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Introduction

This module introduces distributed databases, which are the result of combin-
ing two different worlds: databases and computer networks.

First, fundamentals of distributed databases are introduced, followed by a (ten-
tative) classification of these systems. Then, depending on whether distribu-
tion is desired or imposed, we will talk about design (a top-down approach)
or integration (a bottom-up approach). On the one hand, design focuses on
how to tackle problems related to distributed processing from the very be-
ginning. Concepts such as fragmentation (i.e., horizontal, vertical or hybrid),
replication and allocation are tightly related to design. On the other hand,
integration entails building a distributed system on top of already existing,
autonomous nodes. Thus, it relates to how to implement distributed process-
ing as an upper layer on top of existing nodes. Integration can primarily be
implemented as Global as View (GAV) in a wrapper-mediator architecture. An
architecture for actual peer-to-peer systems is also introduced.

Oracle may also be used for practical cases in this module: first for fragmenta-

tion; then using view definition to solve heterogeneities.
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Objectives

The main objective of this module is to introduce distributed databases. Specif-

ically:

1. Explain the historical background of distributed database systems.

2. Name the main characteristics of a distributed database.

3. Enumerate the benefits of using a distributed database.

4. Name and explain the basics of different approaches for implementing
heterogeneous distributed database management systems (DDBMSs).

5. Explain the three degrees of transparency that a DDBMS might provide.

6. Name different approaches to fragment data.

7. Explain the three desirable properties of data fragmentation.

8. Explain the main difference between distributed databases and parallel
databases.

9. Given a database schema and its workload, decide which data fragmen-
tation approach is most appropriate.

10. Given an already fragmented distributed database, discuss whether it ful-
fills the three desirable properties for data fragmentation.

11. Reconstruct global relations from their fragments (if possible).

12. Given a specific scenario, model simple distributed databases (i.e., decide
how to fragment the relations and where to allocate them according to
the workload).

13. Define horizontal, vertical or hybrid fragmentation of relations.

14. Name different heterogeneities among component databases.

15. Explain the wrapper concept.

16.

Know the Global-as-View mediator.
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1. Distributed Processing

Distributed databases result from combining two main concepts: databases
and computer networks. Databases introduce data independence, meaning in-
dependent data administration (as opposed to previous efforts where each ap-
plication managed its own data). This was achieved by centralizing access to
data and, consequently, facilitate their control. Computer networks, however,
promote the opposite of centralization by linking different nodes (e.g., com-
puters) that can be spread over a (potentially) large geographical area. The two
concepts may seem contradictory, but it is important to recognize that they
are not: the main objective of a database is integration, not centralization.
Even though DBMSs have traditionally achieved integration through central-
ization, and the two concepts have come to be closely related, note that one
concept does not demand the other.

Distributed database systems, like centralized ones, seek to provide data
integration. However, distributed systems handle this issue from a dis-
tributed point of view. In other words, data are no longer assumed to
be stored at a single node.

In the following sections, we introduce the fundamentals of distributed pro-
cessing and how they specifically apply to distributed databases, highlighting
both benefits and drawbacks. Next, we present a tentative classification of dis-
tributed DBMSs and a reference architecture. Subsequent sections focus on the
two approaches for implementing distributed database systems: namely, top-
down (where the distributed system is designed from scratch) and bottom-up
(where the distributed system is built on top of existing databases).

Traditionally, it has been hard to define distributed processing. For example,
the difference between distributed systems and some kinds of parallel systems
is rather vague. A precise definition of a distributed computing system is the
following:

“A distributed computing system is a number of autonomous processing elements (re-
ferred to as a computing device that can execute a program on its own), not necessarily
homogeneous, that are interconnected by a computer network and that cooperate in
performing their assigned tasks.”

Tamer Ozsu, M.; Valduriez, P. (2011). Principles of Distributed Database Systems. New York:
Springer. (pg. 2).
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First of all, we must clearly state what can be distributed when autonomous
elements cooperate to perform an assigned task. Four main things can be dis-
tributed: the processing logic, functionality, data and control. The processing
logic (in other words, the code execution) is assumed to be distributed accord-
ing to the above definition. For example, a query could be split up in small
pieces and be executed by different elements (nodes) in parallel. If function-
ality is distributed, it means that some functions are delegated to some ele-
ments. For example, some elements might answer queries and others might
store data. If data are distributed, some elements are responsible for storing
certain pieces of data. For example, one node might store product data and
another might store customer data. Finally, we can also distribute task execu-
tion control. For example, we can have one node controlling the other nodes’
tasks (e.g., one node is responsible for ensuring consistency when gathering
the pieces of the output produced by certain elements), or the node may dis-
tribute the tasks. Note that most combinations also make sense, as for exam-
ple, a system where some nodes are responsible for storing data and others for
controlling the execution of distributed queries.

Distributed processing has proved to be helpful in three main scenarios. First-
ly, distributed processing is a natural fit for today’s organizations, which are
geographically distributed all over the world. More and more applications do
follow this model, as can be easily perceived by considering web-based appli-
cations, e-commerce, news-on-demand or even new paradigms such as e-sci-
ence and knowledge networks. Consequently, it might even be found that a
centralized system is not possible in certain scenarios. This is more and more
a typical scenario in the case of certain country data privacy laws (such as the
Spanish LOPD, Ley Orgdnica de Proteccion de Datos), which do not allow local
user data to be stored outside of the country (accordingly, e-companies oper-
ating in Spain must store data related to Spanish users in servers located in
Spain). For these cases, a distributed system also happens to be more efficient
and provide better performance, as data can be placed where they are needed
to minimize communication overheads. In this way, distributed systems ben-
efit from this situation, also known as data locality.

Secondly, distributed systems are known to be more reliable and responsive.
Indeed, if one element fails or is unavailable, it does not mean that the whole
system will also fail or will be unavailable (whenever the system is able to cope
with element failures). For example, an e-commerce platform like Amazon
cannot be down for hours, as it would translate directly to a massive loss of

money.

Finally, distributed systems facilitate data sharing, and also the sustained au-
tonomy of the different elements involved. This is important, for example,

for knowledge networks. In relation to this, scalability and support for ad hoc

Note

In the context of distributed
databases, element and node
are used interchangeably to re-
fer to the different elements
that are interconnected and
cooperating in the distributed
database; such usage will be
seen throughout this chapter.

Beyond the Exabyte

As of today, we can already
find the first databases stor-
ing more than 1 Exabyte of
data, mainly in the e-science
field. Furthermore, the first
company databases storing a
Petabyte of data are also a re-
ality. In 2009, Facebook and
Yahoo! announced the first
Petabyte-scale data warehous-
es.
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growth needs are also easier than with centralized systems. This is an impor-
tant issue, for example, for start-ups and companies that expect a potentially
large growth ratio.

Although all the above is true, the main need for distributed processing today
lies in the current role played by very large databases. Indeed, distributed pro-
cessing is understood as the best way to handle large-scale data management
problems, being considered as a direct application of the divide-and-conquer
approach. If the necessary software and hardware needed for a very large ap-
plication are beyond current capabilities of centralized systems, distributed
systems can provide the solution by breaking up the problem in small logic
pieces, and working in a distributed manner. Importantly, this is the principle
behind well-known concepts such as grid computing (adopted by big compa-
nies such as IBM or Oracle) or the growing cloud data management concept.
Indeed, consider the following definition of cloud computing:

“Cloud computing encompasses on demand, reliable services provided over the Internet
with easy access to virtually infinite computing, storage and networking resources.”

Tamer Ozsu, M.; Valduriez, P. (2011). Principles of Distributed Database Systems. New York:
Springer. (pg. 744).

In order to virtually provide infinite resources, cloud computing relies on dis-
tributed processing. Specifically, the big challenge behind cloud data manage-
ment is to be able to deal with large numbers of distributed resources over
the network, all of which together provide this virtually infinite access to re-
sources. In essence, this is the very same problem that classic distributed sys-
tems face. The difference, though, is that cloud computing functions at a larg-
er scale and is service-oriented. Thus, specific data storage, data management
and parallel data processing techniques have been developed, most of them
beyond relational theory. Such systems are beyond the scope of this module,

where we will focus on classical, mostly relational or relational-like solutions.

In today’s world, the main need for distributed processing as compared
to centralized systems is to be able to manage very large data reposito-

ries.

1.1. Distributed Database Systems

Distributed database systems appeared as a solution to the increasing need to

efficiently handle and administer large data repositories:

Grid Computing

The primary relational data-
base vendors adopted grid
computing as a distributed so-
lution for managing very large
databases. For example, the
gin Oracle 10g and 11g ver-
sions stands for grid.

Grid Computing vs. Cloud
Computing

There is much controversy to-
day about the boundaries be-
tween these two concepts. Al-
though there is no clear con-
sensus, one may say that the
two concepts tackle the same
problem from different per-
spectives. Grid computing is
used within an organization
(and is therefore more reli-
able and secure because it uses
the organization’s resources),
whereas cloud computing, in
principle, has a public conno-
tation (i.e., it is provided as an
outsourced service through
someone else’s resources) and
therefore follows more of a
service -oriented paradigm.

Service-Oriented Paradigm

The new service-oriented para-
digm claims to outsource cer-
tain complex tasks of the or-
ganization in a flexible, elastic
and adaptive manner. Exam-
ples are infrastructure (network
or hardware), platform (soft-
ware packages that might help
to develop applications, such
as DBMSs), software (user-
ready applications) or even
business logics, which the
provider administers and the
user just exploits.
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“A distributed database (DDB from now on) is a collection of multiple, logically interre-
lated databases (known as nodes or sites) distributed over a computer network. A distrib-
uted database management system (DDBMS from now on) is thus, the software system
that permits the management of the distributed database and makes the distribution
transparent to the users.”

Tamer Ozsu, M.; Valduriez, P. (2011). Principles of Distributed Database Systems. New York:
Springer. (pg. 3)

Pay special attention to three main concepts in this definition: “logically in-
terrelated”, “distributed over a computer network” and “distribution is trans-

parent to the user”:

¢ The quality of being logically interrelated stresses the fact that, like a DB,
a DDB is more than a simple collection of files. Files should be somehow
structured and a common access interface should be provided. For this
reason, the physical distribution of data (e.g., data partitioning and repli-
cation) does matter, and it becomes one of the most conflictive aspects
of DDBMS.

¢ In close connection with the previous point, note that data may be dis-
tributed over large geographical areas; however, there may also be the case
where the distributed data are in the very same room. The only constraint
imposed is that the communication between nodes is done through a
computer network instead of shared memory or disk space. Note that this
excludes parallel databases, since they do not meet this requirement.

e Another common mistake is to think that, despite communicating
through a computer network, the database resides in only one node. If
this were so, it would not be very different from a centralized database and
would not pose new challenges. On the contrary, DDBMSs are a differ-
ent matter, providing an environment where data are distributed among

a number of sites (see Fig. 1).

¢ Finally, making distribution transparent to the user is, indeed, a huge ac-
complishment with many implications. Transparency refers to separation
of a system’s higher-level semantics from lower-level implementation is-
sues. Thus, the system must hide the implementation details. For exam-
ple, the user must be able to execute distributed queries without knowing
where data are physically stored; hence, data distribution and replication
must be an internal issue for the DDBMS. Similarly, the DDBMS must en-
sure safety properties at every moment. Examples are the ACID transac-
tion properties, which are obviously affected by distribution; dealing with
update transactions, which must guarantee data consistency when repli-
cation happens (i.e., synchronization between copies); and coping with
node failures to guarantee system availability.

Note

The term DDBMS is often in-
correctly used to refer both to
the distributed database and
the distributed database man-
agement system.

ACID properties

ACID stands for the Atomici-
ty, Consistency, Isolation and
Durability properties of trans-
actions in a DBMS.
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Figure 1. lllustration of a central database on a network and a real DDBMS environment.

Node 1

(Hong Kong) Node 2 (Barcelona)

Node 5 (Portland)

Centralized
DBMS on a
network

Node 4 (Frankfurt) Node 3 (Glasgow)

Node 1

(Hong Kong) Node 2 (Barcelona)

Node 5 (Portland)

Distributed
DBMS

Node 4 (Frankfurt) Node 3 (Glasgow)

1.2. Characteristics of Distributed Database Systems

In the previous section we have briefly discussed the main implications of the
DDBMS definition. In the next two sections, we thoroughly discuss all these
implications. First, we focus on the traditional benefits attributed to DDBMSs,
which have been summarized as three main fundamentals: distribution trans-
parency, improved performance and easier system expansion.

1.2.1. Distribution Transparency

To hide distribution from users, a DDBMS must guarantee data independence
and transparency with regard to the network, fragmentation and replication.
To better introduce all these transparency levels, we will begin with an exam-
ple to illustrate the concepts involved. Consider a company working in 5 dif-
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ferent cities: Hong Kong, Portland, Barcelona, Glasgow and Frankfurt. They
run IT projects in each city and keep a database about their employees, projects
and certain other data as follows:

Running example

employee(id, name, certificate, birthDate, nationality)

project(pno, name, city, country, budget, category, productivityRatio, income)
salary(certificate, amount)

assigned(employeeld, projectNo, position, duration)

The two first refer to information about employees and projects, whereas the ~ Note we will use table and rela-
tion interchangeably throughout

third records the salary to be paid according to the employee’s academic cer- this module

tificate (therefore, employee(certificate) is a foreign key to salary(certificate)). The
final item keeps track of which employees are assigned to each project. Thus,
it has a composite primary key (employeelD and projectNo, both foreign keys to

the corresponding source table —or relation'- attributes). This is a traditional
example where a company naturally distributes their business model over a
large geographical area (we assume each project is only held in a given city).
For this reason, it seems reasonable that each city (node) only keeps data about
its employees, projects and assignments. Accordingly, in Barcelona they will
only store those tuples related to employees and projects undertaken in that
city. This is known as fragmentation. Furthermore, there may be some tables
that are duplicated at other sites. For example, the salary table seems a good
candidate to be stored at every node. This is known as replication.

