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Simple Summary: Accurately grading gliomas, which are the most common and aggressive ma-
lignant brain tumors in adults, poses a significant challenge for radiologists. This study explores
the application of Deep Learning techniques in assisting tumor grading using Magnetic Resonance
Images (MRIs). By analyzing a glioma database sourced from multiple public datasets and comparing
different settings, the aim of this study is to develop a robust and reliable grading system. The study
demonstrates that by focusing on the tumor region of interest and augmenting the available data,
there is a significant improvement in both the accuracy and confidence of tumor grade classifications.
While successful in differentiating low-grade gliomas from high-grade gliomas, the accurate classifi-
cation of grades 2, 3, and 4 remains challenging. The research findings have significant implications
for advancing the development of a non-invasive, robust, and trustworthy data-driven system to
support clinicians in the diagnosis and therapy planning of glioma patients.

Abstract: Glioma is the most common type of tumor in humans originating in the brain. According
to the World Health Organization, gliomas can be graded on a four-stage scale, ranging from the
most benign to the most malignant. The grading of these tumors from image information is a far
from trivial task for radiologists and one in which they could be assisted by machine-learning-based
decision support. However, the machine learning analytical pipeline is also fraught with perils
stemming from different sources, such as inadvertent data leakage, adequacy of 2D image sampling,
or classifier assessment biases. In this paper, we analyze a glioma database sourced from multiple
datasets using a simple classifier, aiming to obtain a reliable tumor grading and, on the way, we
provide a few guidelines to ensure such reliability. Our results reveal that by focusing on the tumor
region of interest and using data augmentation techniques we significantly enhanced the accuracy and
confidence in tumor classifications. Evaluation on an independent test set resulted in an AUC-ROC
of 0.932 in the discrimination of low-grade gliomas from high-grade gliomas, and an AUC-ROC of
0.893 in the classification of grades 2, 3, and 4. The study also highlights the importance of providing,
beyond generic classification performance, measures of how reliable and trustworthy the model’s
output is, thus assessing the model’s certainty and robustness.

Keywords: glioma; tumor grading; machine learning; decision support; neuro-oncology; radiology;
trustworthiness; model certainty; model robustness; reliability

1. Introduction

Glioma is the most common type of tumor originating in the brain of human adults,
and it often comes accompanied by a poor clinical prognosis. In recent decades, the preva-
lence of brain cancer in the adult population has increased by about 40% [1]. According to
the last data available in the Global Cancer Observatory [2], 308,102 people were diagnosed
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in 2020 as having brain tumors worldwide, with an incidence of 4 per 100,000 people and
comprising 1.6% of all new cancer cases. The number of deaths due to brain cancer was
251,329, representing 2.5% of new cancer deaths. These tumors cause different symptoms
by pressing on the brain or spinal cord, as they take up space inside the skull when they
grow. Headaches, seizures, vision loss, weakness, and speech impairment are among the
most common symptoms [3,4].

According to the World Health Organization (WHO) system, gliomas are graded on a
scale ranging from 1 (most benign) to 4 (most malignant). In the fourth edition of the WHO
Classification of Tumors of the Central Nervous System (CNS) published in 2016, molecular
parameters were included along with histological features as decisive markers for glioma
classification, mostly based on the presence of isocitrate dehydrogenase (IDH) mutation and
codeletion of chromosome arms 1p/19q [5]. The 2021 fifth edition [6] introduced significant
changes that advance the role of molecular diagnostics in CNS tumor classification.

Grade 1 gliomas, or pilocytic astrocytomas, are commonly considered different from
grades 2–4 and typically occur in children and young adults. They are well-defined,
slow-growing, and often curable with complete surgical removal. Gliomas of grade 2 are
considered low-grade since they are still slow-growing but are more likely to progress to
higher grades. Grade 3 gliomas are more invasive, grow rapidly, and have more abnormal-
looking cells. Astrocytomas IDH-mutant and oligodendrogliomas IDH-mutant and 1p/19q
codeleted are grade 2–3 tumors that arise, in turn, from astrocytes and oligodendrocytes.
Grade 4 gliomas, defined as glioblastomas IDH-wildtype, are the most aggressive and
highly invasive. They often contain necrotic areas, which make them difficult to treat, and
are associated with poor prognosis.

Treatment options for grades 2, 3, and 4 may include surgery, radiation, and chemother-
apy, but the intensity will depend on the aggressiveness of the tumor. Various genetic
or molecular features have been identified that play a role in determining the treatment
response and prognosis in gliomas, including IDH mutation, 1p/19q codeletion, O-6-
methylguanine-DNA methyltransferase (MGMT) methylation, telomerase reverse tran-
scriptase (TERT) promoter mutation, epidermal growth factor receptor (EGFR) amplifica-
tion, and tumor protein TP53 mutation. Notably, IDH mutation and 1p/19q codeletion
are linked to improved prognosis and treatment response. On the other hand, the MGMT
promoter has been shown increased sensitivity to alkylating agents such as temozolomide,
whereas alterations in the TERT promoter, EGFR amplification, and TP53 mutation are
associated with more aggressive phenotype and poorer treatment response [7,8].

The gold-standard procedure for glioma grading involves surgery and histological
evaluation of the tumor, which play a pivotal role in both diagnosis and prognosis. How-
ever, due to the invasive and time-consuming nature of this method, there is a growing
interest in exploring non-invasive and pre-operative procedures to characterize the tumor,
accelerate the diagnosis and plan personalized treatments.

The magnetic resonance imaging (MRI) scan is the most widely used test in neurol-
ogy and neurosurgery. It is a non-invasive method that provides high-level structural
and functional information about the brain. Different MRI modalities or sequences are
employed for diagnosis, therapy planning, and disease monitoring since they allow the
delineation of tumor compartments through visualization of the axial, sagittal, and coronal
planes. Conventional MRI modalities include T1, T1-weighted with contrast enhancement,
T2-weighted, and FLAIR (fluid-attenuated inversion recovery). Sophisticated MRI systems
allow for 3D volume acquisition, which offers high resolution in all three planes. However,
the traditional approach consists of acquiring 2D images in a particular anatomical plane
and then combining them to create a 3D volume. Commonly, the axial plane is the preferred
choice since it allows good visualization of the major structures in the brain.

