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Abstract

Existing explainability approaches for convolutional
neural networks (CNNs) are mainly applied after train-
ing (post-hoc) which is generally unreliable. Ante-hoc ex-
plainers trained simultaneously with the CNN are more
reliable. However, current ante-hoc explanation methods
mainly generate inexplicit concept-based explanations tai-
lored to specific tasks. To address these limitations, we pro-
pose a task-agnostic ante-hoc framework that can gener-
ate interpretation maps to visually explain any CNN. Our
framework simultaneously trains the CNN and a weighting
network - an explanation generation module. The generated
maps are self-explanatory, eliminating the need for manual
identification of concepts. We demonstrate that our method
can interpret classification, facial landmark detection, and
image captioning tasks. We show that our framework is ex-
plicit, faithful, and stable through experiments. To the best
of our knowledge, this is the first ante-hoc CNN explanation
strategy that produces visual explanations generic to CNNs
for different tasks.

1. Introduction

Convolutional Neural Networks (CNNs) are widely used
for image-related tasks in fields such as healthcare [1] and
security [12], and are known to learn complex patterns that
are difficult for humans to comprehend. However, in critical
applications, it is essential to explain how CNNs make their
predictions. Existing research that explains CNNs post-
training (post-hoc) has been successful, but such methods
are oblivious to how the CNN learns its features. More-
over, when a post-hoc method fails, it is difficult to find
if the method or the CNN is at fault [13]. These issues
make the post-hoc methods unreliable. Ante-hoc explana-
tion methods [3, 8, 13] counter these drawbacks by training
the CNN to provide explanations in addition to predictions.

Figure 1. Dominant features identified by our framework on clas-
sifying Tiny-Imagenet using ResNet-50

However, the additional explanations deter the performance
of the CNN. Ante-hoc explainers usually produce concepts
as explanations which cannot provide satisfactory explana-
tions [11] and labelling concepts learned without supervi-
sion [13, 17] is prone to human error. In this paper, we
propose an ante-hoc framework that produces visual inter-
pretations and can be embedded into CNNs learned for any
task to overcome these limitations. Our method was able to
capture dominant features used by the CNN for prediction
as shown in Fig. 1.

2. Proposed method
Our ante-hoc framework produces implicit visual inter-

pretations by the addition of a weight network. A generic
CNN can be considered as a combination of a feature ex-
tractor F (·) and a task-specific prediction network P (·).
The feature extractor F (·) obtains a meaningful latent rep-
resentation from the input, which is then fed into the pre-
diction network P (·) which produces predictions from the
features. Therefore, a CNN can be defined as CNN(·) =
P (F (·)), and is normally trained using a task-specific loss
function.

In addition to the previously mentioned elements of the
traditional CNN pipeline, we introduce a weight network
(W (·)) to incorporate concurrent learning of interpretable
concepts. The weight network consists of an autoencoder
followed by a pixel-wise softmax function. Soft-attention
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Figure 2. Proposed approach for training the weight network concurrent with a CNN classifier. The First Pass of the training process
generates the interpretation map and trains the classifier. In the Second Pass of the training, the weight network is trained.

maps (SAMi = Softmax(F0..i(·)) are generated for a se-
lected number of convolutional layers (η) of the backbone
CNN, which are passed into the autoencoder to output η
feature maps. These feature maps on applying pixel-wise
softmax are denoted as weight maps WM. Pixel-wise soft-
max is the softmax of pixels at a specific two-dimensional
position in η SM. The interpretation map Imap is then gen-
erated. Imap is defined as:

Imap =

η∑
n=1

WMn ⊙ SAMn. (1)

where ⊙ is the hadamard product.

2.1. Training procedure

We propose a two-pass training strategy in which the
CNN and the weight network are trained separately. Fig. 2
displays our training strategy. In the first pass, the input to
the back-bone CNN is the image Ifirst, which produces pre-
dictions Yfirst and η SAM. The SAM are passed into the
weight network W to produce the interpretation map (Imap)
using Eq. (1). Only the CNN is trained during the first pass
using a task-specific loss Ltask defined as

Ltask = L(Yfirst, YGT) (2)

where Yfirst is the prediction made by the CNN during the
first pass, YGT is the ground truth and L(·) is a loss function
suited for the specific task(for instance, a categorical cross-
entropy for a classification problem).