Now, let us introduce the different transparency levels a DDBMS should pro-

vide:

¢ Data independence: This is fundamental to any form of transparency,
and is also common to centralized DBMSs. Basically, data definition occurs
at two different levels: logical (schema definition) and physical. Logical
data independence refers to user applications’ immunity to changes in the
logical structure (i.e., the schema) of the database, whereas physical data
independence, on the other hand, hides storage details from the user.

¢ Network transparency: In a centralized database, the only resource to be
shielded is data. In a DDBMS, however, there is a second resource to be
likewise protected: the network. Preferably, the user should be protected
from the operation details of the network, even hiding its existence when-
ever possible. Two kinds of transparency are identified at this level: loca-
tion and naming transparency. The former underlines the fact that any task
performed is independent of both the location and system where the op-
eration must be performed. The latter refers to the fact that each object has
a unique name in the database. In the absence of this, the user is required
to embed the location name with the object name. Location transparen-

cy is needed in order to have naming transparency. In our example, nam-
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ing transparency means that we can refer to the employee table, instead of
Barcelona:employee (which refers to the fragment in Barcelona).

* Replication transparency: As briefly discussed at the beginning of this Update transparency

section, it may be advantageous to replicate data over different nodes. The

. . . . The update transparency level
main reason to do so is performance, since we may avoid network over- refers to whether synchroniza-
tion of replicas falls to the DBA

head by accessing data locally (i.e., replication increases locality of refer- (database administrator) or is

ences) and may use replicas to perform certain actions in a more efficient automatically performed by
. . . . . the system. It is important to
way, using other copies. Furthermore, it also provides robustness: if one note that, unlike other trans-

parency levels, update trans-

node fails, we still have the other copies to access. However, the more we parency mainly affects DBAS.

replicate, the more difficult it becomes to deal with update transactions
and to keep all replicas consistent. Ideally, all these issues should be trans-
parent to the users, and they should act as if a single copy of data were
available (thus, as if one object were available instead of many). In our
example, if the salary table is replicated at each node, the DDBMS itself
will be responsible for maintaining consistency between the replicas and
for choosing which replicas to use for each action. All these issues are dealt

with in detail in section 4.

¢ Fragmentation transparency: In our example we discussed the useful-
ness of having different fragments for each relation. Thus, each fragment
would be a different object. Again, the main reason for fragmentation is
reliability, availability and performance, where it can be seen as a way to
diminish the negative aspects of replication. When relations are fragment-
ed, we face the problem of handling queries over relations to be executed
over relation fragments. This typically entails a translation from the global
query into fragment queries. If this transparency level is provided, the trans-
lation is performed by the DDBMS. For example, if we want to see all the
employees in our supposed company, the user will query all the tuples in
the employee relation. The DDBMS will then be responsible for breaking
this global query into fragment queries to be posed at each node, and to
compose the global result from the partial results obtained. To do so, the
DDBMS must know the criteria used to fragment the relation, but this will
be further explained in section 4.
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Figure 2. Dependency between the different levels of transparency.

Fragmentation Transparency

Update Transparency

Naming Transparency

Data Independence

It is important to note that all these transparency levels are incremental, as
depicted in figure 2.

Distribution transparency implies fragmentation, replication, and net-
work transparency, as well as data independence.

From the user point of view, full distribution transparency (also known as
query transparency) is obviously appealing, but in practice, it is well-known
that full transparency is hard to achieve:

“Applications coded with transparent access to geographically distributed databases
have: poor manageability, poor modularity and poor message performance.” Gray, J.
(1989).

Transparency in its place - the case against transparent access to geographically distributed data.
Cupertino: Technical Report TR89.1, Tandem Computers, Inc. (pg. 11).

In short, this statement claims that full transparency makes the management
of distributed data very difficult (in the sense that many bottlenecks are in-
troduced, see section 1.3. for a better understanding of this claim). For this
reason, it is widely accepted at this time that data independence and network
transparency are a must, but replication and/or fragmentation transparency
might be relaxed to boost performance.

1.2.2. Improved Performance

This claim is closely related to data locality. Consider the two scenarios de-
picted in figure 1. If a single centralized database is available over the network,
every other node accessing the data must do so through the network. This
does not happen in the second scenario, where:

¢ Fach node handles its own portion of the database, decreasing the com-
petition (in the sense of blocking) for CPU and I/O operations.
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e Localization reduces the number of remote accesses to data, which in turn,
implies less propagation delays.

This is the reason why most DDBMSs are designed to maximize data locality
and reduce resource contention and communication overhead. As discussed
in section 4, data locality can only be obtained by means of replication and
fragmentation.

Besides data locality, DDBMSs can also benefit from both inter-query and in-
tra-query parallelism. Inter-query parallelism is the ability to execute multiple
queries at the same time, while intra-query is achieved by breaking up each
single query and executing its pieces in parallel at different sites, accessing
different parts of the distributed database. Distributed query processing, how-
ever, falls outside the objectives of this module.

These issues help explain why DDBMSs are considered today to be a solution
for managing large-scale data repositories, since data locality (i.e., replication
and fragmentation), together with parallelism, are seen as an efficient way to
put a divide-and-conquer approach into practice.

1.2.3. Easier System Expansion

In a DDBMS, it is much easier to accommodate increasing database sizes. In-
deed, expansion can be dealt by simply adding new processing and storage
capacity to the network. This has many implications, but we focus on two
of them. Firstly, it is much cheaper to run a bunch of smaller interconnect-
ed computers than the corresponding centralized version. Secondly, adding
new nodes (e.g., computers), rather than adding new hardware or resources
in a centralized system, brings other benefits such as not needing to stop the
system in order to expand it. This feature is important for the so-called 24/7
systems (always available).

Together with the previous point, this makes it much easier to elastically in-
crease the dimensions of our system to improve performance, and to apply
the divide-and-conquer approach previously discussed.

1.3. Challenges Associated with Distributed Database Systems

The previous section discusses the main benefits of DDBMS. However, there is
a price to pay for such nice properties. In this section, we focus on the chal-
lenges that a DDBMS must overcome. Briefly, they can be reduced to design
issues that arise when building our DDBMS.

1) Designing the Distributed Database: We have already discussed that place-
ment of data is important to exploit data locality and parallelism and to min-
imize the communication overhead. For these purposes, data replication and

fragmentation play a crucial role. Indeed, we can decide to fully replicate our

Computer networks

Despite availability of high-
speed and high-capacity net-
works, network latency is still
an issue that recommends
against moving large amounts
of data around distributed en-
vironments, in favor of exploit-
ing the data locality. For exam-
ple, in some satellite connec-
tions, latency can be extended
by up to 1 second.

Cloud computing

This principle is exploited to
the limit in cloud comput-
ing, which is able to provide a
seemingly infinite amount of
CPU and storage facilities.
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database or to not replicate it at all, or we can achieve any desired degree of
replication in between. Furthermore, we also must decide how to fragment
the database and where to place these fragments. Unfortunately, finding an
answer to such problems demands expensive algorithms, as this is an NP-
hard problem in nature. Consequently in most real-life cases we must rely on
heuristics that lead to partial optimums.

A closely related problem is to decide how to manage the distributed catalog.
A catalog contains information (e.g., descriptions and locations) about data
items in the database. Where to place the catalog is a similar question as where
to place data. We can opt for either a global catalog or one local to each site.
It can be distributed or centralized, and also replicated or not replicated.

2) Distributed Query Processing: The principles behind query processing are
basically the same as for a centralized DBMS and thus are cost-based. However,
in this case we must deal with additional parameters such as distribution of
data (fragments and replicas), communication costs and lack of sufficient, lo-
cally available information for estimating costs of alternative execution plans.
Unfortunately, this is an NP-hard problem in essence, leading again to the use

of heuristics in most real cases.

3) Distributed Concurrency Control: Concurrency control entails the syn-
chronization of accesses to the distributed resources, so that database integrity
is preserved. This problem is somewhat different from the centralized case,
as we must also consider the consistency of several copies of the same data.
Optimistic and pessimistic solutions can be used to address this topic.

4) Reliability of DDBMSs: Two of the main characteristics of a DDBS are avail-
ability and reliability. However, they do not come for free. The DDBMS is re-
sponsible for keeping DDB integrity even when some sites fail or become un-
available. If the whole system were to fail, the DDBMS is also responsible for
starting up the system and reestablishing a consistent state.

5) Security Issues: Security is an important factor in any DBMS. In DDBMSs,
security issues must be revisited by considering the presence of a network.

In this module, we will focus on the design issue (either bottom-up or top-
down), which is thoroughly addressed in sections 4 and 5.
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2. Brief History and (Tentative) Classification of
Distributed DBMSs

Distributed DBMSs started in the early 1970s as research projects, and did not
reach an acceptable level of maturity until the end of the 1970s. System R and
Ingres were the pioneer DDBMSs and were developed in parallel. The initial
research on this topic was mainly motivated by the need to manage data for
large (and thus, naturally distributed) organizations. These systems assumed
slow communications between nodes and the DBA needed to instruct the DB-
MS where to place data. However, the user could query data in a transparent
way (i.e., he or she was provided with query transparency). The first commer-
cial systems, though, did not hit the market until the 1980s and they did not
really succeed until the late 1990s, with the arrival of fast wide area networks.
Until then, networks were too slow to really exploit a DDBMS system. Thus,
during those years, DDBMSs were set aside and most efforts were dedicated
to parallel databases, which benefited from computer clusters and local area
networks.

With faster networks, geographically distributed databases were developed,
but it was not until the arrival of the Internet that DDBMSs emerged as first-
class citizens. The Internet, however, brought many other challenges, such
as the need to integrate data from many pre-existing databases. As a conse-
quence, heterogeneous databases blossomed with the arrival of the new cen-
tury. It is significant that traditionally distributed databases assume a sin-
gle DDBMS and a single logical database, whereas heterogeneous DDBMSs
combine several autonomous databases using different DBMSs and different
schemas.

The foundations of distributed database management systems were al-
ready established back in the 1970s. However, we had to wait until
fast wide area networks appeared and, especially for the Internet break-
through, in order to observe the real impact of DDBMSs on the market.

There are many different ways to classify DDBMSs, but a traditional classifi-
cation focuses on the degree of autonomy and heterogeneity of each node in
the system. In this classification, systems can be classified as mainly homoge-
neous or heterogeneous distributed systems:

Note

Obviously, large organizations
in the 70s were several orders
of magnitude smaller than
current ones. However, the
amount of available memory
was also considerably smaller
and networks were substan-
tially slower, which essentially
brought up the same problem
about how to efficiently dis-
tribute data (maximizing data
locality).
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1) Homogeneous DDBMSs: Regular distributed databases are homogeneous
and one distributed DBMS manages all data. Distributed database design in-
volves creating the schema in a top-down fashion as for a conventional central
database. Furthermore, the DBA is responsible for specifying how data should
be distributed over nodes. Consequently, nodes have no autonomy at all.

2) Heterogeneous DDBMSs: Heterogeneous systems, however, must deal with
the inherent heterogeneity of the pre-existing nodes, and they are usually de-
signed in a bottom-up fashion. Designing heterogeneous distributed databas-
es implies dealing with data integration and heterogeneities of every kind, as
we must overcome the fact that the same or similar data may be represented
in different ways in each participating database. In addition, note that nodes
in a DDBMS might also act as isolate databases in addition to their participant
role in the DDBMS.

Although the distinction between heterogeneous and homogeneous DDBMSs
has come to be accepted, there is much controversy about how to classify
heterogeneous DDBMSs. In this module we provide a tentative classification
based on how the existing databases are interconnected and how they are in-
tended to cooperate in order to build the heterogeneous DDBMS. This classi-
fication thus depends on how these databases are coupled and mainly refers
to the negotiation process carried out among the pre-existing nodes in order
to build up the DDBMS. A strict cooperation protocol results in less autonomy
for the DDBMS nodes (e.g., they cannot decide to rollback a transaction if that
is against the cooperation agreement), whereas a relaxed cooperation protocol
results in more autonomy within the DDBMS. Accordingly, the classification
presented below elaborates on the degree of autonomy provided.

Tightly coupled federated databases are the most restrictive with regard to
autonomy. This approach is meant to tightly interconnect the nodes, and it
therefore reduces their autonomy. As presented below, this degree of cooper-
ation is achieved by providing a common global integration schema. At the
opposite end, we talk about multi-databases, which provide a fair degree of au-
tonomy. Multi-databases rely on a very weak interconnection between nodes
and no global integration schema is provided. Between these two extremes
there are a myriad of possibilities in the middle ground, where partial integra-
tion schemas are provided. These kinds of systems are known as loosely cou-
pled federated databases. Note that any solution providing either a partial or
global integration schema is known as a federated database (loosely or tight-
ly coupled, respectively), whereas multi-databases do not provide integration
schema at all. From here on we will focus on the role played by the integration
schema (if any):

¢ Tightly coupled federated databases require the definition of a global in-
tegration schema that contains mappings to all participating database
schemas. The federated database becomes a central server management

system on top of the participating autonomous databases. Note that such
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a low degree of autonomy can make entering or leaving the federation
become problematic for the participants.

As the number of databases to integrate increases, it becomes very difficult
or impossible to define a global integration schema over the large number
of autonomous databases. Multi-databases provide no global conceptual
schema and instead a multi-database query language allows specification of
queries that search through many participating databases. Consequently,
a node can easily enter or leave the DDBMS.

Loosely coupled federated databases provide a middle ground between a
single integration schema (tightly coupled federated databases) and no
schema at all (multi-databases). Instead, the designer can define views that
combine and reconcile data from different data sources. You can think of
these views as similar to relational views. Such views, however, require
a query language that can express queries over several databases, i.e., a
multi-database query language. Thus, on one hand they provide a certain
degree of integration (views) and, on the other hand, they use an ad hoc
query language to overcome heterogeneities.

Table 1: Comparison of distributed databases

Autonomy Central Schema Query Transparency | Update Transparency
Homogeneous DBs No Yes Yes Yes
Tightly Coupled Federated | Low Yes Yes Limited
DBs
Loosely Coupled Federated | Medium No Yes Limited
DBs
Multi-databases High No No No

Table 1 elaborates on the discussion initiated above:

Autonomy: This column focuses on the autonomy of nodes in the DDB-
MS. As previously discussed, nodes in homogeneous databases are not au-
tonomous by definition, whereas heterogeneous solutions are built on top

of (more or less) autonomous databases.

