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Abstract—An increasing number of critical functionalities integrated in Embedded Critical 
Systems rely on Deep Learning technology, such as ground and onboard operations in avionics 
and decision-making functions in autonomous automotive systems. In this work, we summarize 
certain key safety aspects of the software and system development process, as required by 
domain-specific safety certification standards, at odds with the intrinsic stochastic and training-
data-dependent nature of Deep Learning solutions. These are significant obstacles that must be 
addressed before Deep Learning solutions can be seamlessly adopted in Embedded Critical 
Systems. In this line, we propose a potential approach for developing Neural Network based 
safety functions using redundancy and diversity as main drivers. We also show and exemplify 
how redundancy and diversity can be developed in Neural Networks. 

¢ FROM ITS ORIGINS in 1956, Artificial 
Intelligence (AI) has evolved considerably. Today, AI-
based systems can work autonomously and take 
human-level decisions in a wide range of areas. A 
remarkably successful branch of AI is Machine 
Learning (ML), which allows computers to learn by 
themselves analyzing data. For example, data examples 
can implicitly specify the desired functionalities, 
operating rules and constraints. Inside the ML branch, 
we find Neural Networks (NN) that are particularly 
effective at solving complex problems such as image 
recognition and natural language processing. The 
emergence of Deep Learning (DL) technology, i.e. NN 
models that adapt to learn highly complex 
functionalities using vast amounts of data, constitutes 
an inflection point for the commoditization of AI. 

In Embedded Critical Systems (ECS), the use of DL 
is increasingly wide-spreading in many domains like 
avionics, automotive, railway, and space [1]. For 

instance, in automotive perception and decision-
making functions, DL solutions are a cornerstone in the 
development of future advanced (fully) autonomous 
systems. In fact, DL techniques are at the heart of the 
realization of advanced software functions such as 
computer vision (e.g., object detection and tracking), 
path planning, and driver-monitoring systems [2]. This 
is so because DL techniques have demonstrated their 
effectiveness in managing complex and heterogeneous 
problems, outperforming other algorithmic approaches, 
and providing a technical approach for the development 
of next-generation safety-critical systems such as 
autonomous systems. Hence, the future economic 
success of ECS industries depends on their ability to 
design, implement, qualify, and certify DL-based 
software products under bounded effort/cost. 

Safety-related functions in ECS undergo a strict 
development process, as determined by generic (e.g., 
IEC 61508) and domain-specific safety standards like 
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ISO 26262 for automotive [3]. In particular, the 
development process defines a specific set of steps and 
techniques to guarantee that the risk of failure is 
residual. Those steps rely on software components that 
can be explicitly specified and use deterministic 
algorithms; further, test data is used during validation 
phases to collect evidence supporting that the 
developed software and system is correct by design.  

Implementing safety-related functions with DL 
requires demonstrating compliance with the same 
stringent development process. However, the design of 
DL solutions combines stochastic algorithms and data, 
hence clashing with requirements on (i) explicit, 
complete and verifiable specification, (ii) the use of 
deterministic algorithms, as well as (iii) the separation 
of software and data for safety-related systems. 
Therefore, non-trivial DL-based solutions are, in 
general, incompatible with the state-of-the-art practice 
and safety standard requirements for developing safety-
related systems. For example, current IEC 61508:2010 
safety standard does not recommend AI techniques 
even for diagnostics. 

In this context, and building on the ISO 5469 [4] 
standard (draft) Usage Level (UL) and class taxonomy, 
for the most stringent usage level where the NN 
implements at least one safety function (A1), we first 
analyze key features of AI-based components that clash 
with safety-related development processes. This 
precludes the adoption of those NN components 
straightforwardly as part of safety-related systems. We 
then define a potential approach for the development of 
NN-based safety-related functions, building on the 
concepts of redundancy and strong diversity. The 
proposed approach is defined in analogy to SIL4 
railway odometry based safety functions that provide 
safe vehicle speed and distance measurements based on 
an ensemble of redundant, diverse and highly reliable 
sensors that are individually not compliant with safety 
standards. In explaining our approach, we develop how 
NNs can be made redundant and provably diverse 
based on argumentation. We further illustrate the 
proposed approach with a simplified practical example 
that also shows the limitations and relevant open 
challenges to overcome.  