In the second pass, the input to the CNN is the Hadamard
product of the image and the generated interpretation map
from the previous pass (Isecond = Ifirst ⊙ Imap) which we
denote as Energy Map in the following sections. The weight
network is trained in the second pass using an interpretation
loss Linterpret. The interpretation loss is defined as:

Linterpret = MSE(Yfirst, Ysecond). (3)

The interpretation loss Linterpret penalizes the CNN when the
learned concepts are unable to produce the same prediction
produced by the CNN with the original image. In other
words, the interpretation loss forces the weight network to
emphasize significant regions used by CNN for prediction.

3. Experiments
To conduct the experiments, we resize all images to

128 × 128 and use ResNet-50 [5] as the backbone CNN.
We select SAM at fixed intervals of the CNN, including
the maps from the first and last convolutional layers. We
set η = 8 for the selection of SAM. We resize the SAM
to match the input dimensions. Our results show that the
proposed ante-hoc framework generates meaningful expla-
nations while maintaining competitive prediction accuracy
compared to state-of-the-art classification pipelines.

3.1. Identification of concepts learned for each class

Concept Identification in existing ante-hoc frameworks
is an error-prone manual process. Our framework pro-
duces visual interpretations, eliminating the need for the
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identification of concepts (dominant regions). We iden-
tify concepts by binarizing the produced energy map us-
ing a high threshold of 0.8. Fig. 3 shows different concepts
that are learned by the proposed explanation method for the
Animals-10 dataset [2]. For some images multiple concepts
were important for decision, such as the third image in the
cat class where both eyes and nose of the cat are used by
CNN. The results show that the concepts learned by the pro-
posed explanation framework are human-understandable,
providing valuable insights into the CNN’s learning pro-
cess.

Figure 3. Sample Concepts learned by the CNN for Animal-10
classification. In few instances, the CNN uses multiple concepts
to classify images.

3.2. Explaining Landmark Detection

A simple CNN 1 with a convolutional feature extractor
followed by dense layers was learned on AFLW2000 [18]
dataset to detect distinct facial features. The AFLW2000
dataset includes 2000 faces and their facial landmarks. We
used the nose, eyes and mouth landmarks to train three dif-
ferent CNNs, along with the proposed ante-hoc framework.
We also tested the performance when all three facial fea-
tures were learned together. Sample explanations generated
by the proposed framework for detecting different facial
features are shown in Fig. 4. It is evident from the figure that
the proposed method successfully localizes the respective
facial features for the different landmark detection tasks.

3.3. Quantitative performance evaluation

In this section, we evaluate the faithfulness and sta-
bility of the proposed ante-hoc framework. A method is
considered faithful if the trained CNN can predict ground
truth labels solely using the key features (concepts) iden-
tified by the explanation framework [3, 4]. Our metrics to
evaluate the faithfulness of interpretations are inspired by
Adithya et al. [4]. We use three metrics namely Drop(%),
Inc(%) and Win(%). When the input image is replaced
with only concept regions, the classification probability ei-
ther increases due to concentrated representation or de-
creases due to elimination of important regions. Drop(%)

1Landmark Detection Repository

Figure 4. Explanations of proposed framework for landmark de-
tection on AFLW2000 Dataset [18]. Each column displays the
binarized energy map when identifying landmark for selected fa-
cial features.

(Drop(%) =
∑D

k=0(E
p
k−Ip

k )/E
p
k

D ∗100) measures the percent-
age drop in classification probability when using the energy
map (Ep

k) instead of using the image (Ipk ). Here, D is the
total number of cases in the test set where the classification
probability drops and k is the ground truth class. Inc(%)

(Inc(%) =
∑C

k=0(I
p
k−Ep

k)/I
p
k

C ∗ 100) measures the increase
in classification probability when using energy maps. Here,
C is the total number of cases in the test set where the clas-
sification probability increases. Drop(%) and Inc(%) quan-
tify faithfulness on a variable subset of the testing data.
In an ideal scenario, Drop (%) would have no samples re-
ducing the value of the metric. To ensure that we have a
valid Drop(%) or Inc(%) we use Win(%). Win(%) is de-
fined as the percentage of occurrences for which the con-
ditional probability when using the energy map is greater
than the conditional probability when using the image. Low
Drop(%), high Inc(%) and high Win(%) are desired.