Central Schema: This column focuses on the presence of a central schema
in the system. Homogeneous databases and tightly coupled federated data-
bases rely on central schemas to tackle the integration issue, whereas the
rest of heterogeneous solutions relax this constraint to deal with large
numbers of nodes.

Query Transparency: Query transparency refers to whether distribution
of data is reflected in how users pose queries —in other words, if, from the
user perspective, it gives the impression of a single database. Query trans-
parency is primarily achieved when a single schema is provided: as views
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in loosely coupled federated databases, as a global schema for tightly cou-
pled federated databases and as a single logical schema for homogeneous
distributed databases.

e Update Transparency: This transparency level only affects DBAs; it refers

to how updates are processed internally and if distribution is taken into
account.
In general, it is difficult to achieve consistent updating for heterogeneous
databases since the nodes are autonomous and the integration layer may
not have access to the local transaction managers. However, tightly and
loosely coupled federated databases may partially achieve it. In the first
case, some updates in the global integration schema might be propagated
to the underlying databases. In the second case, they define views over
data, and the problem is reduced to the update through views problem
(and thus, limited to it).

Note this is not an exhaustive classification of distributed systems. The new
generation of distributed systems, those adopted in solutions such as cloud
computing, would hardly fit in these definitions. On the contrary, this classi-
fication aims at producing a clear taxonomy about classical, mainly relational,

solutions.

Distributed database management systems are usually divided into ho-
mogeneous and heterogeneous systems. Homogeneous DDBMSs were
naturally designed from scratch to be distributed, whereas heteroge-
neous DDBMSs integrate in a distributed fashion several heterogeneous,
autonomous and preexisting sources.

In what follows, the reader can find a detailed discussion of the main chal-
lenges that have arisen for both homogeneous and heterogeneous databases.
First, section 3 discusses reference architectures for the different types of dis-
tributed systems we just discussed in this section. Later, we focus on how to
design homogeneous databases (section 4), and finally we elaborate on data
integration issues and a more detailed discussion of heterogeneous distributed
databases (section 5).
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3. Distributed DBMS Architectures

In this section we discuss system architectures to handle distributed DBMSs.
Using the classification introduced in the previous section, we distinguish be-
tween architectures for homogeneous and heterogeneous systems.

3.1. Architectures for Homogeneous DDBMSs

We introduce this discussion at two different levels. First, we elaborate on how ANSI/SPARC Architecture
to extend ANSI/SPARC schema architecture for distributed database systems.
Issued in 1977 by the Ameri-

Then, we will focus on a generic component architecture for centralized DB- can National Standards Insti-

tute (ANSI), this architecture
was intended to be a reference
that shows which elements
L. X . and interfaces must be imple-
It is important not to confuse a schema architecture with a component ar- mented and discussed with re-

gard to DBMSs.

MSs and how to extend it to cope with the challenges posed by DDBMSs.

chitecture. While the ANSI/SPARC schema architecture focuses on user class-

es and roles and how they view/access data, the latter focuses mainly on the

functional layers and components of a DBMS.

3.1.1. The ANSI/SPARC Schema Architecture

Figure 3. The ANSI/SPARC Schema Architecture

omn ofm o
° ® °

l Queries l Queries l Queries
External View, External View, |---| External View, External
Schema
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Conceptual View Schema
Internal View Internal
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Figure 3 outlines the ANSI/SPARC architecture. Three views? of data are depict- @View, in this sense, must be un-

. derstood as a way to show or see
ed. The external view shows how users see the database. It can be understood  gata according tg a given schema.

as a window over the database (i.e., they can only access and see that portion of
the database); it is adapted to the needs of each kind of user, taking into con-
sideration only data and relationships of interest to them. Several users may
share the same view of the database, and the collection of different user views
makes up the external schema. Next, we find the conceptual schema, which
captures how the real world is conceived by the organization. At this level, the
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universe of discourse needed for day-to-day operations is modeled in a con-
ceptual view. The conceptual schema, representing the organization’s view of
the world, is what interests developers who will model their applications on
top of that. Finally, the internal view deals with the physical definition and
organization of data. Thus, it represents the system view, which is responsible
for locating data on different storage devices and using the corresponding ac-
cess structures to retrieve data. The internal schema is what interests the DBA
who will want to tune it up to boost performance.

For example, re-consider schema 2 as our database conceptual schema (pre-
viously introduced as a running example in section 1.2.). From this schema
we can define several external views, for example, one for the general man-
ager and another for project leaders. The first one would contain all the re-
lations contained in the conceptual schema, whereas the second one would
only contain employee, project and assigned relations. The reason is that project
leaders are supposed to focus on managing projects, whereas the manager will
also be interested in other orthogonal aspects such as salaries. Besides these
two schemas, each relation in the conceptual schema will be physically im-
plemented and the DBA is responsible for creating indexes, clusters or any
other physical structure to improve data access. This is what we know as the

database internal schema.

These schemas are related by means of mappings which specify how a defin-
ition at one level can be obtained from a definition at another level. These
three levels are the basis for data independence; the separation between the
external and conceptual schemas provide logical data independence, whereas
the separation between the conceptual and internal schemas provide physical
data independence. Such mappings are stored in the database catalog.

However, ANSI/SPARC does not consider distribution, and must be adapted in
order to provide distribution transparency. As shown in figure 4, in the pres-
ence of distribution, a global conceptual schema is needed in order to work
with a single logical database (i.e., the conceptual view of the organization).
This conceptual schema corresponds to the very same idea behind the origi-
nal ANSI/SPARC architecture, but the crucial difference is that the database is
composed of several nodes (instead of just one) and this general schema pro-
vides for data independence as well as network, replication and fragmentation
independence (thus providing distribution transparency). Furthermore, every
node also has one local conceptual schema and one internal schema. Again,
there must be mappings between the external schema and the global concep-
tual schema, and between the global and local conceptual schemas, in order
to translate a global definition in a set of local definitions. Such mappings are
stored in the global catalog. Out of all these, the specific mappings between
the global and local conceptual views are known as fragmentation and alloca-

tion schemas.
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Finally, note that in this extended architecture we can talk about the glob-
al unique view (which hides distribution and where each data object has a
unique name), and local views (which are aware of naming and distribution).

Figure 4. Extending the ANSI/SPARC Schema Architecture for DDBMSs
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3.1.2. Extending a Centralized DBMS Functional Architecture

A DDBMS is made up of a set of components to successfully manage the logi-
cal database. When running on a computer, DBMSs interact with applications
through their interface layer at the highest level of abstraction, whereas they
communicate at the lowest level of abstraction with the operating system,
through their communication layer. In between, a large number of compo-
nents interact to form the DBMS as a whole. Figure 5 outlines the main com-
ponents of a centralized DBMS.

Note

Be aware that local catalogs
are still needed to solve map-
pings between the local con-
ceptual schema and the inter-
nal schema.
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Figure 5. Modular Architecture of a Centralized DBMS
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Users issue queries over the database through the interface layer and, subse-
quently, these queries reach the query manager component. The query man-
ager contains the view manager (a query is posed according to the external
schema in ANSI/SPARC architecture, and the view manager must rewrite the
input query in terms of the conceptual schema), the security manager (respon-
sible for performing the corresponding authorization checks), the constraint
checker (responsible for guaranteeing that integrity constraints are preserved)
and the query’s semantic, syntactic and physical optimizers, responsible for,
respectively, performing semantic optimizations (i.e., transforming the input
query into an equivalent one of a lower cost), generating the syntactic tree
(in terms of relational algebra operations) and the eventual physical access
plan. Next, the execution manager decides where to execute what (in case
more than one CPU is available) and in which order (for example, a subquery
that must be solved prior to solving the outer query). Then, for each executed
operation, it is also responsible for passing the result to the next operation.
The scheduler deals with the problem of keeping the database in a consistent
state even when concurrent accesses and failures occur. In short, it preserves
the consistency and isolation properties of transactions (C and I of the ACID
acronym). It sits on top of the recovery manager that is responsible for pre-
serving the atomicity and durability properties of transactions (A and D of
the ACID acronym). The recovery manager, in turn, sits on top of the buffer
manager, responsible for bringing data to the main memory from secondary

storage. Thus, the buffer manager communicates with the operating system.
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Figure 6. Modular Architecture of a DDBMS
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In a DDBMS there are several refinements to be done. As depicted in figure 6,
there are two well-differentiated stages. The first one corresponds to modules
cooperating at the global level, as discussed by the ANSI/SPARC architecture,
whereas the second one corresponds to modules cooperating at the local level.
In the former, the data flow is transformed and mapped to the lower layers
by dealing with a single view of the database (once the external schemas are
resolved). In the latter, distribution transparency is no longer provided and
the system must deal with distribution, replication and partitioning. More
specifically:

¢ The global query manager contains the view manager, the security man-
ager, the constraint checker and the query's semantic and syntactic opti-
mizers. All of these behave as in a centralized DBMS, except the syntactic
optimizer that is extended to consider data location (by querying the glob-
al data catalog). Finally, the physical optimizer is replaced, at the global
level, by the global execution manager. This new extension is responsible
for exploiting the metadata stored in the global catalog, for deciding issues
such as which node executes what (according to replicas and fragments
available and communication cost over the network) and for certain ex-
ecution strategies that are relevant for distributed query execution, such
as minimizing the size of intermediate results to be sent over the network
(e.g., deciding among join strategies) and exploiting parallelism. Finally,

it inserts communication primitives in the execution plan.

¢ The global scheduler then receives the global execution plan produced in
the previous module and distributes tasks between the available sites. It

will be responsible for building up the final result from all the subqueries
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that were executed in a distributed context. The global scheduler also ap-
plies distributed algorithms to guarantee the ACID transaction properties.

¢ Next, each node receives its local execution plan and, by querying its cat-
alog, generates a local access plan by means of the local query manager.
The local query manager behaves similarly to a centralized query manag-
er and, among other duties, decides which data structures must to used
to optimize data retrieval. Subsequently, the data flow goes through the
recovery and buffer managers, as in a centralized DBMS.

3.2. Architectures for Heterogeneous DDBMSs

Among the various heterogeneous DDB systems, we can find different levels
of coupling, from more loosely coupled systems to more tightly coupled ones,
according to the classification proposed by Sheth and Larson (1990), based on
the level of autonomy of the component DBs. In loosely coupled systems, each
component DB handles system input and output, as well as the data schema
and data exchange with the other DBs, while maintaining its own autonomy.
By contrast, tightly coupled systems require a negotiation, in detriment of
their own autonomy, to achieve a global schema for all DDB users, in addition

to a functional architecture to deal with global accesses.

Tightly coupled systems typically adopt a five-level schema architecture al-
lowing a global schema to be obtained for the heterogeneous DDB. During
the operation of heterogeneous DDBs, it is fairly common to use a functional
architecture based on mediators and wrappers, with the advantage that this
permits different degrees of coupling. Moreover, modern peer-to-peer systems
are now in use, and a reference functional architecture for these is also avail-
able. Since peer-to-peer systems allow different degrees of coupling, it would
seem reasonable to implement more tightly coupled systems with mediators
and wrappers, while more loosely coupled systems would be implemented us-
ing peer-to-peer systems. The following sections will cover the three types of
architecture we have identified here.

3.2.1. Five-Level Schema Architecture

The reference schema architecture for tightly coupled heterogeneous DDBs
is based on the ANSI/SPARC three-level schema architecture (see Figure 3),
comparable to the architecture for homogeneous DDBs (see Figure 4).

Given the need to create a heterogeneous DDB from different heterogeneous
DBs, the process used is known as bottom-up design. Instead of creating a
logical design from scratch, as in the case of homogeneous DDBs, it begins
with the local designs of the DBs that will form the new DDB.

A.P. Sheth; J.A. Larson
(1990). "Federated Database
Systems for Managing Dis-
tributed, Heterogeneous, and
Autonomous Databases".
ACM Computing Surveys (Vol.
22, No. 3, September).
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Figure 7. Tightly coupled heterogeneous DDB reference architecture
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Figure 7 shows the internal schema and the conceptual schema - as the lo-
cal internal schema and local conceptual schema — of each component DB.
The first additional schema level, compared to the DDB architecture shown
in Figure 4, is the level of the component schema. The purpose of this schema
level is to solve the syntactic heterogeneity of the data model of the compo-
nent DBs. Just as the conceptual schema is expressed as being dependent on
the local DBMS, the component schema is expressed with the canonical data
model chosen as the data model of the heterogeneous system. This schema
level presents all local schemas expressed according to the same data model.

The second additional schema level, the export schema level, defines the sub-
set of data from the component database that will be shared through the het-
erogeneous DDB. Like the component schema, the export schema is also ex-
pressed in terms of the canonical data model.

The purpose of the federated schema (see Figure 7), which acts as a global
schema (see Figure 4), is to serve the heterogeneous DDB in resolving all possi-
ble semantic heterogeneities among the different export schemas of the com-
ponent DBs. In section 5, we discuss various aspects related to heterogeneities.
The federated schema is expressed in terms of the canonical data model.

As with the other schema architectures, external schemas are defined from the
federated schema. Users of the heterogeneous DDB will make global access
based on the external schemas. There are two options for expressing external

schemas. Firstly, external schemas can be expressed through the canonical da-
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ta model of the heterogeneous system (monolingual architecture). Thus, users
may need to address the system differently according to whether the access is
local or global. Secondly, each external schema can be expressed according to
the data model of the component DB to which the user belongs. In this case,
there will be a multilingual architecture allowing the user to work in the same
way both locally and globally.

The mappings that relate the elements at different levels of the reference ar-
chitecture schema of heterogeneous DDBs are just as important as they are in
the architecture of homogeneous DDBs.

3.2.2. Wrapper-Mediator Functional Architecture

From a functional perspective, the main difference between heterogeneous
and homogeneous DDBs are the autonomous DBMSs that exist in each DB
comprising a heterogeneous DDB. Heterogeneous DDBs are obtained from a
software layer that works above the component DBMS (as shown in the func-
tional reference architecture in Figure 8) and that enables to access to the
global users to the different DBs. This layer acts as though it were just another

application sending queries and receiving responses.

