϕj is the volume fraction of each porous structure,
�l

i is the vector of equilibrated stresses, and σ l is the equilibrated body forces.
The constitutive equations are

tij = Aijrsur,s + Dk
ijrϕk,r + ak

ijϕk,

�l
j = ckl

ij ϕk,i + Ckl
ij ϕ̇k,i + dlk

j ϕk + Dl
ipjui,p,

σ l = al
ij ui,j + dkl

j ϕk,j + ξklϕk.

(2)

It is worth noting that, in the centrosymmetric case, the tensors Dk
ijr and dkl

j vanish;
however, in this article, we will assume that both tensors are nonzero, and, even, we will
impose several conditions allowing us to obtain the exponential stability results.

The above tensors used in equations (2) have the following symmetries:

Aijrs = Arsij , ckl
ij = clk

ji , Ckl
ij = Clk

ji , ξ kl = ξ lk, Jij = Jji . (3)

If we introduce the constitutive equations (2) into the evolution equations (1), we obtain
the following system of equations:

ρüi = (
Aijrsur,s + Dk

ijrϕk,r + ak
ijϕk

)
,j

,

Jlj ϕ̈j = (
ckl
ij ϕk,i + Ckl

ij ϕ̇k,i + Dl
pijui,p + dlk

j ϕk

)
,j

− al
ij ui,j − dkl

j ϕk,j − ξklϕk.

(4)

We will study this system, but to complete the description of the problem, we will impose
the initial conditions:

u(x,0) = u0(x), u̇(x,0) = v0(x) for a.e. x ∈ B,

ϕ(x,0) = ϕ0(x), ϕ̇(x,0) = ψ0(x) for a.e. x ∈ B,
(5)
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and the boundary conditions:

u(x, t) = ϕ(x, t) = 0 for a.e. t > 0, x ∈ ∂B. (6)

In the next sections, we will prove some qualitative results for the solutions to problem
(4)-(6). So, we will assume that

(i) ρ(x) ≥ ρ0 > 0.
(ii) The matrix Jlj is positive definite.

(iii) There exists a positive constant C such that

Aijrsξij ξrs + 2Dk
ijrξij ζkr + ckl

ij ζkiζlj + 2al
ij ξij ηl + 2dkl

j ζkj ηl

+ ξklηkηl ≥ C(ξij ξij + ζij ζij + ηlηl),

for every tensors ξij and ζij , and every vector ηl .
(iv) There exists a positive constant D such that

Ckl
ij ζkiζlj ≥ Dζkiζki ,

for every tensor ζki .

It is relevant to point out that the meaning of assumptions (i) and (ii) is obvious. Assump-
tion (iii) implies that the mechanical energy is positive. This condition is rather natural and
related to the studies of elastic stability. Assumption (iv) guarantees that the dissipation is
positive definite.

3 Functional statement

In this section, we will transform problem (4)-(6) into a Cauchy problem written in an ade-
quate Hilbert space.

Indeed, we will consider the following space:

H = W 1,2
0 (B) × L2(B) × W 1,2

0 (B) × L2(B), (7)

where L2(B) and W
1,2
0 (B) are the usual Sobolev spaces, and W 1,2

0 (B) = [W 1,2
0 (B)]3 and

L2(B) = [L2(B)]3.
In this space, we will use the inner product associated to the norm:

‖(u,v,ϕ,ψ)‖2 = 1

2

∫

B

(
ρvivi + Jljψlψj + Aijrsui,j ur,s + Dk

ijr [ui,jϕk,r + ui,jϕk,r ]

+ ckl
ij ϕk,iϕl,j + al

ij [ui,jϕl + ui,jϕl] + dkl
j [ϕk,jϕl + ϕk,jϕl] + ξklϕkϕl

)
dv.

Here, the bar denotes the conjugated complex.
We note that condition (ii) allows us to see that the norm defined on the variables ψj is

equivalent to the usual one in the L2-norm for each component. At the same time, in view
of condition (iii), we see that the components associated with the tensors Aijrs , Dk

ijr , ckl
ij ,

al
ij , dkl

j , and ξkl define a norm equivalent to the usual norm in the elasticity and to the three
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porous components. Then, we can conclude that this norm is equivalent to the usual one in
the Hilbert space H defined previously.

