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ABSTRACT 

Non-Linguistic Utterances (NLUs), produced for popular media, computers, robots, and public 
spaces, can quickly and wordlessly convey emotional characteristics of a message. They have 
been studied in terms of their ability to convey affect in robot communication. The objective of 
this research is to develop a model that correctly infers the emotional Valence and Arousal of an 
NLU. On a Likert scale, 17 subjects evaluated the relative Valence and Arousal of 560 sounds 
collected from popular movies, TV shows, and video games, including NLUs and other character 
utterances. Three audio feature sets were used to extract features including spectral energy, 
spectral spread, zero-crossing rate (ZCR), Mel Frequency Cepstral Coefficients (MFCCs), and audio 
chroma, as well as pitch, jitter, formant, shimmer, loudness, and Harmonics-to-Noise Ratio, 
among others. After feature reduction by Factor Analysis, the best-performing models inferred 
average Valence with a Mean Absolute Error (MAE) of 0.107 and Arousal with MAE of 0.097 on 
audio samples removed from the training stages. These results suggest the model infers Valence 
and Arousal of most NLUs to less than the difference between successive rating points on the 7-
point Likert scale (0.14). This inference system is applicable to the development of novel NLUs to 
augment robot-human communication or to the design of sounds for other systems, machines, 
and settings. 
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INTRODUCTION 

1.1 Background and introduction to Non-Linguistic Utterances (NLUs) 

Non-Linguistic Utterances (NLUs) for communication from machine to human have been 
popularized in fiction, for example in the Star Wars movies where the robot R2D2 communicates 
with his human counterparts using squeaks, beeps, and other robotic sounds. This has inspired 
scientific research to try to understand whether there is any real communicative capability behind 
these sounds (Bethel & Murphy, 2006). NLUs are also used in daily life, for example in train 
stations to indicate passing a turnstile or an approaching train. Although these are one-way 
signals. NLUs are sounds that contain no discernible words, aren’t musical, and exclude laughing 
or onomatopoeia. They are used to convey information, affect, or to communicate. (Yilmazyildiz 
et al., 2016)  

R2D2, WallE, cartoons and movies where robots use squeaks, beeps, and whirrs to 
communicate are enjoyed by audiences, who might not fully understand an actual message but 
can go along with the context and generally understand what is being conveyed. The character 
pose and design, and context of the situation also assist in conveying the intended message. 

Since the 1970’s, NLUs have been used in psychology, where researchers have explored how 
tones can be used to communicate affect (Yilmazyildiz et al., 2016). Mavridis (2015) also argues 
for the importance of affect in robot human communication. Affect is communicated in both the 
semantic content of an utterance as well as the prosodic content. Also, across different cultures, 
affect can be understood and communicated differently. Language-independent communicative 
capabilities would allow robots to communicate with a wider range of people, suitable for settings 
such as tourist attractions and multi-cultural societies.  

1.2 Overview of the current state of related work 

NLUs and other SFUs have been successfully interpreted in terms of affect and emotional 
expression. Previous research has investigated whether NLUs can successfully convey emotion or 
affect. Reasons for using NLUs include, natural language programming is costly and difficult, not 
all applications require natural language communication, programming for multiple languages 
adds additional complexity (R. Read & Belpaeme, 2012, 2016; Yilmazyildiz et al., 2016). NLUs 
provide two main benefits: they are not linked to any language, and they can communicate a 
message in a very short time (Luengo et al., 2017). 

Komatsu (Komatsu, 2005) explored how to communicate positive, negative, agreement and 
disagreement using NLUs. He found that sounds with rising frequencies were interpreted to be 
positive while those with falling frequencies were found to be negative, as in ‘earcons’ (Blattner 
et al., 1989) for computers and mobile phones. 

Read and Belpaeme (2012) found that children were able to readily interpret NLUs in terms of 
their affect (happy, sad, angry, scared). However, they were not always consistent amongst each 
other when considering a given utterance. They (R. Read & Belpaeme, 2016) also found that 
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adults interpreted NLUs in terms of their affect categorically, and that subtle changes between 
the NLUs did not result in subtly different interpretations. 