Figure 8. Wrapper-mediator functional architecture
[
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The most popular implementation of functional architecture for heteroge-

neous DDBs is based on mediators and wrappers, as shown in Figure 8.
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In Wiederhold (1992), a mediator is defined as “a software module that ex-
ploits encoded knowledge about certain sets or subsets of data to create infor-
mation for a higher layer of applications.”

Each mediator performs a given function through a clearly defined interface.
Thus, the heterogeneous DDBMS layer is implemented through a mediator —
or through a hierarchy of these — that deals with the access requests of hetero-
geneous DDB users, covering all the functionality of the global manager.

Mediators typically work using a data model and a common interface lan-
guage. Thus, wrappers are used to resolve the potential heterogeneities arising
from the different component DBMSs. Each wrapper is obtained from a map-
ping between a view of a component DBMS and the view of the mediator. We
will look more closely at mediators and wrappers in section 5.

3.2.3. Peer-to-Peer Functional Architecture

Over time, several types of peer-to-peer (P2P) systems have appeared, all with
different aims. In this section, we will deal with modern P2P systems, which

focus on data exchange and are characterized by:

e Mass distribution, since they are composed of thousands of nodes (peers)
with a wide geographical distribution and have the possibility of forming

groups in certain places.

¢ The inherent heterogeneity of the peers and their total individual auton-
omy.

e System volatility, since each peer is usually a personal computer that enters
and leaves the system at will, making data management more complex.

To ensure the data management features of these systems, we must deal with
data location, query processing, data integration and data consistency.

Figure 9 shows a functional reference architecture for a peer participating

in a P2P data exchange system’. The most important point about the pro-
posed architecture is the separation of its functionality into three main com-
ponents: an interface used to send access requests, a data management layer
that processes queries and information from the metadata catalog and a P2P
infrastructure, which comprises the sub-layer of the P2P network and the P2P
network per se. Depending on the functionality of the P2P system, one or more
of these components may not exist, or they may be combined or implement-
ed in specialized peers.

Bibliography
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Access queries, both those referring to local data and those referring to glob-
al data, are transmitted through the user interface or through a data manage-

ment API*, and sent to the data management layer. The layer that receives the
query has a query manager responsible for its execution.

Figure 9. Peer reference architecture
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All the tasks required for the query manager to execute the query depend on
the system heterogeneity. If the peers are heterogeneous, the query manager
must check the semantic mappings in order to identify the peers of the system
storing relevant data to the query resolution. The query must then be refor-
mulated in order each involved peer can understand the query. To commu-
nicate with the peers, the query manager invokes the services implemented
by the P2P network sublayer. Given that some P2P systems have specialized
peers for storing semantic mappings, the peer receiving the access query must
contact the specialized peer in order to execute the query.

Moreover, if all peers in the P2P system had the same data schema, the query
reformulation functionality would not be required, nor would it be necessary
to store the semantic mappings.

“An APl is an Application Pro-
gramming Interface, whose func-
tion is to allow the different soft-
ware components to communicate
with one another.
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Regardless of whether execution is coordinated by the peer receiving the query
or a specialized node, when the peer receiving the query receives the responses
from the set of involved peers, it has the option of storing the results locally
using the cache manager, in order to speed up the execution of similar queries
in the future.

The query manager is also responsible for executing the local part of each
global query generated by another peer. In this case, the existence of a wrapper
can resolve heterogeneities. In addition, when a data update is required, the
update manager is responsible for coordinating the update among the peers
that contain replicas of the data to be changed.

The P2P network infrastructure, regardless of how it is implemented, provides
communication services to the data management layer. Note that the execu-
tion of queries is sensitive to the implementation of this infrastructure because
it is an overlay network above a physical network (typically Internet). This
overlay network can be pure (all peers are equal) or hybrid (some peers have
special features). The set of peers can form an unstructured topology (there
is no restriction on data location in the peers) or a structured topology (the
data location is controlled to obtain greater scalability, compromising auton-
omy). The key to query execution is to see how the resources are indexed and
how they will be searched. In unstructured topologies, indexes stored central-
ly or decentrally have been used. Structured topologies typically use a dynam-
ic hash table, whereby applying the hash to the key, which is the identifier
of an object, generates the identifier of the peer where data associated to the
object are stored.
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4. Distributed Database Design

In this section we focus on distributed database design from scratch (i.e., a
top-down design). Thus, given a database and its workload, we look at how to
allocate data in different sites so that we optimize a certain set of parameters
(normally, minimizing resource consumption for query processing). To do so,
two main issues must be addressed: how to fragment data and where to allo-
cate them. The two issues are strongly interrelated.

4.1. Data Fragmentation

Data fragmentation deals with the problem of breaking relations into smaller Fragmentation Vs.

pieces and thus, decreasing the working unit in the distributed system. There Replication

are many reasons to fragment, but the main idea is that a relation is not a good It is important to clearly distin-

processing unit. For example, consider the case of a user accessing a database guish between fragmenting
relations and replicating frag-
through a view defined as a selection over a relation R. Certainly, this user ments. While the first step re-
. . . . lates to the problem of find-
will never access any data instance out of this subset. In general, applications ing the proper working unit

for the distributed system, the
second relates to the alloca-

more specifically, a certain subset of some relations. tion problem, and will be ad-
dressed later.

and users will only access a subset of the relations available in the database or,

Without considering data fragmentation we have two options: either placing
the relation at a single node (and thus, increasing the remote accesses and
producing a potential bottleneck) or replicating it at every node where the re-
lation might be needed. However, different subsets are naturally needed at dif-
ferent nodes and it makes complete sense, from a performance point of view,
to collocate those fragments likely to be used jointly. Remember, this is what
is known as data locality. As a result, the communication overhead through
the network is minimized and we avoid unnecessary replication. Consider our
running example (section 1.2.1). If we want to take advantage of data locali-
ty, we will be interested in fragmenting data and placing it at the correspond-
ing node. As previously discussed, our example organization is geographically
distributed and we are only interested in keeping data about projects and em-
ployees at the corresponding node (either Hong Kong, Barcelona, Portland,
Frankfurt or Glasgow, see figure 1). Thus, out of all the projects, Barcelona’s
node will store projects undertaken in that city (or better put, coordinated
from that city), as well as the assignments and employees working in these
projects. The same will be true for each of the other nodes. In this case, the
project relation should be fragmented according to the city attribute and
according to its value, placing the tuple in one node or another. As for the
employee and assigned relations, note that the fragmentation must be per-
formed in a slightly different way. Each employee and assigned tuple will be
collocated with its corresponding project tuple (thus, we should first frag-

ment the project relation).
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Although benefiting from data locality has been the traditional reason for
fragmentation, another advantage has also appeared. Decomposing a relation
into fragments allows different transactions to be executed concurrently and
also increases system throughput. Importantly, when fragments are placed in
different nodes, both of these aspects facilitate parallelism, which today has
become the main approach for dealing with very large databases, as discussed
in section 1.

Notwithstanding, fragmentation also entails certain difficulties. On the one
hand, fragmenting a relation may lead to poorer performance when multiple
fragments must be retrieved and manipulated at query time. This situation
might happen when there are conflicting requirements that make it impos-
sible to separate mutually exclusive fragments. On the other hand, integri-
ty checking can become costly if two attributes with a dependency are split
across fragments (even in some simple cases, depending on where fragments
are allocated). For example, suppose that in our running example, the organi-
zation headquarters are in Hong Kong. From that location, they would need
to periodically retrieve data about all the employees. According to our previ-
ous discussion, employees are spread across all the nodes according to what
project they are currently working on. Consider the following query: iden-
tify employees who have been working in at least three dif-
ferent cities. Weshouldretrieve all employee, assignedandproject
fragments to one node (suppose that the data is shipped to the node issuing
the query; i.e., Hong Kong), then reconstruct the original relations and join
them properly in order to answer this query. For this case, fragmentation is
clearly a drawback; it is affecting the query answer time, since we are incurring
in communication costs between nodes. It would seem that integrity checking
could also become more complicated. Consider an employee e who has been
living in Barcelona and Glasgow. Currently, he or she is working at project
pB in Barcelona, but he or she was enlisted in project pG when working in
Glasgow. Something as common as checking the foreign key relationship be-
tween assigned and employee becomes more difficult, because data about
employee e is now placed in Barcelona, whereas the assignment tuple e, pG
is in Glasgow. Again, we need to incur in communication overhead between

nodes to check such constraints.

Traditionally, data fragmentation has been useful to reflect the fact that
applications and users might only be interested in accessing different
subsets of the whole schema or even different subsets of the same rela-
tion. More recently, it has also been used in dealing with large databas-
es, since fragmentation increases the degree of concurrency and facili-
tates parallelism. As a negative aspect, it might also increase distributed

joins and make semantic data control more difficult.

Fragmentation Vs.
Partitioning

Partitioning refers to a rela-
tion that is broken into small
pieces but they are not distrib-
uted over a network. Normal-
ly, this is done in order to ben-
efit from parallelism and it is
typical of parallel systems, but
it can also be used to imple-
ment privacy.

Note

Minimizing distributed joins is
a crucial aspect for distributed
query processing.
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Fragmenting a table is as simple as finding alternatives to decompose it into
smaller tables. Clearly, we have two main approaches: horizontal and vertical
fragmentation. In the first case, a selection predicate is used to create different
fragments and, according to an attribute value, place each tuple in the corre-
sponding fragment. For example, the project fragmentation proposed in our
running example suits this category. There, the predicates to be used would be
city = NAME CITY (where NAME CITY is each of the city attribute values:
Barcelona, Hong Kong, Portland, Glasgow or Frankfurt). Each predicate will

result in a fragment.

By contrast, in case of vertical fragmentation, different projections of the rela-
tion are carried out, each of them forming a different fragment. For example,
consider once again the project relation. Suppose now that we want to store
the name, city and country attributes at each node, whereas the other data
will be stored at the Hong Kong head office. In this case, a vertical fragmen-
tation of the relation could be carried out as follows:

Hproject (pno, name, city, country) and

Hproject (pno, budget, category, productivityRatio, income) .

The need to place the primary key at each vertical fragment will be properly
justified later. But note that different requirements may lead to different frag-

mentation strategies over the same table.

As usual, a third alternative combines both options, and is known as
hybrid fragmentation. Hybrid fragmentation is nothing other than nest-
ing horizontal and vertical fragmentation strategies. In other words, fur-
ther fragmenting fragments produced by a previous fragmentation strat-
egy. For example, consider a combination of the two requirements dis-
cussed above: we want to geographically distribute data about projects,
but only those attributes of interest at each node (the others will be
stored in Hong Kong as discussed previously). Thus, we could perform a
vertical fragmentation, namely VF; ([Toroject (pno, name, city, country)) and VFp
(ITproject (pno, budget, category, productivityRatio, income) ). VF2 Will be placed at the
Hong Kong node, whereas VF; will be further fragmented by applying the
horizontal fragmentation discussed earlier (i.e., city = NAME CITY) . As re-
sult, five fragments will be produced, each of them to be placed at the corre-
sponding node.

In this document, the following subsections focus on horizontal and vertical
fragmentation and discuss two main aspects: the degree of fragmentation we
may achieve, and fragmentation rules for correctness. The first aspect consid-
ers to what extent fragmentation of a relation is desirable (in other words,
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how many subsets we want to produce); the second aspect seeks to ensure
the semantic correctness of the fragments. The latter is achieved by means of
three properties:

e Completeness: Given a relation R and a set of fragments, any data item
(either a tuple or a set of attributes) of R can be found in at least one
fragment. Thus, data are not lost when fragmenting.

¢ Disjointness: Given a relation R and a set of fragments, any data item
placed in a fragment cannot be found in any of the other fragments. Re-
member that data replication must be considered a posteriori, in the allo-
cation stage, as a task independent of data fragmentation.

e Reconstruction: Given a relation R and a set of fragments, the original re-
lation can always be reconstructed from the fragments by means of rela-
tional algebraic operators.

A fragmentation is correct if we can guarantee completeness, recon-

struction and disjointness.

Hybrid fragmentation is not discussed further, because it corresponds to a nest-
ed combination of the two strategies, and is therefore correct if all the subse-
quent fragmentation strategies applied are correct.

4.1.1. Horizontal Fragmentation

Horizontal fragmentation partitions a relation along its tuples. The way to de-
fine each fragment is by means of predicates (i.e., selections over any relation
attribute). Table 2 illustrates a horizontal flragmentationS for the project re-
lation in our running example. Here, each fragment contains a subset of the

tuples of the relation.

Table 2. Horizontal Fragmentation

pno ‘ name ‘ city ‘ country ‘ budget ‘ category pro:::'t:vity income
1 p1 Barcelona Spain 40000 administration 0.1 3000

2 p2 Barcelona Spain 10000 administration 0.5 36000
3 p3 Barcelona Spain 5000 financial 0.8 1000

4 p4 Frankfurt Germany 100000 tv 0.8 70000
5 p5 Glasgow UK 450000 financial 0.6 240000
6 p6 Glasgow UK 2000 financial 0.6 1000

7 p7 Glasgow UK 1000 financial 0.3 2000

8 p8 Portland USA 30000 culture 0.2 2000

9 p9 Hong Kong China 7000 others 0.1 10000
10 p10 Hong Kong China 10000 financial 0.9 40000

Formally, a relation R is horizontally fragmented in n fragments by means of a
fragmentation predicate R=oF, 1 < i < n where F; is the fragmentation predicate

that defines fragment R;. Typically, we represent each fragment by the predi-

SHorizontal fragmentation is also
known as primary horizontal frag-
mentation.
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cate used to create it. In our example: HF;: city = Barcelona,HFy: city
= Hong Kong, HF3:city = Portland, HF4 city = Frankfurt and
HFs5: city = Glasgow.

