
1

Compiler Support for an AI-oriented SIMD
Extension of a Space Processor

Marc Solé, Leonidas Kosmidis
Barcelona Supercomputing Center (BSC) and Universitat Politècnica de Catalunya (UPC); email: {marc.solebonet,
leonidas.kosmidis}@bsc.es

Abstract

In this on going research paper, we present our work
on the compiler support for an AI-oriented SIMD Ex-
tension, called SPARROW. The SPARROW hardware
design has been developed during a recently defended,
award-winning Master Thesis and is targeting Cob-
ham Gaisler’s space processors Leon3 and NOEL-V.
We present the compiler support we have included in
two compiler toolchains, gcc and llvm as well as a SIMD
intrinsics library for easy programmability. Compiler
modifications are kept to minimum in order to enable
incremental qualification of the toolchains. We present
our experience working with the two compilers and per-
formance results for the two compilers on top an FPGA
implementation of the target space processor.

Keywords: compiler, SIMD, AI, space processor.

1 Introduction
In recent years, artificial intelligence (AI) and related topics,
such as machine learning (ML) and neural networks (NN),
have been explored in many different fields. Space systems
are not an exception; the advantages that AI applications can
provide in space operations are numerous, thus there are many
on-going efforts to accelerate AI processing in space.

The simple, in-order, low-power processors traditionally used
in space systems cannot meet the increased performance de-
mands of AI. In such a critical environment, real-time capabil-
ities and space qualification are mandatory properties, which
are costly to provide in completely new designs.

While commercial off-the-shelf (COTS) AI accelerators and
embedded GPUs have been used as an alternative in certain
cases such as experimental missions and nano-satellites, they
are not a definitive solution for high-risk missions. COTS
accelerators are not radiation tolerant – a requirement to work
beyond low-earth orbit – nor they have appropriate software
stacks for the applications in space or support for real-time
operating systems.

For this reason, in this recently presented Master’s thesis
project, we implemented SPARROW [1], a small, open-
source SIMD module to accelerate the computation of AI
applications in an already qualified, widely used space proces-
sor, LEON3, with minimal hardware and software changes.
It is directly connected into the integer pipeline and provides
additional vector instructions to improve such applications.

MASK 0

C3 C2 C1 C0

0 1 01010 1

 SWIZZLING NETWORK𝜒

A3 B3 A1 B1 A0 B0

0 10 10 10 1

C’0C’1C’2C’3

A’0A’1A’2A’3

MASK 1MASK 2MASK 3

0
0 1MASK

SELECT

0
0 1MASK

SELECT

0
0 1MASK

SELECT

0
0 1MASK

SELECT

A2 B2

Figure 1: Overview of the SIMD SPARROW module [1]

The hardware cost of the module is minimal compared with
conventional vector approaches, thanks to the re-utilization
of the integer register file. This is possible since 8-bit op-
erations have been shown enough for AI applications in the
literature and in commercial AI hardware. Therefore, each
integer register can work as a vector with up to 4 8-bit com-
ponents. To our knowledge, this is a unique feature of our
work. Further advantages of our choice is the simplification
of data management, which eliminates the need for new load-
store instructions, allowing a small incremental qualification
cost of the hardware and its compiler. More details on the
hardware design of the module are provided in [1].

In this work in progress paper, we describe our on-going work
regarding the addition of software support for SPARROW
with two widely used compilers, gcc and llvm. We describe
our experience working with these two compilers and the
development of small preprocessor library which allows to
program SPARROW in a similar way with SIMD intrinsics
for other processors. In addition, we provide some early
comparison results of the performance of the two compilers
both with handwritten assembly implementations as well as
with our SIMD library.

2 Background on SPARROW Design
Before we discuss about the compiler support, we first need
to briefly describe the SPARROW hardware design. The
SPARROW SIMD unit is co-designed analyzing the most
important features and characteristics of ML workloads. The

© Owner/Author | ACM 2022. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of
Record was published in ACM SIGAda Ada Letters, Volume 42, Issue 1, June 2022, pp 95–99, http://dx.doi.org/10.1145/3577949.3577968

2 Compi ler Suppor t for an AI-or iented SIMD Extens ion of a Space Processor

1 unsigned char weights[32*32];
2 unsigned char next_layer [32*32];
3 unsigned int a, b, result , scr ;
4

5 /* set the value of the %scr */
6 scr = 0x0D9D0E; //swizzling_B = 1−2−3−0,
7 // swizzling_A = 3−2−2−0,
8 // mask_select = 0, mask = 1110
9