When glial cells become cancerous, they can have both different appearances and
diagnoses. Although glioblastoma is the most common and aggressive brain cancer, it is
still a very challenging diagnosis. It is essential to locate the exact brain regions affected
by a tumor when planning the treatment and tracking its progression. Automatic reliable
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identification and characterization of brain tumors for their later removal is a growing
public health concern worldwide. The current practice for glioma diagnosis has some asso-
ciated limitations, such as clinicians’ skills, inter-expert variability, and large waiting times
to obtain results. These issues highlight the importance of developing computer-aided
diagnosis systems to help radiologists to interpret and quantify abnormalities from brain
images through the automation and standardization of tedious and time-consuming tasks
involving identification, classification, or segmentation. Algorithms that could at least
partially automate the process of tumor localization, monitor the progression and precisely
quantify their malignancy, would be very valuable. Radiomics-based approaches have
emerged as promising tools in this regard. By extracting quantitative features from medical
imaging data, radiomics can contribute not only to the development of a non-invasive
and pre-operative system for grading gliomas but also to the characterization of important
molecular markers, such as IDH mutation, 1p/19q codeletion, and MGMT promoter methy-
lation, which play crucial roles in treatment decision-making and progression assessment.
Numerous studies have previously assessed the classification of the glioma’s grade from
MRI using machine learning (ML) methods, but there are still manifold issues in the ana-
lytical process that need to be addressed. Furthermore, there is no standardized pipeline
that provides guarantees about the methodological issues involved in such analysis. In
this study, we strive to gain insight into some of the questions we believe need further
investigation. For example,

• Do we need to use all the MRI 2D slice images to obtain a reliable classification, or is it
enough to use only the slice that contains the largest tumor area?

• How much additional information is provided by slices that do not contain the largest
tumor area?

• When working with more than one slice for each tumor/patient, a dataset split
can be made either at the patient level or slice level. Splitting on slice-level would
lead to patient leakage and, if so, can these results be considered trustworthy and
generalizable?

• Most studies highlight overall performance metrics, which, in the very common
context of data class imbalance, can prove misleading. Beyond overall classification
metrics, which ones would provide scientists trying to replicate experimental settings
with the most reliable results?

Beyond answering these questions, this study argues the importance of providing not
only classification performance general measures but also measures of how reliable and
trustworthy is the model’s output, thus assessing the model’s certainty and robustness.

The main contributions of this work can be summarized as follows:

• Development of a 2D non-invasive multi-sequence grading system for gliomas.
• Assessment of the impact of extracting the tumor ROI and using data augmentation

techniques on the classification process.
• A proposal to assess the certainty and robustness of the predictions obtained with the

different methods.

Related Work

Over the last decades, much work has been devoted to the development of at least
partially automated systems for glioma grading that could assist clinicians in their diagnos-
tic and prognostic tasks. Recently, most developments concern ML methods and, more in
particular, deep learning (DL) techniques. In this section, we briefly review previous works
that made a relevant contribution to glioma classification using DL for the analysis of MRI.

Yang et al. [9] proposed the usage of AlexNet and GoogLeNet for classifying LGG and
HGG on a private database composed of 113 diagnosed glioma patients. In this study, the
2D T1ce axial images that contain at least 80% of the tumor visible were selected. Then, the
image was cropped at the tumor bounding box. The data were split into the train, validation,
and test subsets at the patient level. The best performance (AUC = 0.968) was achieved with
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a pre-trained GoogLeNet. Despite the good overall performance, only accuracy and AUC
were reported which, along with the small sample size, are limiting factors in this work.

Pereira et al. [10] proposed a 3D Convolutional Neural Network (CNN) on tumor
ROI. By using gradient backpropagation maps, it was found that, by performing mean-std
intensity standardization in the whole image, the CNN considered the border of the brain
as discriminative. Instead, by standardizing the images only with the brain mask, the CNN
managed to focus on the tumor, yielding better performance.

Banerjee et al. [11] presented three CNN architectures for classifying the binary grade
on MRI patches, slices, and multiplanar 2D MRI by splitting the data at the patient level.
They stacked the four conventional MRI sequences as input CNN channels. In this work, a
set of 10 slices before and after the slice with the largest tumor area was used, with a skip
over five slices for HGG, but with a skip over two slices for LGG, handling the imbalanced
dataset problem, but using different criteria for LGG and HGG patients. The best accuracy
(0.97) was provided by VolumeNet. Unfortunately, a drawback of this study is that the
models were trained on TCGA samples and tested on BraTS2017, which implies an overlap
between training and testing data and, therefore, data leakage.

Anaraki et al. [12] proposed the use of a CNN combined with genetic algorithms to
select the parameters that lead to the best performance in differentiating healthy images
and glioma WHO subtype (2-3-4), by using only T1ce MRI. The reported final accuracy
of the selected model was 0.909. The data split in this study seems to be made at the
slice level and after data augmentation, which may imply that the same tumor is present
multiple times in train and test sets (again, resulting in data leakage). The same practice is
conducted by Tandel et al. [13], where authors studied the classification from two categories
(tumorous/non-tumorous) up to six different tumor subtypes. The results were reported
as the mean of all protocols/models/categories, which makes it difficult to interpret the
real class performance. That is, bad performance for some classes can be eclipsed by high
performance for other classes. In the classification problem of normal, LGG, or HGG slices, a
mean accuracy of 0.960 was obtained, which is the average of K2, K5, and K10 CV protocols.

Zhuge et al. [14] compared two methods for tumor grading (LGG/HGG) by using
three MRI modalities (T1-Gd, T2, and Flair). They first used a 3D U-Net to segment the
tumor and then compared the grade classification using a 3D volumetric CNN based on
NiftyNet [15], and a 2D mask-RCNN on the slice with the largest tumor area. The 2D
approach without data augmentation obtained a sensitivity of 0.864, specificity of 0.917,
and overall accuracy of 0.891. The 2D approach with data augmentation led to results that
were similar to the 3D approach: sensitivity of 0.935, specificity of 0.972, and accuracy of
0.963. The models were trained and validated using Brats2017 and TCGA-LGG data.

Ayadi et al. [16] proposed a model for classifying brain tumor slices in multiple
subtypes such as meningioma, glioma, and pituitary tumor and also in glioma sub-grades.
Even though the performance of the system proposed in this study is competitive, the
training/test partition of the models seems to have been done by image/slice.

Ding et al. [17] proposed a mixed approach using radiomic features from multi-planar
reconstructed MRI and DL models, using the slice with the largest tumor area and the
two adjacent slices as RGB channels. By combining radiomics and DL, an AUC of 0.898, a
sensitivity of 0.840, a specificity of 0.76, and an accuracy of 0.800 were obtained.

van der Voort et al. [18] developed a 3D multitask CNN to predict the grade of the
tumor (2/3/4), and mutation status (IDH, 1p/19q co-deletion). Four private datasets and
5 public datasets were merged, including BraTS, EGD, and REMBRANDT. For the grading
task, an overall AUC of 0.81, and an accuracy of 0.71 were obtained. A sensitivity of 0.75
for grade 2, 0.17 for grade 3, and 0.95 for grade 4 was reported. When grading in LGG vs.
HGG, an AUC of 0.91, an accuracy of 0.84, a sensitivity of 0.72, and a specificity of 0.93 were
obtained. Among all the studies reviewed, this paper is the only one providing evidence
that distinguishing between grades 2 and 3 is still a very challenging classification problem.