The first issue to address is when a DBA should horizontally fragment a given
relation. In general, a distributed system benefits from horizontal fragmenta-
tion when it needs to mirror geographically distributed data (each node main-
ly accesses data related to itself), to facilitate recovery and parallelism, to re-
duce the depth of indexes (since each fragment has its own index, the number
of indexes increases but their size is reduced) and to reduce contention. In our
example, each fragment is obviously smaller than the whole relation (provid-
ed we know there is at least one tuple at each node). Thus, an index over the
primary key (pno) would result in five different indexes (one per fragment),
that are smaller in size (since each index will only contain entries for the tu-

ples in that fragment). Contention® is clearly reduced, since several mutually
exclusive users, who work on different nodes, can access different fragments
simultaneously and no conflicts will be caused. Furthermore, queries over the
whole relation can be resolved by means of parallelism.

Next, we must decide up to what extent we should fragment. Note that frag-
mentation can go from one extreme (no fragmentation at all) to the other
(placing each tuple in a different node). Furthermore, we need to know which
predicates (over which attributes) are of interest in our database. To address
this issue we should check to see which predicates are used by the users (or
applications) that access the database. A general rule of thumb claims that the
top 20% of most active users produce 80% of the total accesses to the data-
base. Thus, we should focus on these users to determine which predicates to
consider in our analysis. For each of these predicates, we must perform the
following steps:

1) Gather all the simple clauses used in any query predicate related to a given
relation. From here on we assume that a predicate is a expression of the form
attr @ k (where attr is a relation attribute, @ is one of the following oper-

ators #, <, 2, <, > or = and k is a value in the domain attr).

2) For each set of simple clauses over the same attribute, complete (accord-
ing to clause operator semantics) by adding the missing complementary clauses
(i.e., all the domain values for that attribute must be considered in at least
one predicate).

3) For each set of simple clauses generated in the previous step, determine
relevant sets of clauses. We can apply different criteria in order to find relevant
sets. A typical approach would consider a set to be relevant if each clause of

©Contention occurs when we are
denied access to a database re-
source because of conflicts with
other users, normally related to
concurrency control techniques.
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this set produces a fragment to be accessed either by a user or an application.
In other words, if it makes sense to use the clauses in that set to fragment the
relation.

4) For all the clauses remaining from previous step, consider all the combi-
nations among clauses over the same relation and put them in conjunctive
normal form.

5) From the results of the previous step, prune out those complex predicates
that are semantically meaningless. Rules based on reasoning in first-order logic
can be used here to spot contradictory predicates.

6) Among the remaining predicates, select the fragmentation predicates. Fi-
nally, the designer could decide to tune up the obtained result.

For example, consider again the project relation, which has not yet been fragmented.
And consider the following to be the queries issued by the top 20% of most active users:

Ql: SELECT * FROM project WHERE city = ‘Barcelona’
Q2: SELECT * FROM project WHERE city = ‘Glasgow’ AND budget > 10000
Q3: SELECT * FROM project WHERE city = ‘Frankfurt’

Now, let us apply the previous algorithm step by step:

Step 1: First, we gather all clauses issued in any of these queries. Thus, we obtain: city
= ‘Barcelona’, city = ‘Glasgow’, city = ‘Frankfurt’ and budget > 10000.

Step 2: There are two attributes involved in these clauses: city and budget. We know
that the values in the city domain are {Barcelona, Hong Kong, Frankfurt, Glasgow and
Portland}, and the budget value ranges from 2000 to 450000. According to the semantics
of each operator, we complement the missing predicates as follows:

e For equalities, we need to add a predicate for each value in the domain. Thus, for the
city attribute, we need to add city = ‘Portland’ and city = ‘Hong Kong’.

e For ranges, we need to complete the range. In the case of the budget attribute, we
need to add budget <= 10000.

Step 3: Now we need to know whether each predicate is of relevance to at least one node.
Our organization is geographically distributed, so all predicates over the city attribute
happen to be relevant. As for the budget attribute, we know that budget > 10000
is of relevance at Glasgow, but suppose that budget <= 10000 does not happen to
be interesting for any of the other nodes. Thus, most nodes will not benefit from this
fragmentation, and consequently, both predicates over budget are discarded.

Step 4: For the remaining predicates, we generate all the combinations. However, on-
ly predicates over the city attribute remain, and it does not make sense to combine
them, as they are mutually exclusive (note that it is impossible for a tuple to have two
different values for the same attribute). Just as an example of how to combine them,
assume that some other nodes were interested in the budget <= 10000 predicate and
thus, the budget predicates would be present at this step. To combine them, keep in
mind that the same combination should not contain two complementary predicates, so
you should only combine predicates over different attributes (i.e., city and budget).
As result, we would obtain ten predicates: for each city we will generate two predicates
(one for budgets over 10000 and another for budgets below 10000). For example, city
= ‘Barcelona’ AND budget > 10000, city = ‘Barcelona’ AND budget <=
10000, and similarly for the other cities.

Step 5: Of the complex predicates previously generated, discard any that are meaningless
(from a semantical point of view). This can happen due to obvious contradictions (for
example, city = ‘Barcelona AND country = ‘USA’) or due to internal business
rules. For the latter, suppose that Glasgow only runs financial projects (i.e., all the projects

Note

A formula in conjunctive nor-
mal form is a conjunction of
clauses, where a clause is a dis-
junction of literals.
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in Glasgow satisty category = ‘financial’). Thus, if city = ‘Glasgow’ AND
category = ‘administration’ had been generated, we would prune it at this point.

Step 6: In this example we would conclude that a fragmentation like the one depicted
in table 2 is the most appropriate.

Once we have identified the fragmentation predicates (by using the previous
algorithm or another alternative) we must guarantee their correctness. Given
a set of fragmentation predicates, a horizontal fragmentation is correct if it

satisfies the three properties presented in the previous section. Specifically:

e Completeness: The fragmentation predicates must ensure that every tuple
is assigned to at least one fragment. As long as the fragmentation predi-
cates are complete, the final fragmentation is also guaranteed to be com-
plete.

e Disjointness: The fragmentation predicates must be mutually exclusive.
In other words, one tuple must be placed in at most one fragment. This is
usually referred as the minimality property for horizontal fragments.

e Reconstruction: The union of all the fragments must constitute the origi-
nal relation. Thus, R= | JR;, where 1 <i<n.

For example, the fragmentation strategy proposed in table 2 satisfies all of
these: the fragmentation predicates are complete (as we have considered all
values for the city attribute), disjoint (being an equality, we know that an at-
tribute cannot take two different values) and it can be reconstructed by means
of the union operator.

4.1.2. Derived Horizontal Fragmentation

The previously discussed horizontal fragmentation (also known as primary
horizontal fragmentation) only considers one relation at a time. However, any
relation is related to other relations and it would seem that we may use such
relationships intensively when querying a database schema. For example, sup-
pose a relation R is related to a relation S through a many-to-one relation-
ship not accepting NULL values in the s-end (implemented as a foreign key
- primary key constraint). Suppose now that a frequent, well-known system
transaction, whenever inserting data in R, is to first insert the corresponding
tuple in s. Furthermore, suppose now that these relations are usually queried
together by joining them through the primary key - foreign key relationship.
Since horizontal fragmentation tries to maximize data locality, it seems rather

clear that the two relations are candidates for being placed in the same node.

To apply this strategy we should identify an owner and a member relation. These
role names are simply a question of notation (they try to highlight the fact
that a member is a feature or a characteristic of an object and hence, somehow

dependent on it), but they are meaningful because the owner decides how to
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fragment the member. For example, we have already discussed that it would
be interesting to fragment the assigned and employee relations according
to project. In this case, project will be the owner and assigned would be
the member, and we would join them through the pno (primary key) - pro-
jectNo (foreign key) relationship. Similarly, assigned would be the owner
of employee when fragmenting it, by joining them through the id (primary
key) - employeeId (foreign key) relationship.

As a general rule, derived horizontal fragmentation is of interest when the
owner fragments need to be combined with member fragments through
matching join keys —in other words, when the member relation is clearly de-
pendent on the owner relation, according to the database queries. If this is
the case, we proceed as follows. Let us suppose the owner relation is already
fragmented in n fragments (S;) and we want to fragment the member relation
R regarding the owner relation, by means of a relationship r. The derived hor-
izontal fragmentation is defined as: R; = RIXS;, 1 < i < n. Remember that X
stands for a semijoin and thus, the result of this join will be those tuples in R
for which there is at least one tuple in S; with matching joining key (we are

considering the joining attributes to be the attributes of R and s in r).

Note that the owner and member relations may happen to be related by means
of two or more relationships. In this case, we should apply the following cri-
teria to decide among the available relationships:

e The fragmentation used most by users / applications (i.e., which subset is
closer to what users and applications use),

¢ The fragmentation that maximizes parallel execution of the queries.

For example, in the first case we could consider query frequency, whereas dis-
tributed query processing and parallelism could be considered in the second
case.

Finally, in order to consider a derived horizontal fragmentation to be complete
and disjoint, two additional constraints must be considered with respect to

those discussed for horizontal fragmentation:

e Completeness: The relationship used to semijoin the two relations must
enforce the referential integrity constraint.

¢ Disjointness: The join attribute must be the owner’s key.
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Both primary horizontal fragmentation and derived horizontal frag-
mentation strategies aim at maximizing data locality. However, the first
considers each relation per se, whereas the latter also considers the re-
lationships between relations.

4.1.3. Vertical Fragmentation

Vertical fragmentation partitions the table in smaller subsets by projecting
some attributes of the relation in each fragment. Consider table 3 that illus-
trates a vertical fragmentation for the project relation in our running exam-
ple. Each fragment contains a subset of the relation attributes, but notice that
all of them contain the primary key. This will be justified later in this section.

Table 3. Vertical Fragmentation

pno name city country pno budget category productivityRatio | income
1 p1 Barcelona Spain 1 40000 administration 0.1 3000
2 p2 Barcelona Spain 2 10000 administration 0.5 36000
3 p3 Barcelona Spain 3 5000 financial 0.8 1000
4 p4 Frankfurt Germany 4 100000 tv 0.8 70000
5 p5 Glasgow UK 5 450000 financial 0.6 240000
6 p6 Glasgow UK 6 2000 financial 0.6 1000
7 p7 Glasgow UK 7 1000 financial 0.3 2000
8 p8 Portland USA 8 30000 culture 0.2 2000
9 p9 Hong Kong China 9 7000 others 0.1 10000
10 p10 Hong Kong China 10 10000 financial 0.9 40000

Formally, a relation R is vertically fragmented in n fragments by means of

projections: Ri=7rR(PK, Aj, - Ak), 1<j,k<m.
Where m is the number of attributes in R, and PK is the primary key of R.

As in the horizontal fragmentation strategy, the first issue is to determine
whether a vertical fragmentation suits our needs. Vertical fragmentation has
traditionally been passed over in practice, since it often worsened insertions
and update times of transactional systems (for years, the solution to any data
storage problem). However, with the arrival of query-based systems, such as
decisional systems (where the user is only allowed to query data), this kind
of fragmentation arose as a powerful alternative for decreasing the number of
attributes to be read from a table. This can be clearly seen with an extreme
scenario. Consider a relation Z with 2000 attributes. On average, these attrib-
utes are stored in 4 bytes each. During our analytical tasks, we are interested in
querying 1000000 tuples on average, but only 5 attributes out of the 2000 are
involved in the query. For each query we read approximately 100000*2000*4

bytes (10" bytes), when, in actuality, we only need to read 100000*5*4 (10°
bytes).

In general, vertical fragmentation improves the ratio of useful data read (i.e.,
we only read relevant attributes) and, similarly to horizontal fragmentation,

it also reduces contention and facilitates recovery and parallelism. As disad-

Column-oriented
databases

Vertical partitioning is taken to
the extreme in column-orient-
ed database management sys-
tems, which store data by col-
umn rather than by row. These
systems have been shown to
be extremely useful in support-
ing decisional systems, and
today we can find successful
commercial systems such as
Vertica or Greenplum.
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vantages, note that it increases the number of indexes (all of the same size),
worsens updating/insertion time and, in principle, increases the space used
by data (as the primary key is replicated at each fragment).

Deciding how to group attributes in each fragment is, moreover, not an easy
issue. Today, we can benefit from well-known approaches like clustering or
attribute splitting in order to group attributes likely to be read together. In
this document, we focus on attribute grouping. Thus, we start by considering
the whole relation and relevant queries posed on it (again, the rule of thumb
can be used for this purpose) and, from these data, we compute the affinity
between every pair of attributes. The affinity of two attributes regarding a set

of queries is defined as follows: aff(4; A j)=zk|us elg A A uselq, ,Aj)f req(qk).

Where use(qk, A)=1 if gy uses attribute A; and freq(qx) is the frequency of gx

in the system. Intuitively, this formula tells us the number of queries where
these two attributes appear together, weighted by their frequency.

For example, consider the project relation and the following queries (frequency shown
in brackets):

Ql: SELECT SUM(budget) FROM projects WHERE category = CATEGORY NAME
(30%)

Q2: SELECT pno, name, city, country FROM projects (20%)

Q3: SELECT productivityRatio, income FROM projects WHERE budget < 10000
(10%)

Q4: SELECT productivityRatio, income FROM projects WHERE budget > 20000
AND city = ‘GLASGOW’ (1%)

Q5: SELECT pno, country FROM projects WHERE city = CITY NAME (25%
P y proj y _

Q6: SELECT DISTINCT (category) FROM projects WHERE income > 30000 AND
budget < 20000 (14%)

The affinity between attributes can be represented in the following symmetrical matrix
(note that the diagonal remains empty as it is meaningless):

o] n c co b ca pr i

- 20 45 45 0 0 0 0

20 - 20 20 0 0 0 0
c 45 20 - 20 1 1 1
co 45 20 20 - 0 0 0 0
b 0 0 1 0 - 4 11 25
ca 0 0 0 0 44 - 0 14
pr 0 0 1 0 11 0 - 11
i 0 0 1 0 25 14 11 -

Where pno is abbreviated as p, name as n, city as c, country as co, budget as b,
category as ca, productivityRatio aspr and income as i. Note that this matrix
shows heavy dependencies between attributes. Indeed, by transitivity, we can decide to
cluster a set of attributes with high affinity together in the same fragment. For example,
pno-city and pno-country are the highest affinities. Furthermore, the city-country
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pair also has a high affinity (20). Since none of these is related to any other attribute
(except for city, but with very low affinity) it is quite clear these 3 attributes should
be grouped together. Similarly, budget, category and income are closely related to
each other. At this point, only name and productivityRatio have not been grouped.
In the first case, it is clear that name should join the first group, as it has no relation to
any attribute in the other group. As for productivityRatio, the situation is exactly
the same but the other way round: high affinity with the second group and low affinity
with the first.