The Keepon robot used NLUs to communicate with pre-verbal children with some success. Not 
using natural language makes designs easier to implement and suitable for the morphology of 
the robot (Yilmazyildiz et al., 2016). Read and Belpaeme (2014) recommend that NLUs be used 
alongside other more standard means of communication to augment functionality, as opposed 
to replacing them. 

1.3 Machine Learning and speech emotion classification 

Researchers have used machine learning methods to analyze mainly the linguistic parts of 
speech, but also non-linguistic components, to model the emotional meaning. In general, 
combinations of techniques for both feature extraction (Mel Frequency Cepstral Coefficients 
(MFCCs), spectrograms, pitch, intensity) and emotion classification using machine learning 
methods like Convolutional and LSTM neural networks, as well as Random Forest, have tended 
to outperform standard or non-machine learning oriented approaches. (Chen et al., 2020; Iliou & 
Anagnostopoulos, 2009; Issa et al., 2020). Previous work was done to model NLUs for 
communication in dialogue using their dialogue parts, and prosodic trends for dialogue part 
factors were established (Khota et al., 2019, 2020). 

1.4 Objectives 

The objective of the current research is to model the Valence and Arousal of NLUs, to evaluate 
candidate sounds for public facing social robots or similar agents that make use of such sounds. 

This paper describes a novel inference model relating the features of NLUs to their affect. 

2 MODEL DEVELOPMENT 

 

Figure 1: Proposed model 

Figure 1 shows the method for developing the model. Firstly, audio files are labelled in 
experiments according to their Valence and Arousal. Next, important features are extracted from 
each audio file, and together these data are preprocessed, including being normalized, before 
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being split into training and test datasets and input into a machine learning model which is trained 
on the training data set to infer Valence and Arousal on the testing data set. Inferences are 
collected per frame of audio data (described in section 4) and averaged over the number of 
frames per audio file to compare predicted and actual Valence and Arousal per audio file. 

3 EXPERIMENT 

3.1 Sound data sources 

Sounds from popular media draw from many different sound designers who may have used 
various methods to generate and record sounds. This selection is intended to make the dataset 
agnostic in terms of generation method, potentially removing some influence from specific 
methods, recording sources, software, tools, or instruments.  

The sounds used in experiments were gathered from popular movies, TV shows, and 
videogames. These sources were intended to explore the sample space and involve a wide range 
of sounds in terms of their source character, timbre, context, mode, as well as pitch, amplitude, 
and other prosodic properties. Table 1 shows the movies, TV shows, and videogame sources used, 
as well as the number of sounds from each, many of which are children’s shows, or popular 
science fiction. A total of 560 NLUs were used. The sounds were extracted from lossy MP4 
sources. The bitrate of all audio files is 768kbps except for the sounds synthesized (Khota et al., 
2019, 2020) from PureData (Pure Data — Pd Community Site, n.d.), which are 705kbps. 

Table 1. Sound data sources 

Source 
No. of 

Sounds 
Character 

Type 
 

Source 
No. of 

Sounds 
Character 

Type 

Aladdin 21 Animal  Tangled 9 Animal 

Castle in the Sky 5 Robot  The Emperor’s new Groove 15 Animal 

Dark Star 7 Robot  The Iron Giant 17 Robot 

District 9 8 Alien  Toy Story 6 Other 

E.T. 40 Alien  Treasure Planet 11 Other 

Gremlins 4 Other  Wallace and Gromit 1 Robot 

Guardians of the Galaxy 4 Alien  WallE 31 Robot 

How to Train your Dragon 6 Animal 
 

Synthesized Sounds from Pure 
Data 29 Other 

Ice Age 2 Animal  Blues Clues and You: TV Series 10 Other 

Monsters Inc 19 Other 
 

Bucket’s Quest Star Wars 
Resistance: TV Series 

5 Robot 

My Neighbor Totoro 6 Animal 
 

The Muppets Dr Bunsen and 
Beaker: TV Series 

13 Other 

Shrek 6 Animal  Curious George: TV Series 21 Animal 

Silent Running 8 Robot  In the Night Garden: TV Series 12 Other 

Spirited Away 2001 12 Other  Pokémon Journeys: TV Series 13 Other 
Star Wars Episode 4: A New 