We can write our problem as a Cauchy problem as follows,

d

dt
U(t) = AU(t), U(0) = U 0 = (u0,v0,ϕ0,ψ0), (8)

where U = (u,v,ϕ,ψ) and

A

⎛

⎜⎜
⎝

ui

vi

ϕi

ψi

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

vi

mi

ψi

ni

⎞

⎟⎟
⎠ ,

where

mi = ρ−1
[(

Aijrsur,s + Dk
ijrϕk,r + ak

ijϕk

)
,j

]
,

ni = Hil

[(
ckl
pjϕk,p + Ckl

pjψk,p + Dl
ipjui,p + dlk

j ϕk

)
,j

− al
pjup,j − dkl

j ϕk,j − ξklϕk

]
,

with Hil being the inverse of Jlj .
We can see that the domain of the operator A is made of the elements of the Hilbert space

H such that

v ∈ W 1,2
0 (B), ψ ∈ W 1,2

0 (B),

(
Aijrsur,s + Dk

ijrϕk,r

)
,j

∈ L2(B),

(
ckl
pjϕk,p + Ckl

pjψk,p + Dl
ipjui,p

)
,j

∈ L2(B).

It is straightforward to show that this subspace is a dense subset of H.

4 Existence of solutions

In this section, we will show the existence of solutions to problem (8) whenever assumptions
(i)-(iv) are held. To this end, we will show that the operator A is dissipative and that zero
belongs to the resolvent of the operator. Keeping in mind that the domain of the operator
is dense in the Hilbert space H, we can conclude the existence of solutions in virtue of the
Lumer-Phillips corollary applied to the Hille-Yosida theorem.

First, considering the field equations (4) and the boundary conditions (6), it follows that,
for all U ∈ D(A),

Re〈AU,U〉 = −1

2

∫

B

Ckl
ij ψk,iψl,j dv ≤ 0.

Therefore, we only need to prove that, if F = (f 1,f 2,f 3,f 4) ∈ H, then there exists
U = (u,v,ϕ,ψ) ∈ D(A) such that

AU = F. (9)
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This equation can be written as

v = f 1, ψ = f 3,

(
Aijrsur,s + Dk

ijrϕk,r + ak
ijϕk

)
,j

= ρf2i ,

(
ckl
pjϕk,p + Ckl

pjψk,p + Dl
ipjui,p + dlk

j ϕk

)
,j

− al
pjup,j − dkl

j ϕk,j − ξklϕk = Jlqf4q .

(10)

Of course, we have the solution to v and ψ . If we substitute the solution to ψ , we obtain the
system

(
Aijrsur,s + Dk

ijrϕk,r + ak
ijϕk

)
,j

= ρf2i ,

(
ckl
pjϕk,p + dlk

j ϕk + Dl
ipjui,p

)
,j

− al
pjup,j − dkl

j ϕk,j − ξklϕk = Jlqf4q − (
Ckl

pjf3k,p

)
,j

.

We note that
(
ρf2i , Jlqf4q − (

Ckl
pjf3k,p

)
,j

)
∈ W−1,2(B) × W−1,2(B),

where W−1,2(B) is the dual space to W 1,2
0 (B).

On the other hand, we consider the bilinear form:

B[(u,ϕ), (u∗,ϕ∗)] =
∫

B

[lu∗ + nϕ∗]dv,

where

li = (
Aijrsur,s + Dk

ijrϕk,r + ak
ijϕk

)
,j

,

nl = (
ckl
pjϕk,p + dlk

j ϕk + Dl
ipjui,p

)
,j

− al
pjup,j − dkl

j ϕk,j − ξklϕk.

In view of condition (iii), it is clear that the operator B is coercive and bounded in
W 1,2

0 (B)×W 1,2
0 (B). The Lax-Milgram lemma implies the existence of a solution to problem

(10). Even, we can obtain that ‖U‖ ≤ K‖F‖ for a suitable constant K > 0.
So, we can state the following existence result.

Theorem 1 The operator A generates a C0-semigroup of contractions in the space H. Thus,
for any initial data U 0 ∈ D(A), there exists at least one solution to Cauchy problem (8)
satisfying

U ∈ C1([0,∞);H) ∩ C([0,∞);D(A)).

5 Exponential decay

In this section, we will show that the solutions obtained in the previous section decay expo-
nentially. To prove this result, we will impose some additional assumptions.

Let us define the operator

Pl(u) = (
Dl

phjuh,p

)
,j

+ al
pjup,j .

We will assume that either assumption
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(v) there exists a positive constant L such that

〈P (u),u〉 ≥ L‖u‖2
W1,2(B)

,

for every vector field u vanishing at boundary ∂B , where P (u) = (Pl(u)),

or either assumption

(v′) there exists a positive constant L such that

〈P (u),u〉 ≤ −L‖u‖2
W1,2(B)

for every vector field u vanishing at boundary ∂B ,

hold.

Remark 1 To understand assumption (v), we must consider that u vanishes at the boundary.
If we suppose that

∫

B

Dl
phjuh,pul,j dv ≥ L1

∫

B

ui,j ui,j dv, (11)

∣∣
∣∣

∫

B

al
pjup,jul dv

∣∣
∣∣ ≤ L2

(∫

B

ui,j ui,j dv

)1/2 (∫

B

uiui dv

)1/2

, (12)

where L1 and L2 are two positive constants depending on the coefficients Dl
phj and al

pj , we
can apply Poincaré’s inequality to obtain

∣∣
∣∣

∫

B

al
pjup,jul dv

∣∣
∣∣ ≤ L∗

2

∫

B

ui,jui,j dv,

where L∗
2 depends on the constant L2 and the topology of the domain B .