Just as with any other fragmentation, vertical fragments produced must guar-

antee completeness, disjointness and reconstruction. Specifically:

e Completeness: The union of the projected attributes in each fragment

must produce the original relation.

¢ Disjointness: A given attribute (except for the primary key) can be used
to produce only one fragment. In other words, every attribute (but the
primary key) appears in one and only one fragment.

e Reconstruction: To guarantee reconstruction, the primary key must be
replicated in each fragment. Intuitively, this is needed to keep track of the
original tuple and be able to reconstruct it by means of joins through the
replicated PK. Thus, R=R;MX R, ... MRy

In our example, we have two fragments that can be represented by the set of
attributes they project. VP;, {pno, name, city, country} and VP, {pno,
budget, category, income, productivityRatio}. Thisfragmentation
is complete as both fragments contain all the attributes in the relation. They
are also disjoint as no attribute is repeated. Finally, to guarantee reconstruc-

tion, we replicate the primary key (pno) in each fragment.

Summing up, horizontal fragmentation mirrors geographically distrib-
uted data and boosts data locality both for querying and inserts/up-
dates. By contrast, vertical fragmentation better supports query-based
systems, such as decisional systems, and drastically improves the ratio
of useful data read (only relevant attributes are read out of the whole
set of attributes of the relation).

4.1.4. Fragmentation in Oracle
This section elaborates on a practical example of fragmenting relations. We use
Oracle to show the kind of fragmentation strategies that are presently avail-

able:

1) Horizontal fragmentation:

Note

The version used in this mod-
ule is Oracle 10g.
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Oracle allows two principal types of horizontal fragmentation, by list and by
range. Both correspond to a primary horizontal fragmentation strategy. The
first must be used in the presence of fragmentation predicates with equalities,
while the second one allows ranges. For example, in the first case, consider
the fragmentation proposed in table 2:

CREATE TABLE project (
pno NUMBER (8,0) PRIMARY KEY,
name VARCHAR (20),
city VARCHAR(10),
country VARCHAR(8),
budget NUMBER(7,23),
category VARCHAR(10),
productivityRatio NUMBER(3,2),
income NUMBER(7,2))
PARTITION BY LIST (city) (
PARTITION nodel VALUES ('BARCELONA'),
PARTITION node2 VALUES ('GLASGOW'),
PARTITION node3 VALUES ('HONG KONG'),
PARTITION node4 VALUES ('FRANKFURT'),
PARTITION node5 VALUES ('PORTLAND')) ;

After the LIST keyword, in brackets, we must specify the fragmentation at-
tribute, and before the VALUES keyword, the name of the fragment. Note that
NULL values can also be used (but remember to drop the ‘’, if so). Alternatively,
if ranges must be used, the syntax looks like this:

CREATE TABLE project (...)
PARTITION BY RANGE (budget) (
PARTITION nodel VALUES LESS THAN (10001),
PARTITION node2 VALUES LESS THAN (450001));

In this way, values between 0 and 10000 would be stored at nodel, whereas
values between 10001 and 450000 would be stored at node2. Alternatively,
Oracle also allows random creation of a number of fragments. In this case, a
hash function is used internally to determine where each tuple must be placed:

CREATE TABLE project (...)
PARTITION BY HASH (pno) ( PARTITIONS 4; );

In this case, 4 different fragments will be created. Oracle will use the module
function (%) over the pno value to determine where to place each tuple. It
is advisable to use powers of ten to maximize dispersion. Finally, a kind of
hybrid horizontal fragmentation is also allowed, but only nesting horizontal
fragmentation strategies. Two options are available: range-hash and range-list
strategies. Both follow the same notation. For example:

CREATE TABLE project (... )
PARTITION BY RANGE (budget)
SUBPARTITION BY HASH (pno) SUBPARTITIONS 4 (
PARTITION nodel VALUES LESS THAN (10001),
PARTITION node2 VALUES LESS THAN (450001));
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In this example, each partition is divided into 4 subpartitions randomly
(HASH); alternatively, we could choose the LIST keyword instead of HASH and
specify a list of values to perform the subsequent fragmentation.

2) Vertical fragmentation:

Natively, Oracle only supports horizontal fragmentation (and as shown be-
fore, not even derived horizontal fragmentation). However, it is possible to
perform vertical fragmentation by taking advantage of the object-relational
features available in Oracle. We will assume the reader is familiar with such
features.

Vertical fragmentation can be regarded as attribute grouping and can be im-
plemented by means of nested tables. When a table type appears as the type
of a column in a relational table, Oracle stores all of the nested table data in
a single table (that can be placed at a different node). For example, consider
the vertical fragmentation proposed in table 3:

CREATE TYPE info AS OBJECT (
name VARCHAR (20),
city VARCHAR (10),
country VARCHAR(8)) ;
CREATE TYPE analyticalItem AS OBJECT (
budget NUMBER(7,23),
category VARCHAR(10),
productivityRatio NUMBER(3,2),
income NUMBER(7,2));
CREATE TYPE generalInfo AS TABLE OF info;
CREATE TYPE analyticalInfo AS TABLE OF analyticalItems;

These CREATE TYPE create the objects needed to store each group of attributes
(i.e., each fragment). Next, we create the table:

CREATE TABLE project (
pno NUMBER (8,0) PRIMARY KEY,
infoData generallInfo,
analyticalData analyticalInfo);
NESTED TABLE infoData STORE AS infoDataNT;
NESTED TABLE analyticalData STORE AS analyticalDataNT;

This table contains two different nested tables, which can be placed at differ-
ent nodes without any problem. In this way, we achieve vertical fragmenta-

tion.

4.2. Data Allocation

Once the database is fragmented, we must decide where to place each frag-
ment. It should be noted that the same fragment might be placed in several
nodes; thus, replication is an issue to be addressed at this point and not ear-
lier. In general, replication must be used for reliability and efficiency of read-
only queries. On the one hand, several copies guarantee that in the case one
copy fails, we can still use the others. On the other hand, replication is also
seen to improve data locality, allowing data to be accessed at the same node.

Nested Tables

Object-relational features were
introduced to support the ob-
ject-oriented paradigm. In Or-
acle, as well as others, we can

find nested tables, which were
created to support collections.
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Nevertheless, updating/inserting data in a replicated copy takes more time,
and synchronizing such writings may not be trivial. As a result, consistency
of copies may be affected. For this reason, the degree of replication must be a
trade-off between performance and consistency.

At this point we are better able to introduce the problem of data allocation.
Given a set of fragments and a set of sites on which a number of applications
are running, we seek to allocate each fragment such that some optimization
criterion is met (i.e., subject to certain constraints). Normally, the optimiza-

tion criterion is defined along the lines of two features:

e Minimal cost: A function that results from computing the cost of storing
each fragment F; at a certain node N;, the cost of querying F; at N;, the cost
of updating each fragment F; at all sites where it is replicated, and the cost
of data communication. The allocation problem places each fragment at

one or several sites in order to minimize this combined function.

e Performance: In this case, we aim either to optimize system response time

(given a set of queries) or maximize throughput at each node.

The first question, however, is why all these notions are not considered simul-
taneously when dealing with the allocation problem. The reason is that this
problem is known to be a NP-hard problem; the optimal solution depends
on many factors, such as the location where each query originates, query pro-
cessing strategies (e.g., join methods), network latency, etc. Furthermore, in a
dynamic environment, the workload and access pattern may change, and all
these statistics should always be available in order to determine the optimal
solution. For all these reasons, this problem is typically simplified with cer-
tain assumptions (e.g., only communication cost is considered) and, typically,
certain simplified cost models are built and an optimization algorithm may
be adapted to solve it. Consequently, note that these optimization algorithms
will always produce a sub-optimal solution.

The data allocation problem is known to be a NP-hard problem pro-
duced by the large number of factors to be considered. In practice, sim-
plified cost models (e.g., considering only communication cost over the
network) and generic optimization algorithms are used to tackle this
problem.

Optimization algorithms

Game-theory and economics
techniques have proved to be
useful when looking for opti-
mization algorithms to tackle
the data allocation problem.
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5. Database Integration

In the previous section, we discussed the top-down design of homogeneous
DDBs. In this section, we turn to bottom-up design, which is required when
a set of existing DBs want to share information. In this case, the design tasks
involve integration of the DBs, which we will refer to as component databases
(CDBs). The result of this integration is a new virtual DB which, although it
does not physically exist, can be queried.

In relation to the five-level schema architecture introduced in section 3 (see
Figure 7), this bottom-up process consists of integrating the local conceptu-
al schemas of each CDB into a single global schema, known as a federated
schema. The main problem with this integration lies in resolving the hetero-
geneities between the CDBs. The matching schema determines which con-
cepts of a schema match those of the other. Once all the matchings have been
detected, the series of mappings that can directly relate the concepts of each
CDB to the concepts of the global schema are created. The wrapper-media-
tor architecture is responsible for using these mappings to execute the access

queries posed by users.

In the following section, we will classify the heterogeneities that can arise
between schemas of the different CDBs.

5.1. Heterogeneities

It is inevitable that heterogeneities will appear between different CDBs, even
though they store similar data. Several authors have attempted to identify,
define and classify the possible heterogeneities that can occur between CDBs.
These authors agree in identifying the highest number of heterogeneities in
the DB structure, so the classification of heterogeneities depends on the data
model on which the analysis is based, which in turn is the data model used as
the canonical data model of the heterogeneous DDBMS. Specifically, in Kim
and Seo (1991), the classification is based on the relational data model, while
Garcia-Solaco, Saltor and Castellanos (1995) use an object-oriented model.

Given that all aspects representable by the relational data model can also be
represented by the more semantically rich object-oriented model, we will in-
troduce the classification of heterogeneities suggested by Garcia-Solaco, Saltor
and Castellanos (1995).

Heterogeneities can be semantic or system-based. Figure 10 contains a diagram
that classifies system heterogeneities, where we can note heterogeneities in
the hardware used by each CDB in its operating systems or communication

system (these occur when different protocols are used to access information,

Note

The idea is to query simply the
integrated DB, given the com-
plexity involved in updating
CDBs while ensuring both con-
sistency and their individual
autonomy.
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e.g. remote access via FTP, web access, etc.). The most important type of het-
erogeneities, however, are those that can occur as a result of existing DBMSs
(differences in data model, language and techniques).

Figure 10. Classification of system heterogeneities
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With regard to semantic heterogeneities, the classification proposed by Gar-
cia-Solaco, Saltor and Castellanos (1995) only covers the minimal set of het-
erogeneities, although other compound heterogeneities can be identified from
these.

Figure 11. Classification of semantic heterogeneities
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Specifically, the three groups of semantic heterogeneities are: heterogeneities
between object classes, between object class structures and between object in-
stances. Figure 11 contains an outline of the first two levels of the classifica-

tion of semantic heterogeneities.



CC-BY-NC-ND « PID_00179809 48

Distributed Databases

Whenever we talk about semantic heterogeneity between object classes,
we assume that the object classes are corresponding. In this group of het-
erogeneities, we can simultaneously find five types of heterogeneity depend-
ing on the differences that may appear between object classes: differences in
extensions, differences in names, differences in attributes or methods, differ-
ences in domains and differences in integrity constraints.

Differences in extensions between two object classes can occur due to differ-
ences between objects that are members of a single class, or due to differences
in the characterization of the objects, i.e. which part of reality is represented
in each class of each CDB.

Name differences may appear in both names of classes and names of attributes
or methods, given that synonyms or different languages may be used.

With regard to the differences between attributes or methods, we need only
consider corresponding attributes. In these cases, the differences between
attributes may appear for absence reasons (when the corresponding attribute
does not exist in one of the two classes), chronological differences in the da-
ta (current or historical data), differences in attribute constraints (multival-
ued/monovalued, null values allowed, uniqueness) or differences in the de-

fault value.

Domain differences can be classified as both semantic and syntactic. The most
important semantic domain differences appear in the identification of objects
(system/application identifiers versus keys), differences in the selection of keys
(names or codes), and numerical vs. non-numerical domains. Moreover, in
numerical domains, there may also be differences in size, measurement unit
and scale, as well as semantic domain differences in the definition of the de-
fault value. With regard to syntactic domain differences, note that we are re-
ferring to differences in the representation of corresponding semantic do-
mains. Syntactic differences can be differences in type, length (such as char-
acter strings), character/numerical, numerical, precision (different number of

digits), integers, etc.

The last type of difference that may occur between classes is difference in in-
tegrity constraints, beyond the differences in attribute constraints we saw ear-
lier. In this case, the differences relate to integrity constraints that simulta-
neously concern different attributes and classes as well as dynamic integrity
constraints (such as checks and assertions).

Note

Object class C1 belonging to
CDB1 and object class C2 from
CDB2 are corresponding class-
es if they represent the same
concept in their respective
contexts. This is detected in
the matching process.

Note

When we have two corre-
sponding classes, we use the
term corresponding attributes
to describe the pair of attrib-
utes, one from each class, that
convey the same idea.

The corresponding domains
concept is defined in the same
way.
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As already mentioned, heterogeneities between class structures are classified
in the second group of semantic heterogeneities. Specifically, this group refers
to differences between the structures that conform the classes of a CDB as com-
pared to the structures that form the corresponding classes in the other CDB,
which we will term inconsistencies. To analyze these differences, we must use
the object-oriented data model, which distinguishes between three dimen-
sions: generalization/specialization, aggregation/decomposition and classifi-
cation/instantiation.

The generalization/specialization dimension contains the class hierarchies,
taking into account that the specializations can be of four types: disjoint (the
intersection of the subclass extensions is empty), complementary (the union
of the subclass extensions constitutes the superclass extension), alternative
(each superclass object must be a member of one and only one subclass) and
general (when constraints do not apply). Thus, inconsistencies in this dimen-
sion are classified as: inconsistencies in specialization criteria (such as gender
versus work), inconsistencies in the level and characterization of the special-
ization (such as age-based groups), inconsistencies in the type of specialization
(such as complete or otherwise, disjoint or complementary), inconsistencies

in specialization constraints (such as delete effect).