Hope 75 Robot 
 

Scooby Doo: TV Series 7 Animal 
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Star Wars Episode VII: The 
Force Awakens 37 Robot 

 
Star Wars Rebels: Video Game 66 Robot 

Surfs Up 3 Animal 
 

Star Wars Jedi Fallen Order: 
Video Game 31 Robot 

     About half the sounds come from characters that are robots. 17% were from animals, 9% by 
alien characters, and others from various other imaginary characters. 

3.2 Experiment process 

The experiment proceeds as follows, after starting the experiment program: The sounds are 
played in random order for the subject. Each time a sound is played, the subject must rate it in 
terms of Valence and Arousal. Each of these is rated on a seven-point scale where a Valence rating 
of -3 is the lowest, representing a negative emotional state. -2 is a negative valence, -1 is a slightly 
negative valence. 0 is a neutral valence, 1 is a slightly positive valence, 2 is a positive valence, and 
3 is the most positive valence, representing a positive emotional state. Arousal rating of -3 is the 
lowest arousal rating, representing a very low level of excitedness or energy. -2 is a low level of 
arousal, and -1 is slightly low arousal. 0 represent a neutral level of arousal. 1 is slightly high 
arousal, 2 is high arousal, and 3 is the highest level, representing an extremely energetic or excited 
state. The subject can repeat each sound as many times as necessary and, once satisfied with the 
ratings, proceeds to the next sound. Once all sounds have been rated, the experiment ends, and 
the rating data is saved into a text file. The sounds were labelled according to Russell’s Circumplex 
model of affect (Posner et al., 2005) 

3.3 Statistical analysis 

A total of 17 subjects participated in the experiment, with each subject rating batches of 140 
files each, 5 unique batches totaling 560 sounds. Results from the labelling experiment showed 
that most NLUs were rated to be slightly negative Valence and slightly high Arousal, as shown in 
figure 2. The ratings appear to be normally distributed for both Valence and Arousal. 

           

Figure 2. Valence and Arousal ratings data distribution and bubble scatter plot 

To assess the reliability of the rating data, each batch of 5 ratings per file was analyzed for inter-
rater agreement. Two measures were used to gauge inter-rater agreement. First, the standard 
deviation of ratings between all 5 raters was computed, for both Valence and Arousal, and the 
average of these values was calculated to be 1.18 for Valence and 1.12 for Arousal, indicating that 
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subjects were generally within just over one rating point for a given evaluation. Next, 
Krippendorff’s Alpha was calculated for the 5 raters and for Valence and Arousal was found to be 
0.36 each. Since Krippendorff’s Alpha does not consider the interval nature of the rating scale, 
this result shows that there is reasonable agreement between the raters. 

4 MODEL EXECUTION 

4.1 Audio feature extraction 

Three audio analysis packages extracted various audio feature sets from the audio files: 
pyAudioAnalysis, openSMILE Low Level Descriptors and openSMILE Functionals.  

The pyAudioAnalysis audio feature library (Giannakopoulos, 2015) contains 136 frame-based 
audio features. Each sound file is separated into frames by defining frame length in seconds and 
frame step (difference between starting point of successive frames) in seconds. The 136 features 
are calculated based on these window sizes such that each audio file has 136 features per frame. 
Features include: zero crossing rate, energy, energy entropy, spectral centroid, spectral spread, 
spectral entropy, spectral flux, spectral rolloff, Mel Frequency Cepstral Coefficients (MFCCs), and 
chroma. 