10 asm("wr %0", %%scr : : "r"(scr)) ;
11 /* initialise all a components to 0, ie a .xyzw=0 */
12 a = 0;
13 /* b.xyzw = weights [0]. xyzw */
14 b = *((unsigned int*) &weights[0]);
15 asm("nop"); // wait for %scr to commit the write
16 /* result .xyz = a.xyy + b.zyx */
17 asm("usadd_ %1, %2, %0": "=r"(result) : "r"(a) , "r"(b)) ;
18 /* next_layer [0]. xyzw = result .xyzw */
19 *((unsigned int*) &next_layer [0]) = result ;

Figure 2: Example of SPARROW programming in C with inline
assembly

dot product is one of the most frequently used computations
in ML as it is used in matrix multiplication which is a re-
current kernel in the computation of NN for fully connected
layers and convolutions. SPARROW features a 2-stage ap-
proach which allows to compute a dot product with a single
instruction as can be seen in Figure 1. In the first stage, for
vector-vector operations, the data are computed in parallel
allowing up to 4 simultaneous operations. In the second stage,
reduction operations are performed on the result from the first
stage. Both stages can be bypassed in order to just perform
any of the two types of operations. This allows up to 200
combinations of operations such as addition, multiplication,
maximum and minimum, bitwise operations, etc with just the
introduction of 13 vector instructions in the first stage and
4 reduction operations in the second one. Both signed and
unsigned version are included.

Additionally, SPARROW includes GPU-like features to pro-
vide even more flexibility to the module, such as masking and
swizzling. Both characteristics can be controlled by using a
special register, the SPARROW control register (%scr). As
other special registers it can be accessed using the already
existing instructions in the ISA. To avoid overflow, SPAR-
ROW also includes a saturation version of the instructions,
both signed and unsigned, which clips the results at 0 to 255
for unsigned or at -128 to 127 for signed.

The module is highly portable and can be used in differ-
ent base processors with minimal modifications. Currently
SPARROW has been integrated with the SPARCv8-compliant
LEON3 processor, developed by Cobham Gaisler, preserving
its 100MHz frequency. The module has also been ported to
the NOEL-V processor, a RISC-V based space processor by
Cobham Gaisler, as we discussed in our talk at the RISC-V
Forum: Vector and Machine Learning [2] [3]. SPARROW
won the fist position in Xilinx’s Open Hardware Competition
2021 in the student category, and awarded the best Master
Thesis in Spain for 2021 by the Spanish IEEE AESS Chapter.

3 SPARROW Software Support
3.1 Compiler support
An important advantage of SPARROW compared to custom
accelerators is the ability to reuse the existing qualified soft-

1 unsigned char weights[32*32];
2 unsigned char next_layer [32*32];
3 unsigned int a, b, result , scr ;
4

5 /* set the value of the %scr */
6 __sparrow_setMask(0b1110);
7 __sparrow_setMaskSel(0);
8 __sparrow_setSwizzlingA (3,2,2,0) ;
9 __sparrow_setSwizzlingB (1,2,3,0) ;

10

11 __sparrow_writeSCR();
12 /* initialise all a components to 0, ie a .xyzw=0 */
13 a = 0;
14 /* b.xyzw = weights [0]. xyzw */
15 b = *((unsigned int*) &weights[0]);
16 asm("nop"); // wait for %scr to commit the write
17 /* result .xyz = a.xyy + b.zyx */
18 __nop(result , a , "usadd", b) ;
19 /* next_layer [0]. xyzw = result .xyzw */
20 *((unsigned int*) &next_layer [0]) = result ;
21

Figure 3: Example of SPARROW programming in C for
SPARC v8 with the SPARROW SIMD library

ware stack of LEON3 i.e. the RTEMS real-time operating
system or bare-metal space applications, which reduces both
the cost and the effort of the development of a new compiler
from scratch as well as its qualification cost later.

We added SPARROW support in the two most widely
used compilers nowadays, gcc and llvm. We modified the
binutils of Gaisler’s bcc-2.2.0 gcc-derivative com-
piler and the base LLVM v13.0. We use an underscore as
separation between the instruction names of the two stages.
In the case of nop it is omitted for the second stage. An s
and u prefix in the instruction name denotes saturation and
unsigned operation, i.e. usmul_. We also added aliases
such as the dot product, which can be both represented by
mul_sum or dot. The SPARROW control register can be
accessed using the wr, rd and mov instructions present on
the SPARC v8 ISA for accessing special registers.

We program SPARROW in C, using inline assembly instruc-
tions as shown in the example of Figure 2 for a saturated
vector addition with unsigned 8-bit values using swizzling
and masking. As it can be seen, SPARROW can be pro-
grammed in a high level way, not very different than vector
intrinsics for conventional SIMD extensions such as NEON.