BACKGROUND ON THE DEVELOPMENT 
PROCESS FOR SAFETY SYSTEMS 

The development of safety-relevant systems must 
meet strict processes and technical requirements that 

aim to reduce to extremely low levels the probability of 
system failure due to systematic errors (e.g., 
specification, design and implementation errors made 
by humans, methods and tools) and random hardware 
errors (e.g., memory bit flip). 
After defining the safety goals of the system, these are 
map into explicitly defined safety requirements, which 
determine the architectural design of the system (and 
its components/items) and the integrity level inherited 
by each component [3]. 
Components inheriting high-integrity levels may be 
decomposed into multiple lower integrity level 
components providing redundant functionality, yet 
diverse design so that they do not fail all of them 
systematically upon a single common error. For 
instance, a given software component can be 
implemented by disjoint teams building on the same 
specification so that human design errors are 
independent and the probability of common cause 
errors decreases. 
The architectural design is based on complete, 
deterministic and explicit component specifications 
that can be verified, often with formal or semi-formal 
methods that allow proving that safety requirements are 
met. Besides, since random hardware errors cannot be 
avoided entirely, appropriate safety measures are set up 
to mitigate and control them. This process, which 
builds solely on complete, deterministic and explicit 
requirements, and deterministic software algorithm 
design, is completed by implementing the components 
and their integration. At every implementation and 
integration stage, appropriate data is used for testing 
(validation) to obtain empirical evidence of the safe 
operation of the system. However, data does not 
influence the design and it is used only for testing 
purposes. Besides, all possible software configuration 
parameter combinations shall be tested positively. 

As classified by the ISO 5469 [4] UL taxonomy, AI 
technology can be used to implement a safety function 
(A1, A2), or a non-safety-related function that might 
interfere with safety function(s) (C), or be interference-
free (D). And an AI-based solution can be developed in 
compliance with safety standard techniques (Class I 
techniques such as redundancy and diversity) or using 
compensation measures (Class II techniques such as 
diverse monitor). 

DL-based software functionalities can play different 
roles in the safety of the system. The default approach 
to enabling the use of DL-based solutions as part of 
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safety-related systems consists in performing system 
decompositions, so that a non-DL-based deterministic 
monitor inherits its safety requirements along with 
those of the DL-based component it monitors (e.g., UL 
C with Class II safety-bag technique). This allows 
relieving DL-based components from any safety 
requirement in practice. In fact, upon a failure of those 
components, the monitor is typically in charge of either 
switching to a degraded mode of operation or another 
type of safe state. This approach has been suitable for 
assistance systems, such as Advanced Driving 
Assistance Systems in the automotive context, where 
upon a failure of the AI-based component, the monitor 
generally notifies the driver about the failure and 
transfers the control to the driver. 

However, fully autonomous systems (e.g., drones, 
spacecraft, and level 4/5 autonomous cars) may simply 
lack a safe state since no driver or pilot may exist, and 
hence, the AI-based component must implement the 
safety function (A1). In this scenario, the AI-based 
components inherit the safety requirements. Therefore, 
an approach needs to be devised to tailor the 
architecture of those components to fit a safety-related 
development process despite the stochastic and data-
based nature of those AI-based components, such as 
NN-based ones. 

 

GAP ANALYSIS FOR THE USE OF NN IN ECS 

Introduction to NN 
In supervised learning, the NN globally works as a 

transformation from the input data (𝑋) to the output 
response variable (𝒚) which usually approximates the 
desired value (such as labels in classification problems 
or real values in regression ones). Mathematically, the 
NN produces the function ϕ𝒘: ℝ" → ℝ# transforming 
𝑋 ⟼ 𝒚 and where 𝒘 are the NN weights. 

Despite their underlying model is often assumed to 
approximate a (deterministic) mathematical function, 
DL solutions can exhibit stochastic elements in the 
training process but also in the model evaluation. While 
some approaches have been proposed to enforce a 
deterministic training process [5], its stochastic nature 
is typically acknowledged [6], capturing the variability 
from the physical inputs to other uncertainty sources 
[7][8] that includes even the execution platform [9]. 
When it comes to the model itself, the implementation 
of variational inference methods using Variational 
Dropout or Bayesian networks with re-parametrization, 

for example, entails that the evaluation of the same 
model over the same input values will yield different 
outputs, as they depend on internal random variables. 
For these reasons, we consider that, by default and in 
the worst-case scenario, the NN training and model can 
exhibit a stochastic nature. 

Challenges 
The development process of NNs clashes with the 

traditional development process of safety-relevant 
systems. Significant design phase gaps are: 
• As described in the previous section, NNs have a 

stochastic nature, hence providing probabilistic 
results with confidence levels that depend on the 
uncertainty source.   

