

Design and Implementation of

a Teleoperator’s Workstation

Duarte KEMPER
Joren GEERTS

Martin ULBRICH
David HONER

Supervised by:

Prof. Dr. rer. nat.
Toralf TRAUTMANN
Prof. Xavier MASIP

Dr. Eva MARÍN

08/02/2023 – 21/06/2023
—

EPS Project February 2023
—

EPSEVG

 Design and Implementation of a Teleoperator’s Workstation PAGE 2 OF 50

I. Foreword
We are a team of four European students who participated in the European Project Semester at the

Universitat Politècnica de Catalunya in Vilanova I la Geltrú. The team members come from different countries in
Europe. Duarte Kemper comes from France but is Dutch and studies mechanical and electrical engineering at the
Ecole Nationale d’Ingénieurs de Tarbes, Joren Geerts comes from Belgium and studies electromechanics at
Thomas More University in Geel. Martin Ulbrich comes from Austria and studies design and media at High School
St. Pölten in Sankt Pölten and David Honer who comes from Ireland studies product design at the TU in Dublin.

Two of our mentors, Prof. Xavier Masip and Dr. Eva Marín work at the CRAAX department of the UPC,
which is the Catalan acronym for Advanced Network Architectures Lab. Our head mentor is Prof. Dr. rer. nat. Toralf
Trautmann who is from the MechLab department of the Hochschule für Technik und Wirtschaft of Dresden. He
offered us this project in association with his lab. We will be working on this project for nearly five months. Other
students will probably continue where we left off, as there is much more to it than what can be done in one
semester.

Figure 1: European Project Semester Participants
From left to right: Duarte Kemper; Prof. Dr. rer. nat. Toralf Trautmann; David Honer; Joren Geerts; Martin Ulbrich

 Design and Implementation of a Teleoperator’s Workstation PAGE 3 OF 50

II. Abstract
The project aims to implement a way for a teleoperator to control an existing self-driving car if the

autonomous driving algorithms fail to respond to the encountered situation. The project will rely on the existing
code developed by the MechLab Team at the HTW in Dresden, who have converted a BMW i3 into a self-driving
car using surround and proximity sensors and a homemade software that controls the vehicle's speed and
steering. The car is also able to detect pedestrians and other obstacles thanks to a deep learning algorithm
dedicated to this part.

Teleoperation systems pose many challenges, such as providing the teleoperator with the same level of
situational awareness as a driver in the car. The driver needs to focus more on the surroundings, and therefore
teleoperated drivers will have to rest more often and take more breaks. To address this challenge, the
teleoperation system will use high information density sensors, including LiDAR, radar, and ultrasonic sensors, to
provide the driver with an overlay of detected obstacles and the predicted path, enhancing reality to compensate
for latency in communication by taking some workload off the operator.

Another big challenge is to switch between the autonomous and teleoperated driving modes, as there are
different problems that can appear. Most noticeably, during the time it takes for the operator to get aware of the
situation and respond to the call, the car must be able to safely stop and wait for instructions from the operator.
The failure to do so could result in dangerous or even deadly situations for the autonomous vehicle’s occupants
as well as for the other road users, who do not need to wait for the communication to be established.

One of the last great challenges is allow stable and fast communication between the car and the
teleoperator. This can be achieved by narrowing the data transmitted for example by reducing video quality in
predefined cases, or by ensuring redundancy in the communication media. Nevertheless, a complete loss of
communication is not impossible, so a protocol needs to be defined in order to safely halt the vehicle while waiting
on the reconnection of the transmission.

To fulfil this project, our team will use MATLAB and Simulink in combination with different toolboxes from
the MathWorks company. We will try to develop a human-machine interface for the teleoperator, implement a
way for the operator to take over control of the vehicle, build scenarios to test and simulate our different programs
and much more. All of this is done in order to build safer and more reliable autonomous vehicles for the future.

 Design and Implementation of a Teleoperator’s Workstation PAGE 4 OF 50

III. Table of contents
1 Introduction ... 7

2 Project statement .. 9

2.1 State of teleoperation technology ... 9

2.2 Background .. 9

2.3 Teleoperation .. 12

3 Research and courses ... 16

3.1 3D BMW model for simulation ... 16

3.2 Design of Vilanova i la Geltrú.. 18

3.3 MATLAB courses ... 21

4 Human-Machine interface .. 22

4.1 MathWorks App Designer .. 22

4.2 Design rationale ... 22

4.3 Simulink and App Designer integration .. 23

5 Teleoperation switchover .. 25

5.1 Algorithm failure detection and switching... 25

5.2 Safety backup protocol ... 25

5.3 Integration in the Simulink model ... 25

6 Bidirectional communication between vehicle and operator ..27

6.1 Transmission theory ...27

6.2 Operator to vehicle communication ..27

6.3 Vehicle to operator communication ... 28

6.4 Implementation and proof of concept ... 29

7 Simulation scenes and scenarios .. 32

7.1 RoadRunner overview .. 32

7.2 Different data for map design .. 33

7.3 Recreating Vilanova i la Geltrú .. 35

7.4 Integrating the map in Simulink ...37

8 Eco-Design .. 38

8.1 The use of electric vehicles (BMW i3) .. 38

8.2 Optimise routes taken .. 38

8.3 Use of regenerative braking ... 39

8.4 Optimised charging .. 40

8.5 Vehicle sharing .. 41

9 Project management ... 42

 Design and Implementation of a Teleoperator’s Workstation PAGE 5 OF 50

9.1 Project tasks breakdown and planning .. 42

9.2 Team management ... 44

9.3 Future of the EPS project ... 44

9.4 Project deliverables .. 45

10 Conclusion .. 46

11 Bibliography .. 47

12 Appendices .. 48

12.1 Extract of the German Road Traffic Act (translated) ... 48

12.2 Gantt chart ... 49

IV. List of tables
Table 1: Table of the mesh parts for the vehicle ... 16

Table 2: First section of the Gantt chart used to plan our EPS project ... 44

Table 3: Complete Gantt chart of our EPS project .. 50

 Design and Implementation of a Teleoperator’s Workstation PAGE 6 OF 50

V. List of figures
Figure 1: European Project Semester Participants .. 2

Figure 2: Bloc diagram of a simplified teleoperation communication system .. 7

Figure 3: BMW i3 automated by the MechLab Team on the test track in Dresden .. 10

Figure 4: General overview of the path tracking algorithm implemented in the BMW i3 10

Figure 5: Screen capture of the video presenting the pedestrian detection algorithm from the HTW Dresden 11

Figure 6: Typical setup of a teleoperator's workstation (taken from [1]) ... 13

Figure 7: Example of a trajectory prediction overlay and a free corridor for emergency braking (taken from [1])
 .. 14

Figure 8: Visual representation of a situation responsible for a teleoperator call (taken from [3]) 14

Figure 9: Typical scenario of the takeover from automated to teleoperated driving (taken from [3]) 15

Figure 10: Screen capture of the tutorial video on how to use Simulink with Unreal Engine 17

Figure 11: BMW i3 model imported in RoadRunner ... 18

Figure 12: Typical interface of the Driving Scenario Designer, with the trajectory planner in the middle and the
3D visualization on the left-hand side ... 19

Figure 13: A view of OpenStreetMap looking at a section of Vilanova i la Geltrú ... 20

Figure 14: The RoadRunner user interface, with the imported aerial image later used for the scene design 21

Figure 15: First iteration of the HMI used for testing ..23

Figure 16: Fail-safe subsystem developed for the teleoperation switchover .. 26

Figure 17: Frame processing and shaping for upcoming UDP transmission ... 30

Figure 18: Comparison between the original video frame a) and the received frame b) .. 30

Figure 19: Simulink model of the operator's side of the teleoperation system .. 31

Figure 20: Simulink model of the vehicle's side of the teleoperation system ... 31

Figure 21: Overview of a premade RoadRunner scene ...32

Figure 22: Example of a topographic base file imported in RoadRunner ...34

Figure 23: Result of a coloured LiDAR point cloud in RoadRunner ..34

Figure 24: Screen capture of the section of the road network designed in RoadRunner ... 35

Figure 25: One of the problematic junctions during export due to its high complexity ..36

Figure 26: Example of a custom prop used in a fence (left) and the prop itself (right) ..36

Figure 27: Example of an electric car, here the BMW-i3 used by the HTW Dresden .. 38

Figure 28: Example of an alternative route that would be longer but more efficien ...39

Figure 29: Diagram of a regenerative braking system used in electric vehicles ..39

Figure 30: DC Fast-charging station for electric vehicles with a plug-in robot .. 40

Figure 31: Example of a shared city-vehicle ... 41

Figure 32: Capture of our Trello Board used to keep track of the progress of different tasks as well as sorting
information relative to the project ..43

 Design and Implementation of a Teleoperator’s Workstation PAGE 7 OF 50

1 Introduction
Future transportation for both individuals and society will be largely dependent on automated driving

functions. Remote monitoring will be necessary for the safe execution of these functions as well as to overcome
complex situations which driving algorithms cannot solve yet. These ideas are referred to as "teleoperated
driving", as the driver is not physically present in the car. In this report, we will expand further on this subject,
trying to implement the technology in a car that is, for now, only able to drive autonomously in certain
circumstances.

Since the beginning of the autonomous driving concept, manufacturers of such vehicles are continuously
working on improving the self-driving algorithms. But even with the latest advance in deep neural networks, there
are still a considerable number of situations where the human decision-making ability is superior. Therefore, the
demand for teleoperated technology is increasing, as this means a human will take over control of the vehicle if
the algorithm struggles.

Figure 2: Bloc diagram of a simplified teleoperation communication system

In our case, a self-driving car developed by the HTW Dresden is already available. Our main objective is to
implement a teleoperator control system in the car’s algorithm as well as the operator's remote interface. In other
words, the sections D, E and F are already existent, and they will only require slight modifications in order to work
with our teleoperation system. Nevertheless, to allow us to test our system in a safe way, we will start by using
software models of the last three elements provided by our mentor.

Because of the extremely high complexity of such a teleoperation system and the sheer amount of work
that would have to be carried out to develop a commercial version, our project has been based on a limited and
well stated number of tasks in order to build the base of the system. These tasks were selected based on their
duration, which we estimated by deepening our knowledge in the required fields at first. This will allow future
students to build upon our project, while still being able to present functioning concepts during our final defence.