With the aggregation/decomposition dimension, we can obtain complex ob-
jects by aggregating others. There are three types of aggregation: simple (an
object of a class is an aggregate of its attributes), composition (an object of a
class is created by the aggregation of different objects belonging to different
classes, where these objects are part of the created compound object) and col-
lection (an object class is created by collecting a number of objects from the
same class). Collections can be of four types: disjoint collections (each com-
ponent object class can only be in one collection), covering collections (each
component object class must be in at least one collection), partitioning col-
lections (each component object class must be in exactly one collection) and
general collections (which have no constraints). The inconsistencies in this
dimension are: simple classes versus aggregated classes, inconsistencies in ag-
gregation type (e.g. composition or otherwise), and inconsistencies in partic-
ipating classes, which can be of three types: inconsistencies due to collection
in aggregated classes (e.g. projects versus subprojects), inconsistencies due to
specialization in aggregated classes (e.g. parents versus father), and inconsis-
tencies due to composition in aggregated classes (e.g. address versus street +
number + city). Other inconsistencies in the aggregation/decomposition di-
mension include inconsistencies in collection subtypes (e.g. partitioning col-
lection versus general collection), inconsistencies in the component class of
the collection (e.g. collection of countries versus collection of states), and oth-

er inconsistencies in aggregation constraints (e.g. delete effect).

Inconsistencies in the classification/instantiation dimension are also referred
to as schematic discrepancies because they are concerned with the fact that

what is seen as data/values in one CDB may be seen as a metadata or schema
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part in another CDB. There are different types of schematic discrepancies: spe-
cialization, composition, composition and specialization, and collection and
specialization. Examples of schematic discrepancies can be observed in Figure
12, which contains the schemas for three CDBs that store parental data for a

group of persons.

Figure 12. Example of schematic discrepancies

CDB1 CcDB2
Parenthoods Parenthoods
child: Persons child: Persons
parent: Persons father: Persons
kind: {Father, Mother} mother: Persons
CDB3
Mothers Fathers
child: Persons child: Persons
mother: Persons father: Persons

There is a schematic discrepancy in specialization between the schema of
CDB1 and CDB3, given that CDB1 contains a class with all parents, regardless
of whether they are mothers or fathers, and CDB3 contains a class indicating
mothers and another for fathers. Both classes of CDB3 can be interpreted as
specializations of the Parenthoods class of CDB1. By contrast, the schematic
discrepancy between the schema of CDB1 and the schema of CDB2 is a com-
position type discrepancy, since the Parenthoods class of CDB2 can be gener-
ated by composition of the objects of the Parenthoods class of CDB1. The dis-
crepancy between CDB2 and CDB3 is a combination of the previous special-
ization and composition discrepancies.

Figure 13. Example of schematic collection and
specialization discrepancy

CDB1 CDB2
Employees Departments
VAN
[ T 1
LSI || AC || EIO Employees

Figure 13 contains an example of a schematic discrepancy that combines the
collection and specialization discrepancies, given that CDB1 represents em-
ployees in subclasses (one class for each department) while in CDB2, each de-

partment is a collection of employees.

In the relational model, schematic discrepancies are called schematic hetero-

geneities.



CC-BY-NC-ND « PID_00179809 51

Distributed Databases

Example of schema heterogeneities in the relational model
Local schema of CDB1:

vehicle (serial n, make, model, auto transmission, air conditioning,
GPS, color)

Local schema of CDB2:
car (serial n, make, model, auto transmission, color)

optional equipment (serial num, option, price)

Indeed, the same heterogeneities also appear in the relational model. The ex-
ample shows that while CDBI1 stores all vehicle information in a single rela-
tion, CDB2 uses two relations, one for the basic data describing the car and
another to indicate all car options.

In the same example, data type heterogeneity can also arise (when the same
data are represented by different data types), since CDB1 may represent the
serial_n attribute by a string of variable length, while in CDB2, the serial_num
attribute may be represented by an integer.

The last type of semantic heterogeneity is heterogeneity between object in-
stances. In this case, we need to consider two corresponding classes and, in

some cases, there must also be corresponding attributes.

There are four types of heterogeneity between object instances. Absence/pres-
ence discrepancies occur with the instantiation of an object in a particular
class that has no corresponding object in the corresponding class. With dis-
crepancies in number of values (only for attributes with multiple values), the
corresponding objects instantiated in the corresponding classes do not have
the same values (even though the attributes with multiple values have the
same definition). The third type, discrepancies due to null value or not-null
value, occur when an attribute of a class does not accept null values and the
corresponding attribute of the corresponding class has null as one of its pos-
sible values. Lastly, value discrepancies occur when an attribute of a class has
one value and the corresponding attribute in the corresponding class has a
different one.

To resolve these heterogeneities, it is necessary to detect correspondences be-
tween the concepts of the different CDBs schemas, and define all required
mappings.

Note

When we express a database
schema, we use underlining to
indicate the primary keys and
italics to indicate foreign keys.
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5.2. Schema Matching and Schema Mapping

Schema matching is used to detect which concept of a CDB corresponds to
a given concept in another CDB. The correspondences detected are specified
by a set of rules where each rule identifies a correspondence between two ele-
ments, indicating when the correspondence occurs and the degree of similar-
ity between the two elements.

Figure 14. Taxonomy of matching approaches
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Schema-based Instance-based Hybrid ~ Composite

matchers  matchers

N

Manual Automatic
composition composition

N

Element-level Structure-level Element-level

Constraint
sed

Constraint Constraint

Linguistic based based

Linguistic

Different algorithms are used to discover correspondences. Figure 14 shows a
taxonomy of algorithms. At first level, the taxonomy distinguishes between
whether an individual matcher or combination of matchers are used. If a
individual matcher is used, it then distinguishes between the schema-based
matcher and the instance-based matcher. Schema-based matchers can, in turn,
be classified into those that work at the element level and those that work
at the structure level, whereas instance-based matchers only work at the ele-
ment level. In the leaves of the hierarchy, we can see that the techniques are
classified according to whether they are linguistic or constraint-based. With
regard to the use of a combination of matchers, the combination may be hy-
brid (with a single matcher that uses several techniques) or compound (many
matchers, which can be combined manually or automatically).

Matchers based on linguistic techniques use element names and other textual
information (descriptions or annotations in schema definitions) to deduce the
correspondences between elements. They tend to use external sources such as
thesauri, domain ontologies, etc. to detect synonyms, homonyms, superordi-
nates and polysemy.

Matchers that use constraint-based techniques benefit from the semantics ex-
pressed by constraints to narrow possible correspondences. The possible con-
straints that matchers can use include data types, ranges of values, uniqueness,
optionality and relationships types and cardinality.
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Even when all of the correspondences are obtained with matchers, there is
no clear identification of how to obtain the global schema from the local
schemas. Schema mapping is the responsible for setting up this process. Thus,
based on the mappings, the query processor and the wrappers are able to ex-
tract the data from the CDBs. The entire functionality is implemented by the
functional architecture of wrappers and mediators shown in Figure 8 of sec-
tion 3.2.2, which illustrates how wrappers and mediators must work togeth-
er to ensure that a single response is obtained to a single access query posed
by a global user. We will look more closely at wrappers and mediators in the

following sections.

5.3. Wrappers

In a heterogeneous DDBMS based on mediators and wrappers, wrappers are
in change of accepting the queries sent by the mediators, translating them in
terms of the corresponding CDB and then communicating the result to the

mediators.

The easiest way for wrappers to do their work is to classify possible queries
into templates, which are access queries that include parameters representing
constants. The mediator provides the constants and the wrapper executes the
query with the given constants. The notation used is: T => Q, where T is the

template that the wrapper transforms into the query Q.

Below is an example of a template available to a CDB wrapper, along with the
query into which it is transformed.

Example of a template
Component schema of CDB1, to which the wrapper has access:

vehicle (serial n, make, model, auto transmission, air conditioning,
color)

Global schema used by the mediator:
med_car (serial n, make, model, auto transmission, color)

Considering that the wrapper has the following template to access vehicles of a certain
color indicated by the parameter $c, we obtain the corresponding query:

Note

Note that a CDB defines which
data it is willing to share using
an export schema. Negotiation
begins based on this schema.
Typically, this ensures that not
all of the data contained in a
CDB are available in the final
global schema.

SELECT * SELECT serial n, make, model, make, model,auto transmission, color
FROM med car => FROM vehicle
WHERE color = '$c'; WHERE color = '$c';

Once we have the set of templates, these serve as a specification for the wrap-
per generator (similar to a parser generator, such as YACC), which creates the
necessary wrapper. The wrapper is composed of two elements, a table and a
driver. The table contains all of the query patterns contained in the templates
and the original queries associated with each pattern. The driver accepts the

query sent by the mediator (using a plug-in for communication), searches in-

Note

Note that a parser identifies
elements of a program and
checks that the syntax is cor-
rect.
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to the table for the template matching the query, generates the query based
on the selected template (instantiating the parameters with the values of the
initial query), sends the generated query to the CDB (again using a commu-
nication plug-in) and waits for the response. Once the wrapper receives the
response, it processes it and sends it to the mediator. If the wrapper cannot
find an appropriate template, it warns the mediator about the impossibility
of obtaining a response.

Given the amount of queries that can be made on a single relation (at least as
many as combinations of attributes the relation has), it is impossible to have
all the templates we may need. Therefore, the wrapper works from a limited set
of templates, even when this does not allow it to obtain a sufficiently accurate
response to the received access query; to delimit the results, the wrapper could
also apply a filter (tuple by tuple, without having to materialize the result of
the query corresponding to the template).

Moreover, in order to obtain a response to the query sent by the mediator,
the wrapper can also apply different operations (projection, aggregations and
combination) on the tuples obtained by executing the template, since all of

the necessary information is guaranteed to reach the wrapper.

5.4. Mediators

Aswe saw in Figure 8, in section 3.2.2, the mediator (or hierarchy of mediators)
is responsible for receiving the access query of the global user, expressed in
terms of the global schema, and sending it to the corresponding wrapper or
wrappers so that it/they may express the query in terms of the CDBs. The
mediator also waits for the responses to be returned by the involved wrappers
and combines them where necessary. Thus, the mediator is of the Global-As-
View (GAV) type, if the data in the integrated DB are defined by how they are
constructed from the CDBs. A GAV mediator works like a view in a centralized
DBMS, given that it can query the integrated DB without forcing that de DB is
physically materialized (it only exists virtually), by addressing queries to the
CDBs.

The mediator can also be of the Local-As-View (LAV) type, if the content of
the CDBs is defined in terms of the schema supported by the integrated DB.
In this case, we must start from an agreed global schema in order to define the
corresponding mapping for each element of each local schema belonging to
the CDBs. In this section, however, we will only deal with GAV mediators.

Example of an access query to a heterogeneous DDBMS (through the
mediator)

Global schema:
med car (serial n, make, model, auto_ transmission, color)

Local schema of CDB1:
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vehicle (serial n, make, model, auto transmission, air conditioning,
GPS, color)

Local schema of CDB2:
car (serial n, make, model, auto_transmission, color)

optional equipment (serial num, option, price)

and the global query:

SELECT serial n, make, model

FROM car_med

WHERE color = 'blue';

The query received by the mediator is sent to the wrapper of CDB1, which applies the
corresponding template (the same as the one used in the previous example) and trans-
forms the query into:

SELECT serial n, make, model

FROM vehicle

WHERE color = 'blue';

The mediator also sends the query to the corresponding wrapper in CDB2, which trans-
forms the query (also based on the appropriate template) into:

SELECT serial num, make, model
FROM car
WHERE color = 'blue';

Finally, the mediator combines the results of the two queries and returns the final result
to the user.

The usual way of writing a GAV mediator is to use Datalog rules to express
the mappings.

Example of mappings expressed in Datalog rules

By using Datalog rules in the example above, the global schema can be expressed in terms
of local schemas as:

med_car(s, m, o, t, ¢) <- vehicle(s, m, o, t, z, y, ©)
med_car(s, m, o, t, ¢) <- car(s, m, o, t, ¢)

and the general query:

q(s, m, o) <- med_car(s, m, o, t, ‘blue’)

After applying the mappings, it becomes:

q(s, m, o) <- vehicle(s, m, o, t, z, y, ‘blue’)

q(s, m, o) <- car(s, m, o, t, ‘blue’)

Note that one of the most important aspects of processing access queries is
optimization. Unlike in centralized systems, where the DBMS can estimate the
cost of each possible execution plan and choose the best one, the mediator of
a heterogeneous DDBMS does not have the same information to do this. In a
mediator, optimization focuses mainly on ensuring that the plan can be fully
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executed. It will only attempt to apply cost estimation criteria for plans whose
feasibility is guaranteed. This strategy is known as capability-based optimiza-
tion and assumes that a heterogeneous DDBMS should not have to support all
possible queries related to the data it manages. More commonly, the system
will only receive queries that are already established or that can be introduced
with a form or application acting as an interface with the DBMS. This also
helps to delimit the set of templates that each wrapper must have in order to
answer queries sent by the mediator.

Thus, when faced with an access query, the mediator must first determine
whether there is a feasible plan through the queries that it can send to the
CDBs via the wrappers or, if it cannot send suitable queries to the CDBs,
whether it can obtain all data requested by the user query.

Hence, it is important to know which queries can be performed in each CDB,
considering that the legal forms of queries are defined by adornments. By
means of adornments the most common capabilities of CDBs are defined.
The codes used for adornments are:

e f (free), the attribute can be specified or not, as required.

¢ b (bound), we must specify a value for the attribute (any value is allowed).

¢ u (unspecified), no value is specified for the attribute.

e ¢[S] (choice from set S), we must specify a value among those belonging
to set S.

e 0[S] (optional from set S), we can choose whether to specify the value or
not, but if we do, it must belong to set S.

We can also put a prime symbol on a code to indicate that the attribute will
not form part of the result of the query. For example, f would mean that the
attribute may or may not be specified in the query, but the attribute will not
form part of the query result.