• The NN functional requirements are specified 
using exemplary data that aims to implicitly 
specify the intended functionalities, rules and 
constraints. Instead of explicit requirements that 
can be verified for completeness and correctness. 

• NNs build on an architecture that cannot be 
(usually) proven correct, as opposed to traditional 
software in safety-relevant systems.  

• Finally, a relevant portion of the NN functional 
design is encoded as numerical weights 
determined by the training data instead of source-
code software. This also clashes with established 
development processes where data is only used 
for testing and not for the design itself. 

NNs to be used in safety-relevant systems also bring 
several concerns related to their validation, which 
further challenges the design to mitigate validation-
phase challenges. For example: 
• The non-deterministic nature of NNs makes it 

challenging to define proper test cases (e.g., 
worst scenario, equivalence classes, boundaries) 
or sufficiency measures (e.g., equivalence with 
minimum test coverage requirements), hence 
bringing uncertainty to the quality of tests. 

• The open operational environment in which NN 
operate challenges defining when input data is 
within training range, and hence, when NNs can 
provide reliable predictions. 

Overall, limitations in the design and validation of 
NNs against the requirements of a safety-relevant 
development process pose extra pressure on the design 
of the software components integrating NNs for safety-
critical functionalities since their design must mitigate 
and control these gaps. As shown in the following 



Department Head 

4 IT professional 

 

 

sections, instead of solving those gaps one by one by 
trying to make NNs behave as traditional safety 
software, which is against NN nature, we accept the 
stochastic nature of NNs and relate them to other 
scenarios in the context of safety-critical systems, 
where non-safety certified components can be 
ensembled to reach required safety integrity levels. 

 

PROPOSED APPROACH  
Our proposed approach targets the development of 

NN-based safety functions (A1) using redundancy and 
diversity (Class I and II techniques). The proposed 
design method and technique focus on systematic 
failure mitigation and target complex applications for 
which formal verification and safety-bag approaches 
are not generally applicable because safety 
requirements cannot be explicitly specified. 
To that end, we extend and adapt the strategy used to 
develop odometry safety-critical systems (SIL4 
odometry) to the development of NN-based safety-
critical systems. In the proposed analogy, the ensemble 
of diverse and highly-reliable sensors used to build a 
SIL4 safety-critical system, where each sensor does not 
strictly require safety certification, is translated into an 
ensemble of diverse and highly-reliable NNs. 
Building safety-critical functionalities with non-
safety certified sensors: the case of the railway 
odometry safety critical-system 

The railway onboard European Train Control 
System (ETCS) is a SIL4 ECS that supervises the train 
traveled distance and speed and activates the 
emergency brake if safe limits are exceeded. It relies on 
the speed and distance measurements provided by the 
onboard odometry safety function (SIL4) based on an 
ensemble of diverse and highly-reliable sensors such as 
doppler radars, accelerometers, and encoders. This 
diversity of physical principles of measurement, and 
sensor-specific characteristics (e.g., different 
manufacturers, hardware, communication protocol), 
reduce the probability of a Common Cause Failure 
(CCF). The odometry safety algorithm is commonly 
implemented as a SIL4 software/VHDL safety function 
executed on a SIL4 triplicated safety computer. 
However, each sensor does not require to be safety-
certified, and the odometry safety algorithm safely 
combines the redundant estimates provided by the 
ensemble of sensors using error detection, mitigation 
and control techniques [10]. 

From non-safety sensors to NNs 
 In a safety-odometry system, such as the one 

previously described, each sensor should provide 
highly reliable estimates within the sensor's operational 
range under the uncertainty of circumstances that can 
arise in an open world. For example, a radar sensor 
should provide a highly reliable speed measurement 
within the usage conditions established in the product 
manual (e.g., installation angle and distance). 
Nonetheless, the odometry algorithm should be able to 
detect or mitigate known and unknown circumstances 
that could lead to wrong speed measurement 
inferences, such as incorrect installation angles and the 
presence of metal or snow on the track (which affects 
the doppler effect). To that end, the odometry algorithm 
shall be able to detect, control and mitigate errors using 
diverse and redundant sensors. 