For the sake of clarity, Table 1 summarizes the most relevant results in the reviewed
literature that are related to the current study.
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Table 1. Summary of relevant literature on glioma grading and the corresponding methodologies used. For each study, we report details about the database used,
sample size, MRI modality, data spitting strategy, dimensionality, number of slices used, categories considered, and the reported performance.

Reference Database Sample Size MRI
Modality Split Dimensionality Slices Classes Performance

Yang et al. [9] Private 113 T1ce Patient 2D ≥80% tumor LGG/HGG OA = 0.945
AUC = 0.968

Pereira et al. [10] BraTS2017 285 T1, T1ce, T2,
FLAIR Patient-level 3D All LGG/HGG OA = 0.9298

AUC = 0.9841
Recall LGG = 0.867
Recall HGG = 0.952

Banerjee et al. [11] BraTS2017 746 T1, T1ce, T2,
FLAIR Patient 2D largest slice

± 10 LGG/HGG OA = 0.970

TCGA Recall LGG = 0.96
Recall HGG = 0.943

Anaraki et al. [12] IXI 1288 T1ce Slice 2D tumor
visible Normal/G.2/G.3/G.4 OA = 0.909

REMBRANDT Recall Normal = 0.998
TCGA Recall G.2 = 0.884
private Recall G.3 = 0.864

Recall G.4 = 0.974

Tandel et al. [13] REMBRANDT 130 T2 Slice 2D tumor
visible Normal/LGG/HGG OA = 0.960

AUC = 0.990

Zhuge et al. [14] Brats2018 315 T1ce, T2,
FLAIR Patient 2D largest slice LGG/HGG OA = 0.963

TCGA Recall HGG = 0.935
Recall LGG = 0.972

Patient 3D All LGG/HGG OA = 0.971
Recall HGG = 0.947
Recall LGG = 0.968
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Table 1. Cont.

Reference Database Sample Size MRI
Modality Split Dimensionality Slices Classes Performance

Ayadi et al. [16] REMBRANDT 130 Slice 2D tumor
visible Normal/LGG/HGG OA = 0.972

Recall Normal = 1
Recall LGG = 0.984
Recall HGG = 0.860

Radiopaedia 121 Slice 2D tumor
visible G.1/G.2/G.3/G.4 OA = 0.937

Recall G.1 = 0.901
Recall G.2 = 0.957
Recall G.3 = 0.908
Recall G.4 = 0.982

Ding et al. [17] Private 151 T1ce Patient 2D largest + 2
adjacent LGG/HGG OA= 0.800

TCGA AUC = 0.898
Recall LGG = 0.760
Recall HGG = 0.840

van der Voort et al. [18] EGD 1748 T1, T1ce, T2,
FLAIR Patient 3D All LGG/HGG OA = 0.84

REMBRANDT AUC = 0.91
CPTAC-GBM Recall LGG = 0.72

TCGA Recall HGG = 0.93
BraTS2019 G.2/G.3/G.4 OA = 0.71
Ivy GAP AUC = 0.81
Private Recall G.2 = 0.75

Recall G.3 = 0.17
Recall G.4 = 0.95

OA = Overall Accuracy, AUC = Area Under the (ROC) Curve
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2. Materials and Methods
2.1. Data

For this study, we used datasets from three public repositories, namely BraTS, EGD,
and REMBRANDT, which provide pre-operative labeled MR images of gliomas. The
brain tumor segmentation (BraTS) challenge [19,20] contains MRI from 2012 to 2021. The
challenge aimed to evaluate the state-of-the-art methods for the segmentation of brain
tumors, but it also contains clinical information related to the type of tumor. The scans were
acquired from 19 institutions and they are already pre-processed and skull-stripped. In this
study, we use the BraTS2020 dataset which provides LGG (g.2–g.3) and HGG (g.4) labels
for 369 patients. The BraTS database contains samples from The Cancer Genome Atlas,
which allowed us to extract the exact grade for the “low-grade” overlapping samples (=65).
The Erasmus Glioma Dataset (EGD) [21], provides MR images from 774 patients, and the
grade of the tumor for 716 of those. The Cancer Imaging Archive (TCIA) [22] provides raw
dicom brain MRI and the tumor grade from 130 patients of the REMBRANDT project [23].
These images were cleaned, transformed to NIfTI format, and segmented by [24]; they are
available in the NeuroImaging Tools & Resources Collaboratory (NITRC) resource.

All the scans are co-registered to the same anatomical template (MNI152) and inter-
polated to a uniform isotropic resolution (1 mm3). All the images are provided in NIfTI
format and provide T1, T1ce, T2, and FLAIR modalities, and the segmentation mask of the
tumor. After discarding noisy samples, the dataset compiled for the current study contains
1125 samples: 805 HGG and 320 LGG (181 g.2, 122 g.3, 17 unknown). Table A1 provides a
comprehensive summary of the patient’s demographic and clinical characteristics in the
training (divided into 3 CV folds) and test sets.

2.1.1. Data Pre-Processing

Ranges of image intensities can vary among medical centers, acquisition systems, or
clinical protocols. To minimize the effect of these artifacts and solve inhomogeneity issues,
applying some pre-processing techniques to MR images [25–27] is a common procedure.

One popular step in the MRI pre-processing pipeline is bias field correction (BFC).
This method aims to correct the presence of low-frequency intensity non-uniformities in
the MRI magnetic field that are commonly known as the bias field. The technique of choice
for BFC is N4ITK (N4 bias field correction) [28]. An additional step was required for EGD,
since the images are of shape [197, 233, 189], instead of [240, 240, 155] like in BraTS and
REMBRANDT. We performed a resample transform using linear interpolation. In both
N4ITK and resampling, we used the functions provided by the SimpleITK project.

The images from the BraTS dataset contain only the brain of the patient, so, to ho-
mogenize the data, we performed skull-stripping on EGD and REMBRANDT datasets.
Skull-stripping is a segmentation task in which brain tissue is segmented from the entire
image of the skull [29]. We used the Brain Mask Generator (BrainMaGe) [30] skull-stripping
tool, which is built based on a modality-agnostic DL approach. Then, the intensity values
of the images were adjusted by redistributing them so that the resulting images match a
uniform distribution of intensities. The intensity values are spread out over the full range
of possible values, reducing the impact of noise in an image, and enhancing the contrast, in
a process that can reveal subtle details.

To unify the intensity levels, the final pre-processing step involved scaling pixel values
into the 0–1 range by using min–max normalization. Moreover, each MRI modality image
was standardized independently by subtracting the mean and dividing by the standard
deviation of the training set and taking only the brain region into account.

The steps performed in the pre-processing pipeline, from raw MRI to the classifier
input images, are depicted in Figure 1.
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Figure 1. Overview of the proposed method using (A) entire brain images and (B) tumor ROI.
Before feeding the MRI scans into the classifier, the pipeline consisted of several pre-processing steps,
including registration to a common atlas, skull-stripping, bias field correction, and normalization.
The classifier takes FLAIR, T1 with contrast-enhancement, T1, and T2 scans stacked as input channels
for the classification task.

