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Abstract

This work utilizes a novel data-driven methodology to reduce the dimen-

sionality of non-buoyant microconfined high-pressure transcritical fluid tur-

bulence. Classical dimensional analysis techniques are limited by the non-

uniqueness of scale-free groups and the lack of a general strategy for quan-

tifying their importance. Instead, the data-driven approach utilized is based

on augmenting Buckingham’s π theorem with ideas from active subspaces to

overcome these limitations. Through this methodology, a principal dimen-

sionless group has been identified that efficiently describes the behavior of the

system in terms of normalized bulk turbulent kinetic energy. Additionally, a

simplified version of the new dimensionless group is proposed, which presents

the structure of a Reynolds number augmented with dynamic viscosity, ther-

mal conductivity, or equivalently Prandtl number and isobaric heat capacity,

and specific gas constant to account for thermophysical effects. Finally, the

results obtained in this study, which is based on a realistic regime inspired

by nitrogen at high-pressure microfluidic conditions, can be generalized to

∗Corresponding Author
Email address: lluis.jofre@upc.edu (Llúıs Jofre)
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other fluids using the principle of corresponding states.

Keywords: Dimensionality reduction, Microfluidics, Supercritical fluids,

Turbulence

Nomenclature

Latin letters

a, b, c coefficients of the Peng-Robinson equation of state

cP isobaric specific heat capacity

Dh hydraulic diameter

E total energy

Ec Eckert number

k turbulent kinetic energy

M dipole moment

Ma Mach number

P pressure

Pr Prandtl number

q heat flux vector

Q quantity of interest

Re Reynolds number

Ru universal gas constant

R′ specific gas constant

sos speed of sound

t time

T temperature

u streamwise velocity component

v wall-normal velocity component

v̄ molar volume
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v velocity vector

w spanwise velocity component

W molecular weight

x streamwise spatial coordinate

y wall-normal spatial coordinate

z spanwise spatial coordinate

Z compressibility factor

Greek symbols

γ̂ real-gas heat capacity ratio

δ channel half-height

κ thermal conductivity

κa association factor

µ dynamic viscosity

ν kinematic viscosity

π dimensionless group

ρ density

τ viscous stress tensor

ω acentric factor

Main subscripts

b bulk quantity

c critical point

cw cold wall

hw hot wall

r reduced quantity

w wall
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1. Introduction1

High-pressure supercritical fluids are used in a wide range of engineering applications,2

like for example in gas turbines, supercritical water-cooled reactors and liquid rocket en-3

gines. They operate within high-pressure thermodynamic spaces in which intermolecular4

forces and finite packing volume effects become important. In this regard, it is impor-5

tant to distinguish between supercritical gas-like and liquid-like fluids separated by the6

pseudo-boiling line [1, 2]: (i) a supercritical liquid-like fluid is one whose density is large,7

and whose transport coefficients behave similar to a liquid; whereas (ii) the density of su-8

percritical gas-like fluids is smaller, and their transport coefficients vary similar to gases.9

This set of thermophysical characteristics presents very interesting properties that can be10

leveraged to achieve turbulent flow regimes in microfluidic devices [3]. This is particularly11

important since, as in most macroscale energy applications related to power and heat12

transfer [4], turbulence is a key mechanism for achieving higher levels of performance and13

efficiency due to the notable increase in mixing and transfer rates it provides.14

The novel approach mentioned above to achieve microconfined turbulence, which is15

considered also in this work, is based on operating under high-pressure transcritical con-16

ditions to leverage the hybrid thermophysical properties of supercritical fluids. In partic-17

ular, the strategy proposed makes use of the rapid smooth transition of thermophysical18

properties across the pseudo-boiling line to tune supercritical fluids to present liquid-like19

densities [ρ ∼ 103 kg/m3] and gas-like viscosities [µ ∼ 10−5 Pa·s], and therefore achieve20

Reb ∼ 103 − 104 for typical microfluidic velocities and channel sizes, and favoring, in21

this manner, inertial over viscous forces and resulting in turbulent flow. Focusing on the22

thermophysical properties of different supercritical fluids, this approach has been recently23

explored by Bernades et al. [5, 6]. The analyses presented in their work indicate that mi-24

croconfined turbulent flow regimes can be potentially achieved by operating in the vicinity25

of the pseudo-boiling region for a wide range of popular working fluids, like for example26

carbon dioxide, methane, nitrogen, oxygen and water. In connection with this strategy,27

Zhang et al. [7] explored mixing intensification for antisolvent processes by operating at28

high pressures in free-shear coflow configurations at isothermal conditions. Nonetheless,29

the overall strategy is significantly different to the one studied in this work as: (i) jet flows30

4



are inherently unstable, and consequently laminar-to-turbulent transition occurs in the31

range Reb ≈ 30 − 2000 [8]; (ii) coflows require complex microfluidic configurations; and32

(iii) isothermal conditions are not generally suitable for energy-related applications.33

However, the analysis, design and optimization of microconfined high-pressure super-34

critical turbulent flow applications generally involves the understanding and characteri-35

zation of a large variety of phenomena. In this regard, the challenge of operating with36

such complex systems is typically reduced by transforming the problem of interest into its37

dimensionless form. To this end, dimensional analysis provides a compelling framework to38

perform the operations required, as well as support for analyzing the resulting scale-free39

system. Its underlying principle is based on the notion of similarity, which postulates40

that relationships between physical quantities do not vary if the measurement units are41

changed. This central result implies that simpler small-scale experiments can be utilized42

to study larger-scale phenomena. In addition, one major advantage is that dimensional43

analysis typically yields a smaller number of independent variables than the original mea-44

sured quantities. Hence, the dimensionality of the system is reduced, and as a result fewer45