 Design and Implementation of a Teleoperator’s Workstation PAGE 8 OF 50

In the first section of this report, we will develop the current state-of-the-art of teleoperation and related
products our project is based on. This will give a better understanding of the sections A, B and C of the
teleoperation system on which we are working. We will continue by explaining our different choices and uses of
software as well as the varied reasons that got us there.

The following section will be dedicated to the first element A of the teleoperation system, where we used
simple but effective ways to create a raw human-machine interface. After this, we will develop more about
elements B and C as we encountered many issues when moving from the simulation to a real-world test. Finally,
we will dedicate a section of this report to the procedure we went through in order to create realistic simulations
to test our system in.

Meanwhile we made all our intellectual capacity available for this EPS project, a student at the HTW in
Dresden has been working on developing a new vehicle interface as well as a network interface for their test
vehicle in Germany. This should not impact any of our work, as we have not modified anything of those sections
in a meaningful way.

 Design and Implementation of a Teleoperator’s Workstation PAGE 9 OF 50

2 Project statement
The final goal of our project is to implement in an existing self-driving car, a way for a teleoperator to

control the vehicle if the autonomous driving algorithms cannot respond to the encountered situation. To fulfil
this task, we will use the MATLAB and Simulink software, as all code is already written with these languages.

2.1 State of teleoperation technology

In robotics, a machine is called teleoperated when the control information it uses to achieve a task is not
generated by itself, but by an external person or device. This information is then transferred to the working device,
while the necessary information for the decision-making person or device is communicated back.

Teleoperation has already been in use for an extended period of time but mostly on a local scale, with
remote controls for toys, devices or machines where the operator stands next to it. In the last two decades,
teleoperation has been implemented in many other fields to enable operators to execute tasks while being located
hundreds or even thousands of kilometres away.

After teleoperation proved its success in the military field, the medical field also began implementing it
for different use cases. The biggest use is telesurgery, where a surgeon from a certain hospital can perform
surgeries on patients from a different hospital without the need to travel the long distance every time. Also,
teleoperation is now used increasingly to deliver meals to patients in hospitals.

Many different research projects by car manufacturers, universities and private companies are looking at
implementing this teleoperation technology in vehicles, in order to hopefully facilitate future transportation.

2.2 Background

At the HTW in Dresden, Toralf Trautmann and his team have managed to convert a BMW i3 into a self-
driving car by implementing a lot of surround and proximity sensors as well as a homemade software able to
control the vehicle’s speed and steering. Therefore, our project will heavily rely on the already available code
developed by the team in Dresden.

As autonomous driving is a field of heavy research, the team at the HTW is continuously improving their
technology too. But during this project, we will assume that the car as well as its software are not evolving enough
to impact our upcoming and already fulfilled tasks.

 Design and Implementation of a Teleoperator’s Workstation PAGE 10 OF 50

Figure 3: BMW i3 automated by the MechLab Team on the test track in Dresden

2.2.1 Autonomous driving

Path tracking is a vital component of autonomous driving and most current path tracking research is based
on different positioning sensors, such as GPS, cameras, and LiDAR sensors. The autonomous path tracking system
consists of a differential drive kinematics module, pure pursuit module, a PID control module, and two actuators
that control the steering and throttle as shown in Figure 3.

Figure 4: General overview of the path tracking algorithm implemented in the BMW i3

The differential drive kinematics model calculates the current position in relation to the original position
based on rear wheel speed, which can be read from the CAN bus. The pure pursuit model then outputs the target
steering angle and target vehicle speed based on the error between the target position in the predefined path and
the current position. The target steering angle and vehicle speed are then sent to the PID controller to generate a
steering and throttle command in order to drive the vehicle.

Recently, Dr. Cao, a guest scientist of the Hangzhou Jiliang University who works on autonomous path
tracking and driving, came to visit the MechLab in Dresden. Once he returned to his home country, he successfully
managed to start and stop the autonomous driving of the car in Dresden from China through a TCP/IP connection.
This is really promising as we will also need to communicate between the car and a remote location for our project.

 Design and Implementation of a Teleoperator’s Workstation PAGE 11 OF 50

2.2.2 Pedestrian detection

In order to prepare their autonomous vehicle for real world tests, the team from Dresden has designed
and implemented a pedestrian detection algorithm in the car. The video with the following link gives you a visual
idea of the working of the car equipped with the pedestrian detection.
https://www.youtube.com/watch?v=aGPtWeZi2o0

In Figure 4, we can see the Livox LiDAR data in the bottom left corner as well as the real situation. On the
LiDAR data we observe the two road marking stripes in blue, as the white paint is highly reflective. The less
reflective parts are shown in colours closer to red. The detection of pedestrians and cars is based on a deep
learning algorithm.

The LiDAR data is processed in real-time and outputs 3D “boxes” that enclose the detected obstacle. If
there are obstacles on the trajectory of the autonomous vehicle, the path box will turn red, and it will apply the
brakes in a controlled manner in order to stop the car before the obstacle. As soon as the path is clear again, the
box turns green, and the car will start moving again. The pedestrian detection is running on a Nvidia Jetson Nano
and is written in Python, whereas the driving is done by a Simulink program running on a laptop. The two
computers communicate using the TCP/IP protocol.

2.2.3 Automated and teleoperated driving regulations

Nowadays, with many private and public companies designing and testing autonomous vehicles, the
regulations must be adapted in order to control their appearance on the public roads. The German Road Traffic
Act available in Appendix 1 includes provisions for the operation of autonomous driving vehicles in certain
operating areas.

The main points contained are that such vehicles must be equipped with technical equipment that allows
them to perform driving tasks independently, and to bring the vehicle into a minimum-risk state in certain

Figure 5: Screen capture of the video presenting the pedestrian detection algorithm from the HTW Dresden

https://www.youtube.com/watch?v=aGPtWeZi2o0

 Design and Implementation of a Teleoperator’s Workstation PAGE 12 OF 50

situations, for example when the system limits are reached, technical faults occur, or when the vehicle is
deactivated. In order to still be able to qualify somebody as responsible for the different actions and accidents, a
human person is still compulsory, but he can be located remotely. Known as the Technical Supervisor in the GRTA,
he is responsible for authorizing driving manoeuvres, deactivating the vehicle and ensuring the safety of the
vehicle occupants and other road users when active.

The GRTA also specifies requirements for the defined operating areas in which autonomous vehicles may
be utilized. These areas must be locally and spatially determined public street spaces that meet the requirements
set out in Paragraph 1e Alinea 1. The technical equipment of autonomous vehicles must be able to bring the
vehicle into a minimum-risk state if the continuation of the journey is only possible by violating road traffic
regulations. Also, the vehicle must be able to immediately report to the Technical Supervisor any impairment of
any component whether it impacts its functionality or not.

These exhaustive regulations make it clear that for the moment, any autonomous vehicle must have an
assigned teleoperator who can be held liable for the problematic situations or accidents caused by the car. This in
turn means the teleoperator connection must be error proof and that such a connection will still be necessary for
a long time.

2.3 Teleoperation

With teleoperation of a vehicle being an overly complex field, we will try to develop the most important
parts of the system in the following section. For every part, we will also address the different problems that come
along. Some of our tasks developed further down in this report consist of solving these problems, as they are the
key to a flawless immersion in the remote driving experience.

2.3.1 Sensors and driver immersion

The main difficulty with teleoperation is to permit the Teleoperator to sense the vehicle’s surrounding
area in the same way as if he were in the car. This means that the driver needs to focus a lot more during his work
to keep track of all the elements around the vehicle. In the end, the driver will be exhausted earlier than during
real life driving, and therefore teleoperators will have to rest more often and take more breaks. Luckily, most cars
that could use teleoperation are already equipped with a lot of high information density sensors for autonomous
driving.

The minimal required information for the driver is a 270° field of view, centred on the front of the car.
With this information, most of the components are visible, but because of the two-dimensional properties of
screens, distance estimation is difficult for the driver. This could be solved by using other sensors available on the
car, with for example radar or ultrasonic sensors. By overlaying this information on the screen, or near the camera
views, the driver can simply read off the information, needing fewer mental efforts.

There is also a notable difference between a teleoperator using a conventional screen and a teleoperator
using a head mounted display (HMD) as stated in [1]. The tests carried out show that the operators equipped with
HMDs were, in general, prone to less collisions but had worse distance estimations. This is mostly due to lack of
training as the majority of participants did not have prior experience. Therefore, HMDs could help in the
perception of the vehicle’s environment for the operator.

 Design and Implementation of a Teleoperator’s Workstation PAGE 13 OF 50

Figure 6: Typical setup of a teleoperator's workstation (taken from [1])

Also, most cars are equipped with at least one simple type of LiDAR, providing a 3D point cloud of the
environment. A 3D point cloud can be seen as a set of data points in space that represent where the sensor
measured the object’s surface. These data are normally processed by the autonomous driving algorithms, but
during teleoperation, the data could be processed by another algorithm to overlay the different detected
obstacles on the video and therefore helping the driver in focusing on suspicious elements in the environment.

Finally, to compensate for the latency of the communication between the vehicle and the teleoperator, a
trajectory predictor could be used, overlaying on the video the path the car will follow with the current steering
angle and speed, creating enhanced reality for the operator. The operator would then be able to steer according
to the planned path and not the vehicle’s position. Another addition would be the implementation of a free
corridor, which is the distance travelled by the car if it would need to come to a sudden stop and should therefore
always be kept free by the driver.

 ideo stream
displays

 teering
wheel

 edals and
shi er

 Design and Implementation of a Teleoperator’s Workstation PAGE 14 OF 50

Figure 7: Example of a trajectory prediction overlay and a free corridor for emergency braking (taken from [1])

2.3.2 Switching from autonomous to teleoperated

driving

In order to get assistance from a teleoperator, the autonomous algorithm first must make a teleoperation
call, which is answered as soon as a teleoperator is available. The problem appears when such a call is initiated in
a high-speed driving scenario. In a big teleoperator centre, the time elapsed between the algorithm making the
call and the driver answering to the call could be small due to the high number of operators. But the first thing he
must do is get to know the situation that causes trouble.

Figure 8: Visual representation of a situation responsible for a teleoperator call (taken from [3])

Therefore, the time spent between the start of the call and the operator acting on the car could be quite
long, and at higher speeds, the distance travelled by the vehicle gets impressive. To remedy this, the car’s software

 redicted path ree corridor

 Design and Implementation of a Teleoperator’s Workstation PAGE 15 OF 50

must carry a protocol that securely slows down or even stops the car before control is taken over, to allow the
operator to familiarize with the encountered situation as can be seen in Figure 8.