2.1.2. Data Augmentation

Models of the DL family are extremely prone to overfitting the training data when
there is insufficient data available. We considered data augmentation techniques to increase
both the number of examples and the variability of the training dataset. We artificially
augmented the dataset on the fly by making minor alterations to our original data, such
as rotations (±90º), random vertical and horizontal flips, random changes in brightness
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with γ = 0.2 and contrast with γ ∈ (0.25–1.75), and adding random Gaussian noise. By
adding the original images to our training set, we ensure that the model learns the key
features of the input data and, by including the transformed images, expose the model
to a wider range of variations so that it becomes more robust and it generalizes better to
unseen data. The augmentation parameter was fine-tuned to determine the best number
for generating augmented images, which resulted in two augmented images in addition to
the original ones.

Figure 2 shows the experimental pipeline followed in our experiments.

Figure 2. Overview of the experimental workflow: this diagram outlines the key steps involved in
our experimental methodology, including data preparation, training, and testing.

2.2. Extraction of the Tumor Region of Interest

We consider two different approaches for glioma grading: either involving the whole
brain or extracting the tumor region of interest (ROI). We defined a bounding box around the
tumor area from the tumor segmentation mask to extract the tumor ROI. After extracting the
bounding box, the image was resized to a fixed size of 128× 128 to be fed into the classifier.

2.3. Classification Model

Over the last few years, the use of DL to automatically analyze images has revolution-
ized the field of computer vision. The current gold-standard DL architecture in computer
vision is the convolutional neural network (CNN) [31]. These models can be fed by one,
two, or three-dimensional inputs. The input of a CNN is a tensor with a shape (width ×
height × channels). In our particular case, we modified the input number of channels of the
network to four, each representing an MRI modality.

Our baseline models were developed based on the selection of the single 2D MRI slice
that contained the largest area of the tumor. This selection was carried out by maximizing
the inclusion of tumor pixels as indicated by the tumor mask. Additionally, we explored an
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alternative approach by incorporating 20 consecutive slices where the tumor was visibly
present. These additional slices encompassed the 10 preceding and 10 succeeding slices
originating from the 2D slice with the maximum tumor area. The final patient diagnosis
was achieved by employing a majority voting approach.

Our models were built using the ResNet18 [32] architecture, consisting of 18 layers, in-
cluding convolutional, pooling, fully connected layers, and residual blocks. These residual
connections allow the network to propagate gradients effectively, reducing the vanishing
gradient problem that can occur in very deep networks. In addition to the original architec-
ture, we added a dropout layer before the last fully connected layer to prevent overfitting.
Finally, a Softmax layer was added to convert logits into probabilities. We chose ResNet18
among different models, such as AlexNet [33], VGGNet11 [34], VGGNet16, or ResNet34
since they lead us to worse performance or overfitting when the networks were deeper.

In our experiments, the cross-entropy loss function was used as the objective function
for training the deep neural network models. However, due to the imbalance problem in the
analyzed datasets, a weighted cross-entropy loss function was implemented to mitigate this
effect. This approach involved assigning weights to each class to give greater importance
to the underrepresented classes during training.

To optimize the model, the SGD optimizer [35] was used, with a learning rate of
1 × 10−4, a momentum of 0.9, and a weight decay of 5 × 10−4. A batch size of 32 and a
maximum number of epochs of 100 were set while saving the model at the epoch that
achieved the best performance in the validation set. Finally, the network was initialized
using Kaiming weights initialization [36], which also helps avoid vanishing gradients.
These hyperparameters were selected based on a grid search over a range of values and
were found to produce good results on our dataset.

A 3-fold cross-validation (CV) was used to assess the effectiveness of our models. A
total of 75% of the data was used to run the 3-fold CV while keeping 25% as a holdout
test set. Class proportions were preserved in each set. In comparison to using a single
train/test split, this enables us to get more reliable estimations of the model’s performance.
The final model’s performance is presented by averaging the three folds. After completing
the CV, we retrained the model using a random split of the train, validation, and test sets.
This was done to ensure that the performance of the model was not biased by the specific
partitioning used during cross-validation.

In order to enhance the robustness and reliability of our findings, an ensemble ap-
proach was implemented. This involved gathering the test predictions from each fold of
the CV process and integrating them by averaging the probability outputs of the models.
This resulted in a final prediction for each sample in the test set. This ensemble approach
allows us to combine the predictions of multiple models, each trained on a different subset
of the data, to obtain a more robust prediction that is less likely to be influenced by noise
or outliers. Ensembling can help reduce the impact of any individual fold’s weaknesses
or biases. We believe that this approach provides a more reliable estimate of the model’s
performance and increases confidence in our results.

The whole process was conducted using an NVIDIA GRID A100-20C GPU with CUDA
version 12.0 and the models were implemented using PyTorch 1.11.0.

2.4. Performance Metrics

The confusion matrix and its associated performance metrics were used to evaluate
the predictive performance of our models. These metrics provide information about the
classification algorithms’ accuracy, precision, recall, and overall performance, and will allow
us to assess their ability to correctly classify instances within our dataset. The confusion
matrix (Table 2) was used as the basis to evaluate the predictive performance of our models,
where TP stands for true positive, TN for true negative, FP for false positive, and FN for
false negative.
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Table 2. Confusion matrix.

Predicted

Negative Positive

True
Negative TN FP
Positive FN TP

Several standard metrics can be obtained from the confusion matrix, including
accuracy = TP+TN

TP+FP+TN+FN , sensitivity = TP
TP+FN , speci f icity = TN

TN+FP , Precision = TP
TP+FP ,

and the F1Score = 2 Recall∗Precision
Recall+Precision .

Accuracy may be not suitable when working in imbalanced domains because by
always correctly predicting the most represented class (even when no observations of
the minority class are correctly classified) a very high but misleading accuracy can still
be obtained.

A far more robust-to-class-imbalance metric is the Area Under the Roc Curve (AUC),
which can be interpreted as the probability that a random individual who will become
positive has a higher risk of being positive than a negative individual. The AUC integrates
measures of the discriminative ability of an algorithm across different thresholds, and can
be computed as follows:

AUCROC =
∫ 1

0

TP
TP + FN

d
(

FP
TN + FP

)
(1)

an AUC close to 1 means the model is able to separate the classes perfectly, whereas
an AUC value close to 0.5 is the signature of a completely random classification model.

As the class imbalance problem can significantly impact the metrics derived from the
confusion matrix, we provide them for each class.