(potentially expensive) experiments are needed to characterize its response, i.e., quantity46

of interest (QoI), to a set of inputs. For example, under particular conditions and simpli-47

fications, there is a direct relationship between the movement of large masses of air in the48

atmosphere and the motion of a fluid in a small-scale laboratory (or computational) model.49

The challenges are to find (i) those conditions and (ii) the transformation between them; in50

this case, the same ratio of inertial to viscous forces, i.e., Reynolds number. Dimensional51

analysis aims to help solve these two challenges in general problems by providing a set of52

mathematical techniques and methodologies.53

The main utility of dimensional analysis results from its ability to contract the func-54

tional form of physical relationships. In problems for which a set of equations can be55

formulated to describe the physics, similarity can be inferred by normalizing all the equa-56

tions in terms of quantities that characterize the problem, to subsequently identify the57

dimensionless groups that appear in the resulting dimensionless equations. This is an58

inspectional form of similarity analysis. This type of approach takes advantage of the59

complete mathematical description of the problem, typically revealing a higher degree of60
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similarity than a blind, less informed, dimensional analysis, and therefore provides more61

powerful insight. Dimensional analysis is, however, the only option in problems where the62

flow equations conditions are not fully available, and always useful because it is simple to63

apply and rapid in providing valuable insight.64

The main result of dimensional analysis is the Buckingham’s π theorem [9], which65

states that the form of any physics-based description of a system, e.g., conservation equa-66

tions and experimental correlations, must be such that the relationship between the actual67

physical quantities remains valid independently of the magnitudes of the base units uti-68

lized. This feature provides a number of very useful outcomes in terms of (i) facilitating the69

inference of similarity laws, (ii) producing a basis for out-of-scale modeling, (iii) providing70

support for dimensionality reduction [10], and (iv) obtaining insight that is independent71

of the system of units utilized. However, as any other scientific approach, it presents some72

limitations. For example, (i) an incomplete, or unnecessary, set of independent variables73

may significantly complicate the analysis [11], (ii) the framework is not robust to external74

simplifying assumptions, (iii) the set of scale-free relations obtained is not unique, and (iv)75

there is no formal approach for quantifying the relative importance between dimensionless76

groups. In this regard, this work proposes to utilize a data-driven methodology inspired77

by the work of Constantine et al. [12] and adapted to multiphysics turbulent flows by Jofre78

et al. [13], which is aimed at addressing the last two shortfalls by means of augmenting79

Buckingham’s π theorem with ideas developed in the field of active subspaces.80

As previously introduced, the exploration and analysis of complex systems, specifically81

high-pressure supercritical turbulent flow problems, can be systematically approached by82

considering the important dimensionless groups characterizing the relations between the83

underlying physics phenomena. Extraction of the dimensionless parameters is also very84

useful for engineering practice as it allows one to identify important directions in the in-85

put space for the efficient design and optimization of systems. Therefore, the objective of86

this work is to utilize a novel semi-empirical methodology to effectively infer important87

dimensionless groups from data synthetically generated using direct numerical simulations88

of a channel flow problem to characterize important dimensionless groups in non-buoyant89

microconfined high-pressure supercritical fluid turbulence. The paper is organized as fol-90
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lows. In Section 2, the physics modeling and computational approach utilized to study91

supercritical fluids turbulence are described. A detailed presentation of the data-driven92

dimensional analysis methodology is given in Section 3. In Section 4, the configuration of93

the model problem is described in terms of physics, setup, and system parameters. Next,94

in Section 5, results and their analysis are discussed. Finally, the work is concluded and95

future directions are proposed in Section 6.96

2. Flow physics and numerical modeling97

The framework utilized for studying supercritical fluids turbulence in terms of (i)98

equations of fluid motion, (ii) real-gas thermodynamics, (iii) high-pressure transport coef-99

ficients, and (iv) numerical method is described below.100

2.1. Equations of fluid motion101

The turbulent flow motion of supercritical fluids is described by the following set of

conservation equations of mass, momentum, and total energy

∂ρ

∂t
+∇ · (ρv) = 0, (1)

∂ (ρv)

∂t
+∇ · (ρvv) = −∇P +∇ · τ , (2)

∂ (ρE)

∂t
+∇ · (ρvE) = −∇ · q−∇ · (Pv) +∇ · (τ · v) , (3)

where ρ is the density, v is the velocity vector, P is the pressure, τ = µ
(
∇v +∇vT

)
−102

(2µ/3)(∇·v)I is the viscous stress tensor with µ the dynamic viscosity and I the identity103

matrix, E is the total energy, q = −κ∇T is the Fourier heat flux with κ is the thermal104

conductivity.105

2.2. Real-gas thermodynamics106

The thermodynamic space of solutions for the state variables pressure P , temperature107

T , and density ρ of a single substance is described by an equation of state. One popular108

7



choice for systems at high pressures, which is used in this study, is the Peng-Robinson [14]109

equation of state written as110

P =
RuT

v̄ − b
− a

v̄2 + 2bv̄ − b2
, (4)

with Ru the universal gas constant, v̄ = W/ρ the molar volume, and W the molecular

weight. The coefficients a and b take into account real-gas effects related to attractive

forces and finite packing volume, respectively, and depend on the critical temperature Tc,

critical pressure Pc, and acentric factor ω. They are defined as

a = 0.457
(RuTc)