In this paper, we claim that DL-based systems can 
be built on top of NN components following the same 
approach adopted for non-safety sensors, namely using 
each NN as a potentially non-safety compliant 
component characterized by its external specifications, 
and safely ensembling multiple NNs redundantly in a 
way that diversity is also guaranteed. In particular, 
sensors are considered black boxes whose operation is 
determined only by the specification of their external 
behavior. Moreover, sensors may have fuzzy operation 
ranges (e.g., how much metal and where it must be 
located to impact the doppler effect) and provide 
stochastic responses subject to precision 
considerations. Analogously, NNs can be treated as 
black boxes, hence relieving the verification process 
from dissecting NN internals as done for traditional 
safety software. Moreover, the input data operational 
range for an NN is fuzzy (e.g., whether fog is excessive 
or not for object detection), and the result of inference 
is also stochastic (i.e. with confidence levels), as for 
sensors. 
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Required NN properties for the Realization of 
the Proposed Safety Approach 

The proposed safety approach requires, among 
other aspects, appropriate management of the 
operational range and diverse redundancy (extending 
the analogy of the previously described railway 
odometry sensors). 
Operational range: In our view, the concept of 
operation range for sensors can be managed through the 
notion of the distributional shift [11] and NN's 
epistemic uncertainty modeling [7].  
• The former field corresponds to detecting 

changes in the distribution generated by the input 
data. Specifically, the goal is to identify and 
foresee outliers only using the input information 
before predicting the response variable.  

• The latter field refers to the study of how the NN 
model definition (i.e. the selected hyper-
parameters of the NN) limits the ability of the NN 
to predict in certain scenarios. Similarly, the goal 
is to infer the boundaries of the functions 
approximated by the NN's pre-selected 
architecture and generic hyper-parameters. 

Diverse redundancy: At a conceptual level, the ultimate 
objective is to combine NN-produced predictions with 
enough dissimilarities so that their individual failures 
can be regarded as independent. Hence, the NN can be 
used redundantly to provide specific safety levels, as in 
the case of the sensors of the odometry system. It is 
noted that the failure rates imposed by high integrity 
levels in the corresponding safety standards (from 10-5 
to 10-9 per hour of operation in the case of IEC 61508) 
are well beyond the success rate of a NN that are 
commonly in the range 75%-95% when they are 
considered accurate solutions. Hence, the required 
failure rates can only be realistically reached using 
diverse and redundant NNs, that in fact are realized at 
multiple scopes simultaneously, e.g. operating on the 
same input, and across multiple redundant and diverse 

data sources (e.g. multiple cameras, radars and 
LiDARs). Although the latter already brings (physical) 
diversity by construction, it also imposes significant 
system design and procurement costs, hence, we focus 
on the former in the remaining of this work. 
When combining several NNs to obtain reliable results, 
either in the form of multiple predictions for the same 
input (Class I), or in the form of a prediction and a test 
of whether such prediction can be trusted (Class II), the 
key metric is independence between the networks. This 
is better understood with an example: If we can gain 
some confidence that two NNs, NN1 and NN2, are 
completely independent, then we can probabilistically 
combine their outputs. That is, the combined 
probability of misprediction is the multiplication of the 
individual misprediction probabilities. 
A way to achieve independence is via diversity, which 
can be achieved and architected in different manners to 
prevent those inputs that lead to misprediction for one 
NN and systematically from leading to misprediction 
for another redundant NN. Figure 1 summarizes 
example diversity approaches for the development of 
NN ensembles:  
1) Diversity may come from different inputs sources. 

For instance, we set two identical NNs trained 
identically, but linked to different cameras 
(sensors) in different car locations, thus capturing 
different perspectives of the same objects. Again, 
non-systematic mispredictions must also be 
justified. 

2) We can set also up multiple NNs, e.g. NN1 and 
NN2, identical, but trained with different input 
data sets. We trust their prediction when it 
matches, and distrust it otherwise (Class I). Note 
that it remains to be argued that their different 
training avoids or mitigates to a sufficient extent 
the possibility to fail both systematically.  

3) We can set up NN1 and NN2 with different 
designs (regarding the architecture, training hyper-
parameters that defines a NN or even sharing only 

 

Figure 1: Example diversity approaches for proposed NN ensembles. 
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part of the architecture [12]) and (randomly) 
change the initialization point of their weights, 
either with the same or different data for training. 
Non-systematic mispredictions must also be 
justified. 

4) The same case as those above but instead of using 
2 NNs, we use a larger number and rely on voting 
to secure a prediction in many more cases [13]. 
Note that the voting process is a challenge on itself 
since we may need, for instance, non-
homogeneous weights to consider different 
degrees of dependence across NNs, or even 
consider temporal redundancy if predictions occur 
periodically to properly bias the voting process. 