The openSMILE (open-Speech and Music Interpretation by Large-space Extraction) toolkit 
(Eyben et al., 2015, 2016) was developed to create a standardized freely available feature 
extractor for problems within the audio analysis domain. It is made up of two main feature sets, 
The first being Low Level Descriptors (LLDs), which are frame-based in that they are calculated 
over discrete frames or sections of the audio file. These include zero-crossings, signal energy, 
loudness, cepstral features such as MFCC and PLP-CC, as well as fundamental frequency, jitter, 
shimmer, chroma etc. The second feature set are functionals, which are calculated over the 
duration of the audio file. These include extreme values, means, moments, peaks, segments, 
coefficients of Discrete Cosine Transform (DCT), rise and fall times, etc. 

4.2 Factor analysis 

Factor analysis was performed on the normalized openSMILE Functionals and the 
pyAudioAnalysis features to reduce the dimensions before applying the machine learning models 
described in the following sections. 35 factors were used for the pyAudioAnalysis feature set and 
12 factors for the openSMILE Functionals features set, based on the scree plot and eigenvalues 
(of greater than 1). As for the openSMILE Low-Level Descriptors features (22 features) the best 
performance of the model was achieved without using factor-transformed data. 

4.3 Random forest machine learning model 

A Random Forest Machine Learning model was trained and used to infer valence and arousal 
on a test data set. Firstly, the factor-transformed (except for openSMILE LLDs) dataset was split 
into training and testing data, and the Random Forest classifier was trained on the training data. 
The trained Random Forest model was then run on the test dataset to infer the Valence and 
Arousal values for each frame of audio data. The results were averaged over the number of 
frames per audio file to relate the predictions back to the original labels obtained from 
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experiments, in which the subjects had assigned Valence and Arousal ratings per audio file. The 
model was trained and tested with various combinations of the input parameters, namely, frame 
length, train-test split, and number of factors, and also with all 136 features.  

The key metric used to evaluate a given model was Mean Absolute Error (MAE): 

𝑀𝑀𝑀𝑀𝑀𝑀 =  
∑ |𝑦𝑦�𝑖𝑖 − 𝑦𝑦�𝑖𝑖|𝑛𝑛
𝑖𝑖

𝑛𝑛
 

    Where 𝑀𝑀𝑀𝑀𝑀𝑀 is the Mean Absolute Error, 𝑦𝑦�𝑖𝑖  are the predicted values for Valence or Arousal, 𝑦𝑦�𝑖𝑖  
are the actual values for Valence or Arousal, 𝑛𝑛 is the number of items in the test data set. 

4.4 Transfer learning Mel spectrogram neural network model 

A transfer learning Neural Network Mel Spectrogram based model was also used and results 
compared to the main model described in this work. Such techniques have been used in speech 
emotion recognition (Shor et al., 2020). In the current work, Mel Spectrograms were generated 
for each of the 560 sounds. The InceptionV3 Neural Network (Szegedy et al., 2015) was used to 
classify the sounds. The InceptionV3 Neural Network is a freely available Neural Network trained 
to recognize images trained on the ImageNet database, which contains around 14 million images 
in 20,000 categories. The network is pre-trained and its weights frozen, as per the transfer 
learning method. The results of the Neural Network model are included alongside the Random 
Forest model results in the current work. 

5 RESULTS 

Results of the audio feature random forest model, as well as the Mel spectrogram neural 
network model, are shown in Table 6. In the table, the transfer learning neural network model is 
referred to as TLNeuralNet and the simple sequential neural network model as NeuralNet. The 
openSMILE features are listed as follows: openSMILE Functionals after factor analysis are 
openSMILEFuncFT, openSMILE Low Level Descriptors are openSMILELLD. The pyAudioAnalysis 
features after factor analysis are called pyAudioFT. 