2

Pc

[
1 + c

(
1−

√
T/Tc

)]2
, (5)

b = 0.078
RuTc
Pc

, (6)

where coefficient c is provided by

c =

 0.380 + 1.485ω − 0.164ω2 + 0.017ω3 if ω > 0.49,

0.375 + 1.542ω − 0.270ω2 otherwise.
(7)

The Peng-Robinson real-gas equation of state needs to be supplemented with the111

corresponding high-pressure thermodynamic variables based on departure functions [15]112

calculated as a difference between two states. In particular, their usefulness is to trans-113

form thermodynamic variables from ideal-gas conditions (low pressure - only temperature114

dependant) to supercritical conditions (high pressure). The ideal-gas parts are calculated115

by means of the NASA 7-coefficient polynomial [16], while the analytical departure expres-116

sions to high pressures are derived from the Peng-Robinson equation of state as detailed,117

for example, in Jofre & Urzay [2].118

2.3. High-pressure transport coefficients119

The high pressures involved in the analyses conducted in this work prevent the use of120

simple relations for the calculation of the dynamic viscosity µ and thermal conductivity κ.121

In this regard, standard methods for computing these coefficients for Newtonian fluids are122

based on the correlation expressions proposed by Chung et al. [17, 18]. These correlation123

expressions are mainly function of critical temperature Tc and density ρc, molecular weight124

8



W , acentric factor ω, association factor κa and dipole moment M, and the NASA 7-125

coefficient polynomial [16]; further details can be found in dedicated works, like for example126

Poling et al. [19] and Jofre & Urzay [2].127

2.4. Numerical method128

The equations of fluid motion introduced in Section 2.1 are numerically solved by129

adopting a standard semi-discretization procedure; viz. they are firstly discretized in130

space and then integrated in time. In particular, spatial operators are treated using131

second-order central-differencing schemes, and time-advancement is performed by means132

of a third-order strong-stability preserving (SSP) Runge-Kutta explicit approach [20].133

The convective terms are expanded according to the Kennedy-Gruber-Pirozzoli (KGP)134

splitting [21, 22], which has been recently assessed for high-pressure supercritical fluids135

turbulence [23, 24]. The method preserves kinetic energy by convection, and is locally136

conservative for mass, momentum, and total energy. This numerical framework provides137

stable computations without the need of any form of artificial dissipation or stabilization138

procedures.139

3. Data-driven dimensional analysis140

In this section, the integration of classical dimensional analysis with modern dimension141

reduction techniques is described. The resulting tools enable data-driven discovery of142

unique and relevant dimensionless groups in multiphysics turbulent flow problems [13].143

3.1. Dimensional analysis and the π subspace144

Prior to directly diving into the theoretical basis of dimensional analysis, it is useful145

to provide some initial notation. In this regard, the dimension function of a quantity q,146

referred to as [q], is defined as a function that returns the dimension of q in terms of the147

base units: length L [m], mass M [kg], time T [s], temperature θ [K]; e.g., if q is velocity,148

then [q] is L/T . Accordingly, the dimension vector of a quantity q, denoted v(q), is defined149

as a function that returns the k exponents of [q] with respect to the dimensions of the150
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base units. For example, in a system with k = 3 dimensions L, M and T , if q is velocity,151

then [q] = L1 ·M0 · T−1 and v(q) = [1, 0,−1]⊤.152

Dimensional analysis is a classical dimension reduction technique. Its central result153

is the Buckingham’s π theorem [9], which states that given a set of dimensional inputs154

q ∈ Rm that predict a dimensionless QoI, i.e., Q = f(q), the functional relationship155

may be re-expressed in terms of a smaller number of dimensionless numbers π ∈ Rn via156

πi = ψ(π1, . . . , πn). The set of dimensionless inputs π = {π1, . . . , πn} can be determined157

from the dimension matrix D ∈ Rk×m of rank k, which is given for q as [11]158

D = [v(q1), . . . ,v(qm)]. (8)

Valid dimensionless numbers can be formed by products of the inputs as [11]159

πi =

m∏
j=1

q
zij
i , (9)

with the vectors {zi}ni=1 satisfying Dzi = 0k×1. In this formulation, the Buckingham’s160

π theorem can be understood in terms of the rank-nullity theorem, which states that the161

number of independent dimensionless groups is given by n = dim [R(D)] − dim [N (D)],162

where dim[·] is the subspace dimension, R(·) denotes the range, and N (·) denotes the163

nullspace. The Buckingham’s π theorem is silent on the choice of a basis for the nullspace164

of D, i.e., {zi}ni=i. In this regard, since the dimensionless groups depend on the choice of165

this basis, they are not unique and often selected based on experience. Instead, in this166

work data will be used to inform a useful selection of relevant π groups.167

3.2. Active subspaces and dimensional analysis168

The active subspace is a dimension reduction concept introduced by Russi [25] and169

developed by Constantine [26]. Let f(x) be some differentiable QoI on a domain with170

integral weight ρ(x) ∈ R≥ 0. The active subspace is then defined in terms of the matrix171

C ≡
∫

∇xf∇xf
⊤ρ(x)dx. (10)