5) We set a NN for the prediction and one or several 
NNs to validate/reject such prediction. Those 
other NNs may be trained to detect whether input 
data is out of the valid range, to predict specific 
casuistic for which the main NN is not so skilled 
or even improve the main NN learning process 
using an adversarial learning-based design, in the 
form of a Zero-sum game [14] (Class II). 

Importantly, the approaches above can be mixed to 
avoid their individual systemic weaknesses. For 
instance, (1) mixing depends on the ability to deduce or 
interpret where the shortcomings of each model come 
from. Usually, the high dimensionality of the data (e.g. 
when we are tackling with images) prevents from easily 
deriving a clear mix. Therefore, we should rely and 
improve the work on high dimensional probabilistic 
modeling. Similarly, (2) mixing depends on expert-
knowledge to ensure different input information 
provide richer and diverse sources of learning. On the 
other hand, (3) mixing is connected with the concept of 
expressivity of a certain neural network architecture or 
hyper-parameter selection. This constitutes an open 
research problem since it is well-known that, regardless 
of the number of parameters, NNs can approximate 
complex mathematical functions, but the boundaries of 
such estimation capabilities are difficult to define. 
Likewise, the voting process of a huge number of NNs 
in the ensemble, as proposed in (4), should consider 
how each of these NN were designed to weight its 
relevance in the vote and, similarly, any unsupervised 
learning process, as shown in (5), will depend on how 

 
1 The presented experiments were implemented 
using Tensorflow with Keras as a high-level API. 

the prediction and rejection NN were defined. Thus, the 
more misprediction sources are considered, the better.  
A commonality in all approaches to achieve sufficient 
diversity is the fact that independence needs to be 
proven in accordance with common practice in the 
corresponding safety-critical domain. This may imply 
providing adequate argumentation as well as 
quantitative data validating that independence holds to 
a sufficient extent. 

Motivating example 
For illustration purposes, in this section we focus 

on a specific simplified realization of NN diversity, to 
show the potential feasibility of the proposed approach, 
the technical limitations and the open research 
challenges that still need to be addressed for the 
development and certification/qualification of diverse 
NN ensemble-based safety-critical systems. Other 
realizations and combinations thereof are possible. 
We consider a set of 4 different NNs trained to classify 
between several traffic signals images. Each of these 
NNs was selected to have more than 96% of accuracy 
considering the overall classes in the validation set, 
with accuracy measured as the average non-weighted 
success rate across all the classes. Therefore, each NN 
is a reasonably good estimator from a functional 
perspective, but the systematic error rate is far from 
tolerable for a safety-related ECS. 
The used input images are obtained from the German 
Traffic Sign Benchmarks, a multi-class benchmark 
proposed for a classification competition [15]. In order 
to train the NNs as supervised learning models1, we 
divided the data set into 3 randomly selected subsets:  
• the training set (containing 35209 images, 68% 

of the global data set), that is used to optimize the 
NN parameters;  

• the validation set (including 4000 images, 8% of 
the global data set), that is used to decide when to 
stop the learning procedure avoiding phenomena 
such as overfitting; and  

• the test set (considering 12630 images, 24% of 
the global data set) that is used to ultimately 
check the performance of the trained system in a 
separate set to compare to other models.  
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In order to study NN diversity, we focus on a simple 
case that already shows the potential benefits for safety 
applications. In particular, we build on the same NN in 
terms of architecture (i.e. layers and number of 
neurons) and input data. The four variants of the NN 
are generated by simply changing the initialization 
point of their weights. That is, as we saw previously, 
NN are optimized by changing their weight values and 
here we consider that each of the NNs will start from a 
different point so each NN will tend to end up with 
distinct weights values or, equivalently, being a 
different mathematical function. This occurs since the 
mathematical surface to approximate – defined by the 
weights values – is not convex, and therefore there exist 
several local minima when the optimization process of 
the weights is applied. Note that this simplified 
example exploits a single source of diversity, hence still 
keeping some lack of independence across NNs, which 
share, for instance, their architecture and input data for 
training. 
In order to assess diversity, we compute the success 
rate of increasingly larger combinations (ensembles) of 
NNs, out of the four available. We start by deriving the 
success rate of NN0. Then, we compute the success rate 
of the ensemble NN0+NN1 so that if any of the two 
NNs successfully classifies the object of a given class 
in the image, we consider that their ensemble produces 
a good classification. Importantly, here the reported 
information is not a chosen class but a predictive set 
containing the true label, which is connected with the 
concept of Conformal prediction with relevant 
importance in certain contexts [16]. Following this 
idea, we create two further sub-ensembles, 
incrementally adding NN2 and NN3. 