Table 1. Model execution results: Mean Squared Error (MAE) – results with lowest MAE are in bold 

Model Type Feature Set MAE Valence MAE Arousal Factors/Features Train/Test Split 

TLNeuralNet Mel Spectrograms 0.147 0.161 N/A 0.9 

NeuralNet openSMILEFuncFT 0.136 0.106 12 0.9 

Random 
Forest 

pyAudioFT 0.121 0.105 35 0.9 

openSMILEFuncFT 0.116 0.101 12 0.9 

openSMILELLD 0.107 0.097 22 0.9 

 

     Figure 3 shows scatter plots of actual vs predicted values produced by the model for Valence 
and Arousal. The Valence, the correlation is 0.63 and for Arousal 0.75. 
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Figure 3: Actual vs predicted values of Valence and Arousal: scatter plots 

6 DISCUSSION 

The lowest average error achieved for Valence was 0.107, and for Arousal 0.097, both from the 
Random Forest model and using the openSMILE LLD Feature Set with 22 Features and a 90/10 
Training Test split. The Random Forest model performed best. However, a simple sequential 
Neural Network using the openSMILE Functionals produced comparable results. The Mel-
Spectrogram Transfer Learning InceptionV3 model performed worse, possibly due to the 
spectrograms containing too much information that was not useful for the neural network, and 
there being only 560 spectrograms. The model might yield better results with more 
sounds/spectrograms. Considering the original 7-point rating scale, a difference of one rating 
point would be equal to 100/7 = 0.14. Therefore, it can be deduced that the model is able to 
predict the Valence and Arousal of most sounds tested with an accuracy within one rating point 
difference along that scale. 

The difference between the three feature sets was almost negligible. Combining features from 
each feature set might improve results. Regarding the openSMILE LLD feature set and 
pyAudioAnalysis feature set models, a frame-based method was used whereby results were 
averaged over the number of frames per sound as a post processing step to establish the 
predicted values of Valence and Arousal per sound and compare them to the actual rating data. 
Accounting for the contribution of each frame to the sound might also yield better results. 

The model is slightly better at inferring the Arousal of a sound than its Valence. Arousal results 
also had higher correlations between predictions and actuals, as seen in figure 3. This result is not 
surprising since Arousal is mostly related to the amplitude and rhythm of a sound, whereas more 
factors make up Valence. Some experiment participants also commented that they found it easier 
to assess the Arousal of each sound than its Valence. The model was run multiple times and the 
average MAE for each sound each time it occurred in the test data set was computed using the 
absolute value of the difference between predicted and actual Valence and Arousal. This value 
was averaged over the number of model runs and used to indicate whether a given sound was 
able to be successfully classified by the model or not. Sounds with higher average MAE were 
analyzed and the most common characteristics were; sounds too long and/or containing too 
many utterances, containing too much background music, or containing speech. 
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7 CONCLUSIONS AND FUTURE WORK 

A model was developed to infer Valence and Arousal of NLUs from popular media sources. The 
model predicted the Valence and Arousal of an NLU within one rating point on the 7-point scale 
used in the experiment. This system can be used to evaluate candidate sounds for sound design 
contexts such as social public-facing robots or interactive agents, for commercial and industrial 
settings, public spaces such as train stations, or in media and entertainment. Possible applications 
also include machine sounds such as those used in smart devices or even hospital machines. 

In future, the modification of the model such that results are weighted in terms of each frame’s 
contribution to the audio file may improve results. Weighting by frame for features extracted at 
a frame level might better relate the model back to the original experiment context in which 
sounds were evaluated by audio file. Future work will also focus on expanding and developing the 
model in terms of exploring wider ranges of sounds. Increasing the number of sounds used could 
lead to better model results and more suitability to deep learning methods. For example, 
Generative Adversarial Networks could be used to create sounds to augment the dataset, and to 
validate the model by creating novel unseen sounds to test it. Sound generation with support 
from this type of model would lead to useful applications and systems to generate sounds for 
specific interaction scenarios. This model is the first of its kind to use machine learning to 
accurately relate the features of Non-Linguistic Sounds to their affective dimensions. In the 
future, the aim is to use the current model to develop a sound design support system for social 
robots, entertainment, and other media that use such sounds. 
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