This is a critical part for autonomous and teleoperated driving as a badly implemented protocol could lead
to very dangerous situations for occupants and other road users able to respond to the unforeseen situation
without latency.

Figure 9: Typical scenario of the takeover from automated to teleoperated driving (taken from [3])

2.3.3 Network and communication

No matter what type of teleoperation is used, there will be a part of the system where data must be
transmitted between an operator and a machine. In the case of teleoperated driving, control inputs from the
driver are sent to the car, and the car transmits data from its sensors to provide necessary information to the
driver. This in turn implies that the car and operator’s workstation need to be able to communicate without issues.

Therefore, teleoperated vehicles are equipped with wireless communication systems, of which most are
using the 4G and 5G mobile network. Nevertheless, these networks typically experience variable throughput and
latency and uneven coverage. Because of these reasons, different solutions could be implemented to ensure
better communication between driver and vehicle.

One of such solutions for example consists in utilizing two networks at the same time (with two sim cards
from different providers) and so allowing for communication on the network with the highest speed and best
coverage. It also provides redundancy in the case of a failure in one of the operator’s networks or other issues
that might occur.

With teleoperated driving focusing mostly on providing the operator with a live view of the vehicle’s
surroundings, another solution proposed in [4] tries to process the acquired video data in real-time before
transmitting it to the operator. This method could allow the dynamic modification of the resolution of the video
stream based on available network bandwidth. The idea is that the algorithm selects different sections of the
video data that are considered regions of interest for the operator and compresses the leftover parts to a lower
resolution.

 Design and Implementation of a Teleoperator’s Workstation PAGE 16 OF 50

3 Research and courses
The first weeks of our project were mainly dedicated to the seminars of our EPS course. The time that was

left we used to do some research in order to better understand the difficulties we were bound to encounter in
our tasks and therefore have a better judgment on the feasibility of the goal. This time was also used to familiarize
with MATLAB and Simulink, as only one of us had some but limited experience with the software.

3.1 3D BMW model for simulation

One of the proposed tasks was to create a model of a BMW-i3 to use during simulations in order to make
them closer to reality because this is the car used by the HTW Dresden. After doing a lot of research on this subject,
we mentioned that there was a high probability this task would be really difficult to complete. This is because
there are a lot of different steps that must be carried out on different and complex software, and in turn, it would
be extremely time consuming.

3.1.1 BMW model for the Simulink model

After spending a solid amount of time researching the workflow needed in order to be able to import the
car model in our Simulink model, we have come up with the main steps that would have to be gone through in
order to import the car in the simulation software. Beneath is an overview of the different steps that must be
accomplished.

First, a 3D mesh file of the BMW-i3 must be created. This is a file with the different outside surfaces the
car is composed of, to enable the simulation to detect collisions between the vehicle and its surroundings. There
were some high-resolution ready-made files on the Internet, so this part was quickly finished.

For the second part, we would have to setup the bone hierarchy of the mesh using a free and open-source
software called Blender. This procedure basically describes which parts of the car are linked together and how.
For example, the front left wheel of the vehicle is linked to the body, and can
move up and down because of the suspension, and turn left and right with the
steering.

Having done the research, we know how to accomplish this part, but
we have not tried to do it yet, as it is probably the most time-consuming part
of the whole task. In fact, the downloaded mesh must be divided in separate
parts in order to make a bone hierarchy out of them. In Figure 9 you can see
the various parts that have to be created and what names they should be given
in order for the program to recognize them.

The third step consists in importing the file in Unreal Engine. This
program is a game engine used to develop multiple computer and video games.
As we were only trying to gauge the amount of work required for this task in
particular, we decided to try and import the skeletal mesh with only the
VehicleBody defined. Unfortunately, this is where we started to encounter
issues.

Table 1: Table of the mesh parts for
the vehicle

 Design and Implementation of a Teleoperator’s Workstation PAGE 17 OF 50

During setup of the MATLAB plugin for Unreal Engine, when trying to activate the plugin, an error message
stating that the plugin was not compatible with either the Unreal Engine version or the operating system would
appear. After spending a lot of time trying to get the plugin to work, we reached out to MathWorks, the parent
company of MATLAB, for help.

Figure 10: Screen capture of the tutorial video on how to use Simulink with Unreal Engine

After thoroughly going through the different steps included in their response, we managed to get the
plugin working on only one computer. At this point, even if we would have been able to get it to work properly on
all of our machines, we decided that this task was too difficult and would take too long to achieve only a small
part of the project.

The last step would have been to import the car model in Unreal Engine through the help of the plugin,
but this was not even tried because having it operational on only one computer was too restrictive. Not working
on this task will only impact the aesthetic part of the project. In fact, this visualization is solely to be able to
simulate the situation as closely as possible to reality, as sensors can pick up all the different obstacles and objects
in the scene.

At the end of our project, with much more knowledge about Unreal Engine and the different steps
required to export scenes, we decided to try one more time to create a model of the vehicle to be used during the
Simulink simulations. After running an additional command in the MATLAB command window that we were not
aware of was needed, a folder containing an unreal project example was created. This finally allowed us to follow
the workflows stated above, without encountering more issues.

With these steps now completed, we imported our vehicle model while ensuring to select the right options
in the Editor. Once the import was completed, we could export the vehicle in order to use it in Simulink, without
forgetting to select the right path in the Simulink blockset. At last, we were able to use our BMWi3 model for our
visualisations as will be shown later in the report.

 Design and Implementation of a Teleoperator’s Workstation PAGE 18 OF 50

3.1.2 BMW model for RoadRunner

As has been explained in the section above, we failed to prepare the BWM-i3 model to use it directly in
the Simulink models. At this time, we received an email from a MathWorks France employee who asked if he could
learn about our project, it being closely related to his field of work and knowledge. As most of our work needed
to be carried out on MATLAB and other products from the company, we were very enthusiastic and offered him
to join one of our weekly meetings.

During this meeting, we explained our different goals of the project, primarily the fact that we were
looking at modelling Vilanova i la Geltrú for our simulations and the issues we encountered trying to prepare the
vehicle for Simulink. Seeing what we were trying to achieve, he advised us to use a different workflow, using a
different software called RoadRunner.

To import the model of the car in RoadRunner, the only mandatory steps were to scale the 3D model and
orient the coordinate system the right way in Blender. Then, we exported the model to an .fbx format and simply
opened it in RoadRunner, resulting in the view below.

One thing to note is that we did not create a bone hierarchy for the car, so it is moving as a solid 3D object,
without spinning wheels or effective suspension. In our case, the model is usable as is, but can always be perfected
later to create more realistic simulations if desired by future students.

3.2 Design of Vilanova i la Geltrú

During the first weeks of our project, we quickly came to the conclusion that realistic 3D visualisations
would be possible to make with the tools we had during this project. Therefore, we first thought of modelling the
city’s road network using the Driving cenario Designer. This is a toolbox that comes with Simulink and allows

Figure 11: BMW i3 model imported in RoadRunner

 Design and Implementation of a Teleoperator’s Workstation PAGE 19 OF 50

quick and easy design of simple road networks on which certain driving scenarios a real car might encounter can
be modelled, albeit without the surroundings.

3.2.1 Vilanova i la Geltrú in Driving Scenario Designer

Figure 12: Typical interface of the Driving Scenario Designer, with the trajectory planner in the middle and the 3D
visualization on the left-hand side

The Driving Scenario Designer toolbox is compatible with the OSM data format. This is the format of
OpenStreetMap, a free and open world map database built by a community of volunteers. These maps are not
fully accurate but convey the necessary information to create a crude road network. After exporting the map from
the OpenStreetMap website, it can be imported in the Driving Scenario Designer. During import, you can select
the different roads and streets you wish to use, and they will be inserted in the designer with their associated
name and lane number.

This allows for a rapid design of a section of the Vilanova i la Geltrú road network, but some work is still
required. Because the OSM format does not convey the elevation of the different streets, they are all imported
on the default plane. Every section of road can be individually modified to make it closer to the real-life situation.
Also, the junctions between the roads often need a lot of work to make everything blend in the right way.

In the Driving Scenario Designer, there are additional objects and actors, like bikes, pedestrians, guardrails,
cones, etc. Still, there are no sidewalks available to be detected by the different sensors because there is no default
“ground” where there are no roads. This could possibly be solved by adding slim roads to the side of the main
road, which will act as sidewalks and interact with the sensors.

However, it should be noted that if the sidewalks are raised to their appropriate level, between five and
ten centimetres above the road, a gap appears between the two objects, as they are only 2D representations. This

 Design and Implementation of a Teleoperator’s Workstation PAGE 20 OF 50

could potentially influence the different sensors, and therefore, testing should be carried out in order to validate
the correct working of the simulation in this configuration.

This Driving Scenario is also able to crudely simulate sensors like LiDARs, ultrasonic sensors, and cameras
which can all be observed during the simulation from the bird’s-eye view window. Therefore, we should have been
able to replace the default maps used for 3D visualisation with ones created with this toolbox.

At this time, we only had tested the design part of the toolbox but already saw this would be extremely
difficult to make something of good quality. The whole purpose of this section was to include real scenarios in the
Simulink simulations, in order to try out the switchover from autonomous to teleoperated driving in different
configurations and therefore decided to stay with the default Simulink maps.

3.2.2 Vilanova i la Geltrú in RoadRunner

But thanks to the advice from our MathWorks contact, we decided to try out RoadRunner because it
would, in theory, speed up our workflow while at the same time rendering much better results for our simulations.
However, with less than half of the project time left, he was nice enough to give us some crash courses in order
to quickly get familiar with the software.

RoadRunner is a software created by MathWorks specially to create custom scenes and scenarios as close
to reality as possible, to use during simulation of autonomous vehicle software or other driving-related matter.
Our MathWorks contact showed us the different import possibilities to facilitate our work, as well as the main
functions of the software.

To validate this method, we first imported an image downloaded from the Instituto Geográfico Nacional
[5], pain’s national website where all the land and map related information can be found. This image is of
remarkably high definition, so we could easily use it to layout the road network. It could then also be used to
locate the different markings, signs, as well as all the props like trees, bushes and so on in order to make it as
realistic as we could while not spending too much time on it.

Figure 13: A view of OpenStreetMap looking at a section of Vilanova i la Geltrú

 Design and Implementation of a Teleoperator’s Workstation PAGE 21 OF 50

Figure 14: The RoadRunner user interface, with the imported aerial image later used for the scene design

Once we tried out the ease of use of the program, we quickly came to the realisation that it was indeed
going to save us an incredible amount of time. Now that we had an easy-to-use software to create 3D scenarios,
we could finally create good visualisations while at the same time simulating the sensors used for driving the car,
it being autonomously or with teleoperation.