 The results in Figure 2 show that for the 8 classes (C1-
C8) for which NN0 produced bad prediction results, 
adding NN1, NN2, and NN3 progressively to the 
ensemble results in improved accuracy. In some cases, 
we see that just adding NN1 produces a significant 
increase in accuracy (e.g. for C1). For other cases the 

increment is steadier (C7). In other cases, the difference 
when adding a new NN to the ensemble is small (e.g. 
when adding NN2 to C2 and when adding NN2 and 
NN3 to C8). While diversity across the particular NNs 
used in the example is limited to a single source, it 
already provides some relevant – yet not full – 
independence. For instance, in the case of C1, if NNs 
lacked diversity, their combination would keep the 
success rate at 82% roughly constant. Instead, if they 
were fully independent, such success rate would grow 
to almost 97% when adding NN1 instead of only 91%, 
and to above 99% when adding NN2 instead of only 
92%. Overall, we observe that there is exploitable 
diversity among NNs although their individual success 
rate is similar. Even small changes within the 
considered NN ensemble can help reducing the 
probability of a CCF and, crucially, such differences 
encourage further research on exploiting this existing 
information, and devising appropriate means to 
combine sources of diversity that provide a sufficient 
degree of independence. 
Furthermore, from this simplified example, we can 
extract some insights into technical limitations and 
research open challenges. For example: 
(a) Independence among diverse NNs. Exploiting 
redundant diversity techniques provides a potential 
approach to reducing the probability of CCF. However, 
even in this simplified example with initial random 
weights diversity, the obtained accuracy results were 
below ideal accuracy targets due to hidden 
dependencies. Hence, as for the odometry reference 
approach [10], the achievable independence and the 
probability of CCF should be analyzed, measured, and 
tested using safety standard compliant novel methods 
yet to be defined (see future work). 
(b) Achieving extremely low probability of systematic 
errors. In generic DL-based applications, achieving a 
99% accuracy might be considered suitable. However, 
this is not the generic case for safety-critical systems 
that must meet an extremely low probability of failure. 
For illustration purposes, if we assume that a new 
traffic sign must be correctly inferred every 6 seconds 
on average, a 99% accuracy leads to a probability of 
one erroneous classification every 600 seconds (10 
minutes). And achieving the most demanding SIL4 
minimum probability of failure (10-9 per hour of 
operation, approximately 114.000 years) would require 
an extremely high accuracy (99,9999999972%). As for 
the odometry reference approach, the exploitation of 
diverse redundancy can pave the way towards 
achieving such low probability of error. Yet, how to 

 

Figure 2: Success rate of different NN 
ensembles. 
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combine different predictions from redundant NNs to 
increase accuracy is an open challenge in itself since 
approaches better than homogeneous voting may exist. 
(c) Computational cost: The execution of redundant 
NNs entails a high computational cost, in a similar way 
to the increase in the economic cost of the odometry 
system due to the integration of redundant sensors. 
However, in the absence of a directly certifiable / 
qualifiable solution, the challenge in both cases is to 
develop a redundant solution with sufficient diversity 
to achieve the required safety integrity level in 
compliance with safety standards, at affordable 
effort/cost for the target domain. 

 

CONCLUSIONS AND FUTURE WORK  

The increasing adoption of NN and DL technology for 
ECS development in the avionics, automotive, rail and 
space domains (e.g. safety-critical autonomous 
systems) requires the definition of novel and bounded 
effort/cost technical approaches for their development 
and certification/qualification according to domain-
specific standards. However, the stochastic and data-
dependent nature of NN solutions inherently clashes 
with the compelling requirements imposed by such 
standards. In this work, we have elaborated and adapted 
the redundancy and diversity approach already used for 
developing SIL4 odometry safety-critical systems and 
proposed a safety argumentation with example 
diversity technical approaches for the development of 
NN ensemble-based safety-critical systems. We have 
used a simplified motivating example to show the 
potential feasibility of the approach, technical 
limitations, and open challenges for future work: e,g, 
exploring and assessing different diversity approaches, 
definition of analysis, test and measurement 
approaches for independence and CCF probability, 
definition of threshold values for acceptable diversity, 
and further refine the underpinned safety 
argumentation. 
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