Comparing classification with post-hoc methods: We
assess the faithfulness of classification by providing (i) En-
ergy Maps (ii) Binarized Energy Maps as inputs to CNN
for evaluation. Energy maps highlight input regions the
CNN utilizes for prediction. Binarized energy maps seg-
ment the most important regions for the CNN, therefore
were considered along with energy maps. The binarized en-
ergy maps were obtained using a high threshold of 0.8 since
it retains only highly important regions. We use visual post-
hoc methods Grad-CAM [14], Grad-CAM++ [4] and Score-
CAM [16] as baselines for the experiments. Tabs. 1 and 2
shows the results of the experiment on Tiny-Imagenet [10],
CIFAR-10 [9], Animals-10 [2] and Food-11 [15] datasets.
We find that our framework produced more faithful expla-
nations compared to post-hoc methods for both input meth-
ods. The results using binarized energy maps shows that
our framework is better at capturing dominant regions.

Comparing classification with Ante-Hoc Methods:
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Table 1. Comparison of the proposed framework with post-hoc methods

Dataset Grad-CAM Grad-CAM++ Score-CAM Ours
Drop(%) Inc(%) Win(%) Drop(%) Inc(%) Win(%) Drop(%) Inc(%) Win(%) Drop(%) Inc(%) Win(%)

CIFAR-10 83.86 38.5 13 57.28 47.4 26 33.68 62.76 29 23.25 72.79 37
Animals-10 32.47 15.55 20 27.34 16.74 22 30.85 13.23 26 19.24 16.81 34

Food-11 61.18 65.74 59 62.56 66.42 64 60.90 63.87 58 59.2 65.98 67
Tiny-Imagenet 82.67 57.08 19 80.65 62.18 24 82.87 59.12 18 78.14 67.21 33

Table 2. Comparison of the proposed framework with post-hoc methods when binarizing heatmaps

Dataset Grad-CAM Grad-CAM++ Score-CAM Ours
Drop(%) Inc(%) Win(%) Drop(%) Inc(%) Win(%) Drop(%) Inc(%) Win(%) Drop(%) Inc(%) Win(%)

CIFAR-10 85.03 21.48 16 67.71 20.48 27 65.43 32.74 38 22.61 63.08 45
Animals-10 84.53 28.76 32 78.19 37.64 39 79.27 42.45 41 70.50 50.54 48

Food-11 88.91 63.4 33 78.56 65.0 35 84.75 44.56 27 76.23 74.67 33
Tiny-Imagenet 87.47 39.60 13 84.58 43.98 21 78.54 29.71 7 80.56 48.33 28

Table 3. Comparison of Acc(%) of ResNet-18 on classification
with existing ante-hoc methods

Method Animals-10 CIFAR-10 Food-11
Tiny

Imagenet
SENN 82.64 84.50 75.84 33.85
CBAH 87.35 82.14 73.54 35.64
Ours 90.56 90.86 84.32 38.82

We compared our method with ante-hoc methods such as
Self Explaining Neural Network (SENN) [3] and Con-
cept based Ante-Hoc framework (CBAH) [13] as shown in
Tab. 3. We compared these methods by measuring the clas-
sification accuracy (Acc(%)). We chose ResNet-18 [5] as
the base CNN to classify. Our method outperformed both
ante-hoc approaches across all datasets. The main reason
for improved performance is that our framework doesn’t af-
fect the task being solved which is highlighted especially in
Food-11 where obtaining class generic concepts is compli-
cated therefore other methods deter the classification accu-
racy. This experiment shows that our visual ante-hoc frame-
work is superior to existing ante-hoc methods.