3. Results

Given that the main objective of this work is providing guidelines about the different
elements in the pipeline of ML-based image analysis that are required to enhance the relia-
bility of such analysis, we initially conducted a comprehensive comparison of performance
and certainty metrics across various settings, which included either using tumor patches
or considering the entire brain region, as well as either incorporating data augmentation
techniques or using unmodified data. Specifically, we employed the slice with the largest
tumor area as a baseline approach. Subsequently, we trained a model using the settings
that yielded the best results by incorporating multiple slices, aiming to gain insights into
the additional benefit contributed by this approach to the classification process.

3.1. Grade Classification Performance

Tables 3 and 4 report the classification performance measures obtained without us-
ing data augmentation techniques in the skull-stripped brain images and tumor ROIs,
respectively. Similarly, Tables 5 and 6 provide the analogous results obtained using data
augmentation transforms. Each table contains the results for both binary (LGG vs HGG)
and multi-class (g.2, g.3, and g.4) scenarios.
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Table 3. Performance evaluation of the model trained on the largest slice using entire brain images
without data augmentation.

Mean 3-Fold CV Ensemble 3-Fold CV

Train Validation Test Test (95% CI)

LGG vs. HGG

Loss 0.479 0.540 0.546

Accuracy 0.780 0.769 0.745 0.741 (0.690–0.792)

AUC-ROC 0.872 0.823 0.807 0.819 (0.774–0.864)

Precision

LGG 0.582 0.572 0.538 0.532 (0.474–0.590)
HGG 0.914 0.884 0.875 0.873 (0.834–0.912)

Recall

LGG 0.821 0.742 0.729 0.725 (0.673–0.777)
HGG 0.764 0.779 0.751 0.748 (0.697–0.798)

F1

LGG 0.681 0.646 0.643 0.614 (0.557–0.671)
HGG 0.832 0.828 0.824 0.805 (0.759–0.852)

Grade (2/3/4)

Loss 1.009 1.006 0.987

Accuracy 0.647 0.725 0.733 0.730 (0.678–0.782)

G.2 0.749 0.837 0.838 0.835 (0.791–0.878)
G.3 0.860 0.886 0.891 0.892 (0.856–0.929)
G.4 0.684 0.728 0.736 0.734 (0.682–0.786)

AUC-ROC 0.646 0.642 0.651 0.671 (0.616–0.726)

G.2 0.639 0.684 0.667 0.705 (0.652–0.759)
G.3 0.642 0.595 0.635 0.636 (0.580–0.693)
G.4 0.658 0.647 0.650 0.671 (0.616–0.726)

Precision

G.2 0.275 0.167 0.472 0.500 (0.441–0.559)
G.3 0.226 0.000 0.000 0.000 (0.000–0.000)
G.4 0.773 0.729 0.734 0.732 (0.680–0.784)

Recall

G.2 0.318 0.008 0.036 0.022 (0.005–0.039)
G.3 0.114 0.000 0.000 0.000 (0.000–0.000)
G.4 0.802 0.997 1.000 1.000 (1.000–1.000)

Specificity

G.2 0.833 0.999 0.997 0.996 (0.988–1.000)
G.3 0.953 0.996 0.999 1.000 (1.000–1.000)
G.4 0.372 0.013 0.035 0.026 (0.007–0.045)

F1

G.2 0.293 0.014 0.028 0.042 (0.018–0.065)
G.3 0.152 0.000 0.000 0.000 (0.000–0.000)
G.4 0.787 0.842 0.842 0.845 (0.803–0.888)



Cancers 2023, 15, 3369 13 of 28

Table 4. Performance evaluation of the model trained on the largest slice using tumor ROI without
data augmentation.

Mean 3-Fold CV Ensemble 3-Fold CV

Train Validation Test Test (95% CI)

LGG vs. HGG

Loss 0.379 0.427 0.386

Accuracy 0.854 0.821 0.829 0.837 (0.794–0.880)

AUC-ROC 0.913 0.883 0.906 0.910 (0.877–0.944)

Precision

LGG 0.703 0.656 0.665 0.677 (0.623–0.732)
HGG 0.932 0.905 0.916 0.919 (0.888–0.951)

Recall

LGG 0.842 0.779 0.804 0.812 (0.767–0.858)
HGG 0.858 0.838 0.838 0.847 (0.804–0.889)

F1

LGG 0.766 0.712 0.714 0.739 (0.687–0.790)
HGG 0.893 0.870 0.872 0.881 (0.844–0.919)

Grade (2/3/4)

Loss 0.690 0.762 0.685

Accuracy 0.807 0.788 0.797 0.799 (0.751–0.846)

G.2 0.877 0.840 0.853 0.856 (0.815–0.897)
G.3 0.881 0.889 0.891 0.892 (0.856–0.929)
G.4 0.856 0.847 0.852 0.849 (0.807–0.891)

AUC-ROC 0.871 0.813 0.854 0.860 (0.819–0.901)

G.2 0.924 0.890 0.909 0.911 (0.878–0.945)
G.3 0.787 0.669 0.752 0.765 (0.715–0.815)
G.4 0.901 0.880 0.902 0.904 (0.870–0.939)

Precision

G.2 0.592 0.507 0.535 0.543 (0.484–0.601)
G.3 0.446 0.000 0.000 0.000 (0.000–0.000)
G.4 0.912 0.884 0.890 0.885 (0.847–0.922)

Recall

G.2 0.807 0.785 0.833 0.826 (0.782–0.871)
G.3 0.281 0.000 0.000 0.000 (0.000–0.000)
G.4 0.887 0.909 0.908 0.911 (0.877–0.944)

Specificity

G.2 0.891 0.850 0.856 0.862 (0.822–0.903)
G.3 0.956 1.000 0.999 1.000 (1.000–1.000)
G.4 0.773 0.683 0.702 0.684 (0.630–0.739)

F1

G.2 0.681 0.616 0.617 0.655 (0.599–0.711)
G.3 0.344 0.000 0.000 0.000 (0.000–0.000)
G.4 0.899 0.896 0.894 0.898 (0.862–0.933)
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Table 5. Performance evaluation of the model trained on the largest slice using entire brain images
and data augmentation.