Since C is by construction symmetric semi-positive definite, it admits an eigenvalue de-172

composition of the form C = UΛU⊤. The eigenvalues need to be sorted first in decreasing173
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order as λ1 ≥ · · · ≥ λn. Next, a threshold separating {λ1, . . . , λn} into large {λ1, . . . , λA}174

and small {λA+1, . . . , λn} eigenvalues is defined to generate the split U = [UA,UI ]. The175

final result is that the directions ui are then ordered in decreasing order of importance176

with respect to variation in the QoI f , made quantitative by the eigenvalues, which is177

equivalent to the mean-squared directional derivative along direction ui. The active sub-178

space is then given by R(UA), where the columns of UA form a basis for the subspace.179

Furthermore, using the vector entries in Eq. (9), the active directions uA,i can be directly180

interpreted as dimensionless groups.181

3.3. Dimensionality reduction methodology182

The methodology starts by considering a physical system with m + 1 dimensional183

quantities Q and q = [q1, . . . , qm]⊤, whose units are derived from a set of k base units184

satisfying m > k. Without loss of generality, it is assumed that Q is the quantity of185

interest, while q are the independent variables. By considering the correspondingDmatrix186

of rank k, it can be then constructed a dimensionless independent variable π = π (Q,q) =187

Q exp
[
−w⊤log(q)

]
, where the exponents w satisfy the linear system Dw = v(Q). The188

solution w is not unique since D has a nontrivial nullspace. In this regard, let W =189

[w1, . . . ,wn] ∈ Rm×n be a matrix whose columns contain a basis for the nullspace ofD, i.e.,190

DW = 0k×n, where each column ofW represents a dimensionless group. Then, given pairs191

[q(1), Q(1)], . . . , [q(N), Q(N)] from a design of experiment with N samples consistent with192

the joint probability density ρ(q), the data-driven dimensional analysis methodology is193

composed of the following steps: (1) compute evaluations of the dimensionless independent194

variable π(j) = Q(j) exp{−w⊤log
[
(q(j)

]
} with j = 1, . . . , N ; (2) calculate logs of the195

dimensionless groups as γ
(j)
i = w⊤

i log
[
q(j)

]
with i = 1, . . . , n and γ(j) =

[
γ
(j)
1 , . . . , γ

(j)
n

]⊤
;196

(3) fit a response surface g with the pairs {
[
π(j),γ(j)

]
} such that π(j) ≈ g

[
γ(j)

]
with197

j = 1, . . . , N ; (4) use the response surface gradient ∇g to approximate active subspaces198

C =
∫
∇g (γ)∇g (γ)⊤ ρ (γ) dγ ≈ UΛU⊤; and (5) compute the weights vectors zi = Wui199

that define the unique and relevant dimensionless groups πi = q
zi,1
1 × · · · × q

zi,m
m with200

i = 1, . . . , n. It is important to note that the singular values Λ provide a measure of the201

relative importance between the π groups obtained.202
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Figure 1: Snapshot of instantaneous streamwise velocity in wall units u+ on a x-y slice.

4. Generation of synthetic data203

The setup of the problem is designed to study non-buoyant microconfined high-204

pressure supercritical fluid turbulence at transcritical conditions. As illustrated in Fig-205

ure 1, the analysis of such systems involves the interaction of microfluidics, thermody-206

namics and turbulence. The instantaneous snapshot, extracted from a direct numerical207

simulation (DNS), corresponds to the streamwise velocity in wall units u+ on a x-y slice.208

A complete description of the problem setup and system parameters is presented in the209

subsections below.210

4.1. Problem setup211

The channel flow problem is a reference experiment widely used in the computational212

fluid dynamics community to validate and analyze wall-bounded turbulent flows. In this213

regard, the channel flow setup is chosen to study and characterize high-pressure super-214

critical fluids turbulence at the microscale. In particular, by means of slightly perturbing215

the values of molecular weight W and acentric factor ω, the fluid selected as a refer-216

ence substance to generate different “artificial” fluids is N2 whose critical pressure and217

temperature are Pc = 3.4MPa and Tc = 126.2K, respectively. The fluid system is at a218

supercritical bulk (i.e., ensemble-averaged) pressure of Pb and confined between cold/bot-219

tom (cw) and hot/top (hw) isothermal walls, separated at a hydraulic diameter Dh ≈ 2δ220

with δ the channel half-height, at Tcw = 100K and Thw below and above, respectively,221

the pseudo-boiling temperature at the corresponding bulk pressure and resulting in an222

imposed temperature difference ∆Tw = Thw −Tcw between walls. This problem setup im-223

poses the fluid to undergo a transcritical trajectory by operating within a thermodynamic224
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region across the pseudo-boiling line. In addition, as studied by Bernades et al. [3, 5, 6],225

the bulk velocity ub in Table 1 has been selected to attain turbulent flow conditions. The226

mass flow rate in the streamwise direction is imposed through a body force controlled by227

a feedback loop to achieve the desired bulk velocity values. In addition, gravity forces are228

not considered as the resulting Froude number of the problem is Fr = ub/
√
gDh ≈ 23, and229

consequently inertial forces are roughly 530× more important than gravitational effects;230

viz. the importance of gravity scales as 1/Fr2.231

As schematically represented in Figure 2, the computational domain is 4πδ × 2δ ×232

(4/3)πδ in the streamwise (x), wall-normal (y), and spanwise (z) directions, respectively,233

which is large enough to represent the largest flow scales of the problem [27]. The stream-234

wise and spanwise boundaries are set periodic, and no-slip conditions are imposed on the235

horizontal boundaries (x-z planes). The mesh resolution is selected based on prelimi-236

nary studies. In particular, the fine-resolved DNS of turbulent channel flow performed by237