3.3 MATLAB courses

Because of the team’s limited knowledge about MATLAB and imulink, our professor recommended to
take some online courses available on the MathWorks website. The courses he recommended us to take were the
MATLAB & Simulink Onramp courses.

The MATLAB Onramp course was a basic introduction of how MATLAB works. This tutorial is designed to
familiarize you with the different capabilities of MATLAB and allows you to write some basic code in order to
better understand the more complex examples and functions of the language.

In the same way, the Simulink Onramp course was a basic introduction to get started with Simulink. In the
course they explained some commonly used blocks and workflows which made us able to understand the very
complex graphs from the HTW team we will have to work with.

Finally, some time was spent on small home exercises from our mentor to learn the basic workings of
different Simulink Toolboxes we will use during our project before really diving into it.

 Design and Implementation of a Teleoperator’s Workstation PAGE 22 OF 50

4 Human-Machine interface
The Human-machine interface (HMI) is the system or interface that allows communication and various

interactions between the teleoperator and the autonomous vehicle. It is the various elements and technologies
that allow the operator to monitor and control the vehicle's functions remotely when needed.

In this case, this human machine interface is in the form of a digital cluster. The digital cluster incorporates
visual displays to provide the operator with real-time information about the vehicle's status which can include
speed, battery level, navigation instructions, and other relevant information in regard to the status of the car. In
the real-use case, this display will be in the form of an augmented reality interface provided to the teleoperator
but can also be in the form of traditional screens and heads up displays which are more practical in this scenario.

There are various options in which the teleoperator will be able to work with the HMI such as
touchscreens, buttons, knobs, or even voice commands but in the real-use case a full driving simulator would
essentially be the controller of the vehicle as well as the commands on the HMI. The simulation is controlled
through the start and stop functions on the cluster and then transferred to an external device when it needs the
teleoperator to take over. The HMI could also provide the alerts and warnings in situations where the teleoperator
is needed, whether that is through lights, sound and audio or something tactile like vibration.

Due to the transfer of data being so light, mainly the speed of the car, there is great possibility for the use
of cellular networks such as 5G networks. It is well-suited for transferring low-bandwidth data with good reliability
and wide coverage.

4.1 MathWorks App Designer

To create the HMI MATLAB offers a toolbox called App Designer. This can be used to create various
interactive apps without the need for extensive knowledge in programming. Although it is not primarily designed
for creating car clusters, its functions can be adapted as needed to fit the specifications of the teleoperators
screen.

The basic layout of the cluster is achieved through simple drag and drop of the various blocks available.
Some which include controlling functions of the chosen project while others only displaying information of the
project. Its intuitive layout helps aid in creating an equally user-friendly and intuitive layout of the cluster.

The App Designer allows for real-time data processing collected from external sources such as sensors.
The code is loaded from the Simulink simulation into the code of the HMI through various options. The LiDAR
sensor can be used to collect the speed of the vehicle and then transferred to the cluster with the use of integrator
blocks then adding derivative blocks to calculate the speed based off of the changing position of the vehicle. This
data can then be transferred to MATLAB through TCP/IP communication which is then received and displayed
using the call-back function in the app designer.

4.2 Design rationale

It's important for the HMI design to focus on user experience, simplicity, and intuitive design, considering
the future potential complexity of the vehicle's functions and the teleoperator's controls. Clear and concise
information is presented only, with the well-designed controls are key to ensuring safe and efficient teleoperation

 Design and Implementation of a Teleoperator’s Workstation PAGE 23 OF 50

of the autonomous vehicle. Only the most basic controls are necessary at this stage. Start and stop functions are
what are used to initialise the processing of the speed data being received from the simulation. This can be
initialised either when the teleoperator needs to take control or can be left running while the vehicle is in
autonomous mode. Other considerations such as lights and indicators are included to ensure the vehicle is
performing safely on the roads, being a fail-safe in which the teleoperator could notice and report.

4.3 Simulink and App Designer integration

The initial goal was to have the functionality and aesthetic of the app designer work in tandem with
 imulink’s simulation. Due to crossover connection issues and incapability of blocks the final goal was not able to
be completed as intended, however it is theoretically possible with some more time and some fine tweaking.

When working directly with the app designer itself, the design interface is easily operable with the ability
to make quick adjustments. Issues arose when working with the callback functions, which is what allows the code
to be altered so as to have an animated interface. Unfortunately, when working with the callbacks, it does not
allow the altering of all the code with some being predefined based on the components that have been added.
This first became an issue when pre-testing the gauge or in this case the speedometer. Initially, the LiDAR was
thought to be the best option for determining speed, but it was discovered to require many more components
which would take time to research each individually and how they would work when linking them together and
to app designer. As sine wave blocks are being used already in the Simulink model, it is possible to use this to
determine the speed while also linking it to another sine wave block in the interface. The issue that arose was the
inability to add a sine block to the callbacks in the appropriate position due to the predefined code. With some
work it could be potentially possible to use an additional component as a dummy block such as the button block
to imitate the sine wave block, however it could cause more issues when linking it to Simulink.

Figure 15: First iteration of the HMI used for testing

 Design and Implementation of a Teleoperator’s Workstation PAGE 24 OF 50

It was still the goal to stick with the sine block so a usable workaround was to use MATLAB editor which
could be used by inserting the code from the design of the interface but without the functions. Matlab editor
allows a complete edit of all the code, meaning the sine block needed could be inserted in the code in its correct
position which led to the movement of the speedometer from 0-30 reflected in a manner of a sine wave. This
meant that the two sine blocks from both the editor and the Simulink could theoretically be linked to display the
speed data.

More issues arose then when attempting to link them together. Although the ‘from workspace’ block on
Simulink is supposed to work by pulling the data from whichever file you desire. The block could in fact find the
file but wasn’t compatible once linked, showing errors and not displaying the data, potentially due to missing
blocks connecting the from workspace block, since the code was functioning, and the block was pulling the
information in so it seems that’s the only plausible issue which could be resolved in future project teams.

The functionality can be simplified by performing all animation in Simulink itself as it has a gauge, but only
that, in terms of design. When connecting a sine block alone it does not function even though it shows no errors,
this became a common issue with repeated trial and error with various blocks. Eventually, the addition of a gain
block and an input1 block in combination with the gauge, it began to function. The settings can then be modified
to adjust for speed and the limits of the needle. This means that by connecting these two blocks with a gauge in
the actual Simulink model it should display the real-time speed of the vehicle.

This won’t produce a usable interface for the teleoperator, however it’s a proof of concept and would still
provide enough data to make an informed decision when controlling the vehicle even if slightly less user-friendly.
This clarifies that all work thus far is capable of being used to create a more aesthetic and better arranged design
for the teleoperator, once the linking issues are resolved.

 Design and Implementation of a Teleoperator’s Workstation PAGE 25 OF 50

5 Teleoperation switchover
As has been stated in section 2.3.2, the switchover from autonomous driving to teleoperation is a difficult

procedure because of all the different parameters involved. In order to make the changeover as safe as possible,
different procedures must be implemented as well as a backup in case of failure of any part of the system.

5.1 Algorithm failure detection and switching

To initiate the changeover between the driving modes, there first needs to be an input signalling that the
software is not able to make an appropriate decision to drive the vehicle in the encountered situation. But because
the delay that will take place before the operator is actually controlling the car while being aware of its
surroundings, two situations can be encountered.

As soon as the algorithm detects its inability to continue, the call to the teleoperator is initiated. While
the car waits for the input of the operator, it will try to move out of the lane in order to come to a stop in a safe
place (emergency lane on the highway for example). If there is no room to stop in a safe place, the vehicle will
need to perform an emergency braking while minimising the deceleration in order to allow the cars behind to
slow down as well.

When the operator finally takes over the commands of the vehicle, he can drive the vehicle around the
problematic situation while taking all the necessary decisions and precautions. With the vehicle past the trouble
zone, the operator can press a button in order to give back the control to the self-driving algorithm. This might be
done while driving, as the program is still running, but it will need to be tested out to ensure this possibility.

5.2 Safety backup protocol

As has been stated before, the fact that the driving of this vehicle is based on technology can lead to
numerous problems which means there has to be a safety protocol that can be deployed if the communication is
lost during teleoperation or switchover.

This protocol will be very similar if not identical to the one that will be activated when the algorithm
struggles, as the car will have to come to a halt as soon as possible, but without endangering its occupants or the
vehicles around it.

In order to detect the connection loss between the operator’s workstation and the vehicle, the simplest
way is to check the ‘client.connected’ bit which returns a 1 when the connection is established and a 0 as soon as
it is lost, no matter what the cause is.

5.3 Integration in the Simulink model

With our project running out of time, we have not yet tried to implement the algorithm failure detection,
as this implies that we must first understand the path-generating algorithm in order to add this feature.
Nevertheless, we were able to simulate this input in Simulink by importing a step signal, which can be
parametrised to change state at a certain time period, thus mimicking the signal coming from the code.

 Design and Implementation of a Teleoperator’s Workstation PAGE 26 OF 50

For this proof of concept, the signal is combined with the one carrying the state of the connection between
the vehicle and its operator, as either one of them should enable the same response. In our case, we only
implemented the emergency braking procedure, as the other option requires a deep knowledge about the driving
and obstacle detection algorithms.

The end result is presented in Figure 16. If the Algorithm status signal is triggered, the system will
switchover from the autonomous input to the teleoperated input. But in case of communication failure, the
connection status will be triggered false and therefore change the commands from teleoperation to the default
values in the three squares in order to stop the car quickly. This will have to be perfected, as we only managed to
create a proof of concept with a very rough response that could be smoothed out by using complementary
functions.

Figure 16: Fail-safe subsystem developed for the teleoperation switchover

 Design and Implementation of a Teleoperator’s Workstation PAGE 27 OF 50

6 Bidirectional communication between

vehicle and operator
To allow remote operation of a machine or vehicle, there are two main data streams that must be

transmitted with the least latency possible for the operator to maintain good control of the vehicle. For
teleoperation of a car, video data of the surroundings is transmitted to the operator while the commands are
transmitted to the car.

6.1 Transmission theory

Nowadays, bidirectional communication is used in the vast majority of data exchanges, so the technology
is nothing new. With the advent of the world wide web, it has become extremely easy to communicate between
distant machines very reliably and with low latency in most cases. However, the biggest challenge remains video
data transmission, because of the vast amount of data that has to be sent continuously in order to obtain a free-
flowing video at the receiving end.