Another important advantage of reusing the integer register
file is that we can use the regular load and store instructions.
Inline assembly (and code generation) is only required for
the SIMD operations. Moreover, this means that we don’t
need to specify explicit registers in the inline assembly, nor to
modify the compiler register allocator. Notice that by passing
the integer variable names to the inline assembly instruction
(line 17), the SIMD instruction accesses directly the register
in which each of the variable is allocated by the compiler.

3.2 SPARROW SIMD Library
A disadvantage of programming SPARROW in assembly is
that there are features like the mask and swizzling which the
programmer needs to be aware of. In order to make the setting
of the SPARROW Control Register transparent, we decided to
create a library that contains multiple definitions to simplify
working with SPARROW in SIMD intrinsics fashion.

Ada User Jour na l

M. Solé , L . Kosmid is 3

Function Description
__sparrow_readSCR(X) Stores the current value of the SPARROW Control Register in the variable X
__sparrow_writeSCR() Writes in the SPARROW Control Register the value of __sparrow_scr
__sparrow_set(X,Y) Writes in the SPARROW Control Register X xor Y
__sparrow_resetSCR() Resets the value of the SPARROW Control Register
__sparrow_setMask(X) Sets the mask bits of __sparrow_scr to X
__sparrow_setMaskSel(X) Sets the mask selection bit of __sparrow_scr to X
__sparrow_setSwizzlingA(X,Y,Z,W) Sets the first operand swizzling order in __sparrow_scr to X-Y-Z-W
__sparrow_setSwizzlingB(X,Y,Z,W) Sets the second operand swizzling order in __sparrow_scr to X-Y-Z-W
__sparrow_(op1, op2, A, B, C) Performs the op2 reduction on A op1 B and stores the value in C
__nop(C, A, op1, B) Computes C = A op1 B
__sum(C, A, op1, B) Computes a sum over A op1 B and stores the result in C
__max(C, A, op1, B) Computes the maximum in A op1 B and stores the result in C
__min(C, A, op1, B) Computes the minimum in A op1 B and stores the result in C
__xor(C, A, op1, B) Computes a xor reduction over A op1 B and stores the result in C
__usum(C, A, op1, B) Computes an unsigned sum over A op1 B and stores the result in C
__umax(C, A, op1, B) Computes the unsigned maximum in A op1 B and stores the result in C
__umin(C, A, op1, B) Computes the unsigned minimum in A op1 B and stores the result in C

Table 1: SPARROW library functions

The SPARROW SIMD library is implemented using C-
preprocessor macros that convert function-like calls into the
inline assembly. For the SCR, a variable is declared which
is modified when setting the mask and swizzling and is used
to write in the special register. One of the advantages of hav-
ing a library implemented like this is once again portability
and simplicity. Table 1 shows the existing functions in the
SPARROW library.

In Figure 3 the same code shown in Figure 2 is represented us-
ing the SPARROW library. Note that the setting of the SCR,
which starts at line 6, requires more instructions, however
since those are C-preprocessor macros the compiler can re-
duce the number of actual generated instructions. On the other
hand, although the same behaviour as with the inline assembly
could be achieved by using __sparrow_setSCR(X,Y),
with this approach the value of each field is more clear and
the programmer does not require any knowledge on the SCR
organization. In line 11 it is necessary to include the writ-
ing of the SCR as the previous lines were just setting the
library internal variable. This is done to reduce the number
of accesses which otherwise, would be necessary if each line
performed the actual write.

4 Preliminary Experimental Results
We have evaluated our compilers and SIMD library on
an FPGA implementation of SPARROW integrated with
LEON3 [4]. For our preliminary evaluation we are using
a widely used and well understood kernel, matrix multiplica-
tion, which is an essential block for AI inference applications,
since it is used for representing fully connected layers as well
as for the implementation of convolutions. In addition to
the sequential version of matrix multiplication written in C
which is used as a baseline, we have produced two additional
versions of the code, one written in SPARROW assembly and
one using the SPARROW SIMD library. Moreover, we have
developed two variants of matrix multiplication, one using
saturation and one allowing the values to wrap around when
an overflow occurs. However, due to space reasons we only

provide results with the version with saturation, since the
results for the other version exhibit the same trends, but with
lower speedup ranges (from 2.1× - 6.8×). All programs are
compiled using the highest optimisation level (-O3).

Figure 4 shows the comparison between the various versions,
for different size of matrices, for common matrix sizes found
in machine learning applications. The results are normalised
with respect to the gcc sequential (CPU) version, which is
also shown in the figure with a red line at value 1. As a
consequence, higher values are better and values over the red
line represent speedup, while values below it show slowdown.