Chevalier et al. [28] at a similar Reb, which utilized 64× 64× 64 grid points, is considered238

as an initial reference. For the problem of interest in this work, in addition to the classi-239

cal consideration of the Kolmogorov and boundary layer scales, the length scales related240

to density gradients must also be considered. To this extent, based on the estimations241

provided by Jofre & Urzay [1], the characteristic length scale for density gradients is ap-242

proximately 10× larger than the Kolmogorov scale, thereby confirming that the latter is243

the driving factor to select mesh resolution. Nonetheless, the mesh selected is 2× finer244

in each direction with respect to Chevalier et al. [28]. Consequently, this grid arrange-245

ment corresponds to a DNS of size 128 × 128 × 128 grid points. The grid is uniform in246

the streamwise and spanwise directions with resolutions in wall units (based on cw val-247

ues) equal to ∆x+ ≈ 9.8 and ∆z+ ≈ 3.3, and stretched toward the walls in the vertical248

direction with the first grid point at y+ = yuτ,cw/νcw ≈ 0.1 and with sizes in the range249

0.2 ≲ ∆y+ ≲ 2.3. The simulation strategy starts from a linear velocity profile with random250

fluctuations, which is advanced in time to reach turbulent steady-state conditions after251

approximately 5 flow-through-time (FTT) units and collect flow statistics for roughly 10252

FTTs once steady-state conditions are achieved.253
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Figure 2: Schematic illustration of the microconfined channel flow computational setup.

Parameter Value Parameter Value

Pb [3.75 : 6.25] MPa Dh [150 : 250] µm

ub [1.5 : 2.5] m/s W [22.5 : 37.5] g/mol

∆Tw [75 : 125] K ω [0.0225 : 0.0375]

Table 1: List of system parameters and their range of values.

4.2. System parameters254

The study conducted in this work is designed with the objective of mimicking an ex-255

periment as it would be carried out in a laboratory facility. The system is characterized256

by the 6 parameters listed in Table 1 that can be varied independently to collect data.257

The ranges of these values are obtained by adding/subtracting 25% to/from their nominal258

values as these are parameters that in a laboratory facility would not be easily modified in259

significantly large proportions. It is important to note that the principle of corresponding260

states [viz. all fluids, when compared at the same Tr = T/Tc and Pr = P/Pc, have (i)261

approximately the same compressibility factor Z and (ii) all deviate similarly from ideal262

gas] enables to discard critical pressure Pc, critical temperature Tc and critical molar vol-263

ume v̄c as independent parameters since effects can be accounted through varying bulk264

pressure Pb and bulk temperature Tb. Moreover, a third corresponding-states parame-265

ter [29], the acentric factor ω, provides a measure of the non-sphericity of the force field266

of a molecule. On the contrary, the dipole moment, which is a measure of the polarity of267

the molecule, is assumed to be zero for the fluids considered. In terms of the data-driven268
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dimensional analysis, the set of system parameters listed in Table 1 are transformed,269

through the thermophysical models presented in Section 2 and the bulk values of the com-270

putational data obtained from the simulations, to the following 8 dimensional inputs (Pb271

and ω accounted through thermophysical quantities): hydraulic diameter Dh [m], bulk ve-272

locity ub [m/s], bulk temperature Tb [K], specific gas constant R′ [J/(kg ·K)], bulk density273

ρb [kg/m
3
], bulk dynamic viscosity µb [Pa · s], bulk thermal conductivity κb [W/(m ·K)],274

and bulk isobaric specific heat capacity cPb
[J/(kg ·K)]. Data are collected by computing275

48 DNS using the in-house flow solver RHEA [30] of the problem for different values of the276

system parameters following a design of experiment based on a Latin hypercube sampling277

(LHS) approach [31].278

5. Results and discussion279

This section analyzes the data acquired by computing the set of samples described in280

Section 4 based on the physics modeling presented in Section 2, and provides a characteri-281

zation of the flow and discussion of the results obtained from the methodology introduced282

in Section 3.283

5.1. Flow physics characterization284

The purpose of this subsection is to briefly characterize the flow physics of the en-285

semble of samples based on first- and second-order statistics; complete analyses of the286

flow physics of non-buoyant microconfined high-pressure supercritical fluid turbulence is287

reported in Bernades et al. [5, 6]. The results are displayed in terms of (i) the mean profile288

of the distributions, and (ii) the envelope of all samples. Particularly, Fig. 3(a) shows the289

normalized profile of time-averaged streamwise velocity ũ/ub as a function of distance to290

the wall y/Dh, whereas Fig. 3(b) depicts the normalized turbulent kinetic energy (TKE)291

k/u2b . Based on the results presented in these two plots, it can be seen that the pro-292

files exhibit the typical characteristics of turbulent flow: (i) power-law-like shape for the293

time-averaged streamwise velocity, which is indicative of a viscous-dominated region close294

to a solid boundary that rapidly transitions to a logarithmic behavior away from it; and295

(ii) high levels of TKE in the near-wall regions resulting from the large velocity gradients296
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generated by friction (peak values within the buffer layer). It is also important to note297

that, due to the asymmetric temperature distribution in the wall-normal direction (viz.298

liquid-like supercritical fluid presents larger inertia than gas-like supercritical fluid), the299

profiles are not exactly symmetric across the channel centerline. In addition, as illustrated300

by the size of the envelopes with respect to the mean profiles, the samples present relevant301

levels of variability across them, with maximum coefficients of variation CoV ≈ 12% and302