Therefore, if L1 − L∗
2 > 0, then assumption (v) is satisfied.

We can observe that a similar comment can be provided regarding assumption (v′).
On the other hand, we note that

∫

B

al
pjup,jul dv = −

∫

B

al
pj,jupul dv −

∫

B

al
pjupul,j dv.

Therefore, when al
pj,j = al

jp , we find that

∫

B

al
pjup,jul dv = −1

2

∫

B

al
pj,jupul dv.

Then, if we assume that al
pj,j is semi-definite negative, and condition (11) holds, we see

that condition (v) is satisfied. A similar comment could be done if we assume that al
pj,j is

semi-definite positive and

∫

B

Dl
phjup,jul,j dv ≤ −L

∫

B

ui,j ui,j dv.

The energy decay result is stated as follows.
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Theorem 2 Let us assume that condition (v) (or (v′)) holds, then there exist two positive
constants M , ω such that

‖U(t)‖ ≤ Me−ωt‖U(0)‖
for every U(0) ∈ D(A).

Proof To prove this theorem, we can use the fact that the exponential decay is found when-
ever the imaginary axis is contained at the resolvent of the operator A, and the asymptotic
condition

lim
|λ|→∞

‖(iλI −A)−1‖ < ∞ (13)

holds (see Liu and Zheng 1999).
To show that the imaginary axis is contained at the resolvent of the operator A, we can

follow a usual procedure. Since zero is at the resolvent, if we suppose that there exists iτ

(with τ ∈ R) in the spectrum, then there will exist a sequence of real numbers λn converging
to τ , and a sequence of unit norm vectors Un ∈ D(A), such that

‖(iλnI −A)Un‖ → 0. (14)

This convergence implies the following ones by components:

iλul − vl → 0 in W 1,2(B), (15)

vi − (
Aijrsur,s + Dk

ijrϕk,r + ak
ijϕk

)
,j

→ 0 in L2(B), (16)

iλϕl − ψl → 0 in W 1,2(B), (17)

iλJlqψq − (
ckl
pjϕk,p + Ckl

pjψk,p + Dl
ipjui,p

)
,j

− al
pjup,j

−dkl
j ϕk,j − ξklϕk → 0 in L2(B). (18)

Here, we have omitted the index “n” to simplify the notation.
In view of the dissipation, it follows that ψ → 0 in W 1,2(B). Then, λϕ also tends to zero

in W 1,2(B). Now, we multiply convergence (18) by ul to have

〈iλJlqψq,ul〉 = 〈iJlqψq,λul〉 → 0.

We also find that

〈(ckl
pjϕk,p + Ckl

pjψk,p + Dl
ipjui,p

)
,j

, ul〉 = −〈ckl
pjϕk,p, ul,j 〉 − 〈Ckl

pjψk,p, ul,j 〉
− 〈Dl

kpjuk,p, ul,j 〉.
We note that the first two terms of the right-hand side of this equality tend to zero, and so,
we conclude that 〈P (u),u〉 → 0. In view of the assumption (v) or (v′), it follows that u → 0
in W 1,2

0 (B).
If we multiply now convergence (16) by u, we obtain that v → 0 in L2(B). Thus, we

have arrived to a contradiction because we had assumed that iτ (τ ∈ R) was in the spectrum.
Therefore, we obtain that the imaginary axis is contained at the resolvent of the operator A.

To prove that condition (13) holds, we can follow a similar argument. If we assume that
(13) is not fulfilled, then there will exist a sequence of real numbers λn → ∞ and a sequence
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of unit norm vectors Un ∈ D(A) such that convergences (15)-(18) hold. Then, the previous
argument brings us again to a contradiction, and we conclude the proof of the theorem since
the key point is that λn does not tend to zero. �

6 Conclusions

In recent years, we have seen how coupling the elasticity system with the different
“anisotropic or chiral” dissipative mechanisms can bring the system to exponential sta-
bility. In this paper, we have shown how selecting three porous mechanisms in the three-
dimensional case is sufficient when the material is not centrosymmetric. It leads to a strong
coupling between the elastic and the porous components of the material. In this sense, they
are “more efficient” than the case corresponding to the heat where, as far as we know, we
need a larger number of couplings.

We have obtained an existence and uniqueness result using the Lumer-Phillips corollary
to the Hille-Yosida theorem. Under the commented condition on the constitutive anisotropic
tensors, we have proved that the dissipative mechanisms lead to the exponential stability of
the solutions to the problem, bringing the decay of the dissipative porous structure to the
macroscopic elastic structure.
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