Assessing performance on Image Captioning: We
compare the performance of the proposed ante-hoc frame-
work for an image captioning task. We used a simple
CNN-based image captioning network2 trained on Flickr-
8k dataset [7]. The feature extractor of the image caption-
ing network had a ResNet-50 [5] followed by LSTM [6]
layers. Tab. 4 shows the quantitative comparison of our
method with post-hoc methods for explaining an image cap-
tioning task. Existing ante-hoc frameworks focus on ex-
plaining only classification hence, post-hoc methods were
considered. We used the Drop(%) and Inc(%) for this com-
parison. Usage of Win(%) for a task that generates cap-
tions is debatable and therefore was omitted. Our method

2Image Captioning Repository

Table 4. Comparing our framework with post-hoc methods for
interpreting an image captioning task

Metrics Grad-CAM Grad-CAM++ Score-CAM Ours
Drop(%) 45.31 43.68 32.40 27.93
Inc(%) 12.25 13.88 10.28 14.12

Table 5. Stability of the framework compared with post-hoc meth-
ods. Noise is the fraction of pixels affected by salt and pepper
noise.

Noise Grad-CAM Grad-CAM++ Ours
CD(%) CI(%) CD(%) CI(%) CD(%) CI(%)

0.1 5.67 3.85 4.85 4.62 4.12 3.28
0.2 8.60 4.82 5.22 5.94 5.38 3.72
0.3 7.54 2.78 8.42 4.84 7.48 4.36
0.4 9.38 7.84 7.34 6.16 12.78 8.15
0.5 14.88 9.58 10.68 8.56 15.90 12.24

had a lower Drop(%), higher Inc(%) compared to post-hoc
methods [4, 14]. This illustrates that our method can yield
faithful ante-hoc explanations irrespective of task.

Assessing the stability of the framework: An expla-
nation method is stable when the explanations for similar
inputs are similar [3]. We assess the stability of the pro-
posed method on perturbing the input images with different
amounts of salt and pepper noise before predictions. We
perform the same perturbations for visual post-hoc meth-
ods. Comparison of stability between concepts and images
is unfeasible hence comparison with ante-hoc methods was
avoided. The noise level was defined as the fraction of pix-
els affected by noise and increased from 0.1 to 0.5. We mea-
sure the change in Drop(%) (CD) and change in Inc(%) (CI)
to assess stability. The average results obtained on all classi-
fication datasets are displayed in Tab. 5. When the fraction
of noise in an image reaches 0.4 or 0.5, the image is no-
ticeably distinct from the original, unperturbed image. This
is because of the high level of noise present in the image,
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which can alter its appearance and obscure crucial details,
making them harder to discern. Explanations are expected
to have a jump in change for these fractions, which was re-
flected in the results. Our framework had a higher change
for these fractions. We also noticed that post-hoc meth-
ods had random increase-decrease over increasing fractions.
Ideally, change should increase on increase in fractions as
displayed by our framework. Hence, our framework is more
stable compared to visual post-hoc methods.

3.4. Choice of Weight Network

Our weight network uses an auto-encoder to generate
pixel-wise weights from SAM. Usage of auto-encoder en-
sured different weights for different inputs. Pixel-wise
weights represent importance of each pixel better, produc-
ing better regions of importance (ROIs). In this experiment,
we compared our weight network with a weighing layer that
with a layer that learns a single weight for each SAM which
on weighted addition produces an interpretation map. Fig. 5
shows the interpretation maps produced using both methods
for sample images from the Animals-10 dataset [2]. We find
the interpretation maps produced by utilizing weighing net-
work localizes ROIs better compared to learning a single
weight for each soft-attention maps.

Figure 5. ROIs identified by the method using a single weight for
each soft attention map and pixelwise weights (ours). The ROIs
are localized better when using pixelwise weights.

4. Conclusion

In this paper, we introduced a task-agnostic ante-hoc ex-
planation framework which produces visual explanations.
Visual interpretations produced more explicit explanations
than concept based ante-hoc methods. Through experi-
ments, we found that our framework is more faithful and
stable compared to existing explanation methods for differ-
ent tasks such as classification and captioning over various
datasets.
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