CoV ≈ 8% for ũ/ub and k/u2b , respectively.303

Focusing on the normalized time-averaged temperature difference (T̃ − Tcw)/Tb and304

Favre-averaged temperature fluctuations T ′′/Tb depicted in Fig. 3(c) and Fig. 3(d), three305

main results can be observed. First, the time-averaged temperature difference monotoni-306

cally increases from the cold to the hot wall, presenting a notably rapid variation in the307

vicinity of the hot wall. Second, the Favre-averaged temperature fluctuations increase308

following a similar trajectory, but exhibiting a significantly large peak in the buffer layer309

of the hot wall. These two observations, as explained in detail by Bernades et al. [5, 6],310

are connected and attributed to the presence of the pseudo-boiling line across which the311

fluid transitions from supercritical liquid-like to supercritical gas-like. Finally, third, the312

profiles are virtually horizontal through the centerline section of the channel, indicating313

that the fluid is highly mixed in that region. It is important to highlight that the samples314

present also relevant levels of variability across them in terms of temperature, with max-315

imum coefficients of variation CoV ≈ 13% and CoV ≈ 13% for (T̃ − Tcw)/Tb and T ′′/Tb,316

respectively.317

5.2. Data-driven inference of principal π groups318

Focusing on the normalized bulk specific turbulent kinetic energy (spatial-ensemble319

average of 10 FTTs) k = (u′′
2
+v′′

2
+w′′2)/2, with superscript ′′ indicating Favre-averaged320

fluctuations, as a quantity of interest, i.e., Q ≡ kb/u
2
b , which is a measure of the turbu-321

lent intensity of the system, the data-driven dimensional analysis strategy described in322

Section 3 is utilized to infer principal dimensionless groups from the data collected. As323

discussed in Section 4, the problem of interest considers m = 8 dimensional inputs (Dh,324

ub, Tb, R
′, ρb, µb, κb, cPb

) with k = 4 base units (L, M , T , θ), which based on the325

Buckingham’s π theorem results in n = m − k = 4 dimensionless groups. However, as326
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Figure 3: Normalized profiles along the wall-normal direction y/Dh of time-averaged

streamwise velocity ũ/ub (a), turbulent kinetic energy k/u2b (b), time-averaged temper-

ature difference (T̃ −Tcw)/Tb (c), and Favre-averaged temperature fluctuations T ′′/Tb (d).

Dashed-dotted lines correspond to the mean of the distributions, and filled regions show

the envelope of all samples.
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Group Dh ub Tb R′ ρb µb κb cPb
σi/σ1

π1 −0.20 −0.40 −0.10 −0.46 −0.20 −0.61 −0.41 −0.05 1.00

π2 −0.46 −0.33 −0.39 −0.41 −0.46 −0.37 −0.09 −0.07 0.06

π3 −0.29 −0.55 −0.13 −0.05 −0.29 −0.23 −0.52 −0.43 0.02

π4 −0.05 −0.45 −0.20 −0.53 −0.05 −0.01 −0.04 −0.69 0.01

Table 2: Exponents zij of the dimensional inputs defining the data-driven inferred dimen-

sionless groups πi, together with the corresponding normalized singular values σi/σ1.

previously stated, this theorem does not indicate (i) which are the dimensionless numbers327

to consider, neither (ii) the relative importance between them.328

Following the methodology presented in Section 3, the exponents zij of Eq. (9) defining329

the 4 dimensionless groups πi inferred from data are provided in Table 2, together with the330

corresponding singular values normalized with respect to the first eigenvector, i.e., σi/σ1;331

the values have been rounded to 2 significant digits, and consequently may not exactly332

provide dimensionless units. Prior to analyzing their composition, it is important to note333

that π1 (first dimensionless group) is approximately 18×, 47× and 79× more important,334

based on the corresponding singular values, than π2, π3 and π4, respectively. In this335

regard, the analysis is focused on the first dimensionless group written in terms of the336

dimensional inputs as337

π1 ≈ D0.20
h × u0.40b × T−0.10

b ×R′−0.46 × ρ0.20b × µ−0.61
b × κ0.41b × c−0.05

Pb
. (11)

The expression above enables to plot the quantity of interest kb/u
2
b as a function of338

the first dimensionless group π1 inferred. The result is plotted in Figure 4(a) for the 48339

samples considered in this study. The plot clearly depicts a significantly high degree of340

data collapse with respect to π1, and consequently demonstrates the effectiveness of the341

methodology proposed to infer unique and relevant dimensionless groups. In particular,342

the normalized bulk turbulent kinetic energy tends to decrease as π1 increases; viz. kb343

increases with π1, but less rapidly than u2b , and as a result kb/u
2
b tends to decrease. A344

more insightful, and easier to interpret, dimensionless group is derived and discussed in345
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Figure 4: Normalized bulk turbulent kinetic energy kb/u
2
b for the 48 samples plotted as

a function of the inferred π1 (a) and proposed (simplified) π′
1 (b) dimensionless groups.