A capabilities specification of a CDB is a set of adornments. For successful
access to a CDB, the query must have an adornment associated with it that
matches one of the adornments of the capabilities specification.
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Examples of adornments
Consider the local schema of CDB1 (which has been shortened):
vehicle (serial n, make, model, auto transmission, GPS, color)

¢ To query all of the details of a vehicle with a given serial number without the serial

number forming part of the result, the vehicle relation of CDB1 should have the

) . S
adornment b’uuuuu. This adornment is expressed as: vehicle ” “™""(

model, auto_transmission, GPS, color).

serial_n, make,

e To query all the details of a particular make and model, choosing the color and
optionally setting whether the vehicle has automatic transmission and GPS, the

vehicle relation of CDB1 must have the adornment ubbo[yes, nojor[yes, no]b.

This adornment is expressed as: vehicle UPPolyes nolorlyes, nolb

auto_transmission, GPS, color).

( serial n, make, model,

To find a feasible plan, if one exists, we use an algorithm called chain. The
query types that can be handled with this algorithm are those that involve
joins of the CDB relations followed by a selection and/or projection in the
output attributes. These queries can be equivalently expressed by means of
Datalog rules.

Given that we only want to know whether we have found all possible con-
stants for each variable, the indicated adornments in the queries can be sim-
plified using just b and f (c/S] can be treated as b and o/S] and u can be treated
as f). These simplified adornments used in the queries will be compared to the
adornments defined in the CDB relations.

Example of a query manageable by the chain algorithm:

Q (0) <- R”(1,a) AND $(a, b) AND Tf(b,c)

In the example, we can see that the query Q(c) is formed by the join of three
sub-objectives, with a projection applied at the end (numbers are constants
and letters are variables). There is one sub-objective for each relation that must
be achieved in order to provide a response to the query. The three relations
(R, S and T) can be placed in different CDBs.

The idea of the algorithm, as its name suggests, is to resolve the query in se-
quence, sub-objective by sub-objective, beginning with the sub-objective that
has an adornment that can be solved by the adornment of the corresponding
relation. From the obtained constants in a sub-objective, we can instantiate
the values in another sub-objective, making it resolvable even though initially
it was not. This allows us to resolve the query globally (provided that a solu-

tion exists).

Example of an application of the chain algorithm:
We want to resolve the following query:
Q(¢) <- R™(1,a) AND S(a,b) AND T(b,c)

Relations R, S and T have the following adornments, respectively:
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R”(w,x)

5233l v)
™(y,2)

And the extensions of the relations are:

Rw, x) § x v T (& 2

1T 2 2 4 4 6
1T 3 3 5 5 7
1 4 5 8

The algorithm starts by comparing the adornments of the three sub-objectives associated
to the query Q(c) with the adornments of the three relations (R, S and T). Based on these

adornments, it can only begin with the sub-objective R o (1,a) of Q(c) since the adornment
bf of this sub-objective can be aligned with the adornment bf of the relation R. At this
moment, the other sub-objectives do not have any adornment that matches the adorn-

ments of the corresponding relations. By executing sub-objective R%(1,a), it is possible
to obtain values for the a variable (which are 2, 3 and 4). By instantiating these values,

the adornment of sub-objective Sff(a,b) can be changed to SC[2’3’4]f(a,b) and, simplifying,
it can finally be changed to s (a,b). With this change of adornment, the resulting sub-
objective Sbf(a,b) becomes resolvable, since it can now be aligned with SC/[Z"%’S]f(x,y). By

executing Shf(a,b) for a=2 and for a=3 (the value 4 is not a possible value according to the
adornment of § and hence, is not instantiated), all possible values are obtained for the
b variable, which are the values 4 and 5. With the instantiation that can be performed

using the result of the second sub-objective, the adornment of the sub-objective T“(b,c)

can be changed to T 6'4'5]f(b,c), which can be treated as be(b,c), and is hence also resolv-
able. This way, we can obtain the final result, that is, the possible values for the c variable,
which are 6, 7 and 8. Therefore, the final result for Q(c) is {(6), (7), (8)}.

As we have seen, although it is not possible to apply the same optimization
mechanisms as in centralized DBMSs, the chain algorithm —usually the most
efficient option— can be used to guarantee an outcome, as long as it exists.
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Summary

This module introduces the student to distributed database management sys-
tems. We first underscore the need for such systems and subsequently analyze
the principal factors used to classify these systems either as homogeneous or

heterogeneous distributed database systems.

On the one hand, homogeneous distributed database systems are designed
by means of a top-down approach, which entails determining which parts
(i.e., fragments) of the database must be placed at each node (or site) of the
distributed system. In this case, a single DBMS (the DDBMS), which works at a
higher abstraction level than centralized DBMSs, is responsible for operating
the DDB.

On the other hand, heterogeneous distributed database systems are built on
top of pre-existing databases. In this case, a bottom-up design approach is
typically chosen to address the heterogeneity of the pre-existing nodes. The
architecture most commonly used to implement such an approach is based on
wrappers and mediators, but we elaborate on different architectures in terms
of the level of autonomy provided to the CDB. One of the most popular so-
lutions, offering a fair amount of autonomy to each CDB, is the peer-to-peer
system, which we elaborate on briefly. Finally, special attention will be paid
to how heterogeneous distributed database systems must deal with hetero-
geneities, being semantic heterogeneities the most relevant.
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Self-evaluation
1. Answer the following questions:

e Enumerate and briefly describe the main approaches that exist for handling heteroge-
neous distributed database systems.

e Briefly describe the main objectives of the allocation stage when designing a distributed
database from scratch. What are the main difficulties the designer will face at this stage?

e Enumerate and briefly describe the main transparency layers that a distributed database
management system can provide.

2. Consider the following relation (the primary key is underlined): R (3, B, C, D, E), which
is fragmented as follows:

R; = (R[A,B,D]) (A>50)
R, = (R[A,B,D]) (A<50)
Rs = (R[A,C,E]) (C<432)
Ry = (R[A,C,E]) (C>432)

Answer the following questions:

e  What kind of fragmentation strategy has been applied?
e Are these fragments semantically correct? Justify your answer.

3. Santa Claus and his diligent elves have happily jumped on the new technologies train
and they are using a DDBMS to store information about kids, toys and what toys each kid
has asked for. Below you will find the fragmentation strategy applied to the global relations
(primary keys underlined):

Global relations

Kids (kidId, name, address, age)

Toys (toyId, name, price)

Requests (kidId, toyId, willingness)

Note that request(kidId) is a foreign key to kids(kidId) and similarly,
request (toyId) refers to toys (toyId).

Fragments

Kl= Kids[kidId, name]

K2= Kids[kidId, address, age]
Tl= Toys (price >= 150)

T2= Toys (price < 150)

KT1 = RequestsX T1

KT2 = RequestsX T2

e Briefly explain what fragmentation strategy they have applied. Justify your answer.
e [s this fragmentation strategy complete and disjoint? Can we reconstruct the global re-
lations?

4. Assuming the same schemas for the two component databases and the global schema for
the heterogeneous DDB of the example in section 5.4 (reproduced below):

Global schema:
med car (serial n, make, model, auto transmission, color)

Local schema of CDB1:
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vehicle (serial n, make, model, auto transmission, air conditioning, GPS,
color)

Local schema of CDB2:
car (serial n, make, model, auto_transmission, color)

optional equipment (serial num, option, price)

Propose a template that could be used by both the wrapper of CDB1 and the wrapper of
CDB2 in order to respond to the following query that the mediator might send (you must
provide a template for each wrapper):

SELECT *
FROM med car
WHERE make='Opel' and model='Ampera' and color='white';

5. Using the schemas proposed in the previous activity and the corresponding mappings,
express the previous query by means of Datalog rules.

6. Propose the most restrictive adornment that will ensure a response to the query of the pre-
vious two activities. What should the features of the adornment be if we only want to query
vehicles/cars with automatic transmission (i.e. the attribute value for auto_transmission will
be ‘yes’) in each CDB?
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Answer key
1.

e Traditionally, heterogeneous DDBMSs have been classified as (tightly or loosely coupled)
federated databases, multi-databases, and peer-to-peer systems. Tightly coupled federat-
ed databases rely on a global integration schema sitting on top of the pre-existing nodes.
Multi-databases provide no global conceptual schema, but offer an ad hoc multi-database
language to query the participating databases. As a middle ground, loosely coupled fed-
erated databases provide views over the participating nodes which provide integration.
However, these views are defined by means of a multi-database language. Unlike these
approaches, peer-to-peer systems relax query consistency, but provide query transparen-
cy without using a central schema. Queries simply hop from one node to another until
a time-out is triggered and no other nodes are queried.

e Once we have fragmented our relations, the allocation stage seeks to allocate each frag-
ment to a node, in such a way that a certain optimization criterion is met. Whether to
replicate fragments in several nodes is a decision that should be made at this stage. Nor-
mally, the optimization criterion is either to minimize the system costs (e.g., storing and
updating fragments) or to boost performance (i.e., response time). However, too many
factors must be taken into account to cope with these criteria and, unfortunately, their
optimization has proved to be a NP-hard problem. Currently, DDBMSs and DBAs usually
rely on simple optimization algorithms to solve this problem.

e To fully achieve distribution transparency we must guarantee data independence (be-
tween the logical and physical schema), network transparency (which includes naming
and location transparency and seeks to hide the existence of the network from the user),
replication transparency (hiding the existence of replicas) and fragmentation transparen-
cy (hiding the existence of fragments). Finally, update transparency, closely related to the
replication transparency layer, seeks to synchronize replicas transparently to the user.

e [tisahybrid fragmentation strategy. Specifically, a horizontal strategy nested in a vertical
fragmentation.

e No, it is not. The vertical fragmentation is correct (it is complete, disjoint and can be
reconstructed) but the horizontal fragmentation strategy is not (it is not complete, since
the equalities are not considered in any of the fragments). Thus, the hybrid fragmenta-
tion is not correct either, since the nested fragmentation strategies must be correct to
produce a correct hybrid approach.

e They have applied a vertical fragmentation over Kids, a horizontal fragmentation over

Toys and a derived horizontal fragmentation over Requests.

— Kids has been fragmented in two subsets by projecting its attributes. The first subset
consists of {kidId, name} and the second one of {kidId, address, age}.

— Toys has been fragmented in two subsets by applying two selections. The fragment
predicates are: (price < 150) and (price > = 150).

- Requests has been fragmented in two subsets by considering the FK-PK relationship
between requests and toys. To do so, a semijoin has been performed to decide
how to fragment requests according to toys.

e The fragmentation strategy chosen is complete, disjoint and the original relations can
be reconstructed.

- Kids is complete since all the table attributes are considered in at least one of the
fragments. It is disjoint because no attribute (besides the primary key) has been pro-
jected in more than one fragment. Finally, it can be reconstructed because the pri-
mary key kidId has been replicated in each fragment.

— Toys is complete since all the domain values of the price attribute are considered
in the ranges used, and it is disjoint since the ranges are mutually exclusive. Finally,
it can be reconstructed by uniting both fragments (since they are disjoint and com-
plete).

— Requests is complete since the relationship used to semijoin both relations has been
implemented as a PK-FK constraint. It is disjoint because the semijoin involves the
owner’s key (i.e., toyId). Finally, the original relationship can be reconstructed by
uniting the fragments, which are known to be, as a whole, complete and disjoint.

4. Template for the CDB1 wrapper:

SELECT serial n, make, model, auto transmission, color
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FROM vehicle

WHERE make='Opel' and model='Ampera' and color='white';
Template for the CDB2 wrapper:

SELECT serial n, make, model, auto transmission, color

FROM car

WHERE make='Opel' and model='Ampera' and color='white';

5. The query:

q(s, m, o, t, ¢c) <- med car(s, m, o, t, c) AND m='Opel' AND
o="'Ampera' AND c='white'

becomes, when we apply the mappings:

ag(s, m, o, t, ¢) <= vehicle(s, m, o, t, z, y, c) AND m=‘Opel’ AND

o="'Ampera' AND c='white'

q(s, m, o, t, ¢) <- car(s, m, o, t, c) AND m='Opel' AND o='Ampera' AND
c="'white'

6. In CDB1:

Vehicle™ "' P (serial n, make, model, auto_transmission,
air conditioning, GPS, color)

In CDB2:

Carummb(serialinum, make, model, auto transmission, color)

To query only vehicles/cars with automatic transmission:

In CDB1:

VehiclePelyesivu' (serial n, make, model, auto_transmission,

air conditioning, GPS, color)

In CDB2:

Carmwcwe“b(serialinum, make, model, auto transmission, color)
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Glossary

Allocation (or data allocation) This problem appears in top-down design of distributed
databases. Given a set of fragments, the data allocation problem consists of allocating data
at the available nodes in such a way that some optimization criterion is met.
ANSI/SPARC architecture The reference schema architecture for databases.

CDB Component Database.

Data locality In relation to distributed systems, it refers to placing data where it is need-
ed to minimize communication overhead, and consequently, ensure greater efficiency and
better performance.

DBA Database Administrator.

DDB Distributed database.

DDBMS Distributed database management system.

Federated databases require the definition of a global integration schema that contains
mappings to the participating databases’ schemas. The federated database becomes a central

server on top of the participating autonomous databases.

Fragmentation The problem of breaking a relation into smaller pieces to be distributed
over a network.

Mediators offer a solution to deal with representation and abstraction problems and ex-
change objects across multiple, heterogeneous information sources.

Partitioning Essentially following the same principle as fragmentation, it differs in that
resulting fragments continue to be local and are not spread over a network. Partitioning can

be used for many purposes, but mainly to benefit from parallelism and to implement privacy.

Peer-to-peer systems are used for efficient, scalable sharing of individual peers’ resources
among the participating peers.

Replication The same fragment is allocated to several nodes. Used primarily to improve
reliability and efficiency of read-only queries.

Scalability In distributed systems, it refers to system expansion.

Semantic heterogeneity refers to a problem that arises when the data to be integrated
have been developed by different groups for different purposes.

Transparency Transparency refers to separation of the higher-level semantics of a system
from lower-level implementation issues.

Wrappers are programs that extract data from information sources with changing content
and translate the data into a different format.
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