The theory is to transmit in real-time a video stream from the car to the operator and the different
commands from the operator to the vehicle. At first sight, this does not seem exceedingly difficult. But as will be
explained further, we will quickly meet the limits of the standard transmission protocols and therefore, we will
only present a proof of concept, that will need to be optimized in order to be used for real teleoperation.

6.2 Operator to vehicle communication

For our project, our mentor Toralf suggested us to use the TCP/IP which stands for Transmission Control
Protocol/Internet Protocol, as it defines the majority of the software and hardware layers used for communication
by combining both protocols. This protocol allows for end-to-end communication between two devices
interconnected by networks around the globe. The main device that hosts the communication is called the server
and the device that connects to it is called a client.

The IP part of the communication defines how the information is routed through the networks to ensure
delivery, whereas the TCP part defines how the data is handled by the sender and receiver in order to allow correct
assembly and disassembly of the information.

From the operator to the vehicle, the data to be transmitted is very light, consisting of only a few 8-bit
integers representing the different commands like steering angle, throttle position, brake pedal position, selected
driving mode (park, neutral, reverse, drive) and the state of the different light and wiper switches. All this data
represents around 100 bits, less than 10% of the maximum that can be transmitted in one packet. This in turn
means that the packet of data will be sent faster, as there is less data to transmit and receive.

To try out this first part, we built two simple Simulink models. The first one is a simple model which reads
the input values of a joystick connected to the computer and packets the signal values in order to send them
through its client connection to the other machine. The second model is composed of a 3D scene configuration
block, a 3D vehicle block, and obviously the receiving server side of the communication with the required signal
conditioning blocks for the 3D vehicle to work with them.

 Design and Implementation of a Teleoperator’s Workstation PAGE 28 OF 50

This simple simulation worked well as our two machines were connected to the same network, which will
never be the case in a real-life situation. For that reason, further testing by a future EPS team should be carried
out between different networks, with a wireless connection preferably to be the closest to reality possible. During
our test, the driver had to look directly at the 3D scene to know where to go with the car. Therefore, our next step
was to implement the live video feed from the vehicle to the operator.

6.3 Vehicle to operator communication

To allow for the teleoperator to drive the car as in a real scenario, a live video stream coming from the
vehicle’s interior must be transmitted in real-time. This allows the driver to know the car’s surroundings and
control the vehicle based on it.

6.3.1 TCP/IP connection

As we had already managed to use the TCPI/IP for the driver commands, we first tried to use it for the
video data transmission as well. Communicating with TCP/IP offers quite some advantages, as it functions
independently of the operating systems of the devices, which means there are no incompatibility issues. It also
supports many routing protocols to allow a secure connection, called a socket, that is maintained until the server
or client part is stopped. This socket communication is also very lightweight and does not overload the network
or devices.

One thing that is not present by default with TCP/IP is encryption. This means that anybody who is able
to intercept the communication can interfere with the data transmission and can therefore take control of the
vehicle. This is a big security issue that will require the implementation of an extra layer, on top of the TCP/IP,
encrypting the data to make the communication secure.

To transmit a video stream, each separate frame has to be sent one by one. If we use an average definition
of 1280*720 pixels for the video, each frame contains more than 2.7 Mbytes of information, or 22 million bits that
must be sent over the network. Because the vehicle will use 4G LTE or 5G cellular data to connect with the
operator, the average upload speed will be around 10 Mbits/s.

1With this information, we can calculate the theoretical average time it will take to send one video frame:
22 / 10 = 2.2 seconds. This time is neither considering processing time by the server and client computers nor
packet header size. As a video requires at least 25 frames per second in order to be fluid, the average time it
should take for a frame to be sent is 1 / 25 = 0.04 seconds. Therefore, it is mandatory for the video to be processed
in order to reduce the amount of data to be transmitted, as a single frame must not be greater than 400 kbits in
order to accommodate the requirements.

A simple method that is quite easy to implement is reducing the video definition. Also, the colour levels
can be lowered by for example, only using four bits per colour, and therefore reducing the size of each frame by
half. But as you can see, this is still nowhere near the required compression. To perform this task effectively, the
H.264 codec has been created in 2016, as an update of the H.263, and can achieve a 2000:1 compression rate.

By implementing the encoding part of this codec in the vehicle and the decoding part in the teleoperator’s
workstation, a live video feed from the vehicle should be made possible. However, as our project reached its end,
we were not able to take the time to implement this solution. Instead, we reduced the quality of the main video
by turning it into a black-and-white stream, only using one third of the necessary bandwidth. It should also be

 Design and Implementation of a Teleoperator’s Workstation PAGE 29 OF 50

pointed out that all our testing was done on a 500 Mbits/s network, allowing us to use less effective compression
methods.

6.3.2 UDP connection

As was suggested during our midterm presentation by our jury, we tried to replace the TCP/IP
communication with a UDP connection. This protocol is used in situations where low-latency communications are
required such as in live streaming or voice-over-IP. This protocol is also loss-tolerating, which means that there is
no guarantee the information will arrive to the receiver, and the sender does not get any confirmation from the
receiver.

In most circumstances, the fact that there might be some data loss is not a big issue, as it will simply
appear as a lag or a cut in the stream. At first, we were not able to transmit any data over UDP as the blocks we
used were the wrong ones. But later on, we managed to transmit data using a different set of blocks parametrised
in the right way which led to a successful video stream with little latency.

Yet it has to be pointed out that except from the delay, which was greatly reduced, we still faced the same
problems as with the TCP/IP, about the maximum packet size, frame size and resolution. Consequently, we
continued the research to find a different method to establish the communication in hope for a better-quality
video stream.

6.3.3 ROS connection

Because of the trouble we had while working with UnrealEngine as mentioned in chapter 3, we were in
direct contact with a MathWorks employee who was keen to help us out if we had any more issues. For that
reason and because we were not able to find a good video streaming solution, we decided to approach him again.

After discussing our goals and issues during yet another online meeting, he advised us to use the Robot
Operating System toolbox in Simulink, and kindly provided us with a simple example we could build upon. ROS is
a framework designed to write software for automated systems and provides a wide collection of libraries aimed
at simplifying software development. Even though we eventually managed to transmit our video stream, there
were a lot of points that made us reject this option in the end.

Firstly, the data transmission rate was not exceedingly high, as a 200*400-pixel video was limited to about
10 frames per second making it very jerky. In addition, the setup of the ROS network was inconvenient, since a
master device would need to be setup first, which could not be achieved directly via Simulink. Furthermore, the
system itself was overly sensitive to connection trouble and would therefore often require to be restarted.

On top of that, we spent a lot of time learning how the framework functioned in order to fully implement
it in our Simulink models. Despite our best efforts, we were never able to transmit all the necessary data for
teleoperation of a vehicle as needed through the ROS framework. On account of all these points, we decided to
stay with the TCP/IP connection, but the upcoming students continuing our project will need to implement a
suitable codec for the livestream.

6.4 Implementation and proof of concept

 Design and Implementation of a Teleoperator’s Workstation PAGE 30 OF 50

After exploring all possibilities known to us, we finally managed to make a functioning teleoperation
model with the operator’s workstation and the car being simulated on different devices while communicating
over ethernet. The commands were sent to the vehicle via TCP/IP while the video data was transmitted over UDP
in order to limit the delays. Still, the video stream was limited to 65000 bytes which meant the best we could do
was transmit a 200*300-pixel black-and-white video.

Figure 17: Frame processing and shaping for upcoming UDP transmission

In order to transmit these frames, they were first resized in order to shrink their resolution to the 200*300
maximum. Then, the distinct colours are separated in order to convert the image to black-and-white by applying
different factors to the red, green and blue pixels. After adding the results, the resulting matrix is converted into
a vector that can be transmitted via UDP.

On the receiving hand, the data vector is reshaped into a matrix in order to be decoded by the video
viewer. The comparison between the original and received data can be seen in the figure below.

Figure 18: Comparison between the original video frame a) and the received frame b)

The operator’s side program is quite simple, as it only needs to format the commands received from the
steering wheel and gas pedal and send them through a TCP/IP connexion, while also receiving the video stream
through a UDP connexion. The simplified version can be seen hereunder, with the top section dedicated to the
commands, and the bottom section dedicated to the video.

a) b)

 Design and Implementation of a Teleoperator’s Workstation PAGE 31 OF 50

Figure 19: Simulink model of the operator's side of the teleoperation system

The vehicle side of the teleoperation system is much more elaborate because it incorporates safety
switches and much more formatting in order to separate the data signals into the required commands. In the
same way as before, the top section is dedicated to separating the commands while the bottom section is
dedicated to the video compression and transmission. In the bottom right corner, there is the simulation blockset
where we can parametrise the scene for the simulation. The ‘algorithm status’ and ‘autonomous input’ are
normally connected to the autonomous algorithm driving the vehicle.

Figure 20: Simulink model of the vehicle's side of the teleoperation system

 Design and Implementation of a Teleoperator’s Workstation PAGE 32 OF 50

7 Simulation scenes and scenarios
With a much better scene designer software in hand, a much more promising outcome was to be seen.

The initial work carried out in Driving Scenario Designer would therefore be left obsolete, and all our focus was
directed towards RoadRunner and its incredible capabilities.

7.1 RoadRunner overview

Roadrunner’s capabilities in terms of design ease and look of the simulation scenes being created is
remarkably high, but it also is capable of running parallel visualisations with Unreal Engine and Simulink in order
to make live changes in the scene while simulating the response of cars on the surface. In reference to Driving
Scenario Designer, it is a real lifesaver.

Figure 21: Overview of a premade RoadRunner scene

The scenes created through RoadRunner are real 3D objects, which means that sensors like LiDAR or Radar
sensors located on the simulation vehicle will pick-up the different props as they would in a real scenario. This in
turn means that the response to real situations like pedestrians crossing, vehicles cutting you off, etc can be
modelled closely, because different external actors like enumerated before can be parametrised to act as such.

Various weather conditions, traffic patterns, and road configurations are also some of the situations that
can be included with the scenario in RoadRunner. This can then allow the driving algorithms to be adjusted without
expensive and time-consuming testing before final verification in real life.