Dashed-dotted lines correspond to nonlinear regression curves of the data, while the purple

stars represent three additional cases computed to test the quality of the fitness.

the next subsection.346

5.3. Interpretation in terms of standard dimensionless numbers347

The data-driven methodology described in Section 3 allows one to easily re-express the348

πi groups as powers of standard dimensionless numbers π̂i through a simple linear algebra349

transformation. In detail, provided the matrix V ∈ Rm×k describing the weights of the350

dimensional inputs defining the basis for the standard dimensionless numbers selected,351

the solution, for example through a least squares approximation, to the inverse problem352

Vsi = zi with i = 1, . . . , n enables to re-express the dimensional groups inferred in terms353

of standard dimensionless numbers by the weight vectors si as [11]354

πi =

n∏
j=1

π̂
sij
i . (12)

As a basis for re-expressing the πi groups, widely recognized dimensionless numbers355

in fluid mechanics resulting from normalizing the equations and boundary conditions de-356

scribing the problem are utilized. Their definitions are given in Table 3, where the speed357

of sound has been approximated for real gases to sos ≈ √
γ̂R′T , with γ̂ the approximated358
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Dimensionless number Definition

Fluid & flow groups:

Bulk Reynolds number Reb = ρbubDh/µb

Bulk Prandtl number Prb = cPb
µb/κb

Bulk Eckert number Ecb = u2b/(cpbTb)

Bulk Mach number Mab = ub/cb

Factors & ratios:

Compressibility factor Z = P/(ρR′T )

Real-gas heat capacity ratio γ̂ ≈ ZcP /(cP − ZR′)

Table 3: List of standard fluid mechanics dimensionless numbers and parameters for the

system of interest obtained from the equations of fluid motion. Subindexes b and w

indicate, respectively, bulk and wall values.

real-gas heat capacity ratio [32] defined in the same table. Particularly, the standard di-359

mensionless groups correspond to: (i) Reynolds number Re quantifying the ratio of inertial360

to viscous forces; (ii) Prandtl number Pr assessing the ratio of momentum to thermal dif-361

fusivity; (iii) Eckert number Ec accounting for the ratio between advective mass transfer362

and heat dissipation potential, and (iv) Mach numberMa indicating the ratio between flow363

velocity and speed of sound. Hereof, to highlight the importance of inferring unique and364

relevant dimensionless groups in contrast to directly utilizing the standard dimensionless365

numbers selected, Figure 5 depicts the quantity of interest kb/u
2
b as a function of Reb (a),366

Prb (b), Ecb (c) and Mab (d) for the 48 samples computed. The plots indicate that the367

data tends to mildly collapse to a curve for Reb (especially), Ecb and Mab, but not for368

Prb. In addition, there is no straightforward route to quantify the relative importance369

between these dimensionless numbers.370

Utilizing the set of dimensionless numbers listed in Table 3 as the transformation371

basis, the πi dimensionless groups inferred from data in the previous subsection can be372

re-expressed as products of standard fluid mechanics groups. The decomposition for the373
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Figure 5: Normalized bulk turbulent kinetic energy kb/u
2
b for the 48 samples plotted as a

function of the standard dimensionless numbers Reb (a), Prb (b), Ecb (c) and Mab (d).
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first (most important) dimensionless group corresponds to374

π1 ≈ Re0.20b × Pr−0.41
b × Ec−0.36

b ×Mab
0.92, (13)

where the exponent weights have been rounded to 2 significant digits, and as a result may375

not exactly provide dimensionless quantities. The structure of the dimensionless group in376

terms of the standard dimensionless numbers indicates that (i) it sublinearly scales with377

Reb and Mab, and (ii) is inversely proportional to Prb and Ecb. Further analyses in terms378

of sensitivities and physical insight are discussed in the next subsection.379

5.4. Derivation of a simplified new dimensionless group380

The final objective of this work is to derive a simplified new dimensionless group381

describing the amount of turbulent kinetic energy in non-buoyant microconfined high-382

pressure supercritical fluid turbulence. The first step is to calculate the sensitivities of383

the quantity of interest Q with respect to the dimensional inputs q through the inferred384

dimensional group π1. To that end and based on the results obtained in Section 5.2, the385

quantity of interest Q = Q(π1, π2, π3, π4) is approximated to Q̃ = Q̃(π1) since the first386

dimensionless group π1 is significantly more important than the other ones. Then, the387

sensitivities can be calculated for j = 1, . . . ,m as388

∂Q̃

∂qj

∣∣∣∣
qk|k ̸=j

=
dQ̃

dπ1
· ∂π1
∂qj

∣∣∣∣
qk|k ̸=j

, (14)

which are later normalized multiplying each one by the corresponding mean qj value to389

compare the relative importance between them, and where dQ̃/dπ1 is constant for all q.390

In this regard, the values of the normalized (∂π1/∂qj) ·E [qj ] sensitivities are: 0.66 for Dh,391

1.37 for ub, −0.35 for Tb, −1.58 for R′, 0.66 for ρb, −2.03 for µb, 1.39 for κb, and −0.18392

for cPb
. Notice that the larger (absolute value) sensitivities are related to Dh, ub, R

′, ρb,393

µb and κb. As a result, the following simplified new dimensionless number is proposed394

π′
1 =

ρbubDhκb
µ2
bR

′ =
RebcP b

PrbR′ , (15)

which presents the structure of an augmented Reynolds number Reb = ρbubDh/µb ac-395

counting for thermophysical effects through κb, µb and R′, or equivalently Prb, cP b and396
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R′. In this regard, the quantity of interest kb/u
2
b is plotted as a function of this new397

proposed dimensionless number π′
1 in Figure 4(b), which demonstrates that π′

1 efficiently398

describes the level of turbulent kinetic energy in non-buoyant microconfined high-pressure399

supercritical fluid turbulence by collapsing the data from the 48 samples into a (roughly)400

single curve as illustrated by the nonlinear regression. It is important to note that for a401

given cP b and R′, the relation between Reb and normalized TKE depends on the value of402