Mean 3-Fold CV Ensemble 3-Fold CV

Train Validation Test Test (95% CI)

LGG vs. HGG

Loss 0.451 0.474 0.459

Accuracy 0.793 0.797 0.797 0.805 (0.759–0.851)

AUC-ROC 0.874 0.864 0.866 0.878 (0.840–0.916)

Precision

LGG 0.600 0.611 0.606 0.624 (0.567–0.680)
HGG 0.917 0.911 0.913 0.906 (0.872–0.940)

Recall

LGG 0.822 0.804 0.809 0.788 (0.740–0.835)
HGG 0.781 0.794 0.792 0.812 (0.766–0.857)

F1

LGG 0.693 0.694 0.701 0.696 (0.642–0.750)
HGG 0.843 0.848 0.856 0.856 (0.815–0.897)

Grade (2/3/4)

Loss 0.867 0.837 0.802

Accuracy 0.729 0.751 0.742 0.752 (0.701–0.803)

G.2 0.801 0.793 0.794 0.802 (0.755–0.849)
G.3 0.865 0.889 0.892 0.892 (0.856–0.929)
G.4 0.793 0.819 0.798 0.809 (0.763–0.856)

AUC-ROC 0.776 0.788 0.803 0.816 (0.770–0.861)

G.2 0.838 0.849 0.862 0.872 (0.833–0.911)
G.3 0.865 0.670 0.697 0.713 (0.660–0.766)
G.4 0.793 0.844 0.850 0.861 (0.821–0.902)

Precision

G.2 0.427 0.422 0.434 0.448 (0.390–0.507)
G.3 0.246 0.000 0.000 0.000 (0.000–0.000)
G.4 0.869 0.880 0.881 0.890 (0.853–0.927)

Recall

G.2 0.655 0.726 0.812 0.848 (0.806–0.890)
G.3 0.099 0.000 0.000 0.000 (0.000–0.000)
G.4 0.842 0.871 0.836 0.842 (0.799–0.885)

Specificity

G.2 0.829 0.806 0.790 0.793 (0.745–0.841)
G.3 0.960 1.000 1.000 1.000 (1.000–1.000)
G.4 0.662 0.683 0.697 0.724 (0.671–0.776)

F1

G.2 0.517 0.532 0.520 0.586 (0.529–0.644)
G.3 0.139 0.000 0.000 0.000 (0.000–0.000)
G.4 0.662 0.875 0.872 0.865 (0.825–0.905)
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Table 6. Performance evaluation of the model trained on the largest slice using tumor ROI and data
augmentation.

Mean 3-Fold CV Ensemble 3-Fold CV

Train Validation Test Test (95% CI)

LGG vs. HGG

Loss 0.375 0.384 0.335

Accuracy 0.841 0.844 0.870 0.883 (0.845–0.920)

AUC-ROC 0.913 0.905 0.928 0.932 (0.902–0.961)

Precision

LGG 0.680 0.685 0.732 0.758 (0.708–0.808)
HGG 0.927 0.931 0.940 0.942 (0.915–0.970)

Recall

LGG 0.834 0.842 0.858 0.863 (0.822–0.903)
HGG 0.844 0.846 0.874 0.891 (0.855–0.927)

F1

LGG 0.749 0.755 0.759 0.807 (0.761–0.853)
HGG 0.883 0.886 0.890 0.916 (0.884–0.948)

Grade (2/3/4)

Loss 0.722 0.712 0.617

Accuracy 0.780 0.798 0.818 0.824 (0.779–0.869)

G.2 0.847 0.854 0.869 0.874 (0.835–0.913)
G.3 0.852 0.883 0.885 0.892 (0.856–0.929)
G.4 0.847 0.858 0.881 0.881 (0.843–0.919)

AUC-ROC 0.847 0.837 0.886 0.893 (0.857–0.930)

G.2 0.915 0.909 0.920 0.921 (0.889–0.952)
G.3 0.724 0.701 0.809 0.825 (0.780–0.869)
G.4 0.903 0.901 0.929 0.935 (0.780–0.869)

Precision

G.2 0.554 0.534 0.570 0.580 (0.522–0.638)
G.3 0.241 0.400 0.381 0.500 (0.441–0.559)
G.4 0.911 0.905 0.920 0.916 (0.884–0.949)

Recall

G.2 0.781 0.837 0.855 0.870 (0.830–0.909)
G.3 0.154 0.076 0.100 0.100 (0.065–0.135)
G.4 0.875 0.899 0.916 0.921 (0.889–0.953)

Specificity

G.2 0.877 0.858 0.872 0.875 (0.836–0.914)
G.3 0.939 0.984 0.980 0.988 (0.975–1.000)
G.4 0.772 0.749 0.789 0.776 (0.727–0.825)

F1

G.2 0.647 0.651 0.663 0.696 (0.642–0.750)
G.3 0.187 0.125 0.122 0.167 (0.123–0.210)
G.4 0.893 0.902 0.907 0.919 (0.886–0.951)
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We observed a significant improvement in the classification metrics for classifying
the grades in LGG (grades 2 and 3) and HGG (grade 4). The ensemble results obtained
from the independent test set show an improvement in the sensitivity of LGG and HGG
from 0.725 and 0.748 to 0.863 and 0.891, respectively. The accuracy and the AUC-ROC are
boosted from 0.741 and 0.819 to 0.883 and 0.932.

The findings from the multi-class problem are revealing in several ways. Accuracy for
each grade improved from 0.835, 0.892, 0.734 to, in turn, 0.874, 0.892, and 0.881, leading to
an overall accuracy of 0.730 and an AUC of 0.671. Further, the AUC-ROC for each category
increased from 0.705, 0.636, and 0.671 to, in turn, 0.921, 0.825, and 0.935, which resulted
in an overall accuracy of 0.824 and AUC of 0.893. A closer inspection of the results shows
that the sensitivity for grades 2, 3, and 4 raised from 0.022, 0.000, and 1.000 to 0.870, 0.100,
and 0.916. Despite the high accuracy and AUC, these results suggest that we were able
to accurately classify 87% of grade 2 and 91.6% of grade 4 tumors, but only 10% of grade
3 tumors.

From Figure 3, it can be seen that the use of tumor ROIs and data augmentation tech-
niques enhances both the model’s classification performance and its generalization ability.
Additionally, the curves appear to be less noisy, indicating that the model’s predictions are
more consistent and reliable.

(A) Entire brain—LGG vs HGG.

(B) tumor ROIs—LGG vs HGG.

Figure 3. Cont.
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(C) Entire brain—g.2/g.3/g.4.

(D) Tumor ROIs—g.2/g.3/g.4.

Figure 3. Comparison of training and validation loss and AUC-ROC history using the pro-
posed model on a 3-fold CV for the two-class problem (LGG/HGG) and the multi-class problem
(g.2/g.3/g.4). The results are shown for two different scenarios: (A,C) considering the entire brain,
and (B,D) considering tumor ROIs.

To evaluate the similarity of data distributions across the three folds and test sets,
statistical tests were conducted to examine the presence of any significant differences in
grade and tumor size. The findings of these tests, as shown in Tables A2 and A3, indicate
that no significant differences exist among the various datasets.

3.2. Single-Slice versus Multi-Slice

The outcomes obtained from the inclusion of multiple consecutive slices are illus-
trated in Table 7. The recall for LGG and HGG classification resulted in 0.887 and 0.881,
respectively. In the case of WHO grade classification, the proportion of correctly classified
observations for grade 2 was 0.913, for grade 3 was 0.100, and for grade 4 was 0.926. The
overall accuracy and AUC values also remained consistent between the two approaches.

These results did not exhibit substantial improvement compared to the single-slice
approach, indicating that the additional information provided by multiple slices did not
significantly contribute to the classification task.
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Table 7. Performance evaluation of the model trained on 20 consecutive slices using tumor ROI with
data augmentation.