 Design and Implementation of a Teleoperator’s Workstation PAGE 33 OF 50

7.2 Different data for map design

To facilitate the workflow, RoadRunner offers the ability to import many diverse types of data to use for
building the scene, or to use in conjunction with the different sensors of the cars during simulation. In order to
obtain all this data, we used the Centro de Descargas website from the IGN that the MathWorks engineer we met
provided us with. On the website, we were able to download many different data sets such as aerial images,
topographical bases and LiDAR point clouds. All this data can be geolocalised in order for it to overlay perfectly
when imported.

7.2.1 Aerial images

In our situation, the aerial image of the city and its surroundings will be the main data used to build its 3D
model. This image is captured by flying over the area of interest and provides quite accurate dimensions and
placement of the main parts of the road network and majority of the props. The remaining parts as well as the
road markings can easily be located by using Google Street View.

Another great point of the aerial image is that it can be used to colour surfaces. For example, if a surface
between the roads is a particular colour and texture, the image can be projected on top of it, making it look like
the real surface. This can also be used to simply model the roofs of buildings in the scene.

The only downside is that even after the image has been corrected for earth’s curvature before it was
published, known as orthorectification, there are still some sections of buildings covering certain roads close by.
This is due to the fact that the camera has a single focal point, and therefore is not able to see all sides of a building
if it is located above it. This in turn meant that there were some sections of road which were not visible on the
image, but by looking at the intersections and Google Street View, we could still place them correctly.

7.2.2 Topographic data

In RoadRunner, it is also possible to import topographical data. This data represents the contours of the
most important physical features of the region of interest, by outlining rivers, lakes, buildings, and roads. In
addition, it also provides the absolute elevation of the different landmarks it carries.

The fact that this data provides the exact outline of the different constructions and in most cases also
their height, it is particularly useful to use as a reference because the aerial image dos not vehicle any of this
information. Nevertheless, this data is more difficult to use directly to create buildings and roads, so we stuck with
it just for verification purposes.

 Design and Implementation of a Teleoperator’s Workstation PAGE 34 OF 50

Figure 22: Example of a topographic base file imported in RoadRunner

7.2.3 LiDAR point cloud

Finally, the RoadRunner software also accepts a 3D point cloud, which was once again available on the
IGN’s website. This data has been acquired by flying LiDAR sensors over the country. Those sensors measure the
distances by calculating the time it takes for the laser beam to travel from the sensor and back. This point cloud
might be of acceptable quality in certain use-cases, but for our use it was too coarse.

Because the whole of Spain has been scanned using this technique, it had to be done fast while not
creating too much data in order to keep the cost down. Because of this, the distance between two adjacent points
was too big in order to create accurate measures when used in conjunction with the sensors on the simulated
vehicles.

Figure 23: Result of a coloured LiDAR point cloud in RoadRunner

 Design and Implementation of a Teleoperator’s Workstation PAGE 35 OF 50

7.3 Recreating Vilanova i la Geltrú

During the first stay of our mentor in Vilanova i la Geltrú, he drove around the city with a camera in order
to hopefully capture different scenarios which could end-up being problematic if encountered by an autonomous
vehicle. He successfully managed to capture different situations, of which we could then model scenes in
RoadRunner to replicate reality in the best possible way.

Now that we had the required data to make the design process faster, the objective was to create sections
of the road network on which these different situations were captured, so a comparison could be made with the
real location we had video from. RoadRunner offers the possibility to incorporate multiple scenarios in one scene.
This means that we can select the scenario we want without having to change the map every time.

In the beginning, everything went well but a bit of time was needed in order to understand the workflow
of the software, every action having its dedicated button. Still, the program was amazingly easy to learn, with the
worst part of it being understanding the order in which you must execute the different steps to create different
things. Most of the road building went without much trouble.

Figure 24: Screen capture of the section of the road network designed in RoadRunner

Despite that, two junctions that needed to be created in order to replicate the real scenarios captured on
video were very difficult. In fact, after spending a lot of time perfecting these junctions, they still do not function
properly while exporting the scene. While they visually look good, the path the car should take when its trajectory
is generated by Simulink is non-existent, thus generating errors. In our case, because the car is driven either by
the algorithm or by the teleoperator, the default paths are not used.

 Design and Implementation of a Teleoperator’s Workstation PAGE 36 OF 50

Figure 25: One of the problematic junctions during export due to its high complexity

To be able to model the encountered situations in the best feasible way, different custom props were
created to speed up the map building process. Most of these props were simply put together from different
objects already available while scaling them at the same time. But one of the objects was not available in the
RoadRunner library, so we decided to create it ourselves with the help of Blender, as you can see below.

Figure 26: Example of a custom prop used in a fence (left) and the prop itself (right)

With this last prop, the map was complete enough to allow us to use it in our simulations even though it
would require a lot more time in order to make it look better and add more sections to the map. However, before
we can use it, other steps need to be performed in order to make it compatible with Simulink.

 Design and Implementation of a Teleoperator’s Workstation PAGE 37 OF 50

7.4 Integrating the map in Simulink

Finally, to be able to use our freshly created map for our simulations, two different routes are available,
but both require the installation of Add-Ons “Automated Driving Toolbox Interface for Unreal Engine 4 Projects”
and “Vehicle Dynamics Blockset Interface for Unreal Engine 4 Projects”. The difference on which one is chosen is
mainly dependant on what you are trying to do, but most importantly, on the power of the computer running the
simulation as you will see.

On the one hand, we have the possibility to create an executable file, this is, with an .exe extension. In
this case, the RoadRunner map must be imported in a special Unreal Editor file provided by MathWorks, which
can then be packaged as a standard executable file. This file is then opened in the Simulink block, and the
simulation can be run with our custom map of Vilanova.

On the other hand, we can choose to co-simulate between Simulink and either RoadRunner or Unreal
Engine. While using Simulink and Unreal Engine, easy modifications can be made to custom vehicles as the changes
do not need to be saved before running another simulation. Nonetheless, the map still needs to be imported and
saved with the help of the file provided by MathWorks, but without exporting it.

In the case the co-simulation is done with Simulink and RoadRunner directly, the beforehand created
scenarios representing the real-life situations can be used. This is very convenient as it is much easier to create
complex scenarios in RoadRunner directly than using Simulink to program them.

Apart from the different advantages enumerated previously, it should be kept in mind that Simulink is
already a heavy program to run if the model in question contains 3D scenes. In the same way, Unreal Engine is an
even more demanding software than Simulink.

Therefore, if a co-simulation is to be used, be sure to be equipped with a powerful computer, as the strain
of running either of the two programs simultaneously is very intensive for the device. Because of this, it is often
preferred to create the executable and simply run it independently in Simulink.

Overall, the combination of RoadRunner’s capabilities has greatly enhanced the outcome compared to
the previous software we used. Integration in a Simulink model is more complex, but it has allowed us to fulfil the
task better than we thought after having tried Driving Scenario Designer. This will allow for upcoming teams to
thoroughly test their algorithms and protocols as well as latency before performing real-life tests.

 Design and Implementation of a Teleoperator’s Workstation PAGE 38 OF 50

8 Eco-Design
The environmental impact of modern technology must be held in high regard for the future generations.

Although a large portion of this project has been primarily simulations, once implemented the following points
must be taken into consideration. Hypothetically, these would reduce the environmental impact they have
regarding energy consumption and emissions.

8.1 The use of electric vehicles (BMW i3)

These teleoperated autonomous driving systems can be integrated into current electric vehicles as well
as developing newer ones, which have zero tailpipe emissions, reducing greenhouse gas emissions and air
pollution. Electric vehicles are also far more energy efficient than traditional combustion engines especially when
controlled autonomously for the large part.

Figure 27: Example of an electric car, here the BMW-i3 used by the HTW Dresden

8.2 Optimise routes taken

Autonomous driving systems can be programmed to improve the routes they take to reduce travel time,
fuel consumption, and therefore emissions. By taking the most efficient route, autonomous vehicles can avoid
congestion and unnecessary idling, reducing gas emissions for combustion cars thus improving air quality. They
would also potentially be able to work in conjunction with other teleoperated vehicles to ensure journeys do not
become considerably longer for the passenger compared to their combustion counterparts.

 Design and Implementation of a Teleoperator’s Workstation PAGE 39 OF 50

Figure 28: Example of an alternative route that would be longer but more efficien

8.3 Use of regenerative braking

Teleoperated electric vehicles can also be equipped with regenerative braking technology that captures
the energy normally lost during braking and then uses it to recharge the battery pack which powers the car, in
turn reducing energy consumption and emissions.

Figure 29: Diagram of a regenerative braking system used in electric vehicles

 Design and Implementation of a Teleoperator’s Workstation PAGE 40 OF 50

8.4 Optimised charging

Teleoperated vehicles could be programmed to charge predominately during off-peak hours, when
electricity is cheaper and the grid is less stressed, reducing the overall environmental impact of the vehicle. The
infrastructure would also need to be adapted so that the vehicles can be plugged and unplugged without human
assistance, similar to the systems already currently available for Hyundai/Kia, or a completely cable free system
in which the vehicle parks on top of the charger dock.

Figure 30: DC Fast-charging station for electric vehicles with a plug-in robot

 Design and Implementation of a Teleoperator’s Workstation PAGE 41 OF 50

8.5 Vehicle sharing

Autonomous driving could also be used to encourage vehicle sharing designs. By sharing vehicles, it means
fewer cars are on the road, reducing any more unnecessary emissions with the incentive for free travel.

Figure 31: Example of a shared city-vehicle

Overall, the combination of autonomous teleoperated driving technology with electric vehicles, optimised
routing, regenerative braking, smart charging, and vehicle sharing can significantly reduce the environmental
impact of transportation.

 Design and Implementation of a Teleoperator’s Workstation PAGE 42 OF 50

9 Project management
To ensure that we were able to accomplish the tasks, we implemented different project management

tools. All these tools enabled us to closely track the progress made during the project, but also allowed us to better
understand the task itself by breaking it down in simpler and more feasible goals.

9.1 Project tasks breakdown and planning

To better understand the objectives of the project, the main tasks that needed to be accomplished to
achieve the project’s goal were defined, together with our mentors. These seven tasks were then refined in more
detailed subtasks that are easier to manage and distribute between the team members. The work breakdown
structure was as follows:

1) Introduction and familiarization.
a) MATLAB introduction (OnRamp Course).
b) Simulink introduction (OnRamp Course).
c) Introduction to Simulink Toolboxes.
d) Literature research.
e) Model specification.

2) Design part of the Vilanova road network.
a) Select minimum required network.
b) Import network from OpenStreetMap.
c) Clean-up imported network for simulation.
d) Test and parametrize the map.