Prb as: (i) the importance of heat diffusion is reduced for large Prandtl values (correspond-403

ing to small π′
1 values), and as a result convective motions dominate the flow resulting in404

relatively high levels of normalized TKE; on the contrary, (ii) for small Prandtl numbers405

(corresponding to large π′
1 values), in which heat diffusion becomes important, diffusion406

effects dominate the system and, as a result, turbulent fluctuations are reduced.407

The performance in collapsing the data of the simplified dimensionless group π′
1 with408

respect to the directly inferred dimensionless group π1 can be quantified based on the409

coefficient of determination (CoD). The CoD, typically denoted as R2, provides a measure410

of how well observed outcomes are replicated by a model relative to the proportion of411

total variation of outcomes explained by it. Therefore, given a dataset of n = 48 values412

y1, . . . yn, each associated with a fitted, or modeled/predicted, value f1, . . . fn from which413

a residual ei = yi − fi can be computed, the mathematical definition of R2 is written414

as [33]415

R2 ≡ 1− SSres

SStot
, (16)

where SSres =
∑n

i=1(yi − fi)
2 =

∑n
i=1 e

2
i is the residual sum of squares, and SStot =416 ∑n

i=1(yi − ȳ)2 is the total sum of squares (proportional to the variance of the data) with417

ȳ = n−1
∑n

i=1 yi the mean of the observed data. In this regard, based on the nonlinear418

regression curves shown in Figure 4 representing the fitted values f1, . . . fn, the CoD419

values correspond to R2 ≈ 0.98 and R2 ≈ 0.96 for π1 and π′
1, respectively. As it can420

be seen, both CoDs are relatively high, which is indicative of good data collapse, and421

presenting a slight difference of only 2%. Consequently, π′
1 is a good approximation of422

π1. Finally, to further verify the quality of the fitness, three additional cases for π′
1 ≈423

11000 (low), 25000 (medium), 39000 (high) have been computed and added to Figure 4(b)424

as purple stars. As it can be noted from the plot, these additional cases lie within the425
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spread of the data, and consequently reinforce the capability of π′
1 to collapse the data426

into a single curve.427

6. Conclusions428

Multiphysics flow problems, such as high-pressure supercritical fluids turbulence, (typ-429

ically) involve the analysis of complex high-dimensional parameter spaces. Their study can430

be systematically approached by considering important dimensionless groups characteriz-431

ing the underlying physics phenomena, which, in addition to reducing the dimensionality of432

the system, provide notable support for the inference of similarity laws and a basis for out-433

of-scale modeling. However, classical dimensional analysis techniques present two main434

shortfalls as the set of scale-free groups are not unique, and there is no general methodol-435

ogy for quantifying their relative importance and physically interpreting the results. This436

work, therefore, has leveraged a novel data-driven methodology aimed to address these437

deficiencies by augmenting Buckingham’s π theorem with ideas developed in the field of438

active subspaces tailored to the study of complex turbulent flow applications.439

The data-driven methodology presented has been utilized to infer important dimen-440

sionless groups of the problem at high-pressure transcritical thermodynamic regimes close441

to the critical point. In particular, a principal dimensionless group has been identified that442

is able to efficiently describe the behavior of the system in terms of normalized bulk turbu-443

lent kinetic energy. Its decomposition in terms of standard fluid mechanics dimensionless444

numbers indicates that (i) it sublinearly scales with Reb and Mab, and (ii) is inversely445

proportional to Prb and Ecb. In addition, based on the normalized sensitivities of the446

quantity of interest to the dimensional inputs, a corresponding simplified novel dimension-447

less group has been proposed of the form π′
1 = ρbubDhκb/(µ

2
bR

′). It presents the structure448

of an augmented Reynolds number accounting for thermophysical effects through dynamic449

viscosity, thermal conductivity and specific gas constant, and is able to efficiently describe450

the level of turbulent kinetic energy in non-buoyant microconfined high-pressure super-451

critical fluid turbulence by collapsing the data into a (roughly) single curve. Finally, the452

input parameter space selected for this study has been designed based on realistic regimes453

inspired by Nitrogen at microfluidic conditions. Consequently, the results obtained can be454
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generalized to other fluids, like for example CO2, CH4, O2, R134a and H2O, by means of455

the principle of corresponding states.456

Ongoing work is concentrated on corroborating experimentally the performance of457

the novel dimensionless group inferred by carrying out microconfined laboratory tests at458

high-pressure transcritical operating conditions. Future work will focus on expanding the459

data-driven methodology to (i) generate simplified decompositions of the dimensionless460

groups inferred by means of L1-regularization (Lasso regression) approaches, and (ii) gen-461

eralize it to simultaneously treat different quantities of interest. In addition, wider ranges462

of the external parameters of the problem of interest will be analyzed to further corroborate463

the scientific findings described in this work, and to carry out studies for the engineering464

optimization of energy transfer in microconfined systems based on high-pressure super-465

critical fluids turbulence. Finally, the methodology presented will be also utilized in the466

future to investigate the complex phenomenon of heat transfer improvement/deterioration467

in high-pressure transcritical fluids turbulence.468
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