Mean 3-Fold CV Ensemble 3-Fold CV

Train Validation Test Test (95% CI)

LGG vs. HGG

Loss 0.354 0.336 0.371

Accuracy 0.894 0.883 0.882 0.883 (0.845–0.920)

AUC-ROC 0.923 0.922 0.921 0.927 (0.896–0.957)

Precision

LGG 0.772 0.767 0.752 0.747 (0.697–0.798)
HGG 0.952 0.935 0.945 0.952 (0.927–0.977)

Recall

LGG 0.888 0.843 0.871 0.887 (0.851–0.924)
HGG 0.896 0.898 0.886 0.881 (0.843–0.919)

F1

LGG 0.825 0.804 0.807 0.811 (0.766–0.857)
HGG 0.923 0.916 0.915 0.915 (0.883–0.948)

Grade (2/3/4)

Loss 0.696 0.590 0.603

Accuracy 0.839 0.818 0.810 0.835 (0.791–0.878)

G.2 0.895 0.870 0.863 0.878 (0.839–0.916)
G.3 0.896 0.877 0.872 0.896 (0.860–0.932)
G.4 0.889 0.888 0.884 0.896 (0.860–0.932)

AUC-ROC 0.860 0.846 0.862 0.873 (0.834–0.912)

G.2 0.918 0.904 0.914 0.920 (0.889–0.952)
G.3 0.758 0.720 0.752 0.772 (0.722–0.821)
G.4 0.908 0.915 0.921 0.927 (0.896–0.957)

Precision

G.2 0.617 0.576 0.560 0.583 (0.525–0.641)
G.3 0.684 0.258 0.287 0.600 (0.542–0.658)
G.4 0.914 0.911 0.928 0.930 (0.900–0.960)

Recall

G.2 0.916 0.791 0.812 0.913 (0.880–0.946)
G.3 0.106 0.05 0.122 0.100 (0.065–0.135)
G.4 0.936 0.938 0.911 0.926 (0.895–0.957)

Specificity

G.2 0.890 0.885 0.874 0.871 (0.831–0.910)
G.3 0.995 0.978 0.963 0.992 (0.981–1.000)
G.4 0.766 0.755 0.812 0.816 (0.770–0.861)

F1

G.2 0.737 0.667 0.663 0.712 (0.659–0.765)
G.3 0.179 0.078 0.171 0.171 (0.127–0.216)
G.4 0.925 0.924 0.919 0.928 (0.898–0.958)
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3.3. Model Robustness and Certainty

Figures 4 and 5 present histograms that illustrate the distribution of model output
probabilities in the test set for each of the three trained models in the respective classification
tasks. In turn, Figures 6 and 7 offer a different perspective by quantifying the certainty
of the model’s classifications. These figures distinguish between correct and incorrect
classifications and depict the level of certainty in the predictions.

In the context of binary classification, in Figure 4D, we can observe a concentration of
probabilities around 1 when using tumor ROIs and data augmentation. Similarly, Figure 6D
illustrates the largest number of accurate and confident classifications. These outcomes
indicate a strong level of confidence in the model’s predictions.

The plots depicting the WHO grade classification scenario reaffirm our earlier con-
clusion that the model struggled to differentiate grade 3 from grades 2 and 4. Never-
theless, the model demonstrated a moderate level of confidence in predicting grade 2
tumors, while yielding a high level of confidence in predicting grade 4 tumors. Once more,
Figures 5D and 7D emphasize that the most reliable classification is achieved by employing
tumor ROIs and data augmentation.

In summary, our results provide compelling evidence that integrating tumor ROIs and
employing data augmentation techniques significantly enhances the accuracy, confidence,
and robustness of our predictions.

(A) Entire brain—without data augmentation

.(B) Entire brain—with data augmentation.

Figure 4. Cont.
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(C) Tumor ROIs—without data augmentation

.(D) Tumor ROIs—with data augmentation

.Figure 4. Probability distributions of model predictions for LGG and HGG classification, using (A)
the entire brain without data augmentation, (B) the entire brain with data augmentation, (C) tumor
ROIs without data augmentation, and (D) tumor ROIs with data augmentation.

(A) Entire brain—without data augmentation.

(B) Entire brain—with data augmentation.

Figure 5. Cont.
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(C) Tumor ROIs—without data augmentation

.(D) Tumor ROIs—with data augmentation.

Figure 5. Model’s output probability distributions for WHO glioma grade classification (g.2, g.3, g.4),
using (A) the entire brain without data augmentation, (B) the entire brain with data augmentation,
(C) tumor ROIs without data augmentation, and (D) tumor ROIs with data augmentation.

(A) Entire brain—without data augmentation.

(B) Entire brain—with data augmentation.

Figure 6. Cont.
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(C) Tumor ROIs—without data augmentation.

(D) Tumor ROIs—with data augmentation

.Figure 6. This graphic represents the categorization of model predictions into certain (probability≥ 0.7)
and uncertain (probability < 0.7), as well as the accuracy of each of the four models, namely (A–D), in
classifying LGG and HGG samples. Correct classifications are shown in green while incorrect classifications
are shown in orange.

(A) Entire brain—without data augmentation.

(B) Entire brain—with data augmentation.

Figure 7. Cont.
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(C) Tumor ROIs—without data augmentation.

(D) Tumor ROIs—with data augmentation.

Figure 7. This graphic represents the categorization of model predictions into certain (probability≥ 0.5)
and uncertain (probability < 0.5), as well as the accuracy of each of the four models (A–D) in
classifying glioma grades in WHO categories (g.2, g.3, g.4). Correct classifications are shown in green
whereas incorrect classifications are shown in orange.

4. Discussion

The primary objective of this study was to develop a reliable and transparent DL-based
method for glioma grading. To achieve this, we conducted a comparative analysis to assess
the certainty and robustness of the predictions generated by employing various strategies,
including data augmentation and focusing on the tumor ROI. By addressing the need for a
non-invasive, accurate, and trustworthy grading system, this study aims to contribute to
the field of neuro-oncology.

Several prior studies have also focused on developing DL-based systems for glioma
grading. One common challenge in these studies is handling data imbalance and small
sample sizes. To address this issue, three popular public datasets such as BraTS, TCGA, and
Rembrandt are commonly used for benchmarking ML glioma classification systems. In our
study, we also incorporated the EGD, aiming to enhance the generalizability and robustness
of our findings. The inclusion of multiple datasets with varying imaging protocols, patient
populations, and tumor characteristics allowed us to validate the consistency of our results.

The pre-processing pipeline is shown to play a crucial role in achieving dataset harmo-
nization. Initially, we implemented commonly employed techniques to correct brain MRI
artifacts, which encompassed resampling the images to a common shape, performing skull
stripping to remove non-brain tissue, and applying bias field correction to compensate
for intensity variations. Furthermore, before inputting the images into the model, we
normalized and standardized the image intensities using the mean and standard deviation
extracted from brain pixels.