3) Define typical situations and use cases.
a) Enumerate all possible use cases of teleoperated driving.
b) Enumerate all possible situations leading to a teleoperator call.
c) Select situations to be modelled off video data.

4) Modelling of preselected situations for simulation.
a) Recreation of situations using predefined 3D scenes in Simulink.
b) Implement surrounding sensors on simulated car.
c) Test and parametrize simulation until simulated data matches measured data.

5) Include teleoperator connection.
a) Detect algorithm failure and switch to teleoperator input.
b) Implement teleoperator input in car software.
c) Implement backup protocol for connection errors.
d) Test and parametrize software.

6) Design teleoperator human-machine interface.
a) Include transmission of vehicle parameter in software (speed, warning lights, etc.).
b) Design typical dashboard to display values during simulation.
c) Test and parametrize for similarity with real car.

7) Include TCP/IP connection.
a) Enable bidirectional Localhost TCP/IP communication.
b) Enable bidirectional TCP/IP communication between machines on different networks.
c) Create digital twin of the car to test teleoperation.
d) Test and parametrize software for teleoperation and connection errors.

 Design and Implementation of a Teleoperator’s Workstation PAGE 43 OF 50

e) Execute time delay measurements during teleoperation.

To keep track of the progress made, Trello was the main software we used. Our board includes four main
sections. The first one gives a general overview of the To-dos that need to be done. This section includes tasks
that we have not yet begun to work on but attached with a date and members that will work on it to keep the
deadlines in mind.

The next two sections show the On-going and Done tasks. This really helped us to keep track of the
different tasks and their deadline. Thanks to the included subtasks we could see the specific steps that needed to
be taken to further accomplish the goal of finishing the main task.

Figure 32: Capture of our Trello Board used to keep track of the progress of different tasks as well as sorting information
relative to the project

 urthermore, we kept track of every meeting that took place in the section of the “Meeting notes”. This
always included a list of contents of what happened during the meeting, to later have a better overview for
everyone to look back and remind them of the things we talked about. After trying out different strategies to
progress the project the best, we decided to have two fixed weekly meetings with all the team members and
mentors if they had time to join us. These meetings were held in person on the campus of the UPC or the Neapolis
building close by. We always created a Microsoft Teams call to let mentors or members of the team that could
not join in person be part of the meeting.

Throughout the progress of the project, we always kept track of our deadline using the Gantt-Chart we
created in the beginning of our project. This helped us to assess the current progress to maybe change priority of
the upcoming tasks. Often, we had to push back the deadlines in the Gantt-Chart due to the amount of time and
effort these tasks needed. While working on the project and trying to have it done on time, we realised that the

 Design and Implementation of a Teleoperator’s Workstation PAGE 44 OF 50

priority of tasks shifted, new information about specific tasks came up and some tasks just took longer to execute
then expected in the beginning.

Table 2: First section of the Gantt chart used to plan our EPS project

9.2 Team management

We came to the conclusion early on while dividing up the tasks, that we would work in two teams
consisting of two members. Because David and Martin both did not really have a lot of experience in the field of
electrical engineering, they would work on the design part of the Vilanova road network, defining typical situations
and use cases and teleoperator human-machine interface. As Joren and Duarte already have experience in this
field of work, we decided that they would work on the 3D-visualisation of the car, including the TCP/IP connection
and the teleoperator connection. We tried to find interesting and achievable tasks to work on for every member
no matter their experience.

On top of that, we decided that Duarte would be the leader of the EPS project, as he has the most
experience prior to this project and has worked on projects of this matter before. His task was to remind every
member to keep everyone else up to date, keep the team members focused on their specific tasks and help other
members out with his prior knowledge.

9.3 Future of the EPS project

At the end of the project, with all these tasks completed, it will be much easier for future EPS students to
continue working on this subject and build upon it, since a solid base to develop a teleoperator’s workstation will
be available. This task selection and breakdown was completed thanks to the help of all the above-mentioned
courses and research to better gauge their difficulty. Therefore, a non-exhaustive list of tasks for future EPS
programs is displayed below, often due to their complexity or necessary time being too high.

1) Include 3D visualization for the simulations.

 Design and Implementation of a Teleoperator’s Workstation PAGE 45 OF 50

2) Include the compatibility for force-feedback hardware for the teleoperator.
3) Add static sensors in the simulation to allow for teleoperator control.
4) Implement a remote connection to the HTW Dresden.
5) Connect to the real car on the test track.
6) Design the HTW test track to use in simulation.
7) Improve the path following algorithm.

9.4 Project deliverables

In order to fulfil the project, we achieved the goal stated in the first paragraph of chapter 6, but also
delivered the required outputs, that are as follows:

• A midterm report to be handed in on the 24/03/2023.

• A midterm defence to be held on the 31/03/2023.

• A final report to be handed in on the 12/06/2023.

• A final defence to be held on the 20/06/2023.

• A functional Teleoperator human-machine interface to be used for simulations and testing without
physical equipment (steering wheel, pedals, etc.).

• A Simulink map of part of the Vilanova i la Geltrú road network to be used for simulation of the
teleoperations.

• A selection of real situations and use cases that are implemented in the simulations for testing
purposes.

• A imulink/MATLAB code for the operator’s desk including the input for a teleoperator connection.
• A Simulink/MATLAB code to validate and measure the latency of the TCP/IP connection between the

Teleoperator’s workstation and the car’s digital twin.

Other goals have been put aside because we will probably lack time to complete them. These goals can
be completed if there is spare time and will otherwise be completed during future projects with other students.
They are stated as follows:

• Simulation use cases including 3D visualization scenes with Unreal Engine.

• A imulink/MATLAB code for the operator’s desk able to support force-feedback hardware (steering
wheel, …).

• A Simulation of a predefined use case including surrounding on the car to test changeover from
automated driving to teleoperated driving.

• Accomplishing a remote connection between the HTW Dresden and the UPC in Vilanova i la Geltrú.

• Connecting to the real test car at the HTW in Dresden.

• A 3D model of the HTW’s test track to be used in the simulations.

• A 3D model of the BMW i3 also to be used in the simulations.

• Improvements on the path following algorithm used by the vehicle.

 Design and Implementation of a Teleoperator’s Workstation PAGE 46 OF 50

10 Conclusion
Our project aimed to develop a teleoperator system in order to implement it in an existing self-driving car.

This is supposed to allow a teleoperator to take over control of the car when the driving algorithms encounter
situations that they are unable to handle. Also, this solves many liability issues as the teleoperator who has started
the vehicle is considered as the driver and, on that account, responsible for it, even when the vehicle drives
autonomously.

To accomplish this, we heavily relied on the software and algorithms developed by the MechLab team at
the HTW Dresden, the client of this project. Our work was centred around the BMW i3 which the MechLab team
has converted into an autonomous vehicle with pedestrian and obstacle detection. Because of this existing car,
we tried to make the simulations as realistic as possible by importing a 3D model of said vehicle.

During this project, we faced several challenges related to all parts of teleoperated driving, like the
changeover from one driving mode to the other, data transmission, communication latency, driver immersion and
more. To address the challenges related to driver immersion and latency, the different sensors already available
on the car could be used in addition to the cameras to acquire extra data. This data should then be used to predict
and overlay information on the video stream dedicated to the teleoperator, and by doing so create what is known
as enhanced reality, which we were not able to spend any time on during our EPS stay.

In order to solve the issues that occurred during the switchover from automated to teleoperated driving,
different solutions were available to us. The most evident solution is to ensure fast and reliable communication
between the vehicle and the teleoperator, for example by using redundancy in the communication infrastructure,
which we sadly were not able to test due to a lack of time. Furthermore, a specific algorithm to reduce the quality
of the video stream based on the low importance of certain sections of the camera when driving would be a great
solution. This should enable the transmission to work with the real-time bandwidth available for communication.

The next EPS team will therefore be able to focus on acquiring additional data from the vehicle sensors to
predict its path and overlay this information on the video stream. Also, work needs to be carried out on
implementing a very high compression algorithm in the video stream in order for the it to be more reliable and of
better quality. In addition, some time could be spent on the improvement of the switchover from autonomous to
teleoperated driving, with the creation of an output to trigger the change as well as a better fail-safe algorithm.
Extra time could then be spent on creating more detailed and elaborate simulations and scenarios to better test
the system’s behaviour.

To conclude, we managed to achieve majority of the goals we started with, even after some heavy
setbacks. Nevertheless, this left us with a time shortage leading to some unfinished goals. Even so, we were still
able to create a solid base for other teams to build upon, with most of the theory sorted, now only lacking
implementation. Our project also highlighted the interdisciplinary collaboration required between computer
science, electrical engineering, and mechanical engineering to achieve ambitious goals in autonomous driving
research. We hope that our work will support future students as well as future work and research in this exciting
field full of innovation in the race towards teleoperated cars.

 Design and Implementation of a Teleoperator’s Workstation PAGE 47 OF 50

11 Bibliography
[1] Georg, Jean-Michael, et al. “Teleoperated Driving, a Key Technology for Automated Driving?

Comparison of Actual Test Drives with a Head Mounted Display and Conventional Monitors.”
2018 21st International Conference on Intelligent Transportation Systems (ITSC), 2018,
https://doi.org/10.1109/itsc.2018.8569408.

[2] Hosseini, eyed Amin. “Conception of Advanced Driver Assistance ystems for recise and afe
Control of Teleoperated Road ehicles in Urban Environments.” Universitätsbibliothek
Technische Universität München, 2018, https://mediatum.ub.tum.de/node?id=1415643.

[3] 5GAA Automotive Association. “Tele-Operated Driving (ToD) : Use Cases and Technical
Requirements.” 5GAA, https://5gaa.org/tele-operated-driving-tod-use-cases-and-technical-
requirements/.

[4] Hofbauer, Markus, et al. “Traffic-Aware Multi-View Video Stream Adaptation for Teleoperated
Driving.” 2022 IEEE 95th ehicular Technology Conference: (TC2022-Spring), June 2022,
https://doi.org/10.1109/vtc2022-spring54318.2022.9860513.

[5] Organismo Autónomo Centro Nacional de Información Geográfica. “Centro de Descargas Del
Cnig (IGN).” Centro de Descargas Del CNIG,
centrodedescargas.cnig.es/CentroDescargas/index.jsp

[6] rakash, Jai, et al. “ ehicle Teleoperation: Human in the Loop erformance Comparison of
Smith Predictor with Novel Successive Reference- ose Tracking Approach.” ensors, 2022,
https://doi.org/10.3390/s22239119.