First we compare the sequential versions of the two compilers.
For the two smaller sizes (4 and 8), gcc provides slightly
faster code than llvm, while for sizes 16 and 32 llvm is faster.
However, when the size of matrices exceed the size of the
data cache (8KB), the performance difference is negligible.

When comparing the SIMD assembly versions, we notice that
gcc generates faster code than llvm for all sizes, achieving
a maximum speedup of 17.3× over the sequential version
for matrix size 32. The llvm still provides a good speedup
compared to the sequential version, up to 15.2×, being only
10% slower that gcc.

The SIMD library inevitably incurs some overhead compared
to the assembly implementations, especially in the case of
gcc. However, llvm provides the same performance with the
version that uses assembly instead of the library for sizes of
128 and larger. Finally, comparing the SIMD library versions
on top of gcc and llvm, gcc provides the same performance
with llvm, except in sizes 8 and 16, where it is slightly faster.

5 Lessons Learnt
Having worked with both GCC and LLVM for the develop-
ment of the software support for SPARROW has allowed us
to compare, not only the performance, but also the experience
when working with each one. It is worth noting that we had
no prior experience on working on either of the two toolchains

Ada User Jour na l

4 Compi ler Suppor t for an AI-or iented SIMD Extens ion of a Space Processor

0

2

4

6

8

10

12

14

16

18

20

4 8 16 32 64 128 256 512

Size

Matrix multiplication performance with respect to the GCC CPU version (with saturation)

GCC CPU GCC ASSEMBLY GCC LIBSPARROW LLVM CPU LLVM ASSEMBLY LLVM LIBSPARROW

Figure 4: Plot of the performance for matrix multiplication with saturation enabled

prior to this project. In the previous section we already pre-
sented a preliminary performance comparison between the
two compilers. A detailed analysis would require more ex-
perimentation and the evaluation in different scenarios. In
general, however, it is shown that gcc-compiled executables
have lower execution times, at least for LEON3.

When working to include the SPARROW assembly instruc-
tions one of the key advantages of llvm over gcc was the
possibility of defining the instructions in a nested way. This
simplifies the addition of two-stage instructions allowing a
simpler combination of them. However, a new line for each
combination must be manually added. On the other hand, the
code for adding these instructions is easier to understand in
GCC, which can be easily deduced from the existing instruc-
tions. Fortunately, LLVM has a great documentation and a
large number of tutorials about on how to modify it.

All in all, both compilers had advantages and disadvantages
compared to one another, however they both offer good facili-
ties to implement the required functionality in order to add
software support in new hardware designs.

6 Conclusions and Future Work
In this paper we have presented our on-going work on the
addition of software support for the SPARROW SIMD unit in
the gcc and llvm compilers, and a SIMD library that facilitates
SPARROW programming without using inline assembly. In
terms of development both compilers had advantages and
disadvantages compared to one another, however they both
offer good facilities to implement the required functionality
in order to add software support in new hardware designs.

In terms of performance, we noticed that gcc provides higher
performance when sequential C code or assembly is used, but
both compilers provide similar performance when our SIMD
library is used. As a future work we want to perform an

extensive evaluation of the compiler backends we developed
as well as of our SIMD library, by porting more applications
in SPARROW. Moreover, we would like to evaluate Ada’s
frontends of both compilers, generate an Ada version of our
SIMD library and compare them among them and with the
C frontends. Finally, we plan to add support in the compil-
ers so that they can generate directly SPARROW assembly
instructions, through autovectorisation.

7 Acknowledgments
This work was funded by the Ministerio de Ciencia e Innova-
cion - Agencia Estatal de Investigacion (PID2019-107255GB-
C21/AEI/10.13039/501100011033 and IJC-2020-045931-I)
and partially supported by the European Space Agency (ESA)
through the GPU4S (GPU for Space) activity and the HiPEAC
Network of Excellence.

References
[1] M. Solé and L. Kosmidis, “SPARROW: A Low-Cost

Hardware/Software Co-designed SIMD Microarchitec-
ture for AI Operations in Space Processors,” in Design,
Automation and Test in Europe Conference and Exhibi-
tion (DATE), 2022.

[2] Linux Foundation, “RISC-V Forum: Vector and Ma-
chine Learning.” https://events.linuxfoundation.org/riscv-
forum-vector-and-machine-learning.

[3] Marc Solé, Leonidas Kosmidis, “RISC-
V Forum: Vector and Machine Learning.”
https://events.linuxfoundation.org/riscv-forum-vector-
and-machine-learning/program/schedule/.

[4] M. Solé and L. Kosmidis, “SPARROW source code repos-
itory,” 2021. https://gitlab.bsc.es/msolebon/sparrow.

Ada User Jour na l