By combining the predictions obtained from the independent evaluation of the test
set using a threefold CV approach, we accounted for the inherent variability in our data
and mitigated any potential bias introduced during the data-splitting process. Notably, the
model trained with data augmentation transforms and focused on tumor ROIs yielded more
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accurate and robust predictions in the unseen test set. Our approach achieved an overall
AUC of 0.932 for distinguishing between LGG (g.2–g.3) and HGG (g.4 or glioblastomas), as
well as an AUC of 0.893 for the WHO grade classification (g.2, g.3, and g.4). When our model
demonstrated a sensitivity of 0.864 and 0.891 for classifying LGG and HGG, respectively, it
faced challenges in accurately discriminating the WHO grade. Notably, the sensitivity for
grade 3 was only 0.100, whereas for grades 2 and 4, it was 0.87 and 0.921, respectively. The
results align with the study conducted by van der Voort et al. (2023) [18], who reported
comparable classification metrics regarding the distinction between WHO grades. These
findings support the conclusion that classifying grade 3 tumors using MRI data remains a
challenge for which images might not be sufficient. The use of MR spectroscopy (MRS) data,
or even multimodal data such as MRSI, might enhance the grading classification results.

3D MRIs can be decomposed into individual 2D slices, each providing a distinct
perspective of the tumor with a typical spacing of around 1 mm3 between the slices. To
ensure the validity of the classification performance, it is crucial to perform the data split at
the patient level rather than the individual image level when working with multiple slices
per patient. This approach minimizes the risk of including 2D slices from the same patient
in both the training and testing sets. This prevents a potential over-optimistic estimation of
the classification performance and ensures the independence and integrity of the training,
validation, and testing sets. Although studies presented by Anaraki et al. (2019) [12],
Tandel et al. (2020) [13], and Ayadi et al. (2021) [16] achieved competitive performance in
brain tumors classification, it is worth noting that they performed the split at the slice-level,
therefore not addressing the potential problem of data leakage.

This analysis has led us to a significant conclusion, indicating that working solely with
2D slices may not capture the complete 3D context and interrelationships among slices
originating from the same 3D image. In a 2D analysis, each slice is treated independently
disregarding the spatial information and correlations with adjacent slices. This approach
can limit the ability to capture the entire tumor structure and the contextual information
present in the 3D volume. Consequently, the incorporation of multiple slices may not yield
substantial additional information beyond what is already captured by the slice with the
largest tumor area. These findings emphasize the significance of considering the 3D context
in future research endeavors and exploring alternative approaches that leverage the spatial
relationship between slices.

5. Conclusions

In this study, we have developed a non-invasive DL-based analytical pipeline us-
ing together the four conventional MRI modalities for classifying glioma grades. The
pipeline is meant to ensure the robustness and reliability of our predictions. Although we
achieved promising results in characterizing grades 2 and 4, further research is needed to
develop a reliable system for distinguishing between the four glioma grades. Importantly,
though, we have complemented the more standard classification performance results with
accompanying quantification of the model certainty on its predictions.

Although merging different public datasets helped address the issue of limited sample
size, additional efforts are needed to acquire large harmonized databases in this medical
domain, which would, by themselves, enhance the reliability of the DL-based pipeline.

There is an opportunity to further enhance glioma grading in future research by em-
ploying a 3D approach that takes into account spatial context information. The significance
of molecular biomarkers in the brain tumor diagnostic process has been underscored by
the WHO glioma categorization [6]. By merging clinical data and imaging data, there is
also an opportunity to achieve improved differentiation between low-grade gliomas. This
integration of multi-dimensional information holds the promise of enhancing the accuracy
and reliability of glioma grading systems, ultimately leading to more precise diagnoses and
more effective treatment planning in clinical practice.
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DL Deep Learning
EGD Erasmus Glioma Database
FLAIR Fluid Attenuated Inversion Recovery
FN False Negative
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HGG High Grade Glioma
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ML Machine Learning
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NIfTI Neuroimaging Informatics Technology Initiative
NITRC Neuroimaging Tools & Resources Collaboratory
REMBRANDT Repository for Molecular Brain Neoplasia Data
OA Overall Accuracy
ROC Receiver Operating Characteristic
ROI Region of Interest
SGD Stochastic Gradient Descent
TCGA The Cancer Genome Atlas
TCIA The Cancer Imaging Archive
TN True Negative
TP True Positive
WHO World Health Organization
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Appendix A

Table A1. Demographic and clinical characteristics of the research subjects in the individual folds
and the test cohort.

Fold 1 Fold 2 Fold 3 Test

Total 281 281 281 282
Age

<40 43 (15.30%) 37 (13.17%) 45 (16.01%) 41 (14.54%)
40–60 93 (33.10%) 99 (35.23%) 94 (33.45%) 104 (36.88%)
>60 120 (42.70%) 121 (43.06%) 122 (43.42%) 114 (40.43%)
Unknown 25 (8.90%) 24 (8.54%) 20 (7.12%) 23 (8.16%)

Gender
Female 96 (34.16%) 94 (33.45%) 85 (30.25%) 79 (28.01%)
Male 129 (45.91%) 133 (47.33%) 143 (50.89%) 147 (52.13%)
Unknown 56 (19.93%) 54 (19.22%) 53 (18.86%) 56 (19.86%)

Grade
LGG 201 (71.53%) 201 (71.53%) 201 (71.53%) 202 (71.63%)
HGG 80 (28.47%) 80 (28.47%) 80 (28.47%) 80 (28.37%)

Grade
(WHO)

2 47 (16.73%) 44 (15.66%) 44 (15.66%) 46 (16.31%)
3 29 (10.32%) 31 (11.03%) 32 (11.39%) 30 (10.64%)
4 201 (71.53%) 201 (71.53%) 201 (71.53%) 202 (71.63%)
Unknown 4 (1.42%) 5 (1.78%) 4 (1.42%) 4 (1.42%)

Appendix B

Table A2. Testing differences in grade between folds and test sets using a χ2 statistic.

Variable Test Statistic p-Value Reject

Grade χ2 0.0011 1.0000 False
tumor Size ANOVA 1.2295 0.2976 False

Table A3. Testing differences in tumor size between each fold and test sets using the Tukey HSD
statistical test for multiple comparisons of means.

Group 1 Group 2 Mean Diff IC95 p-Adj Reject

1 2 42.1779 (−261.5732, 345.9291) 0.9844 False
1 3 −21.2918 (−325.043, 282.4594) 0.9979 False
1 Test 184.1884 (−119.2933, 487.6702) 0.4012 False
2 3 −64.4698 (−367.2209, 240.2814) 0.9498 False
2 Test 142.0105 (−161.4713, 445.4923) 0.6244 False
3 Test 205.4803 (−98.0015, 508.962) 0.3024 False
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