[7] Cao, ongxiao, et al. “Design and Experiments of Autonomous ath Tracking Based on Dead
Reckoning.” MD I, Multidisciplinary Digital ublishing Institute, 27 Dec. 2022,
https://www.mdpi.com/2076-3417/13/1/317.

[8] “MechLab.” MechLab HTW Dresden, https://www.htw-mechlab.de/.

https://mediatum.ub.tum.de/node?id=1415643
https://doi.org/10.1109/vtc2022-spring54318.2022.9860513

 Design and Implementation of a Teleoperator’s Workstation PAGE 48 OF 50

12 Appendices

12.1 Extract of the German Road Traffic Act

(translated)

(German) Road Traffic Act (StVG)

"Road Traffic Act in the version published on March 5, 2003 (BGBl. I p. 310, 919), which was last amended
by Article 16 of the law of March 2, 2023 (BGBl. 2023 I No. 56)"

…

§ 1d motor vehicles with autonomous driving function in defined operating areas

(1) A motor vehicle with autonomous driving function within the meaning of this Act is a motor vehicle
that

1. can perform the driving task independently in a defined operating area without a person driving the
vehicle and

2. has technical equipment in accordance with Article 1e Paragraph 2.

(2) A defined operating area within the meaning of this Act refers to the locally and spatially determined
public street space in which a motor vehicle with autonomous driving function may be operated if the
requirements pursuant to Section 1e Paragraph 1 are met.

(3) The technical supervisor of a motor vehicle with autonomous driving function within the meaning of
this Act is the natural person who can deactivate this motor vehicle during operation in accordance with Section
1e Paragraph 2 Number 8 and who can authorize driving manoeuvres for this motor vehicle in accordance with
Section 1e Paragraph 2 Number 4 and Paragraph 3.

(4) A minimum-risk condition within the meaning of this Act is a condition in which the motor vehicle is
with autonomous driving function at their own initiative or at the instigation of the Technical Supervisor brought
to a standstill in the safest possible place and the hazard warning lights activated in order to ensure the greatest
possible safety for the vehicle occupants, other road users and third parties while taking due account of the traffic
situation.

…

§ 1e operation of motor vehicles with autonomous driving function; objection and challenge

(1) …

(2) Motor vehicles with autonomous driving function must have technical equipment that is able to:

 Design and Implementation of a Teleoperator’s Workstation PAGE 49 OF 50

…

3. to independently bring the motor vehicle into a risk-minimum state if the continuation of the journey
would only be possible by violating road traffic law,

4. in the case of number 3 of the technical supervision independently

a) to suggest possible driving manoeuvres to continue the journey as well as

b) to provide data to assess the situation so that Technical Supervision can decide whether to approve the
proposed driving manoeuvre,

5. to check a driving manoeuvre specified by the technical supervisor and not to carry it out, but to
independently bring the motor vehicle into a risk-minimum state if the driving manoeuvre would endanger
persons participating in traffic or bystanders,

6. immediately report any impairment of their functionality to the Technical Supervisor,

7. to recognize their system limits and to independently put the motor vehicle in a risk-minimum state
when a system limit is reached, when a technical fault occurs that impairs the exercise of the autonomous driving
function, or when the limits of the specified operating range are reached,

8. to be deactivated at any time by technical supervision or by vehicle occupants and, in the event of
deactivation, to independently bring the motor vehicle into the minimum-risk state,

9. to indicate to the technical supervisor the need to activate an alternative driving manoeuvre,
deactivation with sufficient time reserve as well as signals on their own functional status optically, acoustically, or
otherwise perceptibly and

10. Ensuring sufficiently stable radio connections that are protected against unauthorized interference, in
particular to the Technical Supervisor, and automatically putting the motor vehicle in a minimum-risk state if this
radio connection breaks down or is accessed without permission.

…

12.2 Gantt chart

Below, you will find the complete Gannt chart we used to breakdown our project goals. This chart is bound
to evolve as the project goes on.

 Design and Implementation of a Teleoperator’s Workstation PAGE 50 OF 50

C
r

éez D
e

sign
 an

d
 im

p
le

m
e

n
tatio

n
 o

f a te
le

o
p

e
rato

r's w
o

rkstatio
n

Entrez le no
m

 de la so
ciété dans la cellule B

2.
U

P
C

 V
ilan

o
va i la G

eltru
 &

 H
TW

 D
resd

en

Entrez le no
m
 du chef de pro

jet dans la cellule B
3. Entrez la date de déb

ut du pro
jet dans la cellule E3. D

éb
ut du pro

jet : l’étiquette figure dans la cellule C
3.

La

sem
0

Les
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30
31

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
Cette

Task
A

co
m

p
lish

m
e

n
t

Start
Fin

ish
l

m
m

j
v

s
d

l
m

m
j

v
s

d
l

m
m

j
v

s
d

l
m

m
j

v
s

d
l

m
m

j
v

s
d

l
m

m
j

v
s

d
l

m
m

j
v

s
d

l
m

m
j

v
s

d
l

m
m

j
v

s
d

l
m

m
j

v
s

d
l

m
m

j
v

s
d

l
m

m
j

v
s

d
l

m
m

j
v

s
d

l
m

m
j

v
s

d
l

m
m

j
v

s
d

l
m

m
j

v
s

d
l

m
m

j
v

s
d

l
m

m
j

v
s

d
l

m
m

j
v

s
d

l
m

m
j

v
s

d
La

cellu
In

tro
d

u
ctio

n
 an

d
 fam

iliarisatio
n

On
M

atlab intro
ductio

n (O
nR

am
p C

o
urse)

100%
13/2

/2
3

15/2
/2

3
La

cellu
Sim

ulink intro
ductio

n (O
nR

am
p C

o
urse)

100%
15/2

/2
3

17/2
/2

3
Les lig

Intro
ductio

n to
 Sim

ulink To
o

lbo
xes

100%
20/2

/2
3

22/2
/2

3

Litterature resea
rch

25%
20/2

/2
3

23/3
/2

3

M
o

del specificatio
n

100%
23/2

/2
3

3/3
/2

3
La

cellu
D

esign
 p

art o
f th

e V
ilan

o
va ro

ad
 n

etw
o

rk

Select m
inim

um
 req

uired
 netw

o
rk

100%
6/3

/2
3

9/3
/2

3

Im
po

rt netw
o

rk fro
m

 O
pen

Stree
tM

ap
50%

13/3
/2

3
30/3

/2
3

C
lea

nup im
po

rted netw
o

rk fo
r sim

ulatio
n

50%
13/3

/2
3

30/3
/2

3

Test and param
etrize the m

ap
50%

13/3
/2

3
30/3

/2
3

Exem
ple de blo

c de titre de phase
D

efin
e typ

ical situ
atio

n
s an

d
 u

se cases

Enum
erate all po

ssible use cases o
f teleo

perated driving
80%

20/2
/2

3
30/3

/2
3

Enum
erate all po

ssible situatio
ns lea

ding to
 a teleo

perato
r call

0%
10/4

/2
3

17/4
/2

3

Select situatio
ns to

 be m
o

deled
 o

ff o
f video

 data
0%

10/4
/2

3
17/4

/2
3

Exem
ple de blo

c de titre de phase
M

o
d

ellein
g o

f p
reselected

 situ
taio

n
s fo

r sim
u

latio
n

R
ecrea

tio
n o

f situtatio
ns using pred

efined
 3D

 scen
es in Sim

ulink
0%

17/4
/2

3
24/4

/2
3

Im
plem

en
t surro

unding senso
rs o

n sim
ulated car

0%
17/4

/2
3

24/4
/2

3

Test and param
etrize sim

ulatio
n until sim

ulated data m
aches m

ea
sured

 data
0%

24/4
/2

3
28/4

/2
3

Exem
ple de blo

c de titre de phase
In

clu
d

e teleo
p

erato
r co

n
n

ectio
n

D
etect algo

rithm
 failure and sw

itch to
 teleo

perato
r input

0%
1/5

/2
3

7/5
/2

3

Im
plem

en
t teleo

perato
r input in car so

ftw
are

0%
1/5

/2
3

7/5
/2

3

Im
plem

en
t backup pro

to
co

l fo
r co

nnectio
n erro

rs
0%

8/5
/2

3
14/5

/2
3

Test and param
etrize so

ftw
are

0%
11/5

/2
3

16/5
/2

3

Exem
ple de blo

c de titre de phase
D

esign
 teleo

p
erato

r h
u

m
an

-m
ach

in
e in

terface

Include transm
issio

n o
f veh

icle param
eter in so

ftw
are (spee

d, w
arnig lights, etc.)

0%
17/5

/2
3

21/5
/2

3

D
esign typical dashbo

ard to
 display values during sim

ulatio
n

0%
21/5

/2
3

26/5
/2

3

Test and param
etrize fo

r sim
ilarity w

ith rea
l car

0%
29/5

/2
3

31/5
/2

3

Exem
ple de blo

c de titre de phase
In

clu
d

e TC
P

/IP
 co

n
n

ectio
n

Enable bidirectio
nal Lo

calH
o

st TC
P/IP co

m
m

unicatio
n

0%
31/5

/2
3

4/6
/2

3

Enable bidirectio
nal TC

P/IP co
m

m
unicatio

n betw
ee

n m
achines o

n differen
t netw

o
rks

0%
4/6

/2
3

10/6
/2

3

C
rea

te digital tw
in o

f the car to
 test teleo

peratio
n

0%
10/6

/2
3

13/6
/2

3

Test and param
etrize so

ftw
are fo

r teleo
peratio

n and co
nnectio

n erro
rs

0%
13/6

/2
3

16/6
/2

3

Execute tim
e delay m

ea
surem

en
ts during teleo

peratio
n

0%
16/6

/2
3

20/6
/2

3

C
eci est une ligne vide.

12 juin 2023
19 juin 2023

8 m
ai 2023

15 m
ai 2023

22 m
ai 2023

29 m
ai 2023

5 juin 2023
3 avr 2023

10 avr 2023
17 avr 2023

24 avr 2023
1 m

ai 2023
27 m

ars 2023

lun, 2/1
3/2

023

6 févr 2023
13 févr 2023

20 févr 2023
27 févr 2023

Pro
ject launch :

D
isplayed

 w
ee

k :
6 m

ars 2023
13 m

ars 2023
20 m

ars 2023

T
a

b
le 3

: C
o

m
p

lete G
a

n
tt ch

a
rt o

f o
u

r E
P

S
 p